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GEVREY REGULARITY OF THE SOLUTIONS OF THE

INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS

WITH A POLYNOMIAL SEMILINEARITY

PASCAL REMY

Abstract. In this article, we are interested in the Gevrey properties of the
formal power series solution in time of the partial differential equations with a

polynomial semilinearity and with analytic coefficients at the origin of Cn`1.

We prove in particular that the inhomogeneity of the equation and the formal
solution are together s-Gevrey for any s ě sc, where sc is a nonnegative ratio-

nal number fully determined by the Newton polygon of the associated linear

PDE. In the opposite case s ă sc, we show that the solution is generically sc-
Gevrey while the inhomogeneity is s-Gevrey, and we give an explicit example

in which the solution is s1-Gevrey for no s1 ă sc.
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1. Introduction

In this article, we consider an inhomogeneous semilinear partial differential equa-
tion with a 1-dimensional time variable t P C and a n-dimensional spatial variable
x “ px1, ..., xnq P Cn of the form

(1.1)

$

&

%

Bκt u´
ÿ

iPK

ÿ

qPQi

tvi,qai,qpt, xqB
i
tB
q
xu´ P puq “

rfpt, xq

B
j
tupt, xq|t“0 “ ϕjpxq, j “ 0, ..., κ´ 1

where

‚ κ ě 1 is a positive integer;
‚ K is a nonempty subset of t0, ..., κ´ 1u;
‚ Qi is a nonempty finite subset of Nn for all i P K (N denotes the set of the

nonnegative integers);
‚ Bqx denotes the derivative Bq1x1

...Bqnxn
while q :“ pq1, ..., qnq P Nn;

‚ vi,q ě 0 is a nonnegative integer for all i P K and q P Qi;
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‚ the coefficients ai,qpt, xq are analytic on a polydisc Dρ0,ρ1,...,ρn :“ Dρ0 ˆ

Dρ1 ˆ ... ˆ Dρn centered at the origin of Cn`1 (Dρ denotes the disc with
center 0 P C and radius ρ ą 0) and satisfy ai,qp0, xq ı 0 for all i P K and
q P Qi;

‚ P pXq :“
d
ÿ

m“2

bmpt, xqX
m is a polynomial of degree d ě 2 with analytic

coefficients on Dρ0,ρ1,...,ρn ;

‚ the inhomogeneity rfpt, xq is a formal power series in t with analytic coeffi-

cients in Dρ1,...,ρn (we denote by rfpt, xq P OpDρ1,...,ρnqrrtss) which may be
smooth, or not1;

‚ the initial conditions ϕjpxq are analytic on Dρ1,...,ρn for all j “ 0, ..., κ´ 1.

Looking for a formal solution rupt, xq P OpDρ1,...,ρnqrrtss, and writing any element
rgpt, xq of OpDρ1,...,ρnqrrtss on the form

rgpt, xq “
ÿ

jě0

gj,˚pxq
tj

j!
with gj,˚pxq P OpDρ1,...,ρnq for all j,

we easily get that the coefficients uj,˚pxq of rupt, xq are uniquely determined by the
recurrence relations

(1.2) uj`κ,˚pxq “ fj,˚pxq`

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

j!

`!pj ´ vi,q ´ `q!
ai,q;`,˚pxqB

q
xuj´vi,q´``i,˚pxq`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!
bm;`,˚pxqu`1,˚pxq...u`m,˚pxq

together with the initial conditions uj,˚pxq “ ϕpxq for j “ 0, ..., κ´ 1. As usual, we
use the classical convention that the first sum is zero as soon as j ´ vi,q ă 0.

The purpose of the paper is to answer to the following question:

“What relationship exists between the Gevrey order of the solution rupt, xq

and the Gevrey order of the inhomogeneity rfpt, xq?”

Indeed, according to the algebraic structure of the s-Gevrey spaces OpDρ1,...,ρnqrrtsss
(see section 3.1 for the exact definition of theses spaces), it is classical one has

rupt, xq P OpDρ1,...,ρnqrrtsss ñ rfpt, xq P OpDρ1,...,ρnqrrtsss.

But, what can we say about the converse?
In previous articles [24, 25], the author studied two particular cases of eq. (1.1):

the inhomogeneous n-dimensional heat equation

(1.3)

#

Btu´ apxq∆xu´ bpxqu
m “ rfpt, xq

up0, xq “ ϕpxq

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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and the most general equation

(1.4)

#

Bκt u´ apt, xqB
p
xu´ bpt, xqu

m “ rfpt, xq, pt, xq P C2

B
j
tupt, xq|t“0 “ ϕjpxq, j “ 0, ..., κ´ 1

In this two cases, he proved that the Gevrey orders of rupt, xq and rfpt, xq are closely
related:

Proposition 1.1 ([24, 25]). Let sc denote the nonnegative rational number equal
to the inverse of the smallest positive slope of the Newton polygon at t “ 0 of the
associated linear part of eq. (1.3) (resp. eq. (1.4)) if any exists, and equal to 0
otherwise2. Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě sc;

(2) rupt, xq is generically sc-Gevrey while rfpt, xq is s-Gevrey with s ă sc.

Remark 1.2. When the inhomogeneity rfpt, xq is s-Gevrey with s ă sc, the hy-
potheses made on eqs. (1.3) and (1.4) do not allow in general to specify the exact
Gevrey order of the solution rupt, xq as in the opposite case s ě sc (Point 1). How-
ever, the second point of proposition 1.1 asserts that this order is always less or
equal to sc

3 and that this inequality is the best possible. Indeed, one can easily find
cases for which the solution rupt, xq is exactly sc-Gevrey (see [25, Prop. 3.2] and
[24, Prop. 4.11] for more details).

In this paper, we propose to extend the result of proposition 1.1 to the very
general eq. (1.1). Let us mention here that a similar problem has already been
studied by H. Tahara in [36] in the case of real variables. However, the calculations
we develop in this paper are based on a very different approach.

Let us also mention that other slightly different works have also been done for
several years by many authors towards the convergence [15,17,33] and the Gevrey
order [8, 9, 16, 29–32, 34, 35] of the formal power series solutions of some singular
nonlinear partial differential equations, and towards the summability [11, 13, 20]
of the formal power series solution of some nonlinear partial differential equations.
Furthermore, in [6,7], A. Lastra and S. Malek considered some parametric nonlinear
partial differential equations; in [12], S. Malek investigated the Gevrey properties
of some nonlinear integro-differential equations. Of course, given the technical and
computational difficulties inherent in the nonlinearity, the known results are cur-
rently far fewer than in the linear case.

The organization of the paper is as follows. In section 2, we introduce and we
describe the Newton polygon at t “ 0 of the linear part of eq. (1.1). In section 3, we
recall some definitions and basic properties about the Gevrey formal series which
are needed in the sequel. Next, we state our main result (theorem 3.3) which
displays the explicit relationship between the Gevrey order of the solution rupt, xq

and the one of the inhomogeneity rfpt, xq. The proof of this result is detailed in
section 4.

2We have thereby sc “ 1 in the case of eq. (1.3); and, in the case of eq. (1.4), sc “ p{κ´1 when
p ą κ, and sc “ 0 when p ď κ. For the definition of the Newton polygon, we refer to section 2
below.

3This is obvious due to the filtration of the Gevrey spaces (see section 3.1) and the first point
of proposition 1.1.
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2. Newton polygon

Let L denote the linear part of eq. (1.1):

L “ Bκt ´
ÿ

iPK

ÿ

qPQi

tvi,qai,qpt, xqB
i
tB
q
x.

As definition of the Newton polygon, we choose the definition of M. Miyake [14]
(see also A. Yonemura [39] or S. Ouchi [19]) which is an analogue to the one given
by J.-P. Ramis [23] for linear ordinary differential equations. Recall that, H. Tahara
and H. Yamazawa use in [37] a slightly different one.

For any pa, bq P R2, we denote by Cpa, bq the domain

Cpa, bq “ tpx, yq P R2;x ď a and y ě bu.

Definition 2.1. The Newton polygon NtpLq of L at t “ 0 is defined as the convex
hull of

Cpκ,´κq Y
ď

iPK

ď

qPQi

Cpλpqq ` i, vi,q ´ iq,

where λpqq “ q1 ` ...` qn denotes the length of q “ pq1, ..., qnq P Nn.

Proposition 2.2 below specifies the geometric structure of NtpLq.

Proposition 2.2. Let S “ tpi, qq such that i P K, q P Qi and λpqq ą κ´ iu be.

(1) Suppose S “ H. Then, NtpLq “ Cpκ,´κq. In particular, NtpLq has no
side with a positive slope (see fig. 1a).

(2) Suppose S ‰ H. Then, NtpLq has at least one side with a positive slope.
Moreover, its smallest positive slope k is given by

k “ min
pi,qqPS

ˆ

vi,q ` κ´ i

λpqq ´ κ` i

˙

“
vi˚,q˚ ` κ´ i

˚

λpq˚q ´ κ` i˚
,

where pi˚, q˚q P S stands for any convenient pair (see fig. 1b) which we
assume from now on fixed once and for all.

-
´κ

-

κ

‚

‚

‚‚

‚

‚

‚

‚

‚

(a) Case S “ H

-
´κ

-

κ

-

λpq˚q ` i˚-vi˚,q˚ ´ i
˚

‚
slo

pe k
‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚

(b) Case S ‰ H

Figure 1. The Newton polygon NtpLq

Proof. The first point stems obvious from the fact that the condition S “ H implies
Cpλpqq ` i, vi,q ´ iq Ă Cpκ,´κq for all i P K and q P Qi. As for the second point, it
suffices to remark, on one hand, that Cpλpqq ` i, vi,q ´ iq Ă Cpκ,´κq for all pairs
pi, qq R S, and, on the other hand, that the segment with the two end points pκ,´κq
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and pλpqq ` i, vi,q ´ iq has a positive slope equal to pvi,q ` κ´ iq{pλpqq ´ κ` iq for
all pairs pi, qq P S. �

The following result is a direct consequence of the definition of the pair pi˚, q˚q.
It will be very useful to us in the sequel.

Corollary 2.3. Suppose S ‰ H. Then, the inequality

λpq˚q ` vi˚,q˚

vi˚,q˚ ` κ´ i˚
pvi,q ` κ´ iq ě λpqq ` vi,q

holds for all i P K and all q P Qi.

Proof. Due to the definition of the pair pi˚, q˚q, we get

λpq˚q ´ κ` i˚

vi˚,q˚ ` κ´ i˚
ě
λpqq ´ κ` i

vi,q ` κ´ i
ą 0

for all pi, qq P S, and next

(2.1)
λpq˚q ´ κ` i˚

vi˚,q˚ ` κ´ i˚
ě
λpqq ´ κ` i

vi,q ` κ´ i

for all pi, qq P KˆQi. We have indeed λpqq´κ`i ď 0 when pi, qq R S. Corollary 2.3
follows by first adding “+1” to both sides of (2.1), and then by multiplying by the
positive term vi,q ` κ´ i. �

Let us now turn to the Gevrey properties of the solution rupt, xq.

3. Gevrey properties of rupt, xq

As we said in section 1, the purpose of this article is to make explicit the rela-
tionship between the Gevrey order of the solution rupt, xq and the Gevrey order of

the inhomogeneity rfpt, xq.
Before stating our main result (see theorem 3.3 below), let us first recall for the

convenience of the reader some definitions and basic properties about the Gevrey
formal series in OpDρ1,...,ρnqrrtss, which are needed in the sequel.

3.1. Gevrey formal series. All along the article, we consider t as the variable
and x as a parameter. Thereby, to define the notion of Gevrey classes of formal
power series in OpDρ1,...,ρnqrrtss, one extends the classical notion of Gevrey classes
of elements in Crrtss to families parametrized by x in requiring similar conditions,
the estimates being however uniform with respect to x. Doing that, any formal
power series of OpDρ1,...,ρnqrrtss can be seen as a formal power series in t with
coefficients in a convenient Banach space defined as the space of functions that
are holomorphic on a polydisc Dρ,...,ρ (0 ă ρ ď min ρ`) and continuous up to its
boundary, equipped with the usual supremum norm. For a general study of the
formal power series with coefficients in a Banach space, we refer for instance to [1].

In the sequel, we endow Cn with the maximum norm: for x “ px1, ..., xnq P Cn,

}x} “ max
`Pt1,...,nu

|x`| .

Definition 3.1. Let s ě 0 be. A formal series

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1,...,ρnqrrtss
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is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive
constants 0 ă ρ ă min ρ`, C ą 0 and K ą 0 such that the inequalities

sup
}x}ďρ

|uj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0.

In other words, definition 3.1 means that rupt, xq is s-Gevrey in t, uniformly in x
on a neighborhood of x “ p0, ..., 0q P Cn.

We denote by OpDρ1,...,ρnqrrtsss the set of all the formal series in OpDρ1,...,ρnqrrtss
which are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at
the origin of Cn`1 coincides with the union

Ť

ρ1ą0,...,ρną0 OpDρ1,...,ρnqrrtss0; in par-

ticular, any element of OpDρ1,...,ρnqrrtss0 is convergent and Ctt, xuXOpDρ1,...,ρnqrrtss “
OpDρ1,...,ρnqrrtss0. Observe also that the sets OpDρ1,...,ρnqrrtsss are filtered as fol-
lows:

OpDρ1,...,ρnqrrtss0 Ă OpDρ1,...,ρnqrrtsss Ă OpDρ1,...,ρnqrrtsss1 Ă OpDρ1,...,ρnqrrtss

for all s and s1 satisfying 0 ă s ă s1 ă `8.

Following proposition 3.2 specifies the algebraic structure of OpDρ1,...,ρnqrrtsss.

Proposition 3.2. Let s ě 0. Then, the set pOpDρ1,...,ρnqrrtsss, Bt, Bx1 , ..., Bxnq is a
C-differential algebra.

Proof. Since pOpDρ1,...,ρnqrrtss, Bt, Bx1 , ..., Bxnq is a C-differential algebra, it is suffi-
cient to prove that OpDρ1,...,ρnqrrtsss is stable under multiplication and derivations.

The proof of the stability under the multiplication and the derivation Bt is similar
to the one already detailed in [26, Prop. 1] (see also [1, p. 64]) in the case n “ 1.

To prove the stability under the derivation Bx`
with ` P t1, ..., nu, we proceed as

follows. Let rupt, xq P OpDρ1,...,ρnqrrtsss as in definition 3.1 and rwpt, xq “ Bx`
rupt, xq.

For a given 0 ă ρ1 ă ρ, the Cauchy Integral Formula gives us, for all j ě 0 and all
}x} ď ρ1:

wj,˚pxq “ Bx`
uj,˚pxq “

1

p2iπqn

ż

γpxq

uj,˚px
1q

px1` ´ x`q
2

n
ź

k“1
k‰`

px1k ´ xkq

dx1,

where γpxq :“ tx1 “ px11, ..., x
1
nq P Cn; |x1k ´ xk| “ ρ ´ ρ1 for all k P t1, ..., nuu.

Hence, the inequalities

sup
}x}ďρ1

|wj,˚pxq| ď C 1KjΓp1` ps` 1qjq with C 1 “
C

ρ´ ρ1
for all j ě 0.

Indeed, the definition of the path γpxq implies }x1} ď ρ. The proof is complete. �

Observe that the stability under the derivation Bx`
would not be guaranteed

without the condition “there exist 0 ă ρ ă min ρ` ...” in definition 3.1.

3.2. Main result. We are now able to state the result in view in this article.
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Theorem 3.3. Recall that S “ tpi, qq such that i P K, q P Qi and λpqq ą κ ´ iu.
Let sc be the nonnegative rational number defined by

sc :“

$

&

%

0 if S “ H
1

k
“
λpq˚q ´ κ` i˚

vi˚,q˚ ` κ´ i˚
if S ‰ H

Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě sc;

(2) rupt, xq is generically sc-Gevrey while rfpt, xq is s-Gevrey with s ă sc.

Definition 3.4. The number sc defined in theorem 3.3 is called the critical value
of eq. (1.1).

Observe that theorem 3.3 coincides with proposition 1.1 in the case of eqs. (1.3)
and (1.4). Besides, since no condition is made on the polynomial P except its
coefficients are analytic at the origin of Cn`1, theorem 3.3 applies as well to the
linear case P ” 0, and, consequently, generalizes the results already obtained by
the author in [26,28].

Observe also that theorem 3.3 yields a result similar to the Maillet-Ramis theo-
rem for the ordinary linear differential equations [22,23] (see also [10, Thm. 4.2.7]).

Corollary 3.5. Assume that the inhomogeneity rfpt, xq is convergent. Then, the
solution rupt, xq is either convergent or 1{k-Gevrey, where k stands for the smallest
positive slope of the Newton polygon NtpLq.

The proof of theorem 3.3 is detailed in section 4 below. The first point is the
most technical and the most complicated. Its proof is based on the Nagumo norms,
a technique of majorant series and a fixed point procedure (see section 4.1). As for
the second point, it stems both from the first one and from proposition 4.11 that

gives an explicit example for which rupt, xq is s1-Gevrey for no s1 ă sc while rfpt, xq
is s-Gevrey with s ă sc (see section 4.2).

4. Proof of theorem 3.3

4.1. Proof of the first point. According to proposition 3.2, it is clear that

rupt, xq P OpDρ1,...,ρnqrrtsss ñ rfpt, xq P OpDρ1,...,ρnqrrtsss.

Reciprocally, let us fix s ě sc and let us suppose that the inhomogeneity rfpt, xq is
s-Gevrey. By assumption, its coefficients fj,˚pxq P OpDρ1,...,ρnq satisfy the following
condition (see definition 3.1): there exist three positive constants 0 ă ρ ă min ρ`,
C ą 0 and K ą 0 such that the inequalities

(4.1) |fj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0 and all }x} ď ρ.
We must prove that the coefficients uj,˚pxq P OpDρ1,...,ρnq of rupt, xq satisfy similar

inequalities. The approach we present below is analoguous to the ones already
developed in [2, 26–28] in the framework of linear partial and integro-differential
equations, and in [24, 25] in the case of eqs. (1.3) and (1.4). It is based on the
Nagumo norms [3, 18, 38] and on a technique of majorant series. However, as we
shall see, our calculations appear to be much more technical and complicated.
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Furthermore, the nonlinear polynomial term P puq instead of the power term um

used in eqs. (1.3) and (1.4) generates several new technical combinatorial situations.
Before starting the calculations, let us first recall for the convenience of the

reader the definition of the Nagumo norms and some of their properties which are
needed in the sequel.

4.1.1. Nagumo norms.

Definition 4.1. Let f P OpDρ1,...,ρnq, p ě 0 and 0 ă r ă min ρ` be. Then, the
Nagumo norm }f}p,r with indices pp, rq of f is defined by

}f}p,r :“ sup
}x}ďr

|fpxqdrpxq
p| ,

where drpxq denotes the Euclidian distance drpxq :“ r ´ }x}.

Following proposition 4.2 gives us some properties of the Nagumo norms.

Proposition 4.2. Let f, g P OpDρ1,...,ρnq, p, p1 ě 0 and 0 ă r ă min ρ` be. Then,

(1) }¨}p,r is a norm on OpDρ1,...,ρnq.
(2) |fpxq| ď }f}p,r drpxq

´p for all }x} ă r .

(3) }f}0,r “ sup
}x}ďr

|fpxq| is the usual sup-norm on the polydisc Dr,...,r.

(4) }fg}p`p1,r ď }f}p,r }g}p1,r.

(5) }Bx`
f}p`1,r ď epp` 1q }f}p,r for all ` P t1, ..., nu.

Proof. Properties 1–4 are straightforward and are left to the reader. To prove
Property 5, we proceed as follows. Let ` P t1, ..., nu be, x P Cn such that }x} ă r
and 0 ă R ă drpxq. Using the Cauchy Integral Formula, we have

Bx`
fpxq “

1

p2iπqn

ż

γpxq

fpx1q

px1` ´ x`q
2

n
ź

k“1
k‰`

px1k ´ xkq

dx1,

where γpxq :“ tx1 “ px11, ..., x
1
nq P Cn; |x1k ´ xk| “ R for all k P t1, ..., nuu. Since

x1 P γpxq ñ
›

›x1
›

› ă r,

we can apply Property 2 of proposition 4.2; hence, the inequalities

|Bx`
fpxq| ď

1

R
max
x1Pγpxq

ˇ

ˇfpx1q
ˇ

ˇ ď
1

R
}f}p,r max

x1Pγpxq
drpx

1q´p “
1

R
}f}p,r pdrpxq ´Rq

´p.

Observe that the last equality stems from the relations

drpx
1q “ r ´

›

›x1
›

› “ r ´
›

›x` x1 ´ x
›

› ě drpxq ´
›

›x1 ´ x
›

› “ drpxq ´R ą 0.

When p “ 0, the choice R “
drpxq

e
implies the inequality

|Bx`
fpxq| ď e }f}0,r drpxq

´1;

hence, the inequality

(4.2) |Bx`
fpxq| drpxq ď e }f}0,r .
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When p ą 0, the choice R “
drpxq

p` 1
and the relations

ˆ

1´
1

p` 1

˙´p

“

ˆ

1`
1

p

˙p

ă e,

brings us to the inequalities

|Bx`
fpxq| ď }f}p,r drpxq

´p´1pp` 1q

ˆ

1´
1

p` 1

˙´p

ď epp` 1q }f}p,r drpxq
´p´1

and then to the inequality

(4.3) |Bx`
fpxq| drpxq

p`1 ď epp` 1q }f}p,r .

Property 5 follows since inequalities (4.2) and (4.3) are still valid when }x} “ r.
This achieves the proof of proposition 4.2. �

Remark 4.3. Inequalities 4–5 of proposition 4.2 are the most important properties.
Observe besides that the same index r occurs on their both sides, allowing thus to
get estimates for the product fg in terms of f and g and for the derivatives Bx`

f
for any ` P t1, ..., nu in terms of f without having to shrink the polydisc Dr,...,r.

Let us now turn to the proof of the first point of theorem 3.3.

4.1.2. Some inequalities. From the recurrence relations (1.2), we first get the iden-
tities

(4.4)
uj`κ,˚pxq

Γp1` ps` 1qpj ` κqq
“

fj,˚pxq

Γp1` ps` 1qpj ` κqq
`

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

j!

`!pj ´ vi,q ´ `q!

ai,q;`,˚pxqB
q
xuj´vi,q´``i,˚pxq

Γp1` ps` 1qpj ` κqq
`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!

bm;`,˚pxqu`1,˚pxq...u`m,˚pxq

Γp1` ps` 1qpj ` κqq

for all j ě 0, together with the initial conditions uj,˚pxq “ ϕjpxq for j “ 0, ..., κ´1.
As usual, we use the classical convention that the first sum is zero as soon as
j ´ vi,q ă 0.

Let us now define the positive constant σs “ ps ` 1qpκ ` vq with v “ max vi,q.
The following lemma yields various inequalities which will play a crucial role in the
sequel of our proof.

Lemma 4.4. The inequalities

σs ě ps` 1qpκ` vi,qq ě ps` 1qpκ´ i` vi,qq ě λpqq ` vi,q

hold for all i P K and all q P Qi.

Proof. The first two inequalities are trivial. To prove the third, we proceed as
follows.

Let us first assume S “ H. Since s ě sc “ 0, we have

ps` 1qpκ´ i` vi,qq ě κ´ i` vi,q,

and the result stems from the inequality λpqq ď κ´ i.
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Let us now assume S ‰ H. Then,

ps` 1qpκ´ i` vi,qq ě psc ` 1qpκ´ i` vi,qq “
λpq˚q ` vi˚,q˚

vi˚,q˚ ` κ´ i˚
pκ´ i` vi,qq,

and the inequality follows from corollary 2.3. �

Let us apply the Nagumo norms of indices ppj`κqσs, ρq to relations (4.4). From
the first property of proposition 4.2, we obtain

}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď

}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

j!

`!pj ´ vi,q ´ `q!

›

›ai,q;`,˚B
q
xuj´vi,q´``i,˚

›

›

pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!

}bm;`,˚u`1,˚...u`m,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq

for all j ě 0. Next, using the fourth and fifth property of proposition 4.2, we derive
the following inequalities for all j:

(4.5)
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď

}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

Ai,q,j,`,s
}ai,q;`,˚}pvi,q`κ´i``qσs´λpqq,ρ

`!

›

›uj´vi,q´``i,˚
›

›

pj´vi,q´``iqσs,ρ

Γp1` ps` 1qpj ´ vi,q ´ `` iqq
`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

Bj,`,`1,...`m,s
}bm;`,˚}p``κqσs,ρ

}u`1,˚}`1σs,ρ
... }u`m,˚}`mσs,ρ

`!Γp1` ps` 1q`1q...Γp1` ps` 1q`mq
,

where the constants Ai,q,j,`,s and Bj,`,`1,...`m,s are positive and defined by

Ai,q,j,`,s “

j!eλpqq

¨

˝

λpqq´1
ź

`1“0

ppj ´ vi,q ´ `` iqσs ` λpqq ´ `
1q

˛

‚

pj ´ vi,q ´ `q!Γp1` ps` 1qpj ` κqq
ˆ

Γp1` ps` 1qpj ´ vi,q ´ `` iqq

and

Bj,`,`1,...`m,s “
j!

`1!...`m!

Γp1` ps` 1q`1q...Γp1` ps` 1q`mq

Γp1` ps` 1qpj ` κqq
.

In the definition of the constants Ai,q,j,`,s, we use of course the classical convention
that the product is 1 when λpqq “ 0

Observe that all the norms written in inequality (4.5), and especially the norms
}ai,q;`,˚}pvi,q`κ´i``qσs´λpqq,ρ

are well-defined. Indeed, the inequalities κ´ i ě 1 and

vi,q ě 0, and lemma 4.4 imply for all i, q and `:

pvi,q ` κ´ i` `qσs ´ λpqq ě σs ´ λpqq ě λpqq ` vi,q ´ λpqq “ vi,q ě 0.

The following proposition allows to bound the constantsAi,q,j,`,s andBj,`,`1,...`m,s.

Proposition 4.5.
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(1) Let i P K, q P Qi, j ě vi,q and ` P t0, ..., j ´ vi,qu be. Then,

Ai,q,j,`,s ď pepκ` vqq
λpqq.

(2) Let m P t2, ..., du, j ě 0 and ` P t0, ..., ju be. Then,

Bj,`,`1,...`m,s ď 1

for all `1, ..., `m P N such that `1 ` ...` `m “ j ´ `.

The first point is straightforward from the two following technical lemmas 4.6
and 4.7 below. The second point is proved in [24, Prop. 4.8].

Lemma 4.6. Let i P K, q P Qi, j ě vi,q and ` P t0, ..., j ´ vi,qu be. Then,

j!

pj ´ vi,q ´ `q!Γp1` ps` 1qpj ` κqq
ď

1

Γp1` ps` 1qpj ` κ´ `q ´ vi,qq
.

Proof. Lemma 4.6 is clear for `` vi,q “ 0. Let us now assume `` vi,q ě 1 and let
us write the quotient j!{pj ´ vi,q ´ `q! on the form

(4.6)
j!

pj ´ vi,q ´ `q!
“

``vi,q´1
ź

`1“0

pj ´ `1q.

On the other hand, applying `` vi,q times the recurrence relation Γp1` zq “ zΓpzq
to Γp1` ps` 1qpj ` κqq, we get

(4.7) Γp1`ps`1qpj`κqq “ Γp1`ps`1qpj`κq´`´vi,qq

``vi,q´1
ź

`1“0

pps`1qpj`κq´`1q.

Combinating then (4.6) and (4.7), we obtain

j!

pj ´ vi,q ´ `q!Γp1` ps` 1qpj ` κqq
“

``vi,q´1
ź

`1“0

j ´ `1

ps` 1qpj ` κq ´ `1

Γp1` ps` 1qpj ` κq ´ `´ vi,qq

ď
1

Γp1` ps` 1qpj ` κq ´ `´ vi,qq

and lemma 4.6 follows from the inequalities

1` ps` 1qpj ` κq ´ `´ vi,q ě 1` ps` 1qpj ` κ´ `q ´ vi,q

ě 1` ps` 1qpκ` vi,qq ´ vi,q

ě 1` κ

ě 2

and from the increase of the Gamma function on r2,`8r. �

Lemma 4.7. Let i P K, q P Qi, j ě vi,q and ` P t0, ..., j ´ vi,qu be. Then,

λpqq´1
ź

`1“0

ppj ´ vi,q ´ `` iqσs ` λpqq ´ `
1q

Γp1` ps` 1qpj ` κ´ `q ´ vi,qq
ď

pκ` vqλpqq

Γp1` ps` 1qpj ´ vi,q ´ `` iqq
.
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Proof. Ÿ Let us first assume ` “ j ´ vi,q and i “ 0. We must prove the inequality

(4.8)

λpqq´1
ź

`1“0

pp´ `1q

Γp1` ps` 1qpκ` vi,qq ´ vi,qq
ď pκ` vqλpqq.

Let us begin by observing that

λpqq´1
ź

`1“0

pλpqq ´ `1q “ pλpqqq! “ Γp1` λpqqq

for all λpqq, including the case λpqq “ 0 since the product is 1 by convention.
On the other hand, in the case λpqq ą 0, lemma 4.4 implies the inequalities

1` ps` 1qpκ` vi,qq ´ vi,q ě 1` λpqq ě 2;

hence,

Γp1` ps` 1qpκ` vi,qq ´ vi,qq ě Γp1` λpqqq

since the Gamma function is increasing on r2,`8r. In the special case λpqq “ 0,
we observe that the increase of the Gamma function applied to the inequalities

1` ps` 1qpκ` vi,qq ´ vi,q ě 1` κ ě 2

implies

Γp1` ps` 1qpκ` vi,qq ´ vi,qq ě Γp2q “ Γp1q “ Γp1` λpqqq.

Consequently, the left hand-side of (4.8) is ď 1 and lemma 4.7 follows then from
the inequality κ` v ě 1.

Ÿ Let us now assume p`, iq ‰ pj ´ vi,q, 0q. According to the definition of σs, we
first have the identity

(4.9)

λpqq´1
ź

`1“0

ppj ´ vi,q ´ `` iqσs ` λpqq ´ `
1q “ pκ` vqλpqqˆ

λpqq´1
ź

`1“0

ˆ

ps` 1qpj ´ vi,q ´ `` iq `
λpqq ´ `1

κ` v

˙

.

On the other hand, applying λpqq times the recurrence relation Γp1` zq “ zΓpzq
to Γp1` ps` 1qpj ` κ´ `q ´ vi,qq, we besides have

(4.10) Γp1` ps` 1qpj ` κ´ `q ´ vi,qq “

Γp1` ps` 1qpj ` κ´ `q ´ vi,q ´ λpqqq

λpqq´1
ź

`1“0

pps` 1qpj ` κ´ `q ´ vi,q ´ `
1q.

Observe that this identity makes since lemma 4.4 implies

ps` 1qpj ` κ´ `q ´ vi,q ´ λpqq ě ps` 1qpκ` vi,qq ´ vi,q ´ λpqq ě 0.

Observe also that we have the inequality

ps` 1qpj ´ vi,q ´ `` iq `
λpqq ´ `1

κ` v
ď ps` 1qpj ` κ´ `q ´ vi,q ´ `

1
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for all `1 P t0, ..., λpqq ´ 1u when λpqq ą 0. Indeed, according to lemma 4.4 and the
inequality κ` v ě 1, we have

ps`1qpj ` κ´ `q ´ vi,q ´ `
1 ´ ps` 1qpj ´ vi,q ´ `` iq ´

λpqq ´ `1

κ` v

“ ps` 1qpvi,q ` κ´ iq ´ vi,q ´ `
1 ´

λpqq ´ `1

κ` v
ě pλpqq ´ `1q

ˆ

1´
1

κ` v

˙

ě 0.

Consequently, identities (4.9) and (4.10) implies the inequality

λpqq´1
ź

`1“0

ppj ´ vi,q ´ `` iqσs ` λpqq ´ `
1q

Γp1` ps` 1qpj ` κ´ `q ´ vi,qq
ď

pκ` vqλpqq

Γp1` ps` 1qpj ` κ´ `q ´ vi,q ´ λpqqq

for all λpqq. Lemma 4.7 follows then from the relations

1` ps` 1qpj ` κ´ `q ´ vi,q ´ λpqq ě 1` ps` 1qpj ` κ´ `q ´ ps` 1qpκ´ i` vi,qq

“ 1` ps` 1qpj ´ vi,q ´ `` iq

ě 2

and from the increase of the Gamma function on r2,`8r. Observe that the first
inequality stems again from lemma 4.4. Observe also that, without the condition
p`, iq ‰ pj ´ vi,q, 0q, the second inequality is no longer valid.

This ends the proof of lemma 4.7. �

Let us now apply proposition 4.5 to inequalities (4.5). We get:

(4.11)
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď gj,s`

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

αi,q,`,s

›

›uj´vi,q´``i,˚
›

›

pj´vi,q´``iqσs,ρ

Γp1` ps` 1qpj ´ vi,q ´ `` iqq
`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

βm,`,s
}u`1,˚}`1σs,ρ

Γp1` ps` 1q`1q
...

}u`m,˚}`mσs,ρ

Γp1` ps` 1q`mq
,

for all j ě 0, where the constants gj,s, αi,q,`,s and βm,`,s are positive and defined
by

gj,s “
}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
,

αi,q,`,s “ pepκ` vqq
λpqq

}ai,q;`,˚}pvi,q`κ´i``qσs´λpqq,ρ

`!
,

βm,`,s “
}bm;`,˚}p``κqσs,ρ

`!
.

We shall now bound the Nagumo norms }uj,˚}jσs,ρ
for any j ě 0. To do that,

we shall proceed similarly as in [2, 24–28] by using a technique of majorant series.
However, as we shall see, the calculations are much more complicated.
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4.1.3. A Majorant Series. Let us consider the formal series vpXq “
ÿ

jě0

vjX
j , where

the coefficients vj are determined for all j ě 0 by the recurrence relations

(4.12) vj`κ “ gj,s `
ÿ

iPK

ÿ

qPQi

j´vi,q`i
ÿ

`“0

αi,q,`,svj´vi,q´``i `
j
ÿ

`“0

ÿ

`1`...``d
“j´`

β`,sv`1 ...v`d

with

β`,s “
d
ÿ

m“2

βm,`,s,

and together with the initial conditions

v0 “ 1` }ϕ0}0,ρ , and, for j “ 1, ..., κ´ 1 (if κ ě 2):

vj “
}ϕj}jσs,ρ

Γp1` ps` 1qjq
`

ÿ

pi,qqPVj

j´κ´vi,q`i
ÿ

`“0

αi,q,`,svj´κ´vi,q´``i

where Vj “ tpi, qq P K ˆ Qi such that j ´ κ ´ vi,q ` i ě 0u. Observe that the
condition “κ ą i for all i P K” implies j ´ κ ´ vi,q ` i ă j; hence, the initial
conditions on the vj ’s with j “ 1, ..., κ ´ 1 make sense. Observe also that the set
Vj may be empty (this is particularly the case when K “ t0u, or when vi,q ě i for
all i and q).

Proposition 4.8. The inequalities

(4.13) 0 ď
}uj,˚}jσs,ρ

Γp1` ps` 1qjq
ď vj

hold for all j ě 0.

Proof. According to the initial conditions on the uj ’s and on the vj ’s, inequalities
(4.13) hold for all j “ 0, ..., κ ´ 1. Let us now suppose that these inequalities are
true for all k ď j ´ 1` κ for a certain j ě 0, and let us prove them for j ` κ.

First of all, applying our hypotheses to relations (4.11), we get

0 ď
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď gj,s `

ÿ

iPK

ÿ

qPQi

j´vi,q
ÿ

`“0

αi,q,`,svj´vi,q´``i`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

βm,`,sv`1 ...v`m

ď gj,s `
ÿ

iPK

ÿ

qPQi

j´vi,q`i
ÿ

`“0

αi,q,`,svj´vi,q´``i`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``m
“j´`

βm,`,sv`1 ...v`m ,

since all the terms αi,q,`,svj´vi,q´``i are nonnegative.
Next, let us observe that, for all ` P t0, ..., ju and all m P t2, ..., d ´ 1u if d ě 3,

any tuple-m p`1, ..., `mq P Nm such that `1 ` ... ` `m “ j ´ ` can be seen as the
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tuple-d p`1, ..., `m, `m`1, ..., `dq P Nd, where `m`1 “ ... “ `d “ 0. Therefore, using
the fact that v0 ě 1, we have

0 ď v`1 ...v`m ď v`1 ...v`mv
d´m
0 “ v`1 ...v`mv`m`1

...v`d ,

and, consequently, the inequalities

0 ď
ÿ

`1`...``m
“j´`

v`1 ...v`m ď
ÿ

`1`...``m`
0`...`0“j´`

v`1 ...v`d ď
ÿ

`1`...``d
“j´`

v`1 ...v`d

since all the terms are nonnegative.
Hence, the relations

0 ď
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď gj,s `

ÿ

iPK

ÿ

qPQi

j´vi,q`i
ÿ

`“0

αi,q,`,svj´vi,q´``i`

d
ÿ

m“2

j
ÿ

`“0

ÿ

`1`...``d
“j´`

βm,`,sv`1 ...v`d

“ gj,s `
ÿ

iPK

ÿ

qPQi

j´vi,q`i
ÿ

`“0

αi,q,`,svj´vi,q´``i`

j
ÿ

`“0

ÿ

`1`...``d
“j´`

β`,sv`1 ...v`d

“ vj`κ,

which ends the proof of proposition 4.8. �

Following proposition 4.9 allows us to bound the vj ’s.

Proposition 4.9. The formal series vpXq is convergent. In particular, there exist
two positive constants C 1,K 1 ą 0 such that vj ď C 1K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.
First of all, let us observe that vpXq is the unique formal power series in X

solution of the functional equation

(4.14) p1´ αpXqqvpXq “ XκβpXqpvpXqqd ` hpXq,

where

αpXq “
ÿ

iPK

ÿ

qPQi

Xκ´i`vi,qαi,qpXq with αi,qpXq “
ÿ

jě0

αi,q,j,sX
j ;

βpXq “
ÿ

jě0

βj,sX
j ;

hpXq “ A0 `A1X ` ...`Aκ´1X
κ´1 `Xκ

ÿ

jě0

gj,sX
j

with

A0 “ 1` }ϕ0}0,ρ , and, for j “ 1, ..., κ´ 1 (if κ ě 2), Aj “
}ϕj}jσs,ρ

Γp1` ps` 1qjq
.
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Observe that, according to the analyticity of the functions ai,qpt, xq and bmpt, xq

at the origin of Cn`1, and the hypothesis on the coefficients fj,˚pxq of rfpt, xq (see
inequality (4.1)), we have the inequalities

‚ 0 ď αi,q,j,s ď
pepκ` vqqλpqqC1K

j
1j!ρ

pvi,q`κ´i`jqσs´λpqq

j!
“ C 11K

1j
1 ,

‚ 0 ď βj,s ď pd´ 1q
C1K

j
1j!ρ

pj`κqσs

j!
“ C21K

2j
1 , and

‚ 0 ď gj ď
CKjΓp1` ps` 1qjqρpj`κqσs

Γp1` ps` 1qpj ` κqq
ď CρκσspKρσsqj

with convenient positive constants C1, K1, C 11, K 11, C21 and K21 . Hence, the series
αpXq, βpXq and hpXq are all convergent with nonnegative coefficients. In the
sequel, we denote by rα ą 0 (resp. rβ ą 0, rh ą 0) the radius of convergence of the
series αpXq (resp. βpXq, hpXq). We also denote by r1α ą 0 the radius of convergence
of the series 1{p1´ αpXqq (which is of course well-defined since αp0q “ 0).

The convergence of vpXq being obvious when βpXq ” 0 (we have indeed p1 ´
αpXqqvpXq “ hpXq), we suppose in the sequel that βpXq ı 0. In particular, we
have βpXq ą 0 for all X Ps0, rβr. Notice that we also have hpXq ě 1 for all
X P r0, rhr. To prove the convergence of the series vpXq, we proceed through a
fixed point method as follows. Let us set

V pXq “
ÿ

mě0

VmpXq

and let us choose the solution of eq. (4.14) given by the system

$

’

&

’

%

p1´ αpXqqV0pXq “ hpXq

p1´ αpXqqVm`1pXq “ XκβpXq
ÿ

`1`...``d
“m

V`1pXq...V`dpXq for m ě 0.

By induction on m ě 0, we easily check that

(4.15) VmpXq “
Cm,dX

κmpβpXqqmphpXqqmpd´1q`1

p1´ αpXqqmd`1
,

where the Cm,d’s are the positive constants recursively determined from C0,d :“ 1
by the relations

Cm`1,d “
ÿ

k1`...`kd“m

Ck1,d...Ckd,d.

Thereby, all the VmpXq’s are analytic functions on the disc with center 0 P C and
radius minpr1α, rβ , rhq at least. Moreover, identities (4.15) show us that VmpXq is
of order Xκm for all m ě 0. Consequently, the series V pXq makes sense as a formal
power series in X and we get V pXq “ vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă
minpr1α, rα, rβ , rhq. By definition, the constants Cm,d’s are the generalized Catalan
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numbers of order d and we have4

Cm,d “
1

pd´ 1qm` 1

ˆ

md

m

˙

ď 2md

for all m ě 0 (see [4, 5, 21] for instance). On the other hand, the convergent series
αpXq, βpXq and hpXq define increasing functions on r0, rs, since theirs coefficients
are nonnegative. Therefore, identities (4.15) imply the inequalities

|VmpXq| ď
hprq

1´ αprq

ˆ

2dβprqphprqqd´1

p1´ αprqqd
|X|

κ

˙m

for all m ě 0 and all |X| ď r. Consequently, since βprq ą 0 and hprq ą 0 (see the
remark just above), the series V pXq is normally convergent on any disc with center
0 P C and radius

0 ă r1 ă min

˜

r,

ˆ

p1´ αprqqd

2dβprqphprqqd´1

˙1{κ
¸

.

This proves the analyticity of V pXq at 0 and achieves then the proof of proposi-
tion 4.9. �

According to propositions 4.8 and 4.9, we can now bound the Nagumo norms
}uj,˚}jσs,ρ

.

Corollary 4.10. Let C 1,K 1 ą 0 be as in proposition 4.9. Then, the inequalities

}uj,˚}jσs,ρ
ď C 1K 1jΓp1` ps` 1qjq

hold for all j ě 0.

We are now able to conclude the proof of theorem 3.3.

4.1.4. Conclusion. We must prove on the sup-norm of the uj,˚pxq estimates similar
to the ones on the norms }uj,˚}jσs,ρ

(see corollary 4.10). To this end, we proceed

by shrinking the closed polydisc }x} ď ρ. Let 0 ă ρ1 ă ρ. Then, for all j ě 0 and
all }x} ď ρ1, we have

|uj,˚pxq| “

ˇ

ˇ

ˇ

ˇ

uj,˚pxqdρpxq
jσs

1

dρpxqjσs

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇuj,˚pxqdρpxq
jσs

ˇ

ˇ

pρ´ ρ1qjσs
ď
}uj,˚}jσs,ρ

pρ´ ρ1qjσs

and, consequently,

sup
}x}ďρ1

|uj,˚pxq| ď C 1
ˆ

K 1

pρ´ ρ1qσs

˙j

Γp1` ps` 1qjq

by applying corollary 4.10. This ends the proof of the first point of theorem 3.3.

4These numbers were named in honor of the mathematician Eugène Charles Catalan (1814-

1894). They appear in many probabilist, graphs and combinatorial problems. For example, they
can be seen as the number of d-ary trees with m source-nodes, or as the number of ways of

associating m applications of a given d-ary operation, or as the number of ways of subdividing a

convex polygon into m disjoint (d ` 1)-gons by means of non-intersecting diagonals. They also
appear in theoretical computers through the generalized Dyck words. See for instance [4] and the

references inside.
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4.2. Proof of the second point. Let us now fix s ă sc
5. According to the

filtration of the s-Gevrey spaces OpDρ1,...,ρnqrrtsss (see section 3) and the first point
of theorem 3.3, it is clear that we have the following implications:

rfpt, xq P OpDρ1,...,ρnqrrtsss ñ rfpt, xq P OpDρ1,...,ρnqrrtsssc
ñ rupt, xq P OpDρ1,...,ρnqrrtsssc .

To conclude that we can not say better about the Gevrey order of rupt, xq, that is
rupt, xq is generically sc-Gevrey, we need to find an example for which the solution
rupt, xq of eq. (1.1) is s1-Gevrey for no s1 ă sc. Proposition 4.11 below provides such
an example.

Proposition 4.11. Let us consider the equation

(4.16)

$

’

&

’

%

Bκt u´
ÿ

iPK

ÿ

qPQi

ai,qt
vi,qBitB

q
xu´

d
ÿ

m“2

bmu
m “ rfpt, xq, ai,q ą 0, bm ě 0

B
j
tupt, xq|t“0 “ ϕjpxq, j “ 0, ..., κ´ 1

where the initial condition ϕi˚pxq is the analytic function defined by

ϕi˚pxq “
1

1´ x1 ´ ...´ xn

on the disc D1{n,...,1{n, and where the initial conditions ϕjpxq for j ‰ i˚ are analytic

functions on D1{n,...,1{n satisfying B`xϕjp0q ě 0 for all ` P Nn. Suppose also that the

inhomogeneity rfpt, xq satisfies the following conditions:

‚ rfpt, xq is s-Gevrey;
‚ B`xfj,˚p0q ě 0 for all j ě 0 and all ` P Nn.

Then, the formal solution rupt, xq of eq. (4.16) is exactly sc-Gevrey.

Proof. Due to the calculations above, it is sufficient to prove that rupt, xq is s1-Gevrey
for no s1 ă sc.

First of all, let us rewrite the general relations (1.2) by isolating the term in
pi˚, q˚q. We get

uj`κ,˚pxq “
j!ai˚,q˚

pj ´ vi˚,q˚q!
Bq
˚

x uj´vi˚,q˚`i
˚,˚pxq `Rjpxq

with

Rjpxq “ fj,˚pxq `
ÿ

pi,qqPKˆQi

pi,qq‰pi˚,q˚q

j!ai,q
pj ´ vi,qq!

Bqxuj´vi,q`i,˚pxq`

d
ÿ

m“2

ÿ

`1`...``m“j

j!bm
`1!...`m!

u`1,˚pxq...u`m,˚pxq

for all j ě 0, together with the initial conditions uj,˚pxq “ ϕjpxq for j “ 0, ..., κ´ 1.
Using then our hypotheses on the coefficients ai,q and bm, on the initial conditions

5Of course, this case only occurs when S ‰ H.



GEVREY REGULARITY OF INHOMOGENEOUS SEMILINEAR PDES 19

ϕjpxq, and on the inhomogeneity rfpt, xq, we easily check that, for all j ě 0:

ujpvi˚,q˚`κ´i
˚q`i˚,˚pxq “

aji˚,q˚pjλpq
˚qq!

p1´ x1 ´ ...´ xnqjλpq
˚q`1

j
ź

`“1

p`vi˚,q˚ ` p`´ 1qpκ´ i˚qq!

pp`´ 1qvi˚,q˚ ` p`´ 1qpκ´ i˚qq!
` remjpxq

with remjp0q ě 0. Hence, applying technical lemmas 4.12 and 4.13 below, the
following inequalities:

(4.17) ujpvi˚,q˚`κ´i
˚q`i˚,˚p0q ě

ˆ

ai˚,q˚

2λpq
˚q`vi˚,q˚

˙j

pjpλpq˚q ` vi˚,q˚qq!.

Let us now suppose that rupt, xq is s1-Gevrey for some s1 ă sc. Then, definition 3.1
and inequality (4.17) imply

(4.18) 1 ď C

˜

2λpq
˚
q`vi˚,q˚K

ai˚,q˚

¸j
Γp1` i˚ps1 ` 1q ` jps1 ` 1qpvi˚,q˚ ` κ´ i

˚qq

Γp1` jpλpq˚q ` vi˚,q˚qq

for all j ě 0 and some convenient positive constants C and K independent of
j. Proposition 4.11 follows since such inequalities are impossible: applying the
Stirling’s Formula, the right hand-side of (4.18) is equivalent to

(4.19) C 1ji
˚
ps1`1q

ˆ

K 1

jσ

˙j

, j Ñ `8

with

‚ C 1 “ Cpps1 ` 1qpvi˚,q˚ ` κ´ i
˚qqi

˚
ps1`1q

d

ps1 ` 1qpvi˚,q˚ ` κ´ i
˚q

λpq˚q ` vi˚,q˚
;

‚ K 1 “ K
2λpq

˚
q`vi˚,q˚

ai˚,q˚

pps1 ` 1qpvi˚,q˚ ` κ´ i
˚qq

ps1`1qpvi˚,q˚`κ´i
˚
qeσ

pλpq˚q ` vi˚,q˚q
λpq˚q`vi˚,q˚

;

‚ σ :“ λpq˚q ` vi˚,q˚ ´ ps
1 ` 1qpvi˚,q˚ ` κ´ i

˚q,

and (4.19) goes to 0 when j tends to infinity. Indeed, the condition s1 ă sc implies

σ ą λpq˚q ` vi˚,q˚ ´ psc ` 1qpvi˚,q˚ ` κ´ i
˚q “ 0.

This ends the proof. �

Lemma 4.12. Let j ě 1 be. Then,

(4.20)
j
ź

`“1

p`vi˚,q˚ ` p`´ 1qpκ´ i˚qq!

pp`´ 1qvi˚,q˚ ` p`´ 1qpκ´ i˚qq!
ě pjvi˚,q˚q!.

Proof. Lemma 4.12 is clear for j “ 1. Let us now suppose that inequality (4.20)
holds for a certain j ě 1. Then,

j`1
ź

`“1

p`vi˚,q˚ ` p`´ 1qpκ´ i˚qq!

pp`´ 1qvi˚,q˚ ` p`´ 1qpκ´ i˚qq!
ě
ppj ` 1qvi˚,q˚ ` jpκ´ i

˚qq!

pjvi˚,q˚ ` jpκ´ i˚qq!
pjvi˚,q˚q!

and we conclude due to the inequality
ˆ

pj ` 1qvi˚,q˚ ` jpκ´ i
˚q

jpκ´ i˚q

˙

ě

ˆ

jvi˚,q˚ ` jpκ´ i
˚q

jpκ´ i˚q

˙

.

�
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Lemma 4.13. Let j ě 1 be. Then,

pjλpq˚qq!pjvi˚,q˚q! ě
pjpλpq˚q ` vi˚,q˚qq!

2jpλpq
˚q`vi˚,q˚ q

.

Proof. Lemma 4.13 is straightforward from the inequality
ˆ

jpλpq˚q ` vi˚,q˚q

jλpq˚q

˙

ď 2jpλpq
˚
q`vi˚,q˚ q.

�

This ends the proof of the second point of theorem 3.3
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[3] M. Canalis-Durand, J.-P. Ramis, R. Schäfke, and Y. Sibuya. Gevrey solutions of singularly
perturbed differential equations. J. Reine Angew. Math., 518:95–129, 2000.

[4] P. Hilton and J. Pedersen. Catalan numbers, their generalization, and their uses. Math.

Intelligencer, 13(2):64–75, 1991.
[5] D. A. Klarner. Correspondences between plane trees and binary sequences. J. Combinatorial

Theory, 9:401–411, 1970.

[6] A. Lastra and S. Malek. On parametric Gevrey asymptotics for some nonlinear initial value
Cauchy problems. J. Differential Equations, 259:5220–5270, 2015.

[7] A. Lastra and S. Malek. On parametric multisummable formal solutions to some nonlinear
initial value Cauchy problems. Adv. Differ. Equ., 2015:200, 2015.

[8] A. Lastra, S. Malek, and J. Sanz. On Gevrey solutions of threefold singular nonlinear partial

differential equations. J. Differential Equations, 255:3205–3232, 2013.
[9] A. Lastra and H. Tahara. Maillet type theorem for nonlinear totally characteristic partial

differential equations. Math. Ann., https://doi.org/10.1007/s00208-019-01864-x, 2019.

[10] M. Loday-Richaud. Divergent Series, Summability and Resurgence II. Simple and Multiple
Summability, volume 2154 of Lecture Notes in Math. Springer-Verlag, 2016.

[11] S. Malek. On the summability of formal solutions of nonlinear partial differential equations

with shrinkings. J. Dyn. Control Syst., 13(1):1–13, 2007.
[12] S. Malek. On Gevrey asymptotic for some nonlinear integro-differential equations. J. Dyn.

Control Syst., 16(3):377–406, 2010.

[13] S. Malek. On the summability of formal solutions for doubly singular nonlinear partial dif-
ferential equations. J. Dyn. Control Syst., 18(1):45–82, 2012.

[14] M. Miyake. Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type
equations. J. Math. Soc. Japan, 43(2):305–330, 1991.

[15] M. Miyake and A. Shirai. Convergence of formal solutions of first order singular nonlinear
partial differential equations in the complex domain. Ann. Polon. Math., 74:215–228, 2000.

[16] M. Miyake and A. Shirai. Structure of formal solutions of nonlinear first order singular partial
differential equations in complex domain. Funkcial. Ekvac., 48:113–136, 2005.

[17] M. Miyake and A. Shirai. Two proofs for the convergence of formal solutions of singular
first order nonlinear partial differential equations in complex domain. Surikaiseki Kenkyujo

Kokyuroku Bessatsu, Kyoto Unviversity, B37:137–151, 2013.
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