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In this article, we are interested in the Gevrey properties of the formal power series solution in time of the partial differential equations with a polynomial semilinearity and with analytic coefficients at the origin of C n`1 . We prove in particular that the inhomogeneity of the equation and the formal solution are together s-Gevrey for any s ě sc, where sc is a nonnegative rational number fully determined by the Newton polygon of the associated linear PDE. In the opposite case s ă sc, we show that the solution is generically sc-Gevrey while the inhomogeneity is s-Gevrey, and we give an explicit example in which the solution is s 1 -Gevrey for no s 1 ă sc. Contents 1. Introduction 1 2. Newton polygon 4 3. Gevrey properties of r upt, xq 5 4. Proof of theorem 3.3 7 References 20

Introduction

In this article, we consider an inhomogeneous semilinear partial differential equation with a 1-dimensional time variable t P C and a n-dimensional spatial variable x " px 1 , ..., x n q P C n of the form (1.1)

$ & % B κ t u
´ÿ iPK ÿ qPQi t vi,q a i,q pt, xqB i t B q x u ´P puq " r f pt, xq B j t upt, xq |t"0 " ϕ j pxq, j " 0, ..., κ ´1

where ' κ ě 1 is a positive integer; ' K is a nonempty subset of t0, ..., κ ´1u; ' Q i is a nonempty finite subset of N n for all i P K (N denotes the set of the nonnegative integers); ' B q x denotes the derivative B q1 x1 ...B qn xn while q :" pq 1 , ..., q n q P N n ; ' v i,q ě 0 is a nonnegative integer for all i P K and q P Q i ;

' the coefficients a i,q pt, xq are analytic on a polydisc D ρ0,ρ1,...,ρn :" D ρ0 Dρ1 ˆ... ˆDρn centered at the origin of C n`1 (D ρ denotes the disc with center 0 P C and radius ρ ą 0) and satisfy a i,q p0, xq ı 0 for all i P K and q P Q i ; ' P pXq :"

d ÿ m"2
b m pt, xqX m is a polynomial of degree d ě 2 with analytic coefficients on D ρ0,ρ1,...,ρn ; ' the inhomogeneity r f pt, xq is a formal power series in t with analytic coefficients in D ρ1,...,ρn (we denote by r f pt, xq P OpD ρ1,...,ρn qrrtss) which may be smooth, or not 1 ; ' the initial conditions ϕ j pxq are analytic on D ρ1,...,ρn for all j " 0, ..., κ ´1. Looking for a formal solution r upt, xq P OpD ρ1,...,ρn qrrtss, and writing any element r gpt, xq of OpD ρ1,...,ρn qrrtss on the form r gpt, xq " ÿ jě0 g j,˚p xq t j j! with g j,˚p xq P OpD ρ1,...,ρn q for all j, we easily get that the coefficients u j,˚p xq of r upt, xq are uniquely determined by the recurrence relations (1.2) u j`κ,˚p xq " f j,˚p xqÿ iPK ÿ qPQi j´vi,q ÿ "0 j! !pj ´vi,q ´ q! a i,q; ,˚p xqB q x u j´vi,q´ `i,˚p xqd together with the initial conditions u j,˚p xq " ϕpxq for j " 0, ..., κ ´1. As usual, we use the classical convention that the first sum is zero as soon as j ´vi,q ă 0.

The purpose of the paper is to answer to the following question:

"What relationship exists between the Gevrey order of the solution r upt, xq and the Gevrey order of the inhomogeneity r f pt, xq?" Indeed, according to the algebraic structure of the s-Gevrey spaces OpD ρ1,...,ρn qrrtss s (see section 3.1 for the exact definition of theses spaces), it is classical one has r upt, xq P OpD ρ1,...,ρn qrrtss s ñ r f pt, xq P OpD ρ1,...,ρn qrrtss s .

But, what can we say about the converse?

In previous articles [START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF], the author studied two particular cases of eq. (1.1): the inhomogeneous n-dimensional heat equation

(1.3) # B t u ´apxq∆ x u ´bpxqu m " r f pt, xq up0, xq " ϕpxq 1 We denote r
f with a tilde to emphasize the possible divergence of the series r f .

and the most general equation

(1.4) # B κ t u ´apt, xqB p x u ´bpt, xqu m " r f pt, xq, pt, xq P C 2 B j t upt, xq |t"0 " ϕ j pxq, j " 0, ..., κ ´1 
In this two cases, he proved that the Gevrey orders of r upt, xq and r f pt, xq are closely related: [START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF]). Let s c denote the nonnegative rational number equal to the inverse of the smallest positive slope of the Newton polygon at t " 0 of the associated linear part of eq. (1.3) (resp. eq. (1.4)) if any exists, and equal to 0 otherwise 2 . Then, Remark 1.2. When the inhomogeneity r f pt, xq is s-Gevrey with s ă s c , the hypotheses made on eqs. (1.3) and (1.4) do not allow in general to specify the exact Gevrey order of the solution r upt, xq as in the opposite case s ě s c (Point 1). However, the second point of proposition 1.1 asserts that this order is always less or equal to s c 3 and that this inequality is the best possible. Indeed, one can easily find cases for which the solution r upt, xq is exactly s c -Gevrey (see [START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF]Prop. 3.2] and [START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF]Prop. 4.11] for more details).

Proposition 1.1 ([
In this paper, we propose to extend the result of proposition 1.1 to the very general eq. (1.1). Let us mention here that a similar problem has already been studied by H. Tahara in [START_REF] Tahara | Gevrey regularity in time of solutions to nonlinear partial differential equations[END_REF] in the case of real variables. However, the calculations we develop in this paper are based on a very different approach.

Let us also mention that other slightly different works have also been done for several years by many authors towards the convergence [START_REF] Miyake | Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain[END_REF][START_REF] Miyake | Two proofs for the convergence of formal solutions of singular first order nonlinear partial differential equations in complex domain. Surikaiseki Kenkyujo Kokyuroku Bessatsu[END_REF][START_REF] Shirai | Alternative proof for the convergence of formal solutions of singular first order nonlinear partial differential equations[END_REF] and the Gevrey order [8, 9, 16, 29-32, 34, 35] of the formal power series solutions of some singular nonlinear partial differential equations, and towards the summability [START_REF] Malek | On the summability of formal solutions of nonlinear partial differential equations with shrinkings[END_REF][START_REF] Malek | On the summability of formal solutions for doubly singular nonlinear partial differential equations[END_REF][START_REF] Pliś | Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables[END_REF] of the formal power series solution of some nonlinear partial differential equations. Furthermore, in [START_REF] Lastra | On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems[END_REF][START_REF] Lastra | On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems[END_REF], A. Lastra and S. Malek considered some parametric nonlinear partial differential equations; in [START_REF] Malek | On Gevrey asymptotic for some nonlinear integro-differential equations[END_REF], S. Malek investigated the Gevrey properties of some nonlinear integro-differential equations. Of course, given the technical and computational difficulties inherent in the nonlinearity, the known results are currently far fewer than in the linear case.

The organization of the paper is as follows. In section 2, we introduce and we describe the Newton polygon at t " 0 of the linear part of eq. (1.1). In section 3, we recall some definitions and basic properties about the Gevrey formal series which are needed in the sequel. Next, we state our main result (theorem 3.3) which displays the explicit relationship between the Gevrey order of the solution r upt, xq and the one of the inhomogeneity r f pt, xq. The proof of this result is detailed in section 4. 2 We have thereby sc " 1 in the case of eq. (1.3); and, in the case of eq. (1.4), sc " p{κ ´1 when p ą κ, and sc " 0 when p ď κ. For the definition of the Newton polygon, we refer to section 2 below.

3 This is obvious due to the filtration of the Gevrey spaces (see section 3.1) and the first point of proposition 1.1.

Newton polygon

Let L denote the linear part of eq. (1.1):

L " B κ t ´ÿ iPK ÿ qPQi t vi,q a i,q pt, xqB i t B q x .
As definition of the Newton polygon, we choose the definition of M. Miyake [START_REF] Miyake | Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations[END_REF] (see also A. Yonemura [START_REF] Yonemura | Newton polygons and formal Gevrey classes[END_REF] or S. Ouchi [START_REF] Ouchi | Multisummability of formal solutions of some linear partial differential equations[END_REF]) which is an analogue to the one given by J.-P. Ramis [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] for linear ordinary differential equations. Recall that, H. Tahara and H. Yamazawa use in [START_REF] Tahara | Multisummability of formal solutions to the Cauchy problem for some linear partial differential equations[END_REF] a slightly different one.

For any pa, bq P R 2 , we denote by Cpa, bq the domain Cpa, bq " tpx, yq P R 2 ; x ď a and y ě bu.

Definition 2.1. The Newton polygon N t pLq of L at t " 0 is defined as the convex hull of Cpκ, ´κq Y

ď iPK ď qPQi Cpλpqq `i, v i,q ´iq,
where λpqq " q 1 `... `qn denotes the length of q " pq 1 , ..., q n q P N n . Proposition 2.2 below specifies the geometric structure of N t pLq.

Proposition 2.2. Let S " tpi, qq such that i P K, q P Q i and λpqq ą κ ´iu be.

(1) Suppose S " H. Then, N t pLq " Cpκ, ´κq. In particular, N t pLq has no side with a positive slope (see fig. 1a).

(2) Suppose S ‰ H. Then, N t pLq has at least one side with a positive slope.

Moreover, its smallest positive slope k is given by k " min pi,qqPS ˆvi,q `κ ´i λpqq ´κ `i ˙" v i ˚,q ˚`κ ´iλ pq ˚q ´κ `i˚, where pi ˚, q ˚q P S stands for any convenient pair (see fig. 1b) which we assume from now on fixed once and for all.

-´κ

- κ ' ' ' ' ' ' ' ' ' (a) Case S " H - ´κ - κ - λpq ˚q `i- v i ˚,q ˚´i ˚' s l o p e k ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' (b) Case S ‰ H Figure 1. The Newton polygon N t pLq
Proof. The first point stems obvious from the fact that the condition S " H implies Cpλpqq `i, v i,q ´iq Ă Cpκ, ´κq for all i P K and q P Q i . As for the second point, it suffices to remark, on one hand, that Cpλpqq `i, v i,q ´iq Ă Cpκ, ´κq for all pairs pi, qq R S, and, on the other hand, that the segment with the two end points pκ, ´κq and pλpqq `i, v i,q ´iq has a positive slope equal to pv i,q `κ ´iq{pλpqq ´κ `iq for all pairs pi, qq P S.

The following result is a direct consequence of the definition of the pair pi ˚, q ˚q. It will be very useful to us in the sequel.

Corollary 2.3. Suppose S ‰ H. Then, the inequality λpq ˚q `vi ˚,q vi ˚,q ˚`κ ´i˚p v i,q `κ ´iq ě λpqq `vi,q holds for all i P K and all q P Q i .

Proof. Due to the definition of the pair pi ˚, q ˚q, we get

λpq ˚q ´κ `iv i ˚,q ˚`κ ´i˚ě λpqq ´κ `i v i,q `κ ´i ą 0
for all pi, qq P S, and next (2.1)

λpq ˚q ´κ `iv i ˚,q ˚`κ ´i˚ě λpqq ´κ `i v i,q `κ ´i
for all pi, qq P K ˆQi . We have indeed λpqq´κ`i ď 0 when pi, qq R S. Corollary 2.3 follows by first adding "+1" to both sides of (2.1), and then by multiplying by the positive term v i,q `κ ´i.

Let us now turn to the Gevrey properties of the solution r upt, xq.

Gevrey properties of r upt, xq

As we said in section 1, the purpose of this article is to make explicit the relationship between the Gevrey order of the solution r upt, xq and the Gevrey order of the inhomogeneity r f pt, xq. Before stating our main result (see theorem 3.3 below), let us first recall for the convenience of the reader some definitions and basic properties about the Gevrey formal series in OpD ρ1,...,ρn qrrtss, which are needed in the sequel.

3.1. Gevrey formal series. All along the article, we consider t as the variable and x as a parameter. Thereby, to define the notion of Gevrey classes of formal power series in OpD ρ1,...,ρn qrrtss, one extends the classical notion of Gevrey classes of elements in Crrtss to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. Doing that, any formal power series of OpD ρ1,...,ρn qrrtss can be seen as a formal power series in t with coefficients in a convenient Banach space defined as the space of functions that are holomorphic on a polydisc D ρ,...,ρ (0 ă ρ ď min ρ ) and continuous up to its boundary, equipped with the usual supremum norm. For a general study of the formal power series with coefficients in a Banach space, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF].

In the sequel, we endow C n with the maximum norm: for x " px 1 , ..., x n q P C n , }x} " max hold for all j ě 0.

In other words, definition 3.1 means that r upt, xq is s-Gevrey in t, uniformly in x on a neighborhood of x " p0, ..., 0q P C n .

We denote by OpD ρ1,...,ρn qrrtss s the set of all the formal series in OpD ρ1,...,ρn qrrtss which are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at the origin of C n`1 coincides with the union Ť ρ1ą0,...,ρną0 OpD ρ1,...,ρn qrrtss 0 ; in particular, any element of OpD ρ1,...,ρn qrrtss 0 is convergent and Ctt, xuXOpD ρ1,...,ρn qrrtss " OpD ρ1,...,ρn qrrtss 0 . Observe also that the sets OpD ρ1,...,ρn qrrtss s are filtered as follows: OpD ρ1,...,ρn qrrtss 0 Ă OpD ρ1,...,ρn qrrtss s Ă OpD ρ1,...,ρn qrrtss s 1 Ă OpD ρ1,...,ρn qrrtss for all s and s 1 satisfying 0 ă s ă s 1 ă `8.

Following proposition 3.2 specifies the algebraic structure of OpD ρ1,...,ρn qrrtss s . Proposition 3.2. Let s ě 0. Then, the set pOpD ρ1,...,ρn qrrtss s , B t , B x1 , ..., B xn q is a C-differential algebra.

Proof. Since pOpD ρ1,...,ρn qrrtss, B t , B x1 , ..., B xn q is a C-differential algebra, it is sufficient to prove that OpD ρ1,...,ρn qrrtss s is stable under multiplication and derivations.

The proof of the stability under the multiplication and the derivation B t is similar to the one already detailed in [26, Prop. 1] (see also [1, p. 64]) in the case n " 1.

To prove the stability under the derivation B x with P t1, ..., nu, we proceed as follows. Let r upt, xq P OpD ρ1,...,ρn qrrtss s as in definition 3.1 and r wpt, xq " B x r upt, xq. For a given 0 ă ρ 1 ă ρ, the Cauchy Integral Formula gives us, for all j ě 0 and all }x} ď ρ 1 :

w j,˚p xq " B x u j,˚p xq " 1 p2iπq n ż γpxq u j,˚p x 1 q px 1 ´x q 2 n ź k"1 k‰ px 1 k ´xk q dx 1 ,
where γpxq :" tx 1 " px 1 1 , ..., x 1 n q P C n ; |x 1 k ´xk | " ρ ´ρ1 for all k P t1, ..., nuu. Hence, the inequalities sup

}x}ďρ 1 |w j,˚p xq| ď C 1 K j Γp1 `ps `1qjq with C 1 " C ρ ´ρ1 for all j ě 0.
Indeed, the definition of the path γpxq implies }x 1 } ď ρ. The proof is complete.

Observe that the stability under the derivation B x would not be guaranteed without the condition "there exist 0 ă ρ ă min ρ ..." in definition 3.1.

Main result.

We are now able to state the result in view in this article. Theorem 3.3. Recall that S " tpi, qq such that i P K, q P Q i and λpqq ą κ ´iu. Let s c be the nonnegative rational number defined by Observe that theorem 3.3 coincides with proposition 1.1 in the case of eqs. (1.3) and (1.4). Besides, since no condition is made on the polynomial P except its coefficients are analytic at the origin of C n`1 , theorem 3.3 applies as well to the linear case P " 0, and, consequently, generalizes the results already obtained by the author in [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF].

s c :" $ & % 0 if S " H 1 k " λpq ˚q ´κ `iv i ˚,q ˚`κ ´i˚i f S ‰ H Then, ( 
Observe also that theorem 3.3 yields a result similar to the Maillet-Ramis theorem for the ordinary linear differential equations [START_REF] Ramis | Dévissage Gevrey[END_REF][START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] (see also [START_REF] Loday-Richaud | Divergent Series, Summability and Resurgence II. Simple and Multiple Summability[END_REF]Thm. 4.2.7]). Reciprocally, let us fix s ě s c and let us suppose that the inhomogeneity r f pt, xq is s-Gevrey. By assumption, its coefficients f j,˚p xq P OpD ρ1,...,ρn q satisfy the following condition (see definition 3.1): there exist three positive constants 0 ă ρ ă min ρ , C ą 0 and K ą 0 such that the inequalities hold for all j ě 0 and all }x} ď ρ.

We must prove that the coefficients u j,˚p xq P OpD ρ1,...,ρn q of r upt, xq satisfy similar inequalities. The approach we present below is analoguous to the ones already developed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] in the framework of linear partial and integro-differential equations, and in [START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF] in the case of eqs. (1.3) and (1.4). It is based on the Nagumo norms [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed differential equations[END_REF][START_REF] Nagumo | Über das Anfangswertproblem partieller Differentialgleichungen[END_REF][START_REF] Walter | An elementary proof of the Cauchy-Kowalevsky theorem[END_REF] and on a technique of majorant series. However, as we shall see, our calculations appear to be much more technical and complicated. Furthermore, the nonlinear polynomial term P puq instead of the power term u m used in eqs. (1.3) and (1.4) generates several new technical combinatorial situations.

Before starting the calculations, let us first recall for the convenience of the reader the definition of the Nagumo norms and some of their properties which are needed in the sequel. Proposition 4.2. Let f, g P OpD ρ1,...,ρn q, p, p 1 ě 0 and 0 ă r ă min ρ be. Then, (1) }¨} p,r is a norm on OpD ρ1,...,ρn q.

(2) |f pxq| ď }f } p,r d r pxq ´p for all }x} ă r .

(3) }f } 0,r " sup }x}ďr |f pxq| is the usual sup-norm on the polydisc D r,...,r .

(4) }f g} p`p 1 ,r ď }f } p,r }g} p 1 ,r .

(5) }B x f } p`1,r ď epp `1q }f } p,r for all P t1, ..., nu.

Proof. Properties 1-4 are straightforward and are left to the reader. To prove Property 5, we proceed as follows. Let P t1, ..., nu be, x P C n such that }x} ă r and 0 ă R ă d r pxq. Using the Cauchy Integral Formula, we have

B x f pxq " 1 p2iπq n ż γpxq f px 1 q px 1 ´x q 2 n ź k"1 k‰ px 1 k ´xk q dx 1 ,
where γpxq :" tx 1 " px 1 1 , ..., x 1 n q P C n ; |x 1 k ´xk | " R for all k P t1, ..., nuu. Since x 1 P γpxq ñ › › x 1 › › ă r, we can apply Property 2 of proposition 4.2; hence, the inequalities

|B x f pxq| ď 1 R max x 1 Pγpxq ˇˇf px 1 q ˇˇď 1 R }f } p,r max x 1 Pγpxq d r px 1 q ´p " 1 R }f } p,r pd r pxq ´Rq ´p.
Observe that the last equality stems from the relations

d r px 1 q " r ´› › x 1 › › " r ´› › x `x1 ´x› › ě d r pxq ´› › x 1 ´x› › " d r pxq ´R ą 0.
When p " 0, the choice R " d r pxq e implies the inequality Observe besides that the same index r occurs on their both sides, allowing thus to get estimates for the product f g in terms of f and g and for the derivatives B x f for any P t1, ..., nu in terms of f without having to shrink the polydisc D r,...,r .

|B x f pxq| ď e }f } 0,
Let us now turn to the proof of the first point of theorem 3.3.

4.1.2. Some inequalities. From the recurrence relations (1.2), we first get the identities (4.4) u j`κ,˚p xq Γp1 `ps `1qpj `κqq " f j,˚p xq Γp1 `ps `1qpj `κqq ÿ iPK ÿ qPQi j´vi,q ÿ "0 j! !pj ´vi,q ´ q! a i,q; ,˚p xqB q x u j´vi,q´ `i,˚p xq Γp1 `ps `1qpj `κqq d

ÿ m"2 j ÿ "0 ÿ 1 `...` m "j´ j! ! 1 !... m ! b m; ,˚p xqu 1,˚p xq...u m ,˚p xq
Γp1 `ps `1qpj `κqq for all j ě 0, together with the initial conditions u j,˚p xq " ϕ j pxq for j " 0, ..., κ ´1.

As usual, we use the classical convention that the first sum is zero as soon as j ´vi,q ă 0.

Let us now define the positive constant σ s " ps `1qpκ `vq with v " max v i,q . The following lemma yields various inequalities which will play a crucial role in the sequel of our proof.

Lemma 4.4. The inequalities σ s ě ps `1qpκ `vi,q q ě ps `1qpκ ´i `vi,q q ě λpqq `vi,q hold for all i P K and all q P Q i .

Proof. The first two inequalities are trivial. To prove the third, we proceed as follows.

Let us first assume S " H. Since s ě s c " 0, we have ps `1qpκ ´i `vi,q q ě κ ´i `vi,q , and the result stems from the inequality λpqq ď κ ´i.

(1) Let i P K, q P Q i , j ě v i,q and P t0, ..., j ´vi,q u be. Then, A i,q,j, ,s ď pepκ `vqq λpqq .

(2) Let m P t2, ..., du, j ě 0 and P t0, ..., ju be. Then,

B j, , 1 ,... m,s ď 1
for all 1 , ..., m P N such that 1 `... ` m " j ´ .

The first point is straightforward from the two following technical lemmas 4.6 and 4.7 below. The second point is proved in [START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF]Prop. 4.8].

Lemma 4.6. Let i P K, q P Q i , j ě v i,q and P t0, ..., j ´vi,q u be. Then, j! pj ´vi,q ´ q!Γp1 `ps `1qpj `κqq ď 1 Γp1 `ps `1qpj `κ ´ q ´vi,q q .

Proof. Lemma 4.6 is clear for `vi,q " 0. Let us now assume `vi,q ě 1 and let us write the quotient j!{pj ´vi,q ´ q! on the form

(4.6) j! pj ´vi,q ´ q! " `vi,q´1 ź 1 "0 pj ´ 1 q.
On the other hand, applying `vi,q times the recurrence relation Γp1 `zq " zΓpzq to Γp1 `ps `1qpj `κqq, we get (4.7) Γp1`ps`1qpj `κqq " Γp1`ps`1qpj `κq´ ´vi,q q `vi,q´1 ź 1 "0 pps`1qpj `κq´ 1 q.

Combinating then (4.6) and (4.7), we obtain j! pj ´vi,q ´ q!Γp1 `ps `1qpj `κqq "

`vi,q´1 ź 1 "0 j ´ 1 ps `1qpj `κq ´ 1
Γp1 `ps `1qpj `κq ´ ´vi,q q ď 1 Γp1 `ps `1qpj `κq ´ ´vi,q q and lemma 4.6 follows from the inequalities 1 `ps `1qpj `κq ´ ´vi,q ě 1 `ps `1qpj `κ ´ q ´vi,q ě 1 `ps `1qpκ `vi,q q ´vi,q ě 1 `κ ě 2 and from the increase of the Gamma function on r2, `8r.

Lemma 4.7. Let i P K, q P Q i , j ě v i,q and P t0, ..., j ´vi,q u be. Then,

λpqq´1 ź 1 "0 ppj ´vi,q ´ `iqσ s `λpqq ´ 1 q
Γp1 `ps `1qpj `κ ´ q ´vi,q q ď pκ `vq λpqq Γp1 `ps `1qpj ´vi,q ´ `iqq .

Proof. Ÿ Let us first assume " j ´vi,q and i " 0. We must prove the inequality (4.8)

λpqq´1 ź 1 "0 pp ´ 1 q
Γp1 `ps `1qpκ `vi,q q ´vi,q q ď pκ `vq λpqq .

Let us begin by observing that λpqq´1 ź

1 "0

pλpqq ´ 1 q " pλpqqq! " Γp1 `λpqqq for all λpqq, including the case λpqq " 0 since the product is 1 by convention.

On the other hand, in the case λpqq ą 0, lemma 4.4 implies the inequalities 1 `ps `1qpκ `vi,q q ´vi,q ě 1 `λpqq ě 2;

hence, Γp1 `ps `1qpκ `vi,q q ´vi,q q ě Γp1 `λpqqq since the Gamma function is increasing on r2, `8r. In the special case λpqq " 0, we observe that the increase of the Gamma function applied to the inequalities 1 `ps `1qpκ `vi,q q ´vi,q ě 1 `κ ě 2 implies Γp1 `ps `1qpκ `vi,q q ´vi,q q ě Γp2q " Γp1q " Γp1 `λpqqq.

Consequently, the left hand-side of (4.8) is ď 1 and lemma 4.7 follows then from the inequality κ `v ě 1.

Ÿ Let us now assume p , iq ‰ pj ´vi,q , 0q. According to the definition of σ s , we first have the identity (4.9) λpqq´1 ź 1 "0 ppj ´vi,q ´ `iqσ s `λpqq ´ 1 q " pκ `vq λpqq λpqq´1 ź 1 "0 ˆps `1qpj ´vi,q ´ `iq `λpqq ´ 1 κ `v ˙.

On the other hand, applying λpqq times the recurrence relation Γp1 `zq " zΓpzq to Γp1 `ps `1qpj `κ ´ q ´vi,q q, we besides have (4.10) Γp1 `ps `1qpj `κ ´ q ´vi,q q " Γp1 `ps `1qpj `κ ´ q ´vi,q ´λpqqq λpqq´1 ź 1 "0 pps `1qpj `κ ´ q ´vi,q ´ 1 q.

Observe that this identity makes since lemma 4.4 implies ps `1qpj `κ ´ q ´vi,q ´λpqq ě ps `1qpκ `vi,q q ´vi,q ´λpqq ě 0.

Observe also that we have the inequality ps `1qpj ´vi,q ´ `iq `λpqq ´ 1 κ `v ď ps `1qpj `κ ´ q ´vi,q ´ 1 for all 1 P t0, ..., λpqq ´1u when λpqq ą 0. Indeed, according to lemma 4.4 and the inequality κ `v ě 1, we have ps`1qpj `κ ´ q ´vi,q ´ 1 ´ps `1qpj ´vi,q ´ `iq ´λpqq ´ 1 κ `v " ps `1qpv i,q `κ ´iq ´vi,q ´ 1 ´λpqq ´ 1 κ `v ě pλpqq ´ 1 q ˆ1 ´1 κ `v ˙ě 0.

Consequently, identities (4.9) and (4.10) implies the inequality λpqq´1 ź

1 "0 ppj ´vi,q ´ `iqσ s `λpqq ´ 1 q Γp1 `ps `1qpj `κ ´ q ´vi,q q ď pκ `vq λpqq Γp1 `ps `1qpj `κ ´ q ´vi,q ´λpqqq for all λpqq. Lemma 4.7 follows then from the relations 1 `ps `1qpj `κ ´ q ´vi,q ´λpqq ě 1 `ps `1qpj `κ ´ q ´ps `1qpκ ´i `vi,q q " 1 `ps `1qpj ´vi,q ´ `iq ě 2 and from the increase of the Gamma function on r2, `8r. Observe that the first inequality stems again from lemma 4.4. Observe also that, without the condition p , iq ‰ pj ´vi,q , 0q, the second inequality is no longer valid.

This ends the proof of lemma 4.7.

Let us now apply proposition 4.5 to inequalities (4.5). We get:

(4.11) }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď g j,s ÿ iPK ÿ qPQi j´vi,q ÿ "0

α i,q, ,s › › u j´vi,q´ `i,˚› › pj´vi,q´ `iqσs,ρ
Γp1 `ps `1qpj ´vi,q ´ `iqq d

ÿ m"2 j ÿ "0 ÿ 1 `...` m "j´
β m, ,s }u 1 ,˚} 1 σs,ρ Γp1 `ps `1q 1 q ... }u m ,˚} mσs,ρ Γp1 `ps `1q m q , for all j ě 0, where the constants g j,s , α i,q, ,s and β m, ,s are positive and defined by g j,s " }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq , α i,q, ,s " pepκ `vqq λpqq }a i,q; ,˚} pvi,q`κ´i` qσs´λpqq,ρ ! , β m, ,s " }b m; ,˚} p `κqσs,ρ ! .

We shall now bound the Nagumo norms }u j,˚} jσs,ρ for any j ě 0. To do that, we shall proceed similarly as in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] by using a technique of majorant series. However, as we shall see, the calculations are much more complicated.

numbers of order d and we have 4

C m,d " 1 pd ´1qm `1 ˆmd m ˙ď 2 md
for all m ě 0 (see [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF][START_REF] Klarner | Correspondences between plane trees and binary sequences[END_REF][START_REF] Pólya | Aufgaben und Lehrsätze aus der Analysis[END_REF] for instance). On the other hand, the convergent series αpXq, βpXq and hpXq define increasing functions on r0, rs, since theirs coefficients are nonnegative. Therefore, identities This proves the analyticity of V pXq at 0 and achieves then the proof of proposition 4.9.

According to propositions 4.8 and 4.9, we can now bound the Nagumo norms }u j,˚} jσs,ρ .

Corollary 4.10. Let C 1 , K 1 ą 0 be as in proposition 4.9. Then, the inequalities }u j,˚} jσs,ρ ď C 1 K 1j Γp1 `ps `1qjq hold for all j ě 0.

We are now able to conclude the proof of theorem 3.3.

Conclusion.

We must prove on the sup-norm of the u j,˚p xq estimates similar to the ones on the norms }u j,˚} jσs,ρ (see corollary 4.10). To this end, we proceed by shrinking the closed polydisc }x} ď ρ. Let 0 ă ρ 1 ă ρ. Then, for all j ě 0 and all }x} ď ρ 1 , we have |u j,˚p xq| " ˇˇˇu j,˚p xqd ρ pxq jσs 1 d ρ pxq jσs ˇˇˇď ˇˇu j,˚p xqd ρ pxq jσs ˇpρ ´ρ1 q jσs ď }u j,˚} jσs,ρ pρ ´ρ1 q jσs and, consequently, sup

}x}ďρ 1 |u j,˚p xq| ď C 1 ˆK1
pρ ´ρ1 q σs ˙j Γp1 `ps `1qjq by applying corollary 4.10. This ends the proof of the first point of theorem 3.3.

4 These numbers were named in honor of the mathematician Eugène Charles Catalan (1814-1894). They appear in many probabilist, graphs and combinatorial problems. For example, they can be seen as the number of d-ary trees with m source-nodes, or as the number of ways of associating m applications of a given d-ary operation, or as the number of ways of subdividing a convex polygon into m disjoint (d `1)-gons by means of non-intersecting diagonals. They also appear in theoretical computers through the generalized Dyck words. See for instance [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF] and the references inside.

ϕ j pxq, and on the inhomogeneity r f pt, xq, we easily check that, for all j ě 0: u jpv i ˚,q ˚`κ´i ˚q`i ˚,˚p xq " a j i ˚,q ˚pj λpq ˚qq! p1 ´x1 ´... ´xn q jλpq ˚q`1 j ź "1 p v i ˚,q ˚`p ´1qpκ ´i˚q q! pp ´1qv i ˚,q ˚`p ´1qpκ ´i˚q q! `rem j pxq with rem j p0q ě 0. Hence, applying technical lemmas 4.12 and 4.13 below, the following inequalities:

(4.17) u jpv i ˚,q ˚`κ´i ˚q`i ˚,˚p 0q ě ˆai ˚,q 2λpq ˚q`v i ˚,q ˚˙j pjpλpq ˚q `vi ˚,q ˚qq!.

Let us now suppose that r upt, xq is s 1 -Gevrey for some s 1 ă s c . Then, definition 3.1 and inequality (4.17) imply (4.18) 1 ď C ˜2λpq ˚q`v i ˚,q ˚K a i ˚,q ˚¸j Γp1 `i˚p s 1 `1q `jps 1 `1qpv i ˚,q ˚`κ ´i˚q q Γp1 `jpλpq ˚q `vi ˚,q ˚qq for all j ě 0 and some convenient positive constants C and K independent of j. Proposition 4.11 follows since such inequalities are impossible: applying the Stirling's Formula, the right hand-side of (4.18) is equivalent to (4.19) C 1 j i ˚ps 1 `1q ˆK1 j σ ˙j , j Ñ `8

with ' C 1 " Cpps 1 `1qpv i ˚,q ˚`κ ´i˚q q i ˚ps 1 `1q d ps 1 `1qpv i ˚,q ˚`κ ´i˚q λpq ˚q `vi ˚,q ˚; ' K 1 " K 2 λpq ˚q`v i ˚,q åi ˚,q ˚pps 1 `1qpv i ˚,q ˚`κ ´i˚q q ps 1 `1qpv i ˚,q ˚`κ´i ˚q e σ pλpq ˚q `vi ˚,q ˚qλpq ˚q`v i ˚,q ˚; ' σ :" λpq ˚q `vi ˚,q ˚´ps 1 `1qpv i ˚,q ˚`κ ´i˚q , and (4.19) goes to 0 when j tends to infinity. Indeed, the condition s 1 ă s c implies σ ą λpq ˚q `vi ˚,q ˚´ps c `1qpv i ˚,q ˚`κ ´i˚q " 0. This ends the proof. Lemma 4.12. Let j ě 1 be. Then, p v i ˚,q ˚`p ´1qpκ ´i˚q q! pp ´1qv i ˚,q ˚`p ´1qpκ ´i˚q q! ě pjv i ˚,q ˚q!.

Proof. Lemma 4.12 is clear for j " 1. Let us now suppose that inequality (4.20) holds for a certain j ě 1. Then, j`1 ź "1 p v i ˚,q ˚`p ´1qpκ ´i˚q q! pp ´1qv i ˚,q ˚`p ´1qpκ ´i˚q q! ě ppj `1qv i ˚,q ˚`j pκ ´i˚q q! pjv i ˚,q ˚`j pκ ´i˚q q! pjv i ˚,q ˚q! and we conclude due to the inequality ˆpj `1qv i ˚,q ˚`j pκ ´i˚q jpκ ´i˚q ˙ě ˆjv i ˚,q ˚`j pκ ´i˚q jpκ ´i˚q ˙.

Lemma 4.13. Let j ě 1 be. Then, pjλpq ˚qq!pjv i ˚,q ˚q! ě pjpλpq ˚q `vi ˚,q ˚qq! 2 jpλpq ˚q`v i ˚,q ˚q . Proof. Lemma 4.13 is straightforward from the inequality ˆjpλpq ˚q `vi ˚,q ˚q jλpq ˚q ˙ď 2 jpλpq ˚q`v i ˚,q ˚q . This ends the proof of the second point of theorem 3.3

1

 1 !... m ! b m; ,˚p xqu 1,˚p xq...u m,˚p xq

( 1 )

 1 r upt, xq and r f pt, xq are together s-Gevrey for any s ě s c ; (2) r upt, xq is generically s c -Gevrey while r f pt, xq is s-Gevrey with s ă s c .

Definition 3 . 1 .

 31 Let s ě 0 be. A formal series r upt, xq " ÿ jě0 u j,˚p xq t j j! P OpD ρ1,...,ρn qrrtss is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive constants 0 ă ρ ă min ρ , C ą 0 and K ą 0 such that the inequalities sup }x}ďρ |u j,˚p xq| ď CK j Γp1 `ps `1qjq

Definition 3 . 4 .

 34 1) r upt, xq and r f pt, xq are together s-Gevrey for any s ě s c ; (2) r upt, xq is generically s c -Gevrey while r f pt, xq is s-Gevrey with s ă s c . The number s c defined in theorem 3.3 is called the critical value of eq. (1.1).

Corollary 3 . 5 . 4 . 3 4. 1 .

 35431 Assume that the inhomogeneity r f pt, xq is convergent. Then, the solution r upt, xq is either convergent or 1{k-Gevrey, where k stands for the smallest positive slope of the Newton polygon N t pLq.The proof of theorem 3.3 is detailed in section 4 below. The first point is the most technical and the most complicated. Its proof is based on the Nagumo norms, a technique of majorant series and a fixed point procedure (see section 4.1). As for the second point, it stems both from the first one and from proposition 4.11 that gives an explicit example for which r upt, xq is s 1 -Gevrey for no s 1 ă s c while r f pt, xq is s-Gevrey with s ă s c (see section 4.2). Proof of theorem 3.Proof of the first point. According to proposition 3.2, it is clear that r upt, xq P OpD ρ1,...,ρn qrrtss s ñ r f pt, xq P OpD ρ1,...,ρn qrrtss s .

(4. 1 )

 1 |f j,˚p xq| ď CK j Γp1 `ps `1qjq

4. 1 . 1 .Definition 4 . 1 .

 1141 Nagumo norms. Let f P OpD ρ1,...,ρn q, p ě 0 and 0 ă r ă min ρ be. Then, the Nagumo norm }f } p,r with indices pp, rq of f is defined by }f } p,r :" sup }x}ďr |f pxqd r pxq p | , where d r pxq denotes the Euclidian distance d r pxq :" r ´}x}. Following proposition 4.2 gives us some properties of the Nagumo norms.

  (4.15) imply the inequalities |V m pXq| ď hprq 1 ´αprq ˆ2d βprqphprqq d´1 p1 ´αprqq d |X| κ ˙m for all m ě 0 and all |X| ď r. Consequently, since βprq ą 0 and hprq ą 0 (see the remark just above), the series V pXq is normally convergent on any disc with center 0 P C and radius 0 ă r 1 ă min ˜r, ˆp1 ´αprqq d 2 d βprqphprqq d´1 ˙1{κ ¸.

  r d r pxq ´1; |B x f pxq| d r pxq p`1 ď epp `1q }f } p,r .

	When p ą 0, the choice R "	d r pxq p `1 and the relations
	ˆ1	´1 p `1 ˙´p	" ˆ1	`1 p	˙p ă e,
	brings us to the inequalities				
	|B x f pxq| ď }f } p,r d r pxq ´p´1 pp `1q ˆ1	´1 p `1 ˙´p	ď epp `1q }f } p,r d r pxq ´p´1
	and then to the inequality				
	(4.3)				
	Property 5 follows since inequalities (4.2) and (4.3) are still valid when }x} " r.
	This achieves the proof of proposition 4.2.	

hence, the inequality (4.2) |B x f pxq| d r pxq ď e }f } 0,r . Remark 4.3. Inequalities 4-5 of proposition 4.2 are the most important properties.

Let us now assume S ‰ H. Then, ps `1qpκ ´i `vi,q q ě ps c `1qpκ ´i `vi,q q " λpq ˚q `vi ˚,q vi ˚,q ˚`κ ´i˚p κ ´i `vi,q q, and the inequality follows from corollary 2.3.

Let us apply the Nagumo norms of indices ppj `κqσ s , ρq to relations (4.4). From the first property of proposition 4.2, we obtain }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ÿ iPK ÿ qPQi j´vi,q ÿ "0 j! !pj ´vi,q ´ q! › › a i,q; ,˚B q x u j´vi,q´ `i,˚› › Γp1 `ps `1qpj `κqq for all j ě 0. Next, using the fourth and fifth property of proposition 4.2, we derive the following inequalities for all j:

(4.5) }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ÿ iPK ÿ qPQi j´vi,q ÿ "0 A i,q,j, ,s }a i,q; ,˚} pvi,q`κ´i` qσs´λpqq,ρ

Γp1 `ps `1qpj ´vi,q ´ `iqq d

"j´ B j, , 1 ,... m,s }b m; ,˚} p `κqσs,ρ }u 1,˚} 1σs,ρ ... }u m,˚} mσs,ρ !Γp1 `ps `1q 1 q...Γp1 `ps `1q m q ,

where the constants A i,q,j, ,s and B j, , 1,... m,s are positive and defined by A i,q,j, ,s " j!e λpqq ¨λpqq´1 ź

1 "0 ppj ´vi,q ´ `iqσ s `λpqq ´ 1 q ' pj ´vi,q ´ q!Γp1 `ps `1qpj `κqq Γp1

`ps `1qpj ´vi,q ´ `iqq and

Γp1 `ps `1q 1 q...Γp1 `ps `1q m q Γp1 `ps `1qpj `κqq .

In the definition of the constants A i,q,j, ,s , we use of course the classical convention that the product is 1 when λpqq " 0 Observe that all the norms written in inequality (4.5), and especially the norms }a i,q; ,˚} pvi,q`κ´i` qσs´λpqq,ρ are well-defined. Indeed, the inequalities κ ´i ě 1 and v i,q ě 0, and lemma 4.4 imply for all i, q and : pv i,q `κ ´i ` qσ s ´λpqq ě σ s ´λpqq ě λpqq `vi,q ´λpqq " v i,q ě 0.

The following proposition allows to bound the constants A i,q,j, ,s and B j, , 1,... m ,s . Proposition 4.5.

A Majorant Series.

Let us consider the formal series vpXq " ÿ jě0 v j X j , where the coefficients v j are determined for all j ě 0 by the recurrence relations (4.12) v j`κ " g j,s

`ÿ iPK

and together with the initial conditions v 0 " 1 `}ϕ 0 } 0,ρ , and, for j " 1, ..., κ ´1 (if κ ě 2):

where V j " tpi, qq P K ˆQi such that j ´κ ´vi,q `i ě 0u. Observe that the condition "κ ą i for all i P K" implies j ´κ ´vi,q `i ă j; hence, the initial conditions on the v j 's with j " 1, ..., κ ´1 make sense. Observe also that the set V j may be empty (this is particularly the case when K " t0u, or when v i,q ě i for all i and q).

Proposition 4.8. The inequalities (4.13) 0 ď }u j,˚} jσs,ρ Γp1 `ps `1qjq ď v j hold for all j ě 0.

Proof. According to the initial conditions on the u j 's and on the v j 's, inequalities (4.13) hold for all j " 0, ..., κ ´1. Let us now suppose that these inequalities are true for all k ď j ´1 `κ for a certain j ě 0, and let us prove them for j `κ. First of all, applying our hypotheses to relations (4.11), we get 0 ď }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď g j,s `ÿ iPK

since all the terms α i,q, ,s v j´vi,q´ `i are nonnegative.

Next, let us observe that, for all P t0, ..., ju and all m P t2, ..., d ´1u if d ě 3, any tuple-m p 1 , ..., m q P N m such that 1 `... ` m " j ´ can be seen as the tuple-d p 1 , ..., m , m`1 , ..., d q P N d , where m`1 " ... " d " 0. Therefore, using the fact that v 0 ě 1, we have

and, consequently, the inequalities

since all the terms are nonnegative.

Hence, the relations 0 ď }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď g j,s `ÿ iPK

which ends the proof of proposition 4.8.

Following proposition 4.9 allows us to bound the v j 's.

Proposition 4.9. The formal series vpXq is convergent. In particular, there exist two positive constants C 1 , K 1 ą 0 such that v j ď C 1 K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq. First of all, let us observe that vpXq is the unique formal power series in X solution of the functional equation (4.14) p1 ´αpXqqvpXq " X κ βpXqpvpXqq d `hpXq, where αpXq " ÿ iPK ÿ qPQi X κ´i`vi,q α i,q pXq with α i,q pXq " ÿ jě0 α i,q,j,s X j ;

βpXq " ÿ jě0 β j,s X j ;

hpXq " A 0 `A1 X `... `Aκ´1 X κ´1 `Xκ ÿ jě0 g j,s X j with A 0 " 1 `}ϕ 0 } 0,ρ , and, for j " 1, ..., κ ´1 (if κ ě 2), A j " }ϕ j } jσs,ρ Γp1 `ps `1qjq .

Observe that, according to the analyticity of the functions a i,q pt, xq and b m pt, xq at the origin of C n`1 , and the hypothesis on the coefficients f j,˚p xq of r f pt, xq (see inequality (4.1)), we have the inequalities ' 0 ď α i,q,j,s ď pepκ `vqq λpqq C 1 K j 1 j!ρ pvi,q`κ´i`jqσs´λpqq j! "

and

' 0 ď g j ď CK j Γp1 `ps `1qjqρ pj`κqσs Γp1 `ps `1qpj `κqq ď Cρ κσs pKρ σs q j with convenient positive constants

Hence, the series αpXq, βpXq and hpXq are all convergent with nonnegative coefficients. In the sequel, we denote by r α ą 0 (resp. r β ą 0, r h ą 0) the radius of convergence of the series αpXq (resp. βpXq, hpXq). We also denote by r 1 α ą 0 the radius of convergence of the series 1{p1 ´αpXqq (which is of course well-defined since αp0q " 0).

The convergence of vpXq being obvious when βpXq " 0 (we have indeed p1 άpXqqvpXq " hpXq), we suppose in the sequel that βpXq ı 0. In particular, we have βpXq ą 0 for all X Ps0, r β r. Notice that we also have hpXq ě 1 for all X P r0, r h r. To prove the convergence of the series vpXq, we proceed through a fixed point method as follows. Let us set

and let us choose the solution of eq. (4.14) given by the system

By induction on m ě 0, we easily check that

where the C m,d 's are the positive constants recursively determined from C 0,d :" 1 by the relations

Thereby, all the V m pXq's are analytic functions on the disc with center 0 P C and radius minpr 1 α , r β , r h q at least. Moreover, identities (4.15) show us that V m pXq is of order X κm for all m ě 0. Consequently, the series V pXq makes sense as a formal power series in X and we get V pXq " vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă minpr 1 α , r α , r β , r h q. By definition, the constants C m,d 's are the generalized Catalan 

where the initial condition ϕ i ˚pxq is the analytic function defined by ϕ i ˚pxq " 1 1 ´x1 ´... ´xn on the disc D 1{n,...,1{n , and where the initial conditions ϕ j pxq for j ‰ i ˚are analytic functions on D 1{n,...,1{n satisfying B x ϕ j p0q ě 0 for all P N n . Suppose also that the inhomogeneity r f pt, xq satisfies the following conditions:

' r f pt, xq is s-Gevrey; ' B x f j,˚p 0q ě 0 for all j ě 0 and all P N n . Then, the formal solution r upt, xq of eq. (4.16) is exactly s c -Gevrey.

Proof. Due to the calculations above, it is sufficient to prove that r upt, xq is s 1 -Gevrey for no s 1 ă s c .

First of all, let us rewrite the general relations (1.2) by isolating the term in pi ˚, q ˚q. We get u j`κ,˚p xq " j!a i ˚,q pj ´vi ˚,q ˚q! B q x u j´v i ˚,q ˚`i ˚,˚p xq `Rj pxq with R j pxq " f j,˚p xq `ÿ pi,qqPKˆQi pi,qq‰pi ˚,q ˚q j!a i,q pj ´vi,q q! B q x u j´vi,q`i,˚p xqd for all j ě 0, together with the initial conditions u j,˚p xq " ϕ j pxq for j " 0, ..., κ´1.

Using then our hypotheses on the coefficients a i,q and b m , on the initial conditions