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A B S T R A C T   

Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic 
protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardio-
vascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher 
cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol 
levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia 
(familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants 
of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipide-
mias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide auto-
somal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to 
coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The 
identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, 
paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, 
common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders 
associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of 
APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, 
prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the 
molecular and clinical overlaps between dyslipidemias.   

1. Introduction 

ApoE is a major apolipoprotein that controls lipoprotein metabolism. 
ApoE is expressed in many cells, primarily in the liver, and also in the 
brain, spleen, kidneys, gonads, adrenals, and macrophages [1]. The 
widespread production of apoE indicates its importance in various 
pathways such as lipoprotein, fat-soluble vitamins and glucose/energy 
metabolisms, signal transduction, metastasis, angiogenesis or 
neurosciences. 

ApoE is a component of chylomicrons, very-low-density lipoproteins 
(VLDL), intermediate-density lipoproteins (IDL), low-density lipopro-
teins (LDL), high-density lipoproteins (HDL), and lipoprotein (a) (Lp(a)). 
Classical knowledge is that LDL does not have apoE, nevertheless, since 
apoE binds to lipids through its C-terminal domain it seems difficult that 

it binds to HDL, VLDL, IDL and Lp(a) but not LDL at all. Indeed, lipo-
proteins isolated by flotation sequential ultracentrifugation showed that 
apoE represents 0.40%, 0.10% and 0.38% of the total mass of VLDL, LDL 
and HDL, respectively [2], and is found in HDL (61 ± 27%), VLDL (35 ±
25%), Lp(a) (4 ± 9%) and LDL (1 ± 1%) in fasting plasma [3]. Lipo-
proteins isolated by anti-apoE immunoaffinity chromatography showed 
the presence of 21, 19, and 5 molecules of apoE in a portion of VLDL, 
HDL, and LDL respectively [4]. ApoE plays a key role in regulating the 
clearance of these lipoproteins from the plasma and controls plasma 
lipid levels as well as homeostasis of tissue lipid content as the ligand for 
cell-surface lipoprotein receptors. ApoE mediates the interaction be-
tween apoE-carrying lipoproteins and the LDL receptor, the LDL 
receptor-related protein (LRP), the VLDL receptor, the apoE receptor-2 
and heparan sulfate proteoglycans (HSPG) [5] (Fig. 1). As a ligand for 
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heparin and HSPG in extracellular matrices or on cell membranes, apoE 
may also influence cellular responses to signals [1]. ApoE also contrib-
utes to the catabolism of VLDL particles. Once secreted, triglyceride-rich 
VLDL can be hydrolyzed by lipoprotein lipase (LPL). An excessive he-
patic production of VLDL can cause a saturation of this pathway and an 
increase in plasma levels of triglyceride-rich lipoproteins [6]. It is now 
well established that apoE, as an apo CIII co-factor, inhibits LPL and the 
triglyceride-rich lipoprotein lipolysis [7,8]. Also, apoE could increase 
the hepatic production of VLDL by activating the particle assembly 
cascade [9]. These data underline the potential impact of a dysfunc-
tional apoE on the metabolism of triglyceride-rich lipoproteins and the 
etiology of dyslipidemia. Furthermore, apoE plasma levels are associ-
ated with different causes of mortality: high apoE levels are associated 
with cardiovascular and cancer mortality while low apoE levels were 
causally associated with dementia-associated mortality [10]. 

The APOE gene is located at chromosome 19q13.2 and encodes a 317 
amino acid apolipoprotein E precursor (NM_000041.4). After cleavage 
of the 18-amino acid signal peptide and glycosylation, mature apoE is 
secreted as a 299 amino acid protein with a relative molecular mass of 
34 200 kDa. 

The variants that give rise to the apoE isoforms are rs429358, p. 
Cys130Arg (E4), and rs7412, p.Arg176Cys (E2). According to the fre-
quencies given by the Genome Aggregation Database (gnomAd), with 
the sequencing of about 100 000 subjects from various disease-specific 
and population genetic studies, the rs429358 allele frequency is 
14.25% and the rs7412 allele frequency is 6.542% in the total gnomAd 
population. Thus, the approximate prevalences for E2/2, E2/3, E2/4, 
E3/3, E3/4 and E4/4 are 0.4, 6.5, 0.9, 75.9, 14.3 and 2.0%, respectively. 

Which is overall in agreement with previous reports in healthy subjects 
[11–13], but different from what is observed in hyperlipidaemic patients 
for whom the E4 isoform is more frequent and the E2 less frequent than 
in a control group [13]. 

ApoE accounts for 1%–8.3% of the total variance of LDL cholesterol 
[12]. Because the different isoforms have different affinity for lipopro-
teins and receptors, apoE2 and apoE4 have a significant impact on 
interindividual variation of lipid and lipoprotein levels in normal sub-
jects. The residues that determine apoE isoforms are in the 
receptor-binding domain (154–168 and Arginine 190), separated from 
the lipid-binding domain (262–290) by a hinge region (218–233) 
(Fig. 2) [5,14]. The structure and electric charge of apoE are crucial for 
the optimal function of the protein and the binding to lipids is necessary 
for receptor affinity. Once binding to lipoproteins, apoE undergoes 
conformational changes and adopt a circular horseshoe shape in which 
the lipid -binding and the N-terminal domains join to wrap around the 
lipoprotein and the critical residues for binding, 154–168 and Arg-190, 
meet nearby [14]. In apoE4, the substitution Cys130Arg lead to a more 
compact structure, due to N- and C- terminal ends interaction, which 
changes its affinity preference from HDL to VLDL but have less impact 
on the receptor binding properties [14]. ApoE4 is associated with higher 
apo B, total-, LDL-, and remnant-cholesterol levels [15] due to its pref-
erence for VLDL, and its higher production rate [16], and to its higher 
VLDL-lipolysis activity, or less inhibitory effect, relative to apoE3 [8] 
(Fig. 1). The other classical hypothesis, according to which the increased 
level of LDL in apoE4 carriers would be due to the downregulation of 
LDL receptor expression consequent to the accelerated hepatic uptake of 
apoE4-rich VLDL, could complete the pathophysiology of the apoE4 

Fig. 1. Effect of APOE variants on the metabolic pathways of triglyceride rich lipoproteins. 
Several apoproteins including apoE are produced by the liver in the rough endoplasmic reticulum. ApoE, apoB100, apoC are then associated with triglycerides and 
cholesteryl esters to form VLDL particles. Nascent VLDL particles are secreted by the liver via golgi vesicles. Once in the circulation, VLDL particles can acquire more apoE 
and apoC molecules form HDL particles. In the vessels of peripheral tissues, VLDLs are hydrolyzed and converted to VLDL remnants by Lipoprotein lipase (LPL) located on 
capillary endothelium. ApoE, as a co-factor for apoCIII, inhibits LPL. VLDL particles are also converted to LDL by loss of triglycerides and apoE. ApoE binds with high 
affinity to cell-surface lipoprotein receptors including LDL receptor, the LDL receptor-related protein (LRP), the VLDL receptor, the apoE receptor-2. It also binds to cell 
surface HSPGs which facilitates the interaction with the LRP and possibly other receptors. Common and rare APOE variants are associated with dyslipidemia by affecting 
triglyceride rich lipoproteins metabolic pathways. Apo: apoprotein; VLDL: very low-density lipoprotein; HDL: high-density lipoprotein; LDL: low-density Lipoprotein; 
RER: rough endoplasmic reticulum; LPL: lipoprotein lipase; HL: hepatic lipase. 
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isoform. The substitution Arg176Cys in apoE2 causes the disruption of a 
salt bridge, lowers the positive potential, and alters the receptor-binding 
domain which affects drastically apoE2 affinity for its receptors (<2%) 
but not its affinity for HSPG [5]. Thus, apoE2 is associated with higher 
remnant-cholesterol levels [15], as observed for 1–10% of the apoE2 
homozygotes, under the influence of other genetic or environmental 
factors, who develop type III hyperlipoproteinemia (OMIM #617347). 
These factors (oestrogen deficiency, hypothyroidism, obesity and dia-
betes) lead to a saturated or impaired lipoprotein clearance. ApoE2 also 
inhibits the VLDL lipolysis significantly more than apoE3 and apoE4 [8] 
probably by a reduction in the apoCII content of VLDL [17] (Fig. 1). 
Thus, explaining why apoE2 is also associated with lower apo B, total-, 
and LDL-cholesterol levels, relative to apoE3 [15]. The other classical 
hypothesis, according to which the decreased level of LDL in apoE2 
carriers would be due to an opposite mechanism to that of apoE4 (the 
relative impoverishment of apoE2 in VLDL would slow down hepatic 
uptake and consequently upregulate the LDL receptor), could complete 
the pathophysiology of the apoE2 isoform. 

On average, apoE2 lowers total cholesterol levels by approximately 
14 mg/dL and apoE4 raises them by approximately 8 mg/dL [12]. Thus, 
although LDL contains only few apoE, its isoforms influence LDL con-
centration and size along with many other factors including sex, age and 
triglyceride levels. The recent analysis of 228 serum metabolites in a 
cohort of 2234 young Finns showed that the apoE4 isoform influences 
LDL and VLDL particle sizes as well as their composition increasing their 
concentrations of free/esterified cholesterol, triglycerides, phospho-
lipids and total lipid, thus increasing their size [18]. The opposite being 
observed for the apoE2 isoform [19]. Furthermore, apoE isoforms in-
fluence the Lp(a) mass that is 65% higher for apoE4 homozygous car-
riers relative to apoE2 homozygous carriers [20]. 

In addition to the three major isoforms apoE2, E3 and E4, three 
minor apoE isoforms have been observed by isoelectric focusing, E1, E5, 
and E7, each one presenting several nucleotide sequence variants with 
different amino acid substitutions [21]. The minor E1 isoform has an 
isoelectric point more acid, by two units of charge, than apoE3 due to 
either p.Lys164Glu, p.Arg168Gly-E2, p.Gln174_Gly190del variants 
(Table 1). The apoE1 p.Lys164Glu variant, within the receptor binding 
domain of apoE, is produced at a higher rate and catabolized signifi-
cantly slower than apoE3, due to its reduced affinity for the LDL receptor 
and for heparin [22,23] (Fig. 1). The minor E5 isoform has an isoelectric 
point more basic by two units of charge than apoE3, due to either p. 
Glu21Lys, p.Gln99Lys, p.Pro102Arg, p.Val153_Arg160dup, or p. 
Glu230Lys variants (Table 1). The apoE5 p.Glu21Lys variant, within the 
N-terminal domain of apoE, presents a twofold increased 
receptor-binding activity while the activity is unaffected by the apoE5 p. 
Pro102Arg variant also localized in the N-terminal domain [24] (Figs. 1 
and 2). This indicates that the enhanced receptor-binding activity of 

basic apoE isoforms depends on the position at which additional posi-
tively charged amino acids are incorporated. The apoE5 p.Glu230Lys 
variant, in the heparin binding domain, displays enhanced receptor- and 
heparin-binding activity, but decreased catabolism in cultured fibro-
blasts [25] (Figs. 1 and 2). Since receptor-mediated endocytosis of apoE 
lipoproteins is facilitated by proteoglycan ligands transfer, the stronger 
binding of apoE5 p.Glu230Lys variant to proteoglycans could reduce the 
rate at which it is finally delivered to the endocytosis pathways. The 
minor E7 isoform, also named apoE-Suita, has an isoelectric point more 
basic by four units of charge than apoE3, due to the replacement of two 
glutamine residues by two lysine residues at positions 262 and 263 in the 
lipid-binding domain [26] (Fig. 2). Each of the two nucleotide variants 
contributing to the apoE7 isoform, rs140808909 and rs190853081, are 
only found in the Japanese population with a relative frequency of 0.7% 
for the apoE7 allele in a cohort of 1269 Japanese subjects [27]. Ac-
cording to the frequencies given in the Genome Aggregation Database, 
with the sequencing of about 8000 Est Asian subjects from various 
disease-specific studies, the rs140808909 and rs190853081 frequency is 
0.27% for both, giving a frequency of 0.073% for the apoE7 allele. 

Moreover, rare apoE mutants have been associated with different 
dyslipidemias such as familial dysbetalipoproteinemia (FD, type III) 
(OMIM # 617347), familial combined hyperlipidaemia (FCHL, type IIb) 
(OMIM # 144250), ADH (type IIa), hypertriglyceridemia (HTG, type IV 
and V), lipoprotein glomerulopathy (LPG) (OMIM #611771) [21,28], 
sea-blue histiocytosis (OMIM #269600) [29] or late-onset Alzheimer 
disease (OMIM # 104310) [30]. 

2. ApoE and autosomal dominant hypercholesterolemia (ADH) 

Familial Hypercholesterolemia (FH) is an autosomal codominant 
genetic lipoprotein disorder, type IIa hyperlipoproteinemia according to 
Fredrickson’s classification [31,32], initially identified through muta-
tions into the low density lipoprotein receptor encoded by the LDLR gene 
at 19p13.2 (OMIM #143890, #606945). FH is a codominant disease 
since each allele contributes to the phenotype and heterozygotes present 
with an intermediate phenotype of that of homozygotes. The same 
phenotype is also observed with mutations in the apolipoprotein B 
[APOB gene at 2p24.1 (familial defective apolipoprotein B (OMIM 
#107730, #144010))], the proprotein convertase subtilisin/kexin type 
9 [PCSK9 gene at 1p32.3 (OMIM # 607786)] - and the apolipoprotein E 
[APOE gene at 19q13.32 (OMIM #107741)]. While homozygous car-
riers of an APOB mutation are very rare, Familial defective apolipo-
protein B appears to be a dominant disease with homozygotes reported 
to have cholesterol concentrations in the range for heterozygotes car-
riers [33]. To our knowledge, no homozygous carrier of a PCSK9 or 
APOE hypercholesterolemic mutation has been reported yet, thus the 
status of the transmission mode for these diseases cannot be defined as 

Fig. 2. Distribution of the APOE gene variants in the apoE protein.  
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Table 1 
APOE gene mutations reported with dyslipoproteinemias.  

rs number cDNA position* Protein position* Segregation Common name Transmission Phenotype Ref. 

- c.15G > A p.Trp5* 2 families   FD (RP) [74] 
rs121918392 c.61G > A p.Glu21Lys 2 cases ApoE5  HC [24,87] 
rs121918392 c.61G > A-E2 p.Glu21Lys-E2 1 case ApoE5-ApoE2  LPG [88] 
rs201672011/rs769455 c.91G > A/c.487C > T p.Glu31Lys/p.Arg163Cys 1 family, 6 htz, 1 hmz Philadelphia  FD [89] 
CM980097 c.114G > A-E2 p.Trp38*-E2 1 case   FD [90] 
rs121918399 c.127C > T p.Arg43Cys 6 individual cases, 2 families Kyoto  LPG [28,79,91] 
rs769452 c.137T > C p.Leu46Pro 1 case   HC [48] 
- c.146delG p.Gly49Valfs*29 2 family members   FD [92] 
-/rs267606664 c.146delG/c.434G > A-E2 p.Gly49Valfs*29/p.Gly145Asp-E2 1 case   FD [92] 
rs370594287 c.192G > C p.Gln64His 1 case   FD [79] 
rs1180612218 c.295C > A-E4 p.Gln99Lys-E4 1 case Frankfurt, ApoE5  HC [54] 
rs11083750 c.305C > G p.Pro102Arg 1 case ApoE5  HC [24] 
- c.339dupG p.Glu114Glyfs*50 1 family Groningen dominant FD [93] 
rs11542041 c.394C > T p.Arg132Cys 1 case Tsukuba  LPG [77] 
rs397514254 c.415_435dup21-E4 p.Glu139_Gly145dup-E4 1 family Leiden dominant FD [67,94] 
rs267606664 c.434G > A-E2 p.Gly145Asp-E2 1 family, 3 cases   Mixed (RP), FD [48,69] 
rs267606664 c.434G > A p.Gly145Asp 9 family members  dominant FD [94] 
rs267606664/rs267606661 c.434G > A/c.805C > G p.Gly145Asp/p.Arg269Gly 1 case   FD [94] 
- c.457_480dup24 p.Val153_Arg160dup 1 case ApoE5ss  HTG [95] 
rs121918393 c.460C > T p.Arg154Cys 1 family  dominant FD [96] 
rs121918393 c.460C > A p.Arg154Ser 15 cases, 3 families Christchurch dominant FD (RP), FCHL, HTG [59,63,68–70] 
CM950078 c.461G > A p.Arg154His 9 family members  recessive? HTG [97] 
rs121918393 c.460C > T-E2 p.Arg154Cys-E2 3 families, 1 case   FD [84,98,99] 
-  p.Leu159_Lys161del 1 case Tokyo  LPG [100] 
CM043808 c.478C > A p.Arg160Ser 1 case   FD [101] 
CM950079 c.479G > T p.Arg160Leu 2 family members   FD [102] 
CM890009 c.478C > T-E4 p.Arg160Cys-E4 6 family members  dominant FD [71] 
-  p. Arg160_Leu162del 1 case Maebashi  LPG [103] 
- c.477_491del15 p.Lys161_Arg165 del 5 family members   LPG (RP) [80] 
- c.484_492del9 p.Leu162_Lys164del 1 case   FD [100] 
rs769455 c.487C > T p.Arg163Cys 1 family, 1 htz and 1 hmz   ADH [48] 
rs769455 c.487C > T-E2 p.Arg163Cys-E2 43 cases, 39 htz, 4 hmz, 1 family  dominant FD (RP) [75,84] 
rs121918397 c.488G > A p.Arg163His 1 family, 1 case Kochi  HTG, FD [101,104] 
CM972792 c.488G > C p.Arg163Pro 3 cases Sendai  LPG [105] 
CM972792/rs121918392 c.488G > C/c.61G > A p.Arg163Pro/p.Glu21Lys 1 case Sendai/ApoE5  LPG [106] 
CM890010 c.490A > G p.Lys164Glu 2 families, 1 case ApoE1 dominant FD (RP) [22,23,107] 
rs121918394 c.490A > G-E2 p.Lys164Gln-E2 3 families  dominant FD [66,108] 
rs121918394 c.490A > C-E2 p.Lys164Glu-E2 5 family members Harrisburg dominant FD [73] 
− /− c.492G > C/c.493C > T p.Lys164Asn/p.Arg165Trp 3 family members Hammersmith dominant FD [109] 
CM064979 c.494G > C p.Arg165Pro 2 cases Chicago  LPG [28,110] 
CM064979/rs121918392 c.494G > C/c.61G > A p.Arg165Pro/p.Glu21Lys 1 case Chicago/ApoE5  LPG [111] 
rs746494694 c.500_502delTCC p.Leu167del 2 ADH families, 11 cases, 3 FCHL families  dominant ADH, HC, FCHL [13,46–48,58,59] 
CM087959 c.502C > T p.Arg168Cys 1 case, 1 family Modena, Shenzhen  LPG (RP) [81,112] 
CM075988 c.503G > C p.Arg168Pro 1 family Guangzhou  LPG (RP) [82] 
CM104291 c.509C > A p.Ala170Asp 1 case Las Vegas  LPG [113] 
CM088091 c.502C > G-E2/E2 p.Arg168Gly-E2/E2 1 case Okayama, ApoE1  LPG [114] 
- c.518T > C p.Leu173Pro 2 family members Chengdu  LPG [115] 
- c.520-573del54 p.Gln174_Gly190del 2 family members ApoE1  LPG [116] 
rs7412 c.526C > T p.Arg176Cys hmz ApoE2 recessive FD [117] 
CM111115 c.527G > C p.Arg176Pro 7 cases Osaka/Kurashiki  LPG [28,118,119] 
CM111115 c.527G > C-E2 p.Arg176Pro-E2 2 cases Osaka/Kurashiki  LPG [120,121] 
rs1426426514 c.592C > T p.Arg198Cys 1 case Baden  HTG [122] 
CM980098 c.613C > G p.Gln205Glu 1 case Toranomon  FD [123] 
- c.644C > G-E2/E2 p.Ser215Cys-E2/E2 3 case Toyonaka  LPG, FD [78,124,125] 
CD961785 c.679_688del10 p.Ala227Glyfs*20 1 family, 10 htz and 1 hmz  dominant FD [76] 

(continued on next page) 
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dominant or codominant. Nowadays, frequently the denomination FH is 
used for all these forms of type IIa hyperlipoproteinemia while the most 
suitable denomination is Autosomal Dominant Hypercholesterolemia 
(ADH) as FH refers to LDLR mutation carriers only. There is the need of 
an international consensus on precise terminology to avoid 
misunderstanding. 

ADH is one of the most frequent genetic diseases with a prevalence of 
1 in 313 or 311 according to two recent meta-analyses of 11 [34] and 7.3 
[35] million subjects. ADH is characterized by a selective increase of 
circulating Low Density Lipoproteins (LDL) in the plasma since birth 
giving rise to premature mortality from cardiovascular disease (CVD), 
with a 13-fold higher coronaropathy risk [36]. ADH has proven to be 
genetically heterogeneous and associated with defects in at least four 
different genes. In 1973, Goldstein et al. showed that ADH may result 
from defects in the LDL receptor that removes LDL from plasma [37]. 
Subsequently, Innerarity et al. revealed the genetic heterogeneity of 
ADH by reporting hypercholesterolemic patients with normal LDL re-
ceptor activity [38]. Their work on these patients led to the detection of 
the first hypercholesterolemic mutation in the APOB gene, which en-
codes the main ligand for the LDL receptor: apolipoprotein B-100 (apo 
B-100) implicated in the uptake of LDL particles from blood [39]. 
Fourteen years later, gain of function mutations in PCSK9 (proprotein 
convertase subtilysin kexin 9) were reported in ADH families unlinked 
to either the LDLR or the APOB gene [40]. PCSK9, the ninth member of 
the proprotein convertase (PC) family, has been identified as a major 
regulator of cholesterol homeostasis [41]. PCSK9 binds the extracellular 
epidermal growth factor-like repeat A (EGF-A) domain of the LDL re-
ceptor and thus disrupts its recycling to the cell surface by targeting it to 
the lysosomal pathway for degradation [42]. Further genetic hetero-
geneity of ADH has been established more recently, with the demon-
stration that 19% of ADH cases are not caused by a defect in either the 
LDLR, APOB or PCSK9 gene [43]. Two other ADH loci have been 
localized on chromosomes 16q22.1 [44] and 8q24.22 [45], as well as 
mutations that segregate with the ADH disease in the apolipoprotein E 
(apoE) gene (APOE) [46–48] and the signal transducing adaptor family 
member 1 gene (STAP1) [49]. However recent functional studies 
showed that STAP1 does not alter plasma LDL-cholesterol in mice and 
humans [50], and familial analyses showed no cosegregation with the 
disease for four predicted pathogenic variants [51], delisting STAP1 as 
an authentic ADH gene. 

Nine apoE variants (p.Glu21Lys, p.Leu46Pro, p.Gln99Lys-E4, p. 
Pro102Arg, p.Arg163Cys, p.Leu167del, apoE7-Suita, p.Arg269Gly, p. 
Leu270Glu) have been observed in single cases with hyperLDLemia 
(type IIa hyperlipoproteinemia), but the possible co-segregation with 
hypercholesterolemia in the families was not always analyzed [24,27, 
46–48,52–58] (Table 1). 

Two variants in the APOE gene, p.Arg163Cys [48] and p.Leu167del 
[46,47], were observed with a co-segregation with hyperLDLemia in the 
families. The p.Arg163Cys is carried by the mother, who is suffering 
from hypercholesterolemia with a LDL cholesterol of 270 mg/dL, and 
her son (LDL cholesterol 415 mg/dL) who is homozygote carrier [48]. 
The p.Leu167del variation was reported in two different families [46, 
47]. A large French ADH family, with 14 affected members, was 
analyzed through whole genome linkage and whole exome sequencing 
and revealed that the p.Leu167del variation in the APOE gene is 
responsible of the ADH phenotype [46]. Shortly after, an ADH family 
from Italian origin with two affected members, one with tendinous 
xanthomas, was analyzed through whole exome sequencing and also 
revealed the co-segregation of the p.Leu167del variant [47]. Kinetic 
studies of apo B-100-containing lipoproteins was performed in one p. 
Leu167del carrier of the French ADH family [46]. LDL kinetic param-
eters were similar to those from FH patients (mutation in the LDLR gene) 
with an increased LDL pool, which was the consequence of both an in-
crease in VLDL production rate and a decrease in LDL catabolism, and 
thus explaining the hyperLDLemia observed in the family [46]. An 
explanation of the decreased LDL catabolism was given by the study of Ta
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VLDL from p.Leu167del carriers showing a reduced expression of the 
LDLR gene when compared to VLDL from E3/E3 carriers [13] (Fig. 1). 

The p.leu167del variant has been previously shown to segregate with 
familial combined hyperlipidemia (FCHL) in three families with a 
dominant transmission pattern [59]. The p.Leu167del variant has also 
been previously associated with familial splenomegaly and thrombo-
cytopenia in two unrelated probands with mild hypertriglyceridemia 
that worsened after splenectomy [29] and in one member from a family 
in which dyslipidemia segregated with the apoE p.leu167del variant 
[58]. Splenomegaly has been explained by an increased uptake of 
mutant p.Leu167del apoE-containing lipoproteins by macrophages [29], 
but probably requires some other unknown defect to develop. 

Modelling analysis based on the NMR structure of the full-length 
apoE3 isoform was used for interpreting the effect of three variations 
identified in patients with type IIa hyperlipoproteinemia: p.Leu46Pro, p. 
Arg163Cys and p.Leu167del [48]. The p.Leu46Pro variant, located in 
the first of the four α-helix in the N-terminal domain, inserts a proline 
residue and thus was predicted to be destabilizing the α-helix. A previ-
ous analysis of the E4-p.Leu46Pro variant - which is associated with an 
increased risk of Alzheimer’s disease (AD) (odds ratio (OR) 13.2) 
increasing the risk of the apoE4 alone by five times [60] - showed an 
affected stability and structure of the protein [61]. The p.Arg163Cys and 
p.Leu167del variants, in the receptor-binding domain (region 154–168) 
(Fig. 2), are thought to impair receptor-binding properties of the apoE 
protein (Fig. 1). Homology modeling of the human wild type apoE 
protein and of the deleted mutant was used for interpreting the effect of 
the p.Leu167del mutant [46,47]. The p.Leu167del variation interrupts 
one α-helix in a group of four helices stabilized by a leucine zipper 
within the receptor-binding domain. Disruption of one helix in the group 
very probably alters the interaction with the three others. The electro-
static surface charges are altered in apoE p.Leu167del, that also likely 
influences interaction with lipids and affinity of apoE to its receptors 
[46]. 

Finally, among the 41 carriers of the apoE7-Suita reported, 27 pre-
sented normal lipid values, 6 were with hypertriglyceridemia, 5 were 
with isolated LDL increase, 2 presented mixed hyperlipidemia, and 1 
was diagnosed with type III hyperlipoproteinemia (familial dysbetali-
poproteinemia (FD)) (Table 2). 

3. ApoE and familial combined hyperlipidemia (FCHL) 

Familial combined hyperlipidemia (FCHL) is a common disorder of 
lipid metabolism which leads to elevated levels of VLDL, LDL, or both in 
plasma, leading to a mixed hyperlipidemia with both high total- 
cholesterol and triglycerides levels. FCHL occurs in up to 1–3% of the 
general population and may account for one third to one half of familial 
causes of early coronary heart disease [62]. The phenotype of FCHL is 
highly variable among family members, depending on genetic and 
environmental factors, and may present as mixed hyperlipidemia, iso-
lated hypercholesterolemia, hypertriglyceridemia, or as a normal serum 
lipid profile in combination with abnormally elevated levels of apoli-
poprotein B. The presence of small dense LDL particles has also been 
associated with FCHL. Small dense LDL particles are generated when 
triglyceride-rich VLDL particles are abundant. VLDL particles can ex-
change their triglyceride molecules for cholesteryl esters from LDL 
particles which results in cholesterol-depleted LDL particles [6]. In the 
circulation, LDL particles are substrate for endothelial-bound lipases 
which leads to the formation of smaller and more dense particles [7]. 
Affected individuals may have variable degrees of elevated total 
cholesterol, triglycerides, or LDL cholesterol and are at high risk for 
premature atherosclerotic cardiovascular disease. 

FCHL is a genetically complex disorder with reduced penetrance. 
Most cases of FCHL are considered polygenic with the interaction of 
multiple susceptibility factors. Many of the genes contributing to FCHL 
are unknown: susceptibility loci have been reported at 1q21-23, 
11p14.1 and 16q22–24.1, and a consistent association with the 

chromosome 11 loci has been shown [62]. This locus contains several 
candidate genes such as the upstream transcription factor 1 gene (USF1) 
which encodes a transcription factor that regulates numerous genes of 
the lipoprotein metabolism including APOE. However, several genes 
have already been described in FCHL and have been associated with 
three major metabolic pathways: adipose tissue dysfunction, hepatic fat 
accumulation and overproduction, disturbed metabolism and delayed 
clearance of apolipoprotein B-containing particles [6]. ApoE serves as 
the ligand for the clearance of triglyceride-rich lipoproteins and as a 
co-factor for lipoprotein lipase (LPL) responsible for the hydrolysis of 
triglycerides in VLDL driving the formation of IDL and LDL. Thus, a 
variation of either the structure or the function of apoE could have an 
impact on the metabolism and clearance of triglyceride-rich lipoproteins 
and the development of FCHL [6]. Eight variants in the APOE gene have 
been reported with either FCHL or mixed hyperlipidemia (Table 1). 
Three variants - p.Arg154Ser, p.Leu167del, p.Glu230Lys – were re-
ported in families with a dominant transmission of a mixed hyper-
lipidaemia phenotype defining FCHL [25,59]. The two first variants are 
in the receptor-binding domain, while the p.Glu230Lys is in the hinge 
domain (Fig. 2). Receptor-binding studies have shown that p.Arg154Ser 
apoE mutant had only 41% of the apoE3 receptor binding capacity. 
Moreover, lipoprotein turnover studies showed a significantly reduced 
catabolic rate of VLDL particles from patient carrying the p.Arg154Ser 
variant [63] (Fig. 1). When associated with apoE2, p.Glu230Lys mod-
ifies the binding preference of apoE-containing particles from lipopro-
tein receptors to proteoglycans reducing the uptake and degradation of 
these particles. This could explain the increased of triglycerides in p. 
Glu230Lys carriers [64] (Fig. 1). Five variants - p.Gly145Asp-E2, p. 
Arg235Trp, p.Arg242Gln, p.Val254Glu-E2, apoE7 - were reported in 
single cases presenting with a mixed hyperlipidaemia phenotype [27,46, 
48,56,57,65]. However, without notion of familial segregation, it is not 
possible to confirm the involvement of these variants in the pathogenesis 
of FCHL. Furthermore, without information on the level of 
VLDL-remnants (IDL), it is also not possible to validate the participation 
of these variants in the genetic heterogeneity of type III hyperlipidaemia 
(familial dysbetalipoproteinemia (FD)). 

4. ApoE and familial dysbetalipoproteinemia (FD) 

Familial dysbetalipoproteinemia (FD), also called type III hyper-
lipoproteinemia, is an atherogenic disorder characterized by a mixed 
hyperlipidaemia, due to accumulation of VLDL remnants and IDL, 
similar to the FHCL phenotype. As for FHCL, the FD phenotype is highly 
variable. The diagnosis of FD can easily be performed by lipoprotein 
electrophoresis using either agarose or polyacrylamide gel disc elec-
trophoresis or by gel-permeation high-performance liquid chromatog-
raphy (GP-HPLC). FD is diagnosed based upon the presence of broad 
beta pattern and increase of chylomicron and VLDL remnants. FD is due 
to dysfunctional genetic variants of apolipoprotein E with the homozy-
gous E2/E2 in most of the cases. However, only 1–4% of the E2/E2 
carriers will developpe FD [66] indicating that additional factors are 
necessary for manifestation of FD. In contrast to lipoprotein analysis, the 
identification of the apoE isoform is easily obtained by isoelectric 
focusing, PCR-mediated site-directed mutagenesis, or direct gene 
sequencing. 

Thirty-one variants in the APOE gene have been reported in hyper-
lipidemic patients presenting FD diagnosed by the presence of a broad β 
migrating band on the electrophoresis separation of lipoproteins 
(Table 1). The first apoE mutant in type III hyperlipoproteinemia (FD) 
reported is the ApoE3-Leiden variant characterized by an in-frame 
repeat of 21 nucleotides in exon 4 leading to a 7 amino-acid duplica-
tion, p.Glu139_Gly145dup, localized 9 residues before the receptor- 
binding domain (154–168) [67]. The seven-amino acid insert in-
troduces one extra negatively charged glutamyl residue when compared 
with the common apoE4 variant and thus leads to a focusing on the 
apoE3 position on isoelectric focusing gels [67]. ApoE3-Leiden is 
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Table 2 
Characteristics of ApoE7-Suita variant carriers.  

ApoE7 diagnosis Age (y.o.) Sex Family ApoE isoforms Total-cholesterol Triglycerides LDL-cholesterol HDL-cholesterol Hyperlipidemia Reference 

IEF 37 M Proband E4/E7 316 48 298 15 hLDL [52] 
IEF 32 M Brother E4/E7 350 47 296 38 hLDL [52] 
IEF 57 M Proband E3/E7 311 121 262 38 hLDL [52] 
IEF 23 F Daughter E2/E7 206 82 158 38 N [52] 
IEF 74 F Proband E3/E7 188 146 136 31 N [52] 
IEF 40 M Proband E4/E7 271 586 80 26 HTG [52] 
IEF 54 - Proband E3/E7 235 144 - - N [53] 
IEF + SEQ 55 M Proband E3/E7 205 483 - 49 HTG [26] 
IEF - - Proband E3/E7 - - - - Type IIa [55] 
IEF - - Proband E4/E7 - - - - Type III [55] 
IEF - - Proband E4/E7 - - - - Type IV [55] 
IEF + PCR 85 F Proband E3/E7 184 87 86 80 N [27] 
IEF + PCR 67 M Proband E3/E7 177 99 122 35 N [27] 
IEF + PCR 60 M Proband E4/E7 265 180 191 37 N [27] 
IEF + PCR 55 M Proband E3/E7 201 164 137 32 N [27] 
IEF + PCR 55 M Proband E3/E7 259 195 188 32 N [27] 
IEF + PCR 54 F Proband E3/E7 202 73 122 66 N [27] 
IEF + PCR 52 F Proband E3/E7 203 92 114 70 N [27] 
IEF + PCR 51 M Proband E3/E7 183 78 124 43 N [27] 
IEF + PCR 50 M Proband E3/E7 304 160 217 55 hLDL [27] 
IEF + PCR 46 F Proband E3/E7 189 116 132 33 N [27] 
IEF + PCR 45 M Proband E3/E7 209 206 109 59 Mixed [27] 
IEF + PCR 32 M Proband E3/E7 252 199 177 35 N [27] 
IEF + PCR 26 M Proband E3/E7 207 183 124 46 N [27] 
IEF + PCR 22 F Proband E3/E7 186 49 103 73 N [27] 
IEF + PCR 21 F Proband E3/E7 257 84 168 72 N [27] 
IEF + PCR 17 M Proband E3/E7 205 90 135 52 N [27] 
IEF + PCR 17 F Proband E4/E7 204 78 129 60 N [27] 
IEF + PCR 17 F Proband E3/E7 125 182 47 61 N [27] 
IEF + PCR 66 M Proband E3/E7 268 157 182 36 N [56] 
IEF + PCR 60 M Proband E3/E7 310 167 228 46 N [56] 
IEF + PCR 44 M Proband E3/E7 263 507 114 50 HTG [56] 
IEF + PCR 48 M Proband E3/E7 127 338 39 33 HTG [56] 
IEF + PCR 55 M Proband E3/E7 193 326 66 41 HTG [56] 
IEF + PCR 47 M Proband E3/E7 281 376  72 Mixed [56] 
IEF + PCR 48 F Proband E3/E7 165 179 56 46 N [56] 
IEF + PCR 25 M Proband E3/E7 192 99 126 40 N [56] 
IEF + PCR 22 F Proband E3/E7 176 93 87 56 N [56] 
IEF + PCR 22 F Proband E3/E7 157 65 60 75 N [56] 
IEF + PCR 10 M Proband E3/E7 152 99 62 64 N [56] 
IEF + PCR 11 M Proband E4/E7 131 66 63 30 N [56] 

Lipid parameters are given in mg/dL. Type IIa, IIa, III, IV clinical phenotypes were distinguished according to WHO criteria. Type III hyperlipidemia was recognized by the presence of a mid-band larger than the LDL 
band on electrophoresis [55]. 
IEF: isoelectric focusing. SEQ: Sequencing of the p.Glu262Lys/p.Glu263Lys variant. PCR: PCR-mediated site-directed mutagenesis of the p.Glu262Lys/p.Glu263Lys variant. 
hLDL: hyperLDLemia. HC: primary hypercholesterolaemia. HTG; hypertriglyceridemia. N: normolipidemic. 
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defective in binding to the LDL receptor. The p.Arg154Ser variant, 
APOE-Christchurch, has been identified in hyperlipidemic patients 
presenting FCHL, FD or primary hypertriglyceridemia (HTG) illustrating 
the variability of the phenotype and the difficulty of clinical diagnosis 
[59,63,68–70]. The p.Arg160Cys-E4 variant has been shown to segre-
gate with the FD phenotype in a 6-member family on the dominant mode 
[71]. Functional analysis of this variant either on the E3 or E4 isoform 
showed a significantly reduced receptor- and heparin-binding activity 
on human fibroblasts indicating that the cysteine at residue 160, and not 
the E4 arginine at residue 130, is responsible for the decreased 
receptor-binding activity of the variant [72]. The apoE1 p.Lys164Glu 
variant has also been shown to segregate with the FD phenotype in a 
12-member family on the dominant mode [73] and characterized with a 
higher production rate, and a reduced catabolism due to its reduced 
affinity for the LDL receptor and for heparin [22,23]. The p.Lys164Gln, 
associated with the E2 isoform, has defective binding activity for the 
lipoprotein receptors [66]. Moreover, 4 variants - p.Trp5*, p.Arg145Cys, 
p.Arg154Ser, p.Ala227Glyfs*20 [68,74–76] - were shown to be inheri-
ted on the autosomal dominant mode with reduced penetrance, adding 
complexity to the molecular diagnosis. 

5. ApoE and lipoprotein glomerulopathy (LPG) 

Lipoprotein glomerulopathy (LPG) is a renal disease in which lipid 
deposition is limited to the kidney and is believed to cause glomerulo-
sclerosis. This disease is characterized by glomerular lipoprotein 
thrombi and clinically by proteinuria and type III hyperlipoproteinemia 
with apoE abnormality [21,28]. The elevated plasma apoE concentra-
tion caused by reduced receptor-binding activity is an important 
determinant for the development of LPG. However, hyperlipidaemia in 
LPG is often milder than in type III hyperlipoproteinemia, or not even 
recognized in some cases of LPG. Seventeen variants in the APOE gene 
have been reported in lipoprotein glomerulopathy (LPG) (Table 1). 
Several variants were reported in single cases with various disease 
expression from the p.Arg132Cys in a normolipidemic patient with 
normal levels of apoE [77] to the p.Ser215Cys-E2/E2 in a type III 
hyperlipidaemic patient [78]. Four variants - p.Arg43Cys, p. 
Lys161_Arg165del, p.Arg168Cys, p.Arg168Pro - were reported in fam-
ilies with a dominant transmission and a reduced penetrance [79–82]. 

6. Overlaps between ADH, FCHL, FD and LPG 

Mutations in the LDLR gene were reported in patients with a clinical 
diagnosis of FCHL [83]. A study conducted on 143 unrelated FCHL pa-
tients showed that 19.6% were carriers of LDLR mutations. Some of 
these mutations have been previously identified as the cause of ADH 
indicating that patients with ADH presenting with hypertriglyceridemia 
may be misdiagnosed with FCHL [83]. Interestingly, APOE variants were 
also identified in patients diagnosed with FCHL [83] and the same APOE 
variant can be reported with both FCHL and ADH. Rare APOE mutations 
are responsible for 3.5% of FCHL cases in a Spanish population [59] out 
of which 1.4% were carriers of the p.Leu167del variant [59] already 
identified as the causative mutations of ADH in two different families 
[46,47]. The APOE p.Arg163Cys variant was found, in association with 
the E2 isoform, in a single case with FD [84], and in a family with ADH 
[48]. The association of the p.Arg163Cys variant with the E2 common 
polymorphism may amplify effects contributing to the triglyceride 
elevation that differentiate FD from ADH. Moreover, the overlapping 
clinical presentation of FCHL and ADH exists [83], hypertriglyceridemia 
can sometimes be observed in ADH subjects, mainly because of the many 
common genetic, metabolic and environmental factors contributing to 
triglyceride elevation, or perhaps epigenetic and other non-mendelian 
interacting effects. Variants in the LDLR or APOE gene may amplify 
the effect of these factors, and thus, according to the number or the 
nature of these factors, could be associated with an overlapping 
phenotype between FCHL, ADH and sometimes FD when the subject is 

E2/E2. The genotyping of APOE and the exclusion of LDLR and APOE 
variants in patients with combined dyslipidemia could be very infor-
mative for the differential diagnosis of lipid disorders. The current 
diagnostic criteria for ADH, excluding all patients presenting high tri-
glyceride levels, could be responsible for an underdiagnosis and hence 
an undertreatment of the disease. Furthermore, many glomerular dis-
orders caused by abnormalities in apoE-containing lipoproteins have 
been identified. Of these disorders, lipoprotein glomerulopathy and 
apoE2 homozygote glomerulopathy have been characterized and 
differentiated histologically [21]. However, both disorders present with 
a lipid profile similar to FD [21]. In fact, apoE homozygosity is consid-
ered responsible for FD, but only 10 cases of apoE2 homozygote glo-
merulopathy were reported worldwide. The presence of other factors 
seems necessary to trigger the disease. LPG was first identified as a 
glomerular disease associated with type III hypercholesterolemia. Ge-
netic studies identified numerous heterozygotes APOE variants associ-
ated with LPG, most of them are located within the receptor-binding 
domain. Whilst, it was previously perceived that FD observed in the 
patients is responsible for the LPG phenotype, current studies claim that 
the abnormal lipid-free apoE structure and aggregation caused by APOE 
variants are the cause behind the development of LPG. Pathological 
studies have shown that, in contrast with homozygote E2 glomerulop-
athy, treatment with fibrates is effective for the management of hyper-
triglyceridemia in LPG, but not homozygote E2 glomerulopathy, and 
could prevent the glomerular damage [85,86]. Thus, both genotyping 
and sequencing of APOE could be very useful in patients with a FD-like 
phenotype in order to set the diagnosis, the prevention and the treat-
ment of the glomerular diseases and their consequences on renal 
dysfunction. 

7. Conclusion 

Common APOE variants are associated with variations in lipid and 
lipoprotein levels alongside with other common genetic and environ-
mental factors influencing the clinical presentation of lipid disorders 
associated with rare APOE variants.The identification of the APOE p. 
Leu167del variant as the causative molecular element in two different 
ADH families [46,47], paved the way to consider APOE as a candidate 
gene for ADH. Recent works showed that causal variants in APOE are not 
an insignificant cause of ADH with a frequency of 1.3% of affected pa-
tients in a French cohort [48] and 3.1% in a Spanish cohort [13]. On the 
contrary, APOE causative variants are not a common cause of hyper-
cholesterolemia in a Norwegian population with a frequency of 0.2% 
[74]. Altogether, these results show that screening of the APOE gene is 
warranted in the setting of molecular diagnosis of ADH along with the 
LDLR, APOB, and PCSK9 genes. Which will be routinely possible with 
the progressive use of next generation sequencing (NGS). The molecular 
diagnostics is warranted to allow the constitution of homogeneous co-
horts of patients, and to understand the natural history and the evolution 
with age of lipid diseases associated with the different variants of apoE. 
This will also make it possible, as has been widely reported for FH, to set 
up cascade screening allowing the diagnosis of relatives at risk and their 
early treatment. Finally, for the patient itself, it has been shown that 
knowledge of the mutation leads to better adherence to treatment. More 
studies are needed to determine the spectrum of implication of APOE in 
various lipid disorders, notably ADH, in order to improve clinical and 
genetic diagnosis, prognosis and patient care management. 
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