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Local controllability of the bilinear 1D Schrödinger equation with

simultaneous estimates

Mégane Bournissou

July 16, 2021

Abstract

We consider the 1D linear Schrödinger equation, on a bounded interval, with Dirichlet bound-
ary conditions and bilinear scalar control. The small-time local exact controllability around the
ground state was proved in [5], under an appropriate nondegeneracy assumption. Here, we work
under a weaker nondegeneracy assumption and we prove the small-time local exact controlla-
bility in projection, around the ground state, with estimates on the control (depending linearly
on the target) simultaneously in several spaces. These estimates are obtained at the level of the
linearized system, thanks to a new result about trigonometric moment problems. Then, they
are transported to the nonlinear system by the inverse mapping theorem, thanks to appropriate
estimates of the error between the nonlinear and the linearized dynamics.
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1 Introduction and main result

1.1 Description of the controlled system

Let T > 0. In this paper, we consider the 1D Schrödinger equation,

{
i∂tψ(t, x) = −∂2xψ(t, x) − u(t)µ(x)ψ(t, x), (t, x) ∈ (0, T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ).

(1)

In quantum physics, this equation describes a quantum particle, in an infinite potential well, sub-
jected to an electric field whose amplitude is given by u(t). The dipolar moment, µ : (0, 1) → R,
depicts the interaction between the electric field and the particle. This equation is a bilinear con-
trol system where the state is the wave function ψ, such that ‖ψ(t)‖L2(0,1) = 1 for all time and
u : (0, T ) → R denotes a scalar control.

1.2 Functional settings

Unless otherwise specified, in space, we will work with complex valued functions. The Lebesgue
space L2(0, 1) is equipped with the classical hermitian scalar product. Let S be the unit-sphere of
L2(0, 1). The operator A is defined by

D(A) := H2(0, 1) ∩H1
0 (0, 1), Aϕ := −d

2ϕ

dx2
.

Its eigenvalues and eigenvectors are given by

∀j ∈ N
∗, λj := (jπ)2 and ϕj :=

√
2 sin(jπ·).

The family of the eigenvectors (ϕj)j∈N∗ is an orthonormal basis of L2(0, 1). We also introduce, for
all j ∈ N∗, ψj(t, x) := ϕj(x)e

−iλjt for (t, x) ∈ R × [0, 1], which are solutions of the Schrödinger
equation (1) for u ≡ 0. When k = 1, ψ1 is the ground state. We also introduce the normed spaces
linked to the operator A, given by, for all s > 0,

Hs
(0)(0, 1) := D(A

s
2 ), ‖ϕ‖Hs

(0)
(0,1) := ‖ (〈ϕ,ϕj〉)j∈N∗ ‖hs =




+∞∑

j=1

|js〈ϕ,ϕj〉|2



1
2

.

If J is a subset of N∗, then we define

HJ := SpanC (ϕj , j ∈ J) ,

and we introduce the orthogonal projection on HJ, given by,

PJ : L2(0, 1) → HJ

ψ 7→ ψ − ∑
j 6∈J

〈ψ,ϕj〉ϕj .

For T > 0 and u ∈ L1(0, T ), the family (un)n∈N of the iterated primitives of u is defined by induction
as,

u0 := u and ∀n ∈ N, un+1(t) :=

∫ t

0
un(τ)dτ, t ∈ [0, T ].

We will also consider, for any integer k ∈ N, Hk ((0, T ),R), the usual integer-order real Sobolev
spaces, equipped with the usual Hk(0, T )−norm and Hk

0 (0, T ) the adherence of C∞
c (0, T ), the set of
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functions with compact support inside (0, T ), for the topology ‖ · ‖Hk(0,T ). By Poincaré inequality,

Hk
0 (0, T ) can be equipped with the norm

‖u‖Hk
0 (0,T )

:=

(∫ T

0
u(k)(t)2dt

)1/2

.

For any integer k ∈ N∗, the negative H−k(0, T )-norm is not defined by duality as usual but for every
u ∈ L2(0, T ) by

‖u‖H−k(0,T ) := |u1(T )|+ ‖uk‖L2(0,T ), (2)

as such norms seem to arise naturally in both the nonlinear and linearized dynamics. For the sake
of simplicity, we will sometimes omit (0, T ) or (0, 1) on the spaces.

1.3 Main result

The regularity assumptions play a crucial role in the validity of controllability results. Therefore,
we define the following precise notion of small-time local controllability (STLC) used in this paper,
stressing the regularity imposed on both the control and the data to be controlled.

Definition 1.1 (STLC around the ground state in X with controls in Y ). Let X be a vector space
of complex-valued functions defined on [0, 1] and (YT , ‖ · ‖YT ) be a family of normed vector spaces
of real-valued functions defined on [0, T ], for T > 0. The system (1) is said to be STLC around
the ground state in X with controls in Y if for every T > 0, for every ε > 0, there exists δ > 0
such that for every ψ∗, ψf in S ∩X with ‖ψ∗ − ψ1(0)‖X < δ and ‖ψf − ψ1(T )‖X < δ, there exists
u ∈ L2(0, T )∩YT with ‖u‖YT < ε such that the solution ψ of (1) associated with the initial condition
ψ∗ satisfies ψ(T ) = ψf .

Since [5], it is known that if

there exists a constant c > 0 such that for all j ∈ N
∗, |〈µϕ1, ϕj〉| ≥

c

j3
, (3)

then for any k ∈ N, the Schrödinger equation (1) is STLC around the ground state in H2k+3
(0) with

controls in Hk
0 . However, in [5], the associated control map (ψ0, ψf ) 7→ u depends on k. In this

article, two goals are tackled:

• first, building a unique control map for the nonlinear system with simultaneous estimates in
various control/data spaces,

• second, dealing with control in projection when an assumption of the type (3) holds only on a
subset J of N∗.

Our main result is the following one.

Theorem 1.2. Let (p, k) ∈ N2 with p ≥ k, J a subset of N∗ and µ ∈ H2(p+k)+3((0, 1),R) with
µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p − 1, such that

there exists a constant c > 0 such that for all j ∈ J, |〈µϕ1, ϕj〉| ≥
c

j2p+3
. (4)

The Schrödinger equation (1) is STLC in projection around the ground state in H
2(p+m)+3
(0) with

controls in Hm
0 (T0, T ), for every m ∈ {0, . . . , k} with the same control map.
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More precisely, for all initial time T0 ≥ 0 and final time T > T0, there exists C, δ > 0 and a C1-map
Γ : ΩT0 × ΩT → Hk

0 ((T0, T ),R) where

ΩT0 := {ψ0 ∈ S ∩H2(p+k)+3
(0) ; ‖ψ0 − ψ1(T0)‖H2(p+k)+3

(0)

< δ}, (5)

ΩT := {ψf ∈ HJ ∩H2(p+k)+3
(0) ; ‖ψf − PJ (ψ1(T )) ‖H2(p+k)+3

(0)

< δ}, (6)

such that Γ(ψ1(T0), ψ1(T )) = 0 and for every (ψ0, ψf ) ∈ ΩT0 × ΩT , the solution of (1) on [T0, T ]
with control u := Γ(ψ0, ψf ) and initial condition ψ0 at t = T0 satisfies

PJ (ψ(T )) = ψf ,

with the following boundary conditions

u2(T ) = . . . = uk+1(T ) = 0, (7)

where here (un)n∈N denotes the iterated primitives of u vanishing at T0. Besides, for all m in
{−(k + 1), . . . , k}, the following estimates hold

‖u‖Hm
0 (T0,T ) ≤ C

(
‖ψ0 − ψ1(T0)‖H2(p+m)+3

(0)

+ ‖ψf − PJψ1(T )‖H2(p+m)+3
(0)

)
. (8)

To simplify the notations, in all the following, we will take the initial time T0 equal to 0, the
proof when T0 > 0 is deduced by translation of controls and a change of global phase on the state.
Moreover, from now on, if not mentioned, T > 0 will denote the final time, p and k two integers,
and J a subset of N∗.

Remark 1.3. Assume that J contains an infinite subset of 2N and one of 2N + 1. Then, for all µ
in H2p+3(0, 1) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p− 1, assumption (4) is equivalent
to

µ(2p+1)(0) ± µ(2p+1)(1) 6= 0 and ∀j ∈ J, 〈µϕ1, ϕj〉 6= 0,

as, by integrations by parts and by Riemann-Lebesgue Lemma,

〈µϕ1, ϕj〉 =
(−1)p2(2p + 2)

π2p+2j2p+3

(
(−1)j+1µ(2p+1)(1)− µ(2p+1)(0)

)
+ o
j→+∞

(
1

j2p+3

)
.

This result is both a new control result and a toolbox for future works about nonlinear control
of the Schrödinger equation (1). Indeed, such result can for example give a framework to prove
positive controllability results on the Schrödinger equation, with nonlinear tools, when some of
the coefficients 〈µϕ1, ϕj〉 vanish. In that case, building a unique control map with estimates in
simultaneous spaces can be useful to perform specific motions for the nonlinear solution. The proof
of Theorem 1.2 is in three steps.

• In Section 2, we study the well-posedness of the Schrödinger equation and more precisely the
regularity of the solutions with respect to the boundary conditions on the dipolar moment µ.

• In Section 3, we present a new result about the solvability of trigonometric moment problems
in high regularity spaces with simultaneous estimates.

• This new moment result allows in Section 4 and more precisely in Subsection 4.1 to build a
linear control operator, for the linearized system around the ground state, with simultaneous
estimates in various control/data spaces. Then, in Subsection 4.3, we prove that the iterations
of the inverse mapping theorem propagate these estimates to the nonlinear control operator
of (1).
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Remark 1.4. Actually, the question of building a control function that inherits the regularity of the
data to be controlled has already been tackled by Ervedoza and Zuazua in [17], for time-reversible
linear systems. As the use of [17] is not straightforward in our case, we choose to present in this
article a new result about trigonometric moment problems solving this question. However, in Section
5, we also explain how the controllability of the linearized system with simultaneous estimates can
be proved using the results of [17].

1.4 Bibliography

Local exact controllability results. From a general negative result on the controllability of
bilinear control systems by Ball, Marsden and Slemrod [2], Turinici in [32] deduced a negative
control result for the Schrödinger equation (1): for a given initial data ψ0 ∈ H2

(0)(0, 1) ∩ S, the

reachable set with controls in Lrloc((0,+∞),R), with r > 1, has an empty interior in H2
(0)(0, 1) ∩ S.

The case of controls in L1
loc((0,+∞),R) has been proved later in [13] by Boussaid, Caponigro, and

Chambrion.
However, choosing more appropriate functional spaces, exact local controllability results for 1D

models have been proved by Beauchard in [3, 4], whose proofs have been later simplified by Beauchard
and Laurent in [5] by means of a hidden regularizing effect and an inverse mapping theorem (instead
of Nash-Moser’s one).

This strategy was later developed by Morancey and Nersesyan to control one Schrödinger equa-
tion with a polarizability term [26] or a finite number of equations with one control [25, 27]. This
was also used by Puel [30] to prove the local exact controllability for a Schrödinger equation, in a
bounded regular domain, in a neighborhood of an eigenfunction corresponding to a simple eigenvalue
in dimension N ≤ 3.

Global approximate results. With geometric techniques for the controllability of the Galerkin
approximations, in [15] Chambrion, Mason, Sigalotti, and Boscain prove the approximate controlla-
bility of Schrödinger in L2 under hypotheses later refined by Boscain, Caponigro, Chambrion, and
Sigalotti in [11]. In higher order Sobolev spaces, similar results were proved for one [13] or a finite
number of equations [12]. Such types of results can also be proved from exact controllability results
in infinite time [29] or from a variational argument [28].

About smooth controllability. The negative controllability result [32] and the positive con-
trollability results [3, 5] proved on the same Schrödinger equation underline the importance of the
regularity assumptions asked for the validity of controllability results, for a linear infinite dimensional
equation. Nevertheless, even when the state lives within a finite dimensional space, Beauchard and
Marbach proved in [6] that the same nonlinear system, according to the functional setting, may or
may not be small-time controllable. The same authors highlighted later the same phenomenon on a
nonlinear infinite dimension parabolic equation in [7].

Moreover, for a controlled system that is already known to be controllable in a given setting,
one can ask whether the control map preserves the smoothness of the data to be controlled. More
precisely, if the data is smoother than expected, does the control constructed inherit from this
smoothness? Generally, it is not the case. However, [17] gave a method to compute such controls.
Such a question can be relevant to deal with nonlinear problems as in [16] or to compute convergence
rates for numerical approximation (see [14] for example).

About moment problems. The use of infinite moment theory for linear control problems was
introduced by the work of Fattorini and Russel (see [18, 19]). For classical results about Riesz
basis and moment problems, the reader can refer, for example, to the following works: Krabs in [23],
Avdonin and Ivanov in [1], Komornik and Loreti in [22], Haraux in [21]. In this paper, the solvability
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of a moment problem at any time with estimates in simultaneous Sobolev spaces is investigated. For
the Schrödinger equation, it has already been done by Beauchard in [3] but only for a specific and
not arbitrary small time. Moreover, the solvability of a moment problem in high-regularity spaces,
but without simultaneous estimates, has been done in [5] for Schrödinger, or in [7] for a parabolic
equation, relying on the work [8].

2 Well-posedness of the Cauchy problem

This section is dedicated to the proof of the existence, uniqueness and bounds on the solution of the
Cauchy problem





i∂tψ(t, x) = −∂2xψ(t, x)− u(t)µ(x)ψ(t, x) − f(t, x), (t, x) ∈ (0, T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ),
ψ(0, x) = ψ0(x), x ∈ (0, 1).

(9)

Our goal is to underline the link between the regularity of the solutions and the boundary conditions
on the dipolar moment µ by proving the following statement.

Theorem 2.1. Let T > 0, (p, k) ∈ N2, µ ∈ H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0

for all n = 0, . . . , p − 1 , u ∈ Hk
0 ((0, T ),R), ψ0 ∈ H

2(p+k)+3
(0) (0, 1) and f ∈ Hk

0 ((0, T ),H
2p+3 ∩

H2p+1
(0) (0, 1)). There exists a unique weak solution of the Schrödinger equation, that is a function

ψ ∈ Ck([0, T ],H2p+3
(0) (0, 1)) such that the following equality holds in H2p+3

(0) for every t ∈ [0, T ]:

ψ(t) = e−iAtψ0 + i

∫ t

0
e−iA(t−τ) (u(τ)µψ(τ) + f(τ)) dτ.

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that if ‖u‖Hk
0
< R, then this

solution satisfies

‖ψ‖Ck([0,T ],H2p+3
(0)

) ≤ C

(
‖ψ0‖H2(p+k)+3

(0)

+ ‖f‖Hk((0,T ),H2p+3∩H2p+1
(0)

)

)
. (10)

We will sometimes write ψ(·; u, ψ0) to denote the solution of (9) associated with control u and
initial data ψ0 when we will need to recall the dependence with respect to the control or the initial
condition. For p = 0, no boundary conditions are needed on µ. The proof of Theorem 2.1 is inspired
by [5, Proposition 2 and 5], where the authors dealt with the cases (p = 0, k = 0) and (p = 0, k = 1).

Remark 2.2. Let T , p, k, µ, u, ψ0 and f as in Theorem 2.1. Notice that as both the control and the
source term vanish at the final time, the solution ψ ∈ Ck([0, T ],H2p+3

(0) ) of (9) satisfies the following

equality in H2p+3
(0) (0, 1)

i∂kt ψ(T ) = Akψ(T ).

Therefore,

ψ(T ) ∈ H
2(p+k)+3
(0) (0, 1).

However, in general, the solution does not belong to C0([0, T ],H
2(p+k)+3
(0) ), as ψ(t) does not belong

to H
2(p+k)+3
(0) (0, 1) if u(t) 6= 0. Moreover, from (10), one deduces that for every R > 0, there exists

C = C(T, µ,R) > 0 such that if ‖u‖Hk
0
< R, then

‖ψ(T )‖
H

2(p+k)+3
(0)

≤ C

(
‖ψ0‖H2(p+k)+3

(0)

+ ‖f‖Hk((0,T ),H2p+3∩H2p+1
(0)

)

)
. (11)
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2.1 Smoothing effect

The main difficulty in this well-posedness result relies on the fact that, for a given τ in [0, T ], f(τ)
is not assumed to belong to H2p+3

(0) and moreover, the operator ψ 7→ µψ is not bounded from H2p+3
(0)

to H2p+3
(0) because µ(2p+1) does not vanish at x = 0 and x = 1. Therefore, the proof of Theorem 2.1

stems from the regularity of the function t 7→
∫ t
0 e

iAτf(τ)dτ in the spatial space H2p+3
(0) even when

f does not take values in such space. In the following proposition, for p = −1, we will write
H2p+3 ∩H2p+1

(0) to denote only the space H1 to homogenize with the notation when p ∈ N.

Proposition 2.3. Let p = −1 or p ∈ N. There exists a nondecreasing function C : [0,+∞) →
(0,+∞) such that for all T ≥ 0 and for all f ∈ L2((0, T ),H2p+3 ∩ H2p+1

(0) (0, 1)), the function

G : t 7→
∫ t
0 e

−iA(t−τ)f(τ)dτ belongs to C0([0, T ],H2p+3
(0) (0, 1)) with the following estimate,

‖G‖C0([0,T ],H2p+3
(0)

) ≤ C(T )‖f‖L2((0,T ),H2p+3∩H2p+1
(0)

). (12)

Proof. Let T ≥ 0 and f ∈ L2((0, T ),H2p+3 ∩H2p+1
(0) ). Let t ∈ [0, T ]. By definition of the function G

and of the norm H2p+3
(0) , one seeks to estimate,

‖G(t)‖H2p+3
(0)

=

∥∥∥∥∥∥

+∞∑

j=1

(∫ t

0
〈f(τ), ϕj〉e−iλj(t−τ)dτ

)
ϕj

∥∥∥∥∥∥
H2p+3

(0)

=

∥∥∥∥∥

(∫ t

0
〈f(τ), ϕj〉eiλjτdτ

)

j∈N∗

∥∥∥∥∥
h2p+3

.

Yet, for almost every τ ∈ (0, T ), f(τ) belongs to H2p+3 ∩ H2p+1
(0) . Therefore, performing (2p + 3)-

integrations by parts, we get, for all j ∈ N∗,

〈f(τ), ϕj〉 =
√
2

(jπ)2p+3

(
(−1)j∂2p+2

x f(τ, 1)− ∂2p+2
x f(τ, 0)

)
− 1

(jπ)2p+3
〈∂2p+3
x f(τ),

√
2 cos(jπ·)〉,

(with a minus added on each term if p = −1). Thus, there exists a constant C > 0, not depending
on time, such that

‖G(t)‖
H2p+3

(0)
≤ C

∑

x0∈{0,1}

∥∥∥∥∥

(∫ t

0
∂2p+2
x f(τ, x0)e

iλjτdτ

)

j∈N∗

∥∥∥∥∥
l2

+ C

∥∥∥∥∥

(∫ t

0
〈∂2p+3
x f(τ),

√
2 cos(jπ·)〉eiλj τdτ

)

j∈N∗

∥∥∥∥∥
l2

. (13)

Using the Cauchy-Schwarz inequality (in time) and then the orthonormality of the family (
√
2 cos(jπ·))j∈N

in L2(0, 1), the square of the last term of the right-hand side of (13) is estimated by

+∞∑

j=1

∣∣∣∣
∫ t

0
〈∂2p+3
x f(τ),

√
2 cos(jπ·)〉eiλj τdτ

∣∣∣∣
2

≤
+∞∑

j=1

t

∫ t

0

∣∣∣〈∂2p+3
x f(τ),

√
2 cos(jπ·)〉

∣∣∣
2
dτ

≤ t

∫ t

0

∥∥∂2p+3
x f(τ)

∥∥2
L2 dτ,

giving that

∥∥∥∥∥

(∫ t

0
〈∂2p+3
x f(τ),

√
2 cos(jπ·)〉eiλj τdτ

)

j∈N∗

∥∥∥∥∥
l2

≤
√
t‖f‖L2((0,t),H2p+3). (14)
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Moreover, the sum in the right-hand side of (13) is estimated using an Ingham inequality (see
for example [5, Appendix B, Corollary 4]) which gives the existence of a nondecreasing function
C : t 7→ C(t) > 0 such that,

∥∥∥∥∥

(∫ t

0
∂2p+2
x f(τ, x0)e

iλjτdτ

)

j∈N∗

∥∥∥∥∥
l2

≤ C(t)‖∂2p+2
x f(·, x0)‖L2(0,t), for x0 = 0 and 1. (15)

Therefore, (13), (14) and (15) together with the fact that H2p+3(0, 1) is continuously embedded in
C2p+2([0, 1]) give

‖G(t)‖H2p+3
(0)

≤ C(t)‖f‖L2((0,t),H2p+3),

with a nondecreasing function t 7→ C(t) > 0. This bound shows that G(t) belongs to H2p+3
(0) (0, 1)

for every t ∈ [0, T ] and that the map t 7→ G(t) ∈ H2p+3
(0) is continuous at t = 0 (as C(t) is uniformly

bounded when t → 0 and ‖f‖L2((0,t),H2p+3) → 0 when t → 0 thanks to the dominated convergence
theorem). The continuity of G at any time t ∈ (0, T ] can be proved similarly.

The previous lemma stated the continuity of t 7→
∫ t
0 e

iAτf(τ)dτ and from this we can deduce,
for all k ∈ N∗, the Ck-regularity of such function.

Proposition 2.4. Let (p, k) ∈ N2. There exists a nondecreasing function C : [0,+∞) → (0,+∞)
such that for all T ≥ 0 and for all f ∈ Hk

0 ((0, T ),H
2p+3 ∩ H2p+1

(0) (0, 1)), the function G : t 7→
∫ t
0 e

−iA(t−τ)f(τ)dτ belongs to Ck([0, T ],H2p+3
(0) (0, 1)) with the following estimate,

‖G‖Ck([0,T ],H2p+3
(0)

) ≤ C‖f‖Hk((0,T ),H2p+3∩H2p+1
(0)

). (16)

Proof. Let f ∈ Hk
0 ((0, T ),H

2p+3 ∩H2p+1
(0) ). We will rather work with G written under the form

G(t) =

∫ t

0
e−iAτf(t− τ)dτ, t ∈ [0, T ].

Step 1: Classical regularity. As f is in Hk((0, T ),H2p+2
(0)

), the classical theory on semi-groups gives

that G is in Ck([0, T ],H2p+2
(0)

). Moreover, because f(0) = . . . = f (k−1)(0) = 0, the derivatives, for

the H2p+2
(0) -topology, are given by,

∀n = 0, . . . , k, G(n)(t) =

∫ t

0
e−iAτf (n)(t− τ)dτ, t ∈ [0, T ]. (17)

Step 2: Higher regularity in space. We prove that G is in Cn([0, T ],H2p+3
(0) ) by induction on n ∈

{0, . . . k}. The initialization (n = 0) is proved in Proposition 2.3. Let n ∈ {0, . . . k − 1} and assume
that G is in Cn([0, T ],H2p+3

(0) ). First, as f (n+1) is in L2((0, T ),H2p+3 ∩ H2p+1
(0) ) (as n + 1 ≤ k),

Proposition 2.3 and (17) give directly that G(n+1) is in C0([0, T ],H2p+3
(0) ). Then, for t ∈ [0, T ], with

(17), one can write,

G(n)(t+ h)−G(n)(t)

h
−G(n+1)(t) =

1

h

∫ t+h

t
e−iAτf (n)(t+ h− τ)dτ

+

∫ t

0
e−iAτ

(
f (n)(t+ h− τ)− f (n)(t− τ)

h
− f (n+1)(t− τ)

)
dτ. (18)
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By Proposition 2.3, the H2p+3
(0) -norm of the second term of the right-hand side of (18) is bounded by

c1(T )

∥∥∥∥∥
f (n)(·+ h)− f (n)

h
− f (n+1)

∥∥∥∥∥
L2((0,T ),H2p+3∩H2p+1

(0)
)

which goes to zero as h goes to zero, because f (n) is in H1((0, T ),H2p+3 ∩ H2p+1
(0)

). Besides, as

f (n)(0) = 0, using successively a change of variables, that e−iA is an isometry from H2p+3
(0) to H2p+3

(0) ,

Proposition 2.3 and Cauchy-Schwarz inequality, one gets the following upper bound for the H2p+3
(0) -

norm of the first term of the right-hand side of (18)

∥∥∥e
iA(t+h)

h

∫ h

0
e−iAs

(
f (n)(s)− f (n)(0)

)
ds
∥∥∥
H2p+3

(0)

≤ c1(h)

∥∥∥∥∥
f (n)(·)− f (n)(0)

h

∥∥∥∥∥
L2((0,h),H2p+3∩H2p+1

(0)
)

=
c1(h)

h

∥∥∥∥
∫ ·

0
∂tf

(n)(τ)dτ

∥∥∥∥
L2((0,h),H2p+3∩H2p+1

(0)
)

≤ c1(h)
∥∥∥∂tf (n)

∥∥∥
L2((0,h),H2p+3∩H2p+1

(0)
)
,

This bound goes to zero when h goes to zero as the function h 7→ c1(h) given in Proposition 2.3
is nondecreasing and lim

h→0

∥∥∂tf (n)
∥∥
L2((0,h),H2p+3∩H2p+1

(0)
)
= 0 by the dominated convergence theorem.

And this concludes the proof.

2.2 Proof of Theorem 2.1, the well-posedness

Let µ, ψ0, f and u satisfying the hypotheses of Theorem 2.1. We consider the map

F : Ck([0, T ],H2p+3
(0) (0, 1)) → Ck([0, T ],H2p+3

(0) (0, 1))

ψ 7→ ξ,

where

ξ(t) := e−iAtψ0 + i

∫ t

0
e−iA(t−τ) (u(τ)µψ(τ) + f(τ)) dτ, t ∈ [0, T ],

so that ψ is a weak solution of (9) if and only if ψ is a fixed-point of F .

F is well-defined. For ψ ∈ Ck([0, T ],H2p+3
(0) ) and τ ∈ [0, T ], by Leibniz formula and the algebra

structure of H2p+3, the map τ 7→ u(τ)µψ(τ) + f(τ) belongs to Hk
0 ((0, T ),H

2p+3 ∩H2p+1
(0) ) and thus,

by Proposition 2.4, ξ = F (ψ) is in Ck([0, T ],H2p+3
(0) ).

F is a contraction. Let ψ, ψ̂ in Ck([0, T ],H2p+3
(0) ). Again, by Proposition 2.4 and the algebra structure

of H2p+3(0, 1), we get, for all t ∈ [0, T ],

‖F (ψ)(t) − F (ψ̂)(t)‖H2p+3
(0)

≤ C(T )‖u‖Hk‖µ‖H2p+3‖ψ − ψ̂‖Ck([0,T ],H2p+3). (19)

Equation (19) proves that if ‖u‖Hk is small enough, F is a contraction and thus by the Banach fixed-
point theorem, admits a unique fixed-point ψ in Ck([0, T ],H2p+3

(0) ). Computing the same estimates,
by Proposition 2.4, we get that this fixed point satisfies

‖ψ‖
Ck([0,T ],H2p+3

(0)
)
≤ C(T, µ)

(
‖ψ0‖H2(p+k)+3

(0)

+ ‖u‖Hk‖ψ‖Ck([0,T ],H2p+3
(0)

)

+ ‖f‖
Hk((0,T ),H2p+3∩H2p+1

(0)
)

)
.
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Therefore, for u ∈ Hk
0 (0, T ) such that C(T, µ)‖u‖Hk ≤ 1/2, we get (10). If u in BHk(0,T )(0, R) is

not small enough in Hk
0 , one can consider a subdivision 0 = T0 < . . . < TN = T such that for

all i ∈ {0, . . . , N − 1}, ‖u‖Hk(Ti,Ti+1) is small enough to apply the previous argument on [Ti, Ti+1].
Notice that as the constant T 7→ C(T ) is nondecreasing, N only depends on R so that the constant
in (10) does only depend on T , µ and R, as claimed in the theorem.

3 Solvability of a moment problem with simultaneous estimates

The goal of this section is the proof of a new result about trigonometric moment problems. More
precisely, the aim is to prove the solvability of a moment problem in high-regularity spaces, with
simultaneous estimates on the operator solving the moment problem. This will allow to build a
control map for the linearized system with estimates in various control/data spaces in the following
section.

3.1 Assumptions on the frequencies

Given an increasing sequence ω = (ωj)j∈N of [0,+∞) with ω0 = 0, we define, for all m ∈ N,

h2mω,r(N,C) :=
{
(dj)j∈N ∈ l2(N,C); d0 ∈ R and ‖d‖2h2mω :=

+∞∑

j=0

∣∣(δj,0 + ωmj
)
dj
∣∣2 < +∞

}
.

When m = 0, we will simply write l2r instead of h0ω,r. Moreover, we will say that a sequence (ωj)j∈N

satisfies an asymptotic gap if

ωj+1 − ωj → +∞ when j → +∞, (AsymptGap)

and satisfies a polynomial asymptotic gap if

there exists ε > 0, N0 ∈ N and c > 0 s.t. for all j ≥ N0, ωj+1 − ωj ≥ cjε. (AsymptGapPoly)

If not mentioned, for all j ∈ Z, j < 0, we denote by ωj = −ω−j.

3.2 Solvability of a moment problem in L2(0, T ) with polynomial constraints

First, following some known results about trigonometric moment problems, one can prove the solv-
ability in high-regularity spaces of such problems but without simultaneous estimates. This can be
deduced from the solvability of a moment problem in L2(0, T ) with polynomial constraints, which
is therefore the starting point of this section. The results presented in this subsection are a gener-
alization of the work [5, Appendix B]. Therein, the full proofs are left to the reader.

First, one can state that under an asymptotic gap condition, the family of complex exponentials,
with an added finite number of polynomials, has a biorthogonal family.

Lemma 3.1. Let T > 0 and (ωj)j∈N an increasing sequence of [0,+∞) such that ω0 = 0 and
satisfying (AsymptGap).Then, for all n ∈ N∗, the family Θn := {tq; q = 1, . . . n} ∪

{
eiωjt; j ∈ Z

}

is minimal in L2(0, T ) and thus admits a biorthogonal family.

From this result and the work of Haraux [21], one can state the solvability of trigonometric
moment problem in L2(0, T ) with a finite number of constraints on polynomial moments.

Theorem 3.2. Let T > 0, n ∈ N∗ and (ωj)j∈N an increasing sequence of [0,+∞) such that ω0 = 0
and satisfying (AsymptGap). There exists a constant C > 0 and a continuous linear map LT0 : Rn×
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l2r(N,C) → L2((0, T ),R) such that for every sequence d = ((d−q)q=1,...,n, (dj)j∈N) ∈ Rn × l2r(N,C),
the control u := LT0 (d) ∈ L2((0, T ),R) satisfies the moment problem

∀j ∈ N,

∫ T

0
u(t)eiωjtdt = dj and ∀q = 1, . . . , n,

∫ T

0
tqu(t)dt = d−q,

and the following size estimate

‖u‖L2(0,T ) ≤ C




+∞∑

j=−n

|dj |2



1/2

.

Then, we deduce, for any integer k, the solvability of such moment problems in Hk
0 (0, T ) with

only an estimate in the most regular space.

Theorem 3.3. Let T > 0, (n, k) ∈ (N∗)2 and (ωj)j∈N an increasing sequence of [0,+∞) such that
ω0 = 0 and satisfying (AsymptGap). There exists a constant C > 0 and a continuous linear map
L̃Tk : Rn × h2kω,r(N,C) → Hk

0 ((0, T ),R) such that for every sequence d = ((d−q)q=1,...,n, (dj)j∈N) ∈
Rn × h2kω,r(N,C), the control u := L̃Tk (d) ∈ Hk

0 ((0, T ),R) satisfies the moment problem

∀j ∈ N,

∫ T

0
u(t)eiωjtdt = dj and ∀q = 1, . . . , n,

∫ T

0
tqu(t)dt = d−q,

and the following size estimate

‖u‖Hk
0 (0,T )

≤ C




+∞∑

j=−n

∣∣∣
(
δj,0 + ωkj

)
dj

∣∣∣
2




1/2

.

Proof. The proof follows with L̃Tk := Bk ◦ LT0 ◦ Ak where LT0 is defined in Theorem 3.2, Ak :
Rn × h2kω,r(N,C) → Rk+n × l2r(N,C) and Bk : L2((0, T ),R) → Hk((0, T ),R) are respectively given by

Ak ((d−q)q=1,...,n, (dj)j∈N) :=

((
(−1)kq!

(q − k)!
d−q+k1lq∈{k,...,k+n}

)

q=1,...,k+n

,
(
(−iωj)kdj1lj∈N∗

)
j∈N

)
,

and

Bk(v) :=
(
t 7→

∫ t

0

(t− τ)k−1

(k − 1)!
v(τ)dτ

)
. (20)

3.3 Solvability of a moment problem in Hk
0 (0, T ) with various estimates

Notice that Theorem 3.3 provides operators L̃Tk : ((d−q)q=1,...,n, (dj)j∈N) ∈ Rn × h2kω,r(N,C) 7→ u ∈
Hk

0 ((0, T ),R) solving the moment problem which depend on k, preventing from having estimates
on u, for a given sequence (dj), simultaneously in various Sobolev spaces. Therefore, the goal of
this subsection is to prove that one can solve trigonometric moment problems in Hk

0 (0, T ) with
simultaneous estimates on the control.

First, the result can be proved when dealing with only a finite number of moments.

Proposition 3.4. Let T > 0, (n, k,N) ∈ N∗ × N2 and (ωj)j∈N an increasing sequence of [0,+∞)
such that ω0 = 0 and satisfying (AsymptGap). There exists a constant CN > 0 and a con-
tinuous linear map LN,Tlf : Rn ×

(
R × CN−1

)
→ Hk

0 ((0, T ),R) such that for every sequence d =
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((d−q)q=1,...,n, (dj)j=0,...,N−1) ∈ Rn×
(
R × CN−1

)
, the control u := LN,Tlf (d) ∈ Hk

0 ((0, T ),R) satisfies
the moment problem

∀j = 0, . . . , N − 1,

∫ T

0
u(t)eiωjtdt = dj , and ∀j ≥ N,

∫ T

0
u(t)eiωj tdt = 0,

∀q = 1, . . . , n,

∫ T

0
tqu(t)dt = d−q,

and the size estimates

‖u‖Hm
0 (0,T ) ≤ CN




N−1∑

j=−n

∣∣(δj,0 + ωmj
)
dj
∣∣2



1/2

, ∀m = 0, . . . , k. (21)

Proof. The proof follows with

LN,Tlf ((d−q)q=1,...,n, (dj)j=0,...,N−1) := L̃Tk ((d−q)q=1,...,n, (dj1lj=0,...,N−1)j∈N)

where L̃Tk is defined in Theorem 3.3, using the equivalence of norms in finite dimension.

It remains to deal with the high frequencies. To that end, we will assume from now on that the
sequence of frequencies satisfies the polynomial asymptotic gap (AsymptGapPoly). In other words,
the goal is to prove that the map

L : u 7→
(∫ T

0
u(t)eiωjtdt

)

j∈N

admits a continuous-right inverse P : h2kω,r(N,C) → Hk
0 ((0, T ),R) which is still continuous from

h2mω,r(N,C) to Hm
0 ((0, T ),R) for all m = 0, . . . , k. Usually, a continuous right inverse of L i.e. an

operator solving the moment problem is sought under the form P (d) =
∑
djξ

∗
j where {ξ∗j , j ∈ Z} is

the biorthogonal family of {eiωj ·, j ∈ Z}. To conclude, one would need to be able to estimate such
biorthogonal family simultaneously in all the Sobolev spaces Hm

0 (0, T ), for m = 0, . . . , k.
Such strategies have already been used. Explicit computations of the biorthogonal family with

good estimates have, for example, been used: in [31] to prove upper bounds for the control cost in
the case of systems governed by the Schrödinger or the heat equation, in [24] to study the cost of the
control in the case of a minimal time for the one-dimensional heat equation or in [9] to characterize
the null controllability of a system of n parabolic equations in cylindrical domains. Sharp estimates
for biorthogonal families of exponential functions without gap conditions have been given in [20] and
used to prove new results on the cost of the boundary null controllability of parabolic systems. A new
block resolution technique, together with sharp estimates, has also been used in [10] to characterize
the minimal null control time for abstract linear control problem.

However, here we choose to not compute the biorthogonal family. As the exponentials are "almost
orthogonal" for high frequencies, the main idea is to rather seek a solution of the moment problem
under the form

P (d)(t) =

+∞∑

j=−∞

dje
iωjtχ(t), (22)

with χ a weight function which allows to improve the decay of the coefficients
(
〈eiωj ·χ, eiωp·〉

)
j 6=p

at
high frequencies. As such P will no longer exactly solve the moment problem, the right inverse of L
will be constructed as an iteration of (22), quantifying the error term. Besides, the explicit form of
P will allow to easily estimate it in various spaces.

To implement such strategy, we start by introducing the operator giving the moment problem
for high frequencies and the operator which will almost be its right-inverse.
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Lemma 3.5. Define, for all m ∈ N and N ∈ N∗,

LmN : Hm
0 ((0, T ),R) → h2mω,r(N,C)

u 7→
(∫ T

0 u(t)eiωjtdt
)
j>N

,

PmN : h2mω,r(N,C) → Hm
0 ((0, T ),R)

(dj)j>N 7→ ∑
|j|≥N

dj ξ̃j ,

where for all j ∈ Z, j < 0, dj := d−j and for all j ∈ Z, for all t ∈ [0, T ] ξ̃j(t) :=
1
T e

−iωjtχ(t) with

χ ∈ C∞
c ((0, T ),R) such that

∫ T
0 χ(t)dt = 1. Then, for all m ∈ N and N ∈ N∗, LmN and PmN are linear

continuous applications.

Proof. Let m ∈ N and N ∈ N∗. First, the continuity of LmN comes from that for all u ∈ Hm
0 (0, T ),

by integrations by parts,

+∞∑

j=N

∣∣∣∣ω
m
j

∫ T

0
u(t)eiωjtdt

∣∣∣∣
2

=
+∞∑

j=N

∣∣∣〈u(m), eiω·〉
∣∣∣
2
≤ C‖u(m)‖2L2(0,T ),

as the family (eiωj ·)j∈Z is a Riesz basis. Secondly, the continuity of PmN stems from the fact that for
all (dj)j≥N in h2mω,r(N,C), by the algebra structure of Hm

0 (0, T ),
∥∥∥∥∥∥

∑

|j|≥N

dj ξ̃j

∥∥∥∥∥∥
Hm

0 (0,T )

≤ ‖χ‖Hm(0,T )

∥∥∥∥∥∥

∑

|j|≥N

ωmj dje
−iωj ·

∥∥∥∥∥∥
L2(0,T )

≤ C‖
(
ωmj dj

)
|j|≥N

‖l2(N,C),

as the family (eiωj ·)j∈Z is a Riesz basis. The reader can for example refer to [5, Proposition 19] to
find the results on Riesz basis used in this proof.

With these notations, our goal is to prove that, for N large enough, the application LmN has a
common continuous right inverse for all m = 0, . . . , k. To that end, we start by quantifying in which
way PmN is almost the right-inverse of LmN .

Lemma 3.6. Let k ∈ N∗. For all ε > 0, there exists N1 ∈ N∗ such that for all N ≥ N1, for all
m = 0, . . . , k, for all d ∈ h2mω,r(N,C),

‖LmN ◦ PmN (d)− d‖h2mω,r(N,C)
≤ ε‖d‖h2mω,r(N,C)

.

Proof. Let m ∈ {0, . . . , k} and N ≥ min(N0+1, 2) where N0 is defined in (AsymptGapPoly). Notice
that, performing integrations by parts (with no boundary terms as χ has a compact support), for
all α ∈ N∗, there exists a constant C = C(χ(α), T ) > 0 such that, for all j, p ∈ N,

∫ T

0
ξ̃j(t)e

iωjtdt = 1 and

∣∣∣∣
∫ T

0
ξ̃j(t)e

iωktdt

∣∣∣∣ ≤
C

|ωk − ωj|α
if j 6= k.

The coefficient α will be chosen later as large as needed. Using this remark, together with the
following equality

(LmN ◦ PmN (d))p =

∫ T

0
PmN (d)(t)eiωptdt = dp +

∑

|j|≥N, j 6=p

dj

∫ T

0
ξ̃j(t)e

iωptdt, ∀p ∈ N,

we get, using Cauchy-Schwarz inequality,

‖LmN ◦ PmN − d‖2h2mω,r
=
∑

p≥N

ω2m
p

∣∣∣
∑

|j|≥N, j 6=p

dj

∫ T

0
ξ̃j(t)e

iωptdt
∣∣∣
2

≤ C‖d‖2h2mω,r

∑

p≥N

∑

j≥N

j 6=p

ω2m
p

ω2m
j |ωj − ωp|2α

.
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Yet, by the triangular inequality, for all (j, p) ∈ N∗, j 6= p,

ω2m
p

ω2m
j |ωj − ωp|2α

≤ C

(
1

ω2m
j |ωj − ωp|2(α−m)

+
1

|ωj − ωp|2α

)
.

Thus, as the sequence (ωj)j∈N∗ is bounded by below by ω1, it is sufficient to prove that for β large
enough, the series

∑
j,p

1
|ωj−ωp|β

converges to get that choosing α large enough, for all ε > 0, there

exists N1 > 0 such that for all N ≥ N1, for all m = 0, . . . , k,

∑

p≥N

∑

j≥N

j 6=p

ω2m
p

ω2m
j |ωj − ωp|2α

≤ ε,

which will conclude the proof. Yet, using the polynomial growth (AsymptGapPoly), for all j, p ≥ N ,
j 6= p,

|ωj − ωp| ≥ min

(√
(ωj − ωj−1) (ωp+1 − ωp),

√
(ωj+1 − ωj) (ωp − ωp−1)

)
≥ c(j − 1)ε/2(p − 1)ε/2.

And thus, for all β > 2
ε , the series

∑
j,p

1
|ωj−ωp|β

indeed converges.

By iterating the error estimate given in Lemma 3.6, we deduce a common continuous right-inverse
for LmN , the operator of the moment problem.

Lemma 3.7. Let k ∈ N∗. There exists N1 ∈ N∗ such that for all N ≥ N1, L
m
N admits the same

linear continuous right inverse for all m = 0, . . . , k. More precisely, for all N ≥ N1, there exists
an operator MN such that for all m = 0, . . . , k, Mm

N : h2mω,r(N,C) → Hm
0 ((0, T ),R), d → MN (d) is

continuous and satisfies
LmN ◦Mm

N = Idh2m .

Proof. By Lemma 3.6 with ε = 1
2 , set N1 > 0 such that for all N ≥ N1, for all m = 0, . . . , k, we

have,

‖LmN ◦ PmN (d)− d‖h2mω,r(N,C)
≤ 1

2
‖d‖h2mω,r(N,C)

, ∀d ∈ h2mω,r(N,C). (23)

Let N ≥ N1 and m ∈ {0, . . . , k}. In the following proof, for the sake of clarity, we will forget all the
exponents m on the name of the applications, that recall the spaces in which we work. First, if we
define Σ := LN ◦ PN − Id, an induction gives that

LN ◦
n∑

p=0

(−1)pPN ◦ Σp = Id+(−1)nΣn+1, ∀n ∈ N. (24)

Yet, Σ is a linear and continuous application from h2mω,r(N,C) to h2mω,r(N,C) with its operator norm
satisfying ‖Σ‖h2m,h2m ≤ 1/2 by (23). Thus, the series

∑
p(−1)pPN ◦ Σp absolutely converges in the

space Lc(h2mω,r(N,C),Hm
0 ((0, T ),R)). Therefore, passing to the limits [n→ +∞] in the equality (24),

we get,

LN ◦MN = Id with MN :=
+∞∑

p=0

(−1)pPN ◦ Σp,

which is continuous from h2mω,r(N,C) to Hm
0 ((0, T ),R) for all m = 0, . . . , k.

Now, from Lemma 3.7, one can prove the solvability of a moment problem with simultaneous
estimates on the control for high frequencies.
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Proposition 3.8. Let T > 0, k ∈ N and (ωj)j∈N an increasing sequence of [0,+∞) such that
ω0 = 0 and satisfying (AsymptGapPoly). There exists an integer N ∈ N∗, a constant C > 0 and a
continuous linear map LN,Thf : h2kω,r(N,C) → Hk

0 ((0, T ),R) such that for every sequence d = (dj)j∈N ∈
h2kω,r(N,C), the control u := LN,Thf (d) ∈ Hk

0 ((0, T ),R) satisfies the moment problem

∫ T

0
u(t)eiωj tdt = dj , ∀j ≥ N, (25)

and the following estimates

‖u‖Hm
0 (0,T ) ≤ C




+∞∑

j=N

∣∣ωmj dj
∣∣2



1/2

, ∀m = 0, . . . , k. (26)

Proof of Proposition 3.8. Let k ∈ N and T > 0. Let N1 ∈ N as in Lemma 3.7 and N ≥ N1. The
proof follows with LN,Thf :=MN where MN is defined in Lemma 3.7. Indeed, for all d ∈ h2kω,r(N,C), as

LN ◦MN = Id, the function u :=MN (d) ∈ Hk
0 ((0, T ),R) satisfies the moment problem (25). And the

estimates (26) hold by continuity ofMN from h2mω,r(N,C) toHm
0 ((0, T ),R), for everym = 0, . . . , k.

Now, from Proposition 3.4 dealing with low frequencies and Proposition 3.8 dealing with high
frequencies, one can prove the main result.

Theorem 3.9. Let T > 0, k ∈ N, n ∈ N∗ and (ωj)j∈N an increasing sequence of [0,+∞) such that
ω0 = 0 and satisfying (AsymptGapPoly). There exists a constant C > 0 and a continuous linear
map LTk : Rn×h2kω,r(N,C) → Hk

0 ((0, T ),R) such that for every sequence d = ((d−q)q=1,...,n, (dj)j∈N) ∈
Rn × h2kω,r(N,C), the control u := LTk (d) ∈ Hk

0 ((0, T ),R) satisfies the moment problem

∀j ∈ N,

∫ T

0
u(t)eiωjtdt = dj and ∀q = 1, . . . , n,

∫ T

0
tqu(t)dt = d−q, (27)

with the following size estimates,

‖u‖Hm
0 (0,T ) ≤ C




+∞∑

j=−n

∣∣(δj,0 + ωmj
)
dj
∣∣2



1/2

, ∀m = 0, . . . , k. (28)

Proof of Theorem 3.9. Let T > 0, k ∈ N, n ∈ N∗. Let (d−q)q=1,...,n ∈ Rn and (dj)j∈N ∈ h2kω,r(N,C).
The proof follows with

u = LTk ((d−q)q=1,...,n, (dj)j∈N) := LN,Thf ((dj)j∈N)

+ LN,Tlf

((
d−q −

∫ T

0
tqLN,Thf (dj)(t)dt

)

q=1,...,,n

,

(
dj −

∫ T

0
LN,Thf (dj)(t)e

iωjtdt

)

j=0,...,N−1

)
.

Indeed, by linearity and by construction of the operators LN,Thf and LN,Tlf (given respectively in
Proposition 3.8 and Proposition 3.4, the control u satisfies the moment problem (27). Furthermore,
by (21) and (26), there exists a constant C > 0 such that for all m = 0, . . . , k,

‖u‖Hm
0 (0,T ) ≤ C







+∞∑

j=N

∣∣ωmj dj
∣∣2



1/2

+




N−1∑

j=−n

∣∣∣(δj,0 + ωj
m)
(
d̃j − dj

)∣∣∣
2




1/2

 . (29)
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where, if v := LN,Thf ((dj)j∈N),

∀j = 0, . . . , N − 1, d̃j :=

∫ T

0
v(t)eiωj tdt and ∀q = 1, . . . , n, d̃−q :=

∫ T

0
tqv(t)dt.

Besides, using Cauchy-Schwarz inequality and the size estimate (26) on v (for m = 0), we get, for
all j = 0, . . . , N − 1, for all m = 0, . . . , k,

|d̃j | =
∣∣∣∣
∫ T

0
v(t)eiωj tdt

∣∣∣∣ ≤
√
T‖v‖L2(0,T ) ≤ C




+∞∑

j=N

|dj|2



1/2

≤ C




+∞∑

j=−n

|(δj,0 + ωj
m) dj |2




1/2

,

as the injection h2mω,r(N,C) ⊂ l2r(N,C) is continuous. The same estimates can be proved on (d̃−q)q=1,...,n.
Together with (29), this gives (28).

Finally, from Theorem 3.9, one can deduce the solvability of moment problem with estimates on
the function, some of its derivatives but also some of its primitives.

Theorem 3.10. Let T > 0, k ∈ N∗ and (ωj)j∈N an increasing sequence of [0,+∞) such that
ω0 = 0 and satisfying (AsymptGapPoly). There exists a constant C > 0 and a continuous linear
map MT

k : h2kω,r(N,C) → Hk
0 ((0, T ),R) such that for every d = (dj)j∈N ∈ h2kω,r(N,C), the control

u := MT
k (d) ∈ Hk

0 ((0, T ),R) satisfies the moment problem

∫ T

0
u(t)eiωjtdt = dj , ∀j ∈ N, (30)

with the boundary conditions

u2(T ) = u3(T ) = . . . = uk+1(T ) = 0, (31)

and the following size estimates,

‖u‖Hm
0 (0,T ) ≤ C‖d‖h2mω (N,C), ∀m = −(k + 1), . . . , 0, . . . , k. (32)

Proof of Theorem 3.10. Let (dj)j∈N in h2kω,r(N,C). The operator MT
k is given by,

MT
k ((dj)j∈N) := D(k+1) ◦ LT2k+1

(
dj

(−iωj)k+1
1lj∈N∗

)

j∈N

+ LTk
(
(T qd0)q=1,...,k , (d0δj,0)j∈N

)
,

where LT2k+1 and LTk are defined in Theorem 3.9 and D(k+1) is the differential operator u 7→ u(k+1).

Step 1. Solving the moment problem except for the first moment. Indeed, if we denote by

v := f (k+1) ∈ Hk
0 (0, T ) with f := LT2k+1

(
dj

(−iωj)k+1
1lj∈N∗

)

j∈N

∈ H2k+1
0 (0, T ),

then, performing k + 1 integrations by parts, as f (m) has vanishing boundary terms for all m =
0, . . . , k, we get, for all j ∈ N∗,

∫ T

0
v(t)eiωj tdt = (−iωj)k+1

∫ T

0
f(t)eiωjtdt = dj , (33)

by construction of f . However, for j = 1, we get

∫ T

0
v(t)dt = f (k)(T ) = 0, (34)
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and therefore, the first moment needs to be corrected in a second time. Moreover, by construction,
we have the boundary conditions (31) on v and from estimates (28) on f , if we denote by u(m) = u−m
when m < 0, we deduce

‖v‖Hm = ‖v(m)‖L2 = ‖f (k+1+m)‖L2 ≤ C‖c‖
h
2(k+1+m)
ω,r

≤ C‖d‖h2mω,r
, ∀m = −(k + 1), . . . , k. (35)

Step 2. Correcting the first component. If we denote by

w := LTk
(
(T qd0)q=1,...,k , (d0δj,0)j∈N

)
∈ Hk

0 (0, T ),

then by construction, together with (33)-(34), the control u := v+w in Hk
0 (0, T ) solves the moment

problem (30). Moreover, by construction, w solves the polynomial moment
∫ T

0
tqw(t)dt = T qd0, ∀q = 1, . . . , k

and thus, by integration by parts, as w1(T ) = d0 by construction, we get the boundary conditions
(31) on w. Then, by linearity, (31) holds for u. Moreover, by construction, w satisfies the size
estimates

‖w‖Hm(0,T ) ≤ CT |d0|, ∀m = 0, . . . , k. (36)

Thus, Cauchy-Schwarz inequality entails that

‖wm‖L2(0,T ) ≤ Tm‖w‖L2(0,T ) ≤ TmCT |d0|, ∀m = 1, . . . , k + 1. (37)

Finally, estimates (35) on v and estimates (36)-(37) on w gives all the estimates (32) on u.

4 Nonlinear control in projection with simultaneous estimates

The goal of this section is the proof of Theorem 1.2. It relies on the controllability of the linearized
system with simultaneous estimates, given in Subsection 4.1, which is then propagated to the nonlin-
ear system through the iterations of the inverse mapping theorem thanks to estimates on the linear
approximation of the end-point map given in Subsection 4.2. In this section, if ψ is in S, TSψ the
tangent space at ψ of S and Πψ the orthogonal projection on TSψ, are respectively given by

TSψ := {ξ ∈ L2(0, 1); ℜ〈ξ, ψ〉 = 0} and Πψ(ξ) := ξ −ℜ〈ξ, ψ〉ψ.

4.1 C1− regularity of the end-point map

Let T > 0. We consider the end-point map defined by,

ΘT : S ∩H2(p+k)+3
(0) ×Hk

0 → S ∩H2(p+k)+3
(0) ×

[
TSψ1(T ) ∩HJ ∩H2(p+k)+3

(0)

]

(ψ0, u) 7→
(
ψ0, Πψ1(T ) ◦ PJ [ψ(T )]

) (38)

where ψ is the solution of




i∂tψ(t, x) = −∂2xψ(t, x)− u(t)µ(x)ψ(t, x), (t, x) ∈ (0, T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ),
ψ(0, x) = ψ0(x), x ∈ (0, 1).

Remark 4.1. To prove Theorem 1.2, we want estimates (8) on the control with respect to the
final state but also to the initial data, that is why the initial data is added as an argument of the
end-point map ΘT . Moreover, in the definition of ΘT , the end-point of the solution is composed
with PJ as we investigate exact controllability in projection. It is also composed with Πψ1(T ) as only
the imaginary part of the first component of the solution can be controlled (we gain back the real
part of the first component as the solution lives in the L2(0, 1)-sphere S).
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The C1-regularity of this end-point map is given in the following proposition.

Proposition 4.2. Let µ ∈ H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n =

0, . . . , p − 1. The map ΘT defined in (38) is C1. Moreover, for every (ψ0, u) in H
2(p+k)+3
(0) (0, 1) ×

Hk
0 (0, T ), the differential at (ψ0, u) is given by,

dΘT (ψ0, u).(Ψ0, v) =
(
Ψ0,Πψ1(T ) ◦ PJ [Ψ(T )]

)
, (Ψ0, v) ∈ H

2(p+k)+3
(0) (0, 1) ×Hk

0 (0, T ),

where Ψ is the solution of the linearized system around the trajectory (u, ψ(·; u, ψ0)) given by





i∂tΨ(t, x) = −∂2xΨ(t, x)− u(t)µ(x)Ψ(t, x) − v(t)µ(x)ψ(t; u, ψ0),
Ψ(t, 0) = Ψ(t, 1) = 0, t ∈ (0, T ),
Ψ(0, x) = Ψ0, x ∈ (0, 1),

(39)

Notice that ΘT is well-defined thanks to Remark 2.2. The proof of Proposition 4.2 is the same as
[5, Proposition 3, Proposition 6] using Theorem 2.1 (and Remark 2.2) instead of their well-posedness
result and thus is left to the reader.

In the following proposition, we state that one can build a right inverse of dΘT (ϕ1, 0) which is
continuous simultaneously in several spaces, meaning that one can control the linearized equation
of (1) around the ground state with various estimates on the control.

Proposition 4.3. Let µ in H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n =
0, . . . , p− 1 and satisfying (4) . Then, the linear map

dΘT (ϕ1, 0) : [TSϕ1 ∩H2(p+k)+3
(0) ]×Hk

0 → [TSϕ1 ∩H2(p+k)+3
(0) ]× [TSψ1(T ) ∩HJ ∩H2(p+k)+3

(0) ]

has a continuous right inverse

dΘT (ϕ1, 0)
−1 : [TSϕ1 ∩H2(p+k)+3

(0) ]× [TSψ1(T ) ∩HJ ∩H2(p+k)+3
(0) ] → [TSϕ1 ∩H2(p+k)+3

(0) ]×Hk
0 ,

which satisfies that there exists a constant CT > 0 such that for all ψ0 in TSϕ1 ∩H2(p+k)+3
(0) and ψf

in TSψ1(T ) ∩ HJ ∩H2(p+k)+3
(0) , the control u ∈ Hk

0 (0, T ) defined by (ψ0, u) := dΘT (ϕ1, 0)
−1(ψ0, ψf )

satisfies the following boundary conditions

u2(T ) = . . . = uk+1(T ) = 0 (40)

and the following size estimates

‖u‖Hm
0 (0,T ) ≤ C ‖(ψ0, ψf )‖H2(p+m)+3

(0)
(0,1)×H

2(p+m)+3
(0)

(0,1)
, ∀m = −(k + 1), . . . , k. (41)

The proof follows from the solvability of a trigonometric moment problem with simultaneous
estimates given in Theorem 3.10.

Proof of Proposition 4.3. By Proposition 4.2, for all u ∈ Hk
0 (0, T ) and ψ0 ∈ H

2(p+k)+3
(0) (0, 1),

dΘT (ϕ1, 0).(ψ0, u) = (ψ0,PJ [Ψ(T )]) ,

where Ψ is the solution of the linearized system (39) around (u, ψ1) and can be computed as

Ψ(T ) =
+∞∑

j=1

〈ψ0, ϕj〉 ψj(T ) + i
+∞∑

j=1

(
〈µϕ1, ϕj〉

∫ T

0
u(t)ei(λj−λ1)tdt

)
ψj(T ). (42)
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Let (ψ0, ψf ) ∈ [TSϕ1 ∩H2(p+k)+3
(0) ]× [TSψ1(T )∩HJ ∩H2(p+k)+3

(0) ]. The equality PJΨ(T ) = ψf is then
equivalent to the trigonometric moment problem

∫ T

0
u(t)ei(λj−λ1)tdt =

〈ψf , ψj(T )〉 − 〈ψ0, ϕj〉
i〈µϕ1, ϕj〉

:= dj−1(ψ0, ψf ), ∀j ∈ J. (43)

Applying Theorem 3.10 with (ωj := λj+1 − λ1)j∈N which satisfies (AsymptGapPoly), the proof of
Proposition 4.3 follows with

dΘT (ϕ1, 0)
−1(ψ0, ψf ) :=

(
ψ0,MT

k [d(ψ0, ψf )]
)
, (44)

where d(ψ0, ψf ) := (dj(ψ0, ψf )1j∈J)j∈N
and MT

k is defined in Theorem 3.10. Indeed, by construc-

tion, the control u := MT
k [d(ψ0, ψf )] satisfies the moment problem (43) after a shift in the indexes,

entailing that the function defined by (44) is a right inverse of dΘT (ϕ1, 0). Finally, Theorem 3.10
also gives that the control satisfies the boundary conditions (40) and gives the existence of a constant
CT > 0 (not depending on ψ0 nor on ψf ) such that,

‖u‖Hm
0 (0,T ) ≤ C‖d‖h2m(N,C), ∀m = −(k + 1), . . . , k.

Yet, as the function µ satisfies the hypothesis (4), we get for all m = −(k + 1), . . . , k,

‖u‖Hm
0 (0,T ) ≤ C ‖(〈ψf , ψj(T )〉 − 〈ψ0, ϕj〉)‖h2(m+p)+3(J,C)

≤ C

(
‖ψf‖H2(p+m)+3

(0)
(0,1)

+ ‖ψ0‖H2(p+m)+3
(0)

(0,1)

)
.

Remark 4.4. The boundary conditions (40) allow to ease the propagation of estimates (41) to the
nonlinear dynamics (see in the following Proposition 4.5 where those boundary conditions are useful
to quantify the error between the nonlinear and the linearized dynamics). Notice that one can’t
add the boundary condition u1(T ) = 0 to (40) as the term u1(T ) drives the behavior of the first
component of the linearized system (see (42)).

4.2 Error estimates between the nonlinear and linearized dynamics

The proof of Theorem 1.2 relies on the inverse mapping theorem: the control steering the solution
of the Schrödinger equation (1) from Ψ0 to Ψf is constructed as the fixed point of the map

Φ : (ψ0, u) 7→ (ψ0, u)− dΘT (ϕ1, 0)
−1. [ΘT (ψ0, u)− (Ψ0,Ψf )] .

Notice that such function can be rewritten as,

Φ (ψ0, u)− (ϕ1, 0) = −dΘT (ϕ1, 0)
−1. [ΘT (ψ0, u)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u)− (Ψ0,Ψf )] .

Therefore, estimates on the nonlinear control map (Ψ0,Ψf ) 7→ u are closely linked to estimates on
the linear approximation of the end-point map ΘT , given in the following proposition.

Proposition 4.5. Let T > 0, (p, k) ∈ N2 with p ≥ k, µ ∈ H2(p+k)+3(0, 1) with µ(2n+1)(0) =

µ(2n+1)(1) = 0 for all n = 0, . . . , p − 1, u ∈ Hk
0 (0, T ) and ψ0 ∈ H

2(p+k)+3
(0) (0, 1). For every R > 0,

there exists a constant C = C(T, µ,R) > 0 such that if ‖u‖Hk
0 (0,T )

< R and u2(T ) = . . . = uk+1(T ) =
0, then the following estimates hold

‖ΘT (ψ0, u)−ΘT (ϕ1, 0)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u)‖H2(p+m)+3
(0)

×H
2(p+m)+3
(0)

≤ C‖u‖Hm

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)

+ ‖u‖Hk
0

)
, ∀m = −(k + 1), . . . , k. (45)
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Remark 4.6. The assumption p ≥ k appears here to make sure that all the spaces Hs
(0)(0, 1)

involved are positive Sobolev spaces.

To prove Proposition 4.5, we first show estimates on the solution of the Schrödinger equation in
regular spaces.

Proposition 4.7. Let T > 0, (p, k) ∈ N2, µ ∈ H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0

for all n = 0, . . . , p− 1, u ∈ Hk
0 ((0, T ),R), ψ0 ∈ H

2(p+k)+3
(0) (0, 1). Then, if ψ := ψ(·; u, ψ0),

ψ − ψ1 ∈ Ck([0, T ],H2p+3
(0) (0, 1)) ∩Hk+1((0, T ),H2p+1

(0) (0, 1)).

Moreover, for all R > 0, there exists a constant C = C(T, µ,R) > 0 such that if ‖u‖Hk
0 (0,T )

< R
then the following estimates hold

‖∂nt (ψ − ψ1)‖C0([0,T ],H2p+3
(0)

) ≤ C

(
‖ψ0 − ϕ1‖H2(p+n)+3

(0)

+ ‖u‖Hn

)
, ∀n = 0, . . . , k, (46)

∥∥∥∂k+1
t (ψ − ψ1)

∥∥∥
L2((0,T ),H2p+1

(0)
)
≤ C

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)

+ ‖u‖Hk

)
. (47)

Proof. Let µ in H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p − 1 and

ψ0 in H
2(p+k)+3
(0) (0, 1). Let R > 0 and u ∈ Hk

0 (0, T ) such that ‖u‖Hk
0 (0,T )

< R. First, as ψ is the

solution of (1), ψ − ψ1 is the solution of the following Cauchy problem





i∂t (ψ − ψ1) = −∂2x (ψ − ψ1)− u(t)µ(x)ψ,
(ψ − ψ1) (t, 0) = (ψ − ψ1) (t, 1) = 0,
(ψ − ψ1) (0, ·) = ψ0 − ϕ1.

(48)

By Theorem 2.1, ψ−ψ1, is in Ck([0, T ],H2p+3
(0) (0, 1)) and there exists C = C(T, µ,R) > 0 such that

‖ψ − ψ1‖Cn([0,T ],H2p+3
(0)

(0,1)) ≤ C

(
‖ψ0 − ϕ1‖H2(p+n)+3

(0)
(0,1)

+ ‖u‖Hn(0,T )

)
, ∀n = 0, . . . , k,

using that ψ is bounded in Ck([0, T ],H2p+3 ∩ H2p+1
(0) ). To get (47), we differentiate (48) in a

distribution sense, using Leibniz formula,

i∂k+1
t (ψ − ψ1) = A∂kt (ψ − ψ1)− µ

k∑

n=0

u(n)∂k−nt ψ. (49)

Yet, as ψ−ψ1 and ψ belong to Ck([0, T ],H2p+3
(0) (0, 1)), u is in Hk

0 (0, T ) and the space H2p+1
(0) is stable

by multiplication by µ, the right-hand side of (49) belongs to L2((0, T ),H2p+1
(0) (0, 1)), giving that

∂k+1
t (ψ − ψ1) ∈ L2((0, T ),H2p+1

(0) (0, 1)),

with the following estimate,

∥∥∥∂k+1
t (ψ − ψ1)

∥∥∥
L2((0,T ),H2p+1

(0)
)
≤ ‖∂kt (ψ − ψ1) ‖L2((0,T ),H2p+3

(0)
)
+ ‖µ‖H2p+1‖u‖Hk‖ψ‖Ck([0,T ],H2p+1

(0)
)

≤ C

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)

+ ‖u‖Hk

)
,

as ψ is bounded in Ck([0, T ],H2p+3
(0) (0, 1)) and using estimate (46) for n = k.

20



Now, we can prove Proposition 4.5.

Proof of Proposition 4.5. By Proposition 4.2,

ΘT (ψ0, u)−ΘT (ϕ1, 0)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u) = (0, (ψ − ψ1 −Ψ)(T )) ,

where ψ := ψ(·; u, ψ0) and Ψ is the solution of the linearized system (39) around (ϕ1, ψ1). Then,
ψ − ψ1 −Ψ is the solution of the following Cauchy problem





i∂t(ψ − ψ1 −Ψ) = −∂2x(ψ − ψ1 −Ψ)− u(t)µ(x) (ψ − ψ1) ,
(ψ − ψ1 −Ψ)(t, 0) = (ψ − ψ1 −Ψ)(t, 1) = 0,
(ψ − ψ1 −Ψ)(0, ·) = 0.

(50)

Let R > 0 and a control in u ∈ Hk
0 (0, T ) such that ‖u‖Hk

0 (0,T )
< R and u2(T ) = . . . = uk+1(T ) = 0.

Step 1: m ∈ {0, . . . , k}. Estimate (11) on ψ − ψ1 −Ψ and (46) on ψ − ψ1 give C > 0 such that

‖(ψ − ψ1 −Ψ)(T )‖
H

2(p+m)+3
(0)

(0,1)
≤ C

(
‖ψ0 − ϕ1‖H2(p+m)+3

(0)
(0,1)

+ ‖u‖Hm(0,T )

)
.

Therefore, one gets (45) for all m ∈ {0, . . . , k} by inclusion of spaces.

Step 2: m ∈ {−(k + 1), . . . ,−1}. For the sake of simplicity, we will only treat the worst case
m = −(k + 1). The general case for any m ∈ {−(k + 1), . . . ,−1} can be proved exactly the same.
First, notice that, solving explicitly (50), the quadratic remainder is given by

(ψ − ψ1 −Ψ)(T ) = i

∫ T

0
u(t)e−iA(T−t)µ (ψ − ψ1) (t)dt.

To estimate (ψ − ψ1 −Ψ)(T ) with respect to uk+1, one can compute k + 1 integrations by parts in
time to get, using Leibniz formula,

(ψ − ψ1 −Ψ)(T ) = iu1(T )µ (ψ − ψ1) (T )

+ (−1)k+1i

∫ T

0
uk+1(t)e

−iA(T−t)
k+1∑

n=0

(iA)n
(
µ∂k+1−n

t (ψ − ψ1) (t)
)
dt.

First, by definition (2) of theH−(k+1)(0, T )-norm and using (46) asH2p+3
(0) is included inH

2(p−[k+1])+3
(0) ,

‖u1(T )µ (ψ − ψ1) (T )‖H2(p−[k+1])+3
(0)

≤ ‖u‖H−(k+1)(0,T )

(
‖ψ0 − ϕ1‖H2p+3

(0)
+ ‖u‖L2

)
.

Besides, by Proposition 4.7 and as the space H2p+1
(0) is invariant by multiplication by µ, for a.e.

t ∈ (0, T ), µ (ψ − ψ1) (t) is in H2p+1
(0) and so (iA)n

(
µ∂k+1−n

t (ψ − ψ1) (t)
)

is in H
2(p−n)+1
(0) . When

n = 0, . . . , k, eiAs is an isometry from H
2(p−n)+1
(0) to H

2(p−n)+1
(0) (as 2(p − n) + 1 > 0 because p ≥ k)

and thus the triangular inequality directly gives that

∥∥∥
∫ T

0
uk+1(t)e

−iA(T−t)
k∑

n=0

(iA)n
(
µ∂k+1−n

t (ψ − ψ1) (t)
)
dt
∥∥∥
H

2(p−n)+1
(0)

≤
∫ T

0
|uk+1(t)|

k∑

n=0

‖∂k+1−n
t (ψ − ψ1) (t)‖H2p+1

(0)
dt

≤ ‖uk+1‖L2

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)

+ ‖u‖Hk

)
,
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using Cauchy-Schwarz inequality in time and estimates (46)-(47) on ψ−ψ1. By inclusion of spaces,
such bound still holds when we take the H2(p−[k+1])+3-norm of the left hand-side. For the term
n = 0, for a.e. t ∈ (0, T ), µ (ψ − ψ1) (t) is in H2p+3∩H2p+1

(0) , so Ak+1 (µ (ψ − ψ1)) is in H2(p−[k+1])+3∩
H

2(p−[k+1])+1
(0) . As p − [k + 1] ≥ −1, Proposition 2.3 gives the existence of a constant C > 0 such

that

∥∥∥
∫ T

0
uk+1(t)e

−iA(T−t)Ak+1
(
µ (ψ − ψ1) (t)

)
dt
∥∥∥
H

2(p−[k+1])+3
(0)

≤ C‖uk+1‖L2‖µ (ψ − ψ1) ‖C0([0,T ],H2p+3∩H2p+1
(0)

) ≤ C‖uk+1‖L2

(
‖ψ0 − ϕ1‖H2p+3

(0)
+ ‖u‖L2

)
,

using the algebra structure of H2p+3 and estimate (46) on ψ − ψ1.

4.3 Proof of Theorem 1.2: STLC with simultaneous estimates on the control

Let p ≥ k and µ in H2(p+k)+3(0, 1) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p − 1 and
satisfying (4). By continuity with respect to the control (see Theorem 2.1), there exists R̃ > 0 such

that for all u in BR̃
(
Hk

0 (0, T )
)

and ψ0 ∈ S ∩H2(p+k)+3
(0) (0, 1)

ℜ〈ψ(T ; u, ψ0), ψ1(T )〉 > 0.

Let η > 0 so that for all ψf in S ∩H2(p+k)+3
(0) (0, 1) such that ‖ψf − ψ1(T )‖H2(p+k)+3

(0)

< η, we have

ℜ〈ψf , ψ1(T )〉 > 0.

Finally, let R ∈ (0, R̃).

Step 1: Apply the inverse mapping theorem. By Proposition 4.2 and 4.3, the end-point map ΘT is C1

on Banach spaces with its differential at (ϕ1, 0) that admits a continuous right inverse. Therefore,
by the inverse mapping theorem (see for example [5, Subsection 2.3] for more details), there exists
δ ∈ (0, η) and a C1-map Γ : Ω0 ×ΩT → Hk

0 ((0, T ),R) (where Ω0 and ΩT are respectively defined by
(5) and (6)) such that for every (Ψ0,Ψf ) ∈ Ω0 × ΩT ,

PJψ(T ; Γ(Ψ0,Ψf ),Ψ0) = Ψf .

Step 2: Gaining the simultaneous estimates and boundary conditions on the nonlinear control. To
prove that the estimates (8), true at the linear level (see Proposition 4.3), propagate to the nonlinear
system, one must look inside the proof of the inverse mapping theorem. Let (Ψ0,Ψf ) in Ω0 × ΩT .
At Step 1, the inverse mapping theorem gave the existence of (ψ0, u) ∈ Ω0 × BR

(
Hk

0 (0, T )
)

such
that

PJψ(T ; u, ψ0) = ψf and Ψ0 = ψ0.

This antecedent is constructed as the fixed point of the following application

Φ(Ψ0,Ψf ) : Ω0 ×BR
(
Hk

0 (0, T )
)

→ Ω0 ×BR
(
Hk

0 (0, T )
)

(ψ0, u) 7→ (ψ0, u)− dΘT (ϕ1, 0)
−1.
[
ΘT (ψ0, u)− (Ψ0,Πψ1(T )Ψf )

]
.

and therefore is given by

(ψ0, u)− (ϕ1, 0) = −dΘT (ϕ1, 0)
−1.
[
ΘT (ψ0, u)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u)− (Ψ0,Πψ1(T )Ψf )

]
. (51)

Step 2.1: Boundary conditions on the control. The linear control map is constructed in Proposi-
tion 4.3 so that any linear control defined as (ψ0, u) := dΘT (ϕ1, 0)

−1(ψ0, ψf ) satisfies the boundary
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conditions (7). Thus from (51), one deduces that the nonlinear control also satisfies (7). Step

2.2: Simultaneous estimates on the control. Equation (51) together with Proposition 4.3 give the
existence of a constant C = C(T ) > 0 such that, for all m = −(k + 1), . . . , k,

‖(ψ0, u)− (ϕ1, 0)‖H2(p+m)+3
(0)

(0,1)×Hm
0 (0,T )

≤ C
∥∥ΘT (ψ0, u)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u)− (Ψ0,Πψ1(T )Ψf )

∥∥
H

2(p+m)+3
(0)

(0,1)×H
2(p+m)+3
(0)

(0,1)
.

Moreover, Proposition 4.5 gives C = C(T, µ, R̃) > 0 such that, for all m = −(k + 1), . . . , k,

‖ΘT (ψ0, u)−ΘT (ϕ1, 0)− dΘT (ϕ1, 0).(ψ0 − ϕ1, u)‖H2(p+m)+3
(0)

(0,1)×H
2(p+m)+3
(0)

(0,1)

≤ C‖u‖Hm(0,T )

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)
(0,1)

+ ‖u‖Hk(0,T )

)
.

Therefore, by the triangular inequality, as ΘT (ϕ1, 0) = (ϕ1,PJψ1(T )), one gets,

‖(ψ0, u)− (ϕ1, 0)‖H2(p+m)+3
(0)

(0,1)×Hm
0 (0,T )

≤ C‖u‖Hm(0,T )

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)
(0,1)

+ ‖u‖Hk(0,T )

)

+ C‖Ψ0 − ϕ1,Ψf − PJψ1(T )‖H2(p+m)+3
(0)

(0,1)×H
2(p+m)+3
(0)

(0,1)
.

Therefore, if δ > 0 and R > 0 are small enough so that, for example,

C

(
‖ψ0 − ϕ1‖H2(p+k)+3

(0)
(0,1)

+ ‖u‖Hk(0,T )

)
≤ 1

2
,

one deduces that, as Ψ0 = ψ0 by construction, for all m = −(k + 1), . . . , k,

‖u‖Hm(0,T ) ≤ C‖ψ0 − ϕ1,Ψf − PJψ1(T )‖H2(p+m)+3
(0)

(0,1)×H
2(p+m)+3
(0)

(0,1)
, ∀m = −(k + 1), . . . , k.

5 Linear control with simultaneous estimates with [17]

The goal of this section is to explain another proof of Proposition 4.3, relying on the ideas of [17]
instead of the moment result given in Theorem 3.10.

5.1 Building smooth controls for smooth data

In [17], Ervedoza and Zuazua developed a method to construct a control map which preserves the
regularity of the data to be controlled for time-reversible linear systems. However, to use such result
in our case, we need to modify slightly the result of [17] as we want to deal with control in projection
and not exact controllability. From [17], we can deduce the following result.

Theorem 5.1. Let X,U two Hilbert spaces, H a closed subspace of X, P the orthogonal projection
on H, (eAt)t∈R a strongly continuous group on X with generator A : D(A) ⊂ X → X and B in
L(U,X−1) an admissible operator in the sense of [17, Definition 1.1]. Assume that P ◦ A = A ◦ P

and that the system
z′ = Az +Bu (52)

is exactly controllable in projection in some time T ∗ in H: for all z0 ∈ H, there exists a control
u ∈ L2((0, T ∗), U) such that the solution of (52) with the initial condition z0 and control u satisfies

Pz(T ∗) = 0. (53)
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Let T > T ∗, δ > 0 such that T − 2δ ≥ T ∗, s ∈ N+ and η ∈ Cs(R) such that η(t) = 0 if t 6∈ (0, T )
and η(t) = 1 if t ∈ [δ, T − δ]. There exists a constant C = C(s, T, η) > 0 and a linear map
V : D(As)∩H → Hs

0((0, T ), U) such that for every z0 ∈ D(As)∩H, the solution of (52) with control
V := V(z0) and initial condition z0 belongs to Cs([0, T ],X) and satisfies the requirement (53) with

∫ T

0
‖V (t)‖2U

dt

η(t)
≤ C‖z0‖2X and ∀m ∈ (0, s), ‖V ‖Hm

0 ((0,T ),U) ≤ C‖z0‖D(Am). (54)

Proof. This proposition is a consequence of the work [17] noticing that, as P ◦ A = A ◦ P, for every
z0 ∈ H and every control u ∈ L2((0, T ), U)

Pz(·; u, z0) = y(·; u, z0), (55)

where z is the solution of (52) and y is the solution of

y′ = Ay + P ◦Bu. (56)

Therefore, we apply [17] to the system (56) working on the Hilbert space H endowed with the scalar
product ofX, with the operators defined byD(Ã) = D(A)∩H, Ã = A which still generates a strongly
continuous group and B̃ = P ◦B still an admissible operator. From (55), the exact controllability in
projection of (52) entails the exact controllability of (56). Therefore, [17, Proposition 1.3, Theorem
1.4 and Corollary 1.5] give the existence of a linear continuous map V : D(Ãs) → Hs

0((0, T ), U)

with the size estimates (54) such that for every z0 ∈ D(Ãs) = D(As) ∩H, y(·;V(z0), z0) belongs to
Cs([0, T ],H) with y(T ; V(z0), z0) = 0 and thus Pz(T ;V(z0), z0) = 0 by (55).

5.2 Proof of Proposition 4.3 with [17]

The goal of this subsection is to apply Theorem 5.1 to the linearized Schrödinger equation. To that
end, we first state that with a change of global phase, one can work with a stationary equilibrium
rather than around the ground state.

Remark 5.2. By Proposition 4.2, for all u ∈ Hk
0 (0, T ) and ψ0 ∈ H

2(p+k)+3
(0) (0, 1),

dΘT (ϕ1, 0).(ψ0, u) = (ψ0,PJΨ(T )) ,

where Ψ is the solution of the linearized system around the ground state,





i∂tΨ(t, x) = −∂2xΨ(t, x)− u(t)µ(x)ψ1(t, x), (t, x) ∈ (0, T ) × (0, 1),
Ψ(t, 0) = Ψ(t, 1) = 0, t ∈ (0, T ),
Ψ(0, x) = ψ0.

(57)

To work with a stationary equilibrium, one can perform the change of function Ψ(t, x) = Ψ̃(t, x)e−iλ1t

to work instead with




i∂tΨ̃(t, x) =
(
−∂2x − λ1 Id

)
Ψ̃(t, x)− u(t)µ(x)ϕ1(x), (t, x) ∈ (0, T ) × (0, 1),

Ψ̃(t, 0) = Ψ̃(t, 1) = 0, t ∈ (0, T ),

Ψ̃(0, x) = ψ0.

(58)

Such solutions will be denoted Ψ̃(·; u, ψ0). To prove Proposition 4.3, it is then equivalent to prove

that there exists a constant CT > 0 such that for all (ψ0, ψf ) in [TSϕ1 ∩H2(p+k)+3
(0) ]× [TSϕ1 ∩HJ ∩

H
2(p+k)+3
(0) ], there exists u ∈ Hk

0 (0, T ) (constructed as a linear function of ψ0 and ψf ) such that

PJΨ̃(T ; u, ψ0) = ψf with the boundary conditions (40) and the estimates (41).
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To apply Theorem 5.1, we must check that (58) is controllable in projection in an appropriate
functional setting. This is done by solving a trigonometric moment problem.

Proposition 5.3. Let T > 0 and µ in H2p+3((0, 1),R) satisfying (4). The linear equation (58) is
exactly controllable in projection in H2p+3

(0) (0, 1) ∩ TSϕ1 in time T : for all ψ0 ∈ H2p+3
(0) (0, 1) ∩ TSϕ1,

there exists a control u ∈ L2((0, T ),R) such that

PJΨ̃(T ; u, ψ0) = 0.

Proof. Let ψ0 ∈ H2p+3
(0) (0, 1) ∩ TSϕ1. Solving explicitly (58), one gets

Ψ̃(T ) =

+∞∑

j=1

〈ψ0, ϕj〉e−i(λj−λ1)Tϕj + i

+∞∑

j=1

(
〈µϕ1, ϕj〉

∫ T

0
u(t)e−i(λj−λ1)(T−t)dt

)
ϕj .

Therefore, the equality PJΨ̃(T ) = 0 is equivalent to the following trigonometric moment problem

∫ T

0
u(t)ei(λj−λ1)tdt = − 〈ψ0, ϕj〉

i〈µϕ1, ϕj〉
=: dj−1, ∀j ∈ J.

Yet, assumption (4) on µ together with the fact that ψ0 belongs to H2p+3
(0) (0, 1) entails that the

sequence (dj1lj∈J)j∈N is in l2r(N,C) (as ψ0 belongs to TSϕ1). Thus, the solvability of a trigonometric
moment problem in L2(0, T ) given for example in Theorem 3.2 concludes the proof.

Then, we can apply Theorem 5.1 to our system.

Lemma 5.4. Let T > 0 and µ in H2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all

n = 0, . . . , p − 1 and satisfying (4). There exists a linear map L : TSϕ1 ∩ HJ ∩ H2(p+k)+3
(0) (0, 1) →

Hk
0 ((0, T ),R) and a constant C > 0 such that for all ψ0 in TSϕ1∩HJ∩H2(p+k)+3

(0)
(0, 1), if u := L(ψ0),

PJΨ̃(T ; u, ψ0 − 〈ψ0, ϕ1〉ϕ1) = 0.

Moreover, every control satisfies the boundary conditions

u1(T ) = u2(T ) = . . . = uk+1(T ) = 0, (59)

and the following size estimates

‖u‖Hm(0,T ) ≤ C ‖ψ0 − 〈ψ0, ϕ1〉ϕ1‖H2(p+m)+3
(0)

(0,1)
, ∀m = −(k + 1), . . . , k. (60)

Proof. First, notice that the equation (58) can be put into the abstract setting

i
dΨ̃

dt
= ÃΨ̃−Bu

with

Ãϕ = (A− λ1 Id)ϕ, D(Ã) := H2p+5
(0) (0, 1) ⊂ X := H2p+3

(0) (0, 1) ∩ TSϕ1,

Bu = u× µϕ1, B : R → H2p+1
(0) (0, 1)

The operator Ã generates a strongly continuous group on X. Let ψ0 ∈ HJ ∩ H2(p+k)+3
(0) (0, 1) and

ψ00 =: C(ψ0) in HJ ∩H2p+4k+5
(0) (0, 1) the solution of the elliptic equation,

(−iÃ)k+1ψ00 = ψ0 − 〈ψ0, ϕ1〉ϕ1 with 〈ψ00, ϕ1〉 = 0.

25



Let T ∗ ∈ (0, T ), δ > 0 such that T − 2δ ≥ T ∗ and η : R → [0, 1] in C2k+1(R) such that η(t) = 0
if t 6∈ (0, T ) and η(t) = 1 if t ∈ [δ, T − δ]. As the system (58) is admissible by Proposition 2.3
and exactly controllable in projection in time T ∗ by Proposition 5.3, by Theorem 5.1, there exists
a constant C > 0 and a control V = V(ψ00) in H2k+1

0 ((0, T ),R) ∩ L2((0, T ), dtη ) (with V a linear

map) such that the solution Ψ̃(·; V, ψ00) of (58) belongs to C2k+1([0, T ],H2p+3
(0) (0, 1)) and satisfies

PJΨ̃(T ; V, ψ00) = 0 with the following estimates on the control,

∫ T

0
V (t)2

dt

η(t)
≤ CT ‖ψ00‖2H2p+3

(0)
(0,1)

, (61)

‖V ‖Hm
0 (0,T ) ≤ C‖ψ00‖H2(p+m)+3

(0)
(0,1)

, ∀ m = 1, . . . 2k + 1. (62)

Then, if u := V (k+1) ∈ Hk
0 (0, T ), by uniqueness, Ψ̃(·; u, ψ0 − 〈ψ0, ϕ1〉ϕ1) = ∂k+1

t Ψ̃(·; V, ψ00) and

thus satisfies PJΨ̃(T ; u, ψ0 − 〈ψ0, ϕ1〉ϕ1) = (−iÃ)k+1PJΨ̃(T ) = 0. By construction, u satisfies the
boundary conditions (59) and the size estimates (60) on u are deduced from (61)-(62) as for all
m = 0, . . . , 2k + 1, ‖ψ00‖H2(p+m)+3

(0)
(0,1)

= ‖ ψ0 − 〈ψ0, ϕ1〉ϕ1‖H2(p+m−(k+1))+3
(0)

(0,1)
. Therefore, the proof

is concluded with L := D(k+1) ◦ V ◦ C where D(k+1) : V 7→ V (k+1).

As stated in Lemma 5.4, the change of variables done in Remark 5.2 to work with a stationary
equilibrium entails that we miss the first coordinate. However, we can correct it in a second time
using a moment problem and thus prove Proposition 4.3.

Proof of Proposition 4.3. We prove Proposition 4.3 using the strategy of Remark 5.2, first for ψf = 0
and then, by the time-reversibility of the system, for any target ψf ∈ HJ.

Step 1: Proof for ψf = 0. More precisely, we prove that there exists a linear operator U such that for

all ψ0 in TSϕ1∩HJ∩H2(p+k)+3
(0) (0, 1), the control U := U(ψ0) ∈ Hk

0 (0, T ) satisfies PJΨ̃(T ; U,ψ0) = 0

with the size estimates (41) (with ψf = 0) and to prepare Step 2, solving the polynomial moment
problem ∫ T

0
tmU(t)dt = 0, ∀m = 1, . . . , k. (63)

By linearity,

Ψ̃(T ; u+ v, ψ0) = Ψ̃(T ; u, 〈ψ0, ϕ1〉ϕ1) + Ψ̃(T ; v, ψ0 − 〈ψ0, ϕ1〉ϕ1).

Yet, by Lemma 5.4, we have PJΨ̃(T ; L(ψ0), ψ0−〈ψ0, ϕ1〉ϕ1) = 0 with every control L(ψ0) satisfying
the estimates (60) and the polynomial moment problem (63) thanks to the boundary conditions
(59). Therefore, to prove Step 1, it is enough to prove the existence of u ∈ Hk

0 (0, T ) such that

PJΨ̃(T ; u, 〈ψ0, ϕ1〉ϕ1) = 0 with the size estimates (41) and the polynomial moment problem (63).
Besides, solving explicitly (58) with initial condition 〈ψ0, ϕ1〉ϕ1, we get

Ψ̃(T ; u, 〈ψ0, ϕ1〉ϕ1) = 〈ψ0, ϕ1〉ϕ1 + i

+∞∑

j=1

(
〈µϕ1, ϕj〉

∫ T

0
u(t)e−i(λj−λ1)(T−t)dt

)
ϕj .

Thus, the equality PJΨ̃(T ) = 0 is equivalent to the trigonometric moment problem

∫ T

0
u(t)ei(λj−λ1)tdt = −〈ψ0, ϕ1〉δj,1

i〈µϕ1, ϕj〉
, ∀j ∈ J. (64)
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By Theorem 3.2, if d(ψ0) :=

((
(−1)k+1k! 〈ψ0,ϕ1〉

i〈µϕ1,ϕ1〉
δq,k

)
q=1,...,2k

, (0)j∈N∗

)
, the control w := LT0 (d(ψ0))

in L2(0, T ) solves the following moment problem,

∫ T

0
w(t)ei(λj−λ1)tdt = 0, ∀j ∈ N

∗, (65)

∫ T

0
tqw(t)dt = (−1)k+1k!

〈ψ0, ϕ1〉
i〈µϕ1, ϕ1〉

δq,k, ∀q = 1, . . . , 2k, (66)

with the size estimate,

‖w‖L2(0,T ) ≤ C

∣∣∣∣
〈ψ0, ϕ1〉
i〈µϕ1, ϕ1〉

∣∣∣∣ .

Let denote by u the k-th primitive of w with vanishing terms at t = 0,

u(t) :=

∫ t

0

∫ t1

0

∫ t2

0
. . .

∫ tk−1

0
w(tk)dtkdtk−1 . . . dt1, ∀t ∈ [0, T ],

meaning that u solves u(k) = w with u(m)(0) = 0 for all m = 0, . . . k − 1.

Equation (65) for j = 1 and equations (66) for q = 1, . . . k − 1 entail that u(m)(T ) = 0 for all
m = 0, . . . k − 1. Therefore, u ∈ Hk

0 (0, T ) and using Poincaré inequality repeatedly, one gets the
existence of C > 0 such that for all m = −(k + 1), . . . , k,

‖u‖Hm
0 (0,T ) ≤ C‖u‖Hk

0 (0,T )
= C‖w‖L2(0,T ) ≤ C|〈ψ0, ϕ1〉|,

giving the size estimates (41) as we deal with only one moment. Then, performing integrations by
parts as u has vanishing boundary terms, one can use (66) for q = k and (65) for all j ≥ 2 to prove
that u satisfies the moment problem (64). Finally, one can use (66) for q = k+1, . . . , 2k to get (63).

Therefore, Step 1 is concluded with

U := Bk ◦ LT0 ◦ d+ L,

where Bk is the operator primitiving k times, given in (20).

Step 2: Proof for any target. Let (ψ0, ψf ) in [TSϕ1 ∩H2(p+k)+3
(0) ]× [TSϕ1 ∩HJ ∩H2(p+k)+3

(0) ]. By Step

1, there exists U := U
(
ψf − PJe−iÃTψ0

)
∈ Hk

0 (0, T ) (where U is constructed at Step 1) such that

PJΨ̃(T ; U,ψf − PJe−iÃTψ0) = 0,

with the polynomial moment (63) and the size estimates (41) on U . Then, if we denote by ψ̃0 :=

Ψ̃(T ; U,ψf − PJe−iÃTψ0) and V := U(T − ·), by uniqueness,

Ψ̃(t; V, ψ̃0) = Ψ̃(T − t; U,ψf − PJe−iÃTψ0),

and so,

PJΨ̃(T ; V, ψ̃0) = ψf − PJe
−iÃTψ0.

And, finally, the solution associated with initial condition ψ0 and control V is given by

Ψ̃(t; V, ψ0) = e−iÃt
(
ψ0 − ψ̃0

)
+ Ψ̃(t; V, ψ̃0),
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and thus, as ψ̃0 is in H⊥
J by construction,

PJΨ̃(T ; v, ψ0) = ψf .

Besides, estimates (41) hold for U and so for V by translation. Moreover, the polynomial moments
of U given in (63) entails the boundary conditions (40) on V because, for all m = 1, . . . , k,

Vm+1(T ) =

∫ T

0

(T − t)m

m!
V (t)dt =

∫ T

0

tm

m!
U(t)dt = 0.

Therefore, the proof of Proposition 4.3 holds with

dΘT (ϕ1, 0)
−1(ψ0, ψf ) := τT ◦ U

(
ψfeiλ1T − PJe−iÃTψ0

)
,

where τT : U 7→ U(T − ·) is the translation operator.

Remark 5.5. The key point to prove Proposition 4.3 from [17] is Remark 5.2 as the work [17] asks
to work with a stationary equilibrium. Therefore, it seems like such strategy would not hold when
linearizing around a more complicated trajectory than (ψ1, u = 0). For example, when linearizing
around a linear combination of trajectories ψj , for j ∈ N∗, it would not be straightforward anymore
to find a good change of variables allowing us to work equivalently with a stationary equilibrium.
That is why in Subsection 4.1, we gave another proof of Proposition 4.3, relying on the solvability
of a moment problem with simultaneous estimates, giving a strategy that could maybe work when
linearizing around other trajectories, if needed. Notice that both strategy rely on the use of a weight
function.
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