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Abstract

We investigate the difference in pricing performance between trad-
able and nontradable factors in terms of explaining cross-sectional port-
folio returns by comparing the Hansen–Jagannathan (HJ) distance mis-
specification measures. By constructing nontradable factors mimicking
portfolios and incorporating them into the least misspecified tradable
stochastic discount factor (SDF), we provide cross-country empirical
evidence that this single proxy SDF dominates others to price cross-
sectional risky assets. Since nontradable factors mimicking portfolios
(FMPs) are functions of current risky factors information about the
economic state, therefore FMPs “hedge” the state variable risks and
FMPs’ returns describe the risk premiums.
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1 Introduction and Motivation

Empirical studies often use a linear combination of factors to explain
asset returns. Those factors may be the excess returns on some traded se-
curities (tradable factors), nontraded economy-wide sources of uncertainty
related to macroeconomic variables, or a combination of the two. In view
of the empirical success of such factors, researchers have entertained a pro-
gressively broader set of them, which has resulted in several claims (Harvey
et al. (2016); Hou et al. (2017)). While Barillas and Shanken (2018) and
Barillas et al. (2019) determine which of tradable factors are successful by
comparing improvements in Sharpe ratios, some further questions remain:
whether a determined linear stochastic discount factor (SDF), which consists
of admissible tradable or nontradable factors, outperforms others to price
cross-sectional risky assets when all SDFs are misspecified? Do any non-
tradable factors (macro factors) are successful by comparing improvements
in misspecification errors to tradable factors?

Few studies find that nontradable factors empirically outperform trad-
able factors, which makes nontradable factors seem useless for explaining
cross-sectional returns. Despite the theoretical importance of macroeconomic
risk factors in explaining the cross-section of expected asset returns, macro
factor-based asset pricing models fail to explain certain cross-sectional stock
return anomalies, such as momentum (Griffin et al. (2003)), and the prof-
itability premium (Wang and Yu (2013)). Most studies commonly attribute
the empirical failure of the macro factor-based asset pricing model to the
large measurement errors in macroeconomic factors, the differences between
a theoretical definition and its empirical counterpart, or the low frequency
in reporting macroeconomic variables. Hence, not only is it necessary to
perform a rank test for avoiding ‘useless’ nontradable factors (Gospodinov
et al. (2017)), but also it is more interesting to investigate nontradable fac-
tors’ pricing ability against tradable factors through another perspectives:
misspecification errors – the Hansen-Jagannathan (HJ) distance.

Using the HJ distance to compare models’ pricing ability has a large
literature, but there is lack of papers to discuss the pricing ability differ-
ence between nontradable and tradable factors. One of reasons is the mis-
leading HJ distance inference used by early papers. Early papers use the
point estimates of HJ distance and pairwise HJ distance comparison to show
their models’ better pricing performances, including Jagannathan and Wang
(1996), Lettau and Ludvigson (2001), Hodrick and Zhang (2001), Vassalou
and Xing (2004), Parker and Julliard (2005), Wang (2005), Zhang (2006), Li
et al. (2010). Chen and Ludvigson (2009) first show that the pairwise HJ
distance comparison inference cannot jointly test of correct specification of
two or more asset pricing models, “a general statistical procedure for model
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comparison is still missing”. Gospodinov et al. (2013) further point out there
exist the sampling and model misspecification uncertainty when we compare
two or more models using sample HJ distances. Therefore, they improve the
pairwise to the multiple model comparison inference based on the sample
HJ distance measures.

Another reason is that since macro factors usually exhibit small corre-
lations with asset returns, the misspecification error measure (the HJ dis-
tance) is distorted when it is used for linear asset-pricing models even in
large samples (Kong (2019)). Theoretically, macroeconomics factors (e.g.,
Chen et al. (1986)) and other non-traded factors (e.g., Adrian et al. (2014))
capture the fundamental risks in the economy and thus should also explain
the cross-sectional expected returns. However, observed changes in these
factors contain measurement errors and provide only weak predictions of
asset returns. To reduce factor noise, the previous literature recommends
factor-mimicking portfolios (FMPs), which contain traded assets that are
representations of underlying non-traded factors (e.g., Barillas et al. (2019);
Pukthuanthong et al. (2019)). Balduzzi and Robotti (2008) conclude that
using the time-series formulation of FMPs performs better in term of es-
timating risk premiums than using the original factors with the one-step
cross-sectional approach. Kleibergen and Zhan (2018) propose a test of the
risk premiums of FMPs constructed by a time-series approach that does not
depend on the magnitude of betas. Barillas et al. (2019) also use the time-
series formulation of FMPs in order to construct Sharpe ratio of candidate
models for comparison. Intuitively, since the return covariances with the fac-
tors are functions of current information about the economic state, therefore
FMPs “hedge” the state variable risks and FMPs’ returns describe the risk
premiums.

This paper makes two contributions as follows:
First, this paper finds that there exists a determined least misspeci-

fied SDF which outperforms others to price several countries’ cross-sectional
risky assets. The paper uses 230 portfolios and 21 factors over the period
1967-2015 in the U.S. market, 122 portfolios with 16 factors monthly from
1990 to 2017 in the U.K. market, and 22 factors to price 83 portfolios monthly
from 2000 to 2018 in the Chinese market. By employing the methodologies
of Chen and Ludvigson (2009) and Gospodinov et al. (2013), which allow
multiple model selection tests with improved finite-sample properties, the
paper finds that unlike the problem of a “zoo of factors,” the Fama-French
five-factor plus momentum model has a better performance than alterna-
tives such as the CAPM, the Fama-French three-factor model (Fama and
French (1992)), the Carhart four-factor model (Carhart (1997)), the Fama-
French three-factor plus liquidity model from Pástor and Stambaugh (2003),
the Fama-French five-factor model (Fama and French (2015)), the four-factor
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Q model (Hou et al. (2015)), the betting-against-beta model (Frazzini and
Pedersen (2014)) and the mispricing factors model (Stambaugh and Yuan
(2016)). None of the nested nontradable factors can outperform the nested
tradable factor SDFs in terms of these countries’ pricing results.

Second, this paper gives an international empirical evidence that non-
tradable factors are able to improve the pricing performance of SDFs while
incorporating a mix of tradable and nontradable factors. With the help of
factor-mimicking portfolios (FMPs), the paper contributes to those studies
by providing further evidence for the incremental value of the nontradable
factors: given common tradable factors, the nontradable factors can outper-
form tradable factors to decrease SDFs’ misspecification errors. Given the
Fama-French five tradable factors, the paper finds that in the U.S. market,
Yogo (2006)’s durable consumption growth, Piazzesi et al. (2007)’s housing
expenditure variable and the liquidity innovation variable actually outper-
form the momentum factor when augmented by the Fama-French five-factor
model. For the cross-country analysis, we find that the Fama-French five
plus the inflation FMPs in the U.K. and the the Fama-French plus yield
level FMPs in China, each of them has the smallest HJ distance measures
among alternatives when pricing 122 and 83 portfolios, respectively. In ad-
dition, nontradable factors are especially vulnerable to the “limited T versus
large N” problem and become weak factors (Kleibergen and Zhan (2020)).
For instance, when we include 83 portfolios as test assets for the Chinese
market, we find that nontradable factors are all useless and provide little
incremental value in improving misspecification errors.

Non-tradable factors helping to improve misspecification errors has eco-
nomic foundations. Macroeconomic variable offer key insight into the gen-
eral state of the economy, but they may not sufficiently capture the most
accurate correlation structure of price movement across stocks. However,
factor-mimicking portfolios (FMPs) are functions of current risky factors in-
formation about the economic state, therefore FMPs “hedge” the state vari-
able risks and FMPs’ returns describe the risk premiums. As a result, after
controlling on tradable factors, nontradable factors (macro variables) are in-
formative about both pricing errors and future expected returns (risk premi-
ums); nontradable factors usually show a relatively higher predictive power
of assets’ cumulative returns in the long run than tradable factors do. Sev-
eral papers apply macro mimicking factors to explain risk-return relation-
ship in the beta-pricing models. Ferson et al. (2006) derives and character-
izes mimicking portfolios in the presence of predetermined state variables.
Their time-varying weight solutions are affected more by parameter esti-
mation errors when the wrong Data Generator Process (DGP) is assumed.
Our FMPs construction follows Pukthuanthong et al. (2019) and Jurczenko
and Teiletche (2019). Pukthuanthong et al. (2019) find that equity returns
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are priced by consumption growth, inflation, and the unemployment rate
when they use the factor-mimicking portfolios to the beta-pricing model. Ju-
rczenko and Teiletche (2019) incorporate empirical estimation improvements
through machine learning methodologies, and they provide an application to
the construction of tradable portfolios mimicking three global macro factors,
namely growth, inflation surprises, and financial stress indicators. They
show that these macro mimicking factors can be used to improve the risk-
return profile of a typical endowment multi-asset portfolio. Different from
the above, this paper aims to investigate SDFs misspecification improve-
ments through macro mimicking factors.

Papers close to our study also include Barillas and Shanken (2017) (BS
2017) and Barillas and Shanken (2018) (BS 2018). BS (2017) shows that re-
searchers do not need to match the mean-variance frontier of test assets for
every factor portfolio; rather, they can evaluate the relative ‘match’ of each
pair of candidate factor portfolios. Therefore, the choice of test assets will not
influence the results of any pairwise factor models. However, the difference
between the ‘relative comparison’ in BS (2017) and the ‘absolute comparison’
in our paper comes from the fundamental difference between the GRS test
and the HJ distance test. The simple GRS test in BS (2017) basically eval-
uates the chances of improvement in excluded factor portfolios against the
benchmark factor portfolios1. However, the HJ distance test aims to find the
minimum variance portfolios among candidate factor mimicking portfolios
given the same risky assets to price. More importantly, the HJ distance test
does not choose a zero-beta rate to minimize the difference in the squared
Sharpe ratios of the two tangency portfolios; instead, the zero-beta rate is
chosen to minimize the difference in the squared Sharpe ratios of the two
tangency portfolios divided by the squared zero-beta rate. Hence, the zero-
beta rates are estimated differently by the HJ distance test and by the GRS
test. Moreover, Barillas and Shanken (2018) develop a procedure that al-
lows for the analysis of the joint alpha restriction for a set of test assets in
a Bayesian setting. Their evidence in this paper casts strong doubt on the
validity of their six-factor model.

In the rest of the paper, we introduce in Section 2 the HJ distance, the
multiple HJ distance comparison tests and the set inference-based confi-
dence intervals. Section 3 describes the data and candidate models. Section
4 shows the empirical test results. Finally, we conclude the paper in Section
5.

1Barillas et al. (2019) test the improvements in the squared Sharpe ratio by correctly
specified and misspecified nested and nonnested models. They find that a variant of the
Fama and French (2018) six-factor model emerges as the dominant model.
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2 Methodology

We use three different Hansen–Jagannathan (HJ) distance measures to
compare candidate linear asset-pricing models: the original HJ distance(
HJO)

introduced by Hansen and Jagannathan (1997), the modified HJ dis-
tance

(
HJM)

from Kan and Robotti (2008), and the constrained HJ distance(
HJC)

from Gospodinov et al. (2012).
We begin with the basic asset-pricing model in the stochastic discount

factor (SDF) representation

pt = E t [mt+1xt+1] , (2.1)

where pt is the price of any stock, mt+1 is the true SDF, xt+1 is the future
payoff of the stock, and E t is the conditional expectation operator.

An asset-pricing model identifies a particular SDF that is a function of
observable variables and the model parameters. Empirical estimation on
this model can be done by using the two-stage GMM,

minb

[
gT (b)

′
W gT (b)

]
, (2.2)

where gT represents the moment conditions and W is a weighting matrix.
Most earlier papers use Hansen’s JT test statistics to estimate and test each
model on the same set of asset returns—testing correct specification against
the alternative of incorrect specification. Using the J-statistics, we find that
the overidentification restrictions are not rejected for one model but are re-
jected for another. However, as Hansen’s JT test statistic depends on the
model-specific S matrix (Ludvigson (2013)), a model can look better just be-
cause its SDF and the pricing errors are more volatile than those of its com-
petitor.

2.1 The Hansen–Jagannathan Distance

Hansen and Jagannathan (1997) suggest a solution to this problem. They
assume that the proposed SDF yt+1 can be approximated as a linear function
of factors

yt+1 = θ
′
f t+1, (2.3)

where f t denotes the pricing factors. By using the pricing equation, we can
derive the following equation:

αt(θ)= Rt yt(θ)− IN = Rtθ f
′
t − IN , (2.4)

where Rt =
[
R1,t,R2,t, ...,RN,t

]′
are the gross returns on N assets and αt(θ)

is the vector of pricing errors. Hence, the maximum pricing error per unit
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norm of any portfolio of N assets (or HJO) is given by[
HJO

]2 = E
[
(αt(θ))

′][
E(RtR

′
t)
]−1

E [αt(θ)] . (2.5)

The HJO measure is equivalent to a GMM estimator with the moment

condition E [αt(θ)] = 0 and the weighting matrix
[
E(RtR

′
t)
]−1

, which is dif-
ferent from the optimal matrix (see Appendix A.1 for details). There are two
advantages that lead us to choose to use the HJ distance. The first advantage
is stated by Ludvigson (2013), namely, that the HJ distance does not reward
SDF volatility. As a result, it is suitable for conducting model comparisons.
Second, the HJ distance provides a measure of model misspecification. The
HJ distance also gives the maximum pricing error of any portfolio formed
from N assets.

If excess returns are used to measure model misspecification, one cannot
specify a proposed SDF in such a way that it can be zero for some values of
θ. Kan and Robotti (2008) suggest defining the SDF as a linear function of
the demeaned factors to avoid the affine transformation problem. Hence, the
modified HJ distance (HJM) measure is defined as[

HJM
]2 = minθE

[
αT (θ)

′]
V−1

22,T E [αT (θ)] , (2.6)

where V−1
22,T is the covariance matrix of the test portfolios.

Another problem we need to consider is that all of the above SDFs can
be either positive or negative. For instance, if markets are incomplete, as
suggested by Ross (1973), candidate SDFs such as the CAPM and linear fac-
tor models do not need to be strictly positive (Cochrane and Hansen (1993)).
It is, however, possible for an SDF to price all the test assets correctly and
yet take on negative values with positive probability. This happens when
arbitrage opportunities exist among test portfolios (e.g., derivatives on test
assets), and it could be problematic to set the SDF to price payoffs. There-
fore, it is necessary to constrict the admissible SDFs to be nonnegative.

Gospodinov et al. (2012) solve for the constrained HJ distance as

[
HJC

]2 = minmt,t=1,...,T
1
T

T∑
t=1

(yt −mt)2 , (2.7)

subject to
1
T

T∑
t=1

mtRt = q̄,

mt ≥ 0, t = 1, ...,T,

where yt denotes the candidate SDF, mt stands for an admissible SDF in the
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set ℵ+, qt−1 is the vector of corresponding costs of N assets and E[qt−1] 6= 0.
We examine whether the SDF is positive, which implies the absence of

arbitrage. If the SDF is negative, then markets are incomplete and there
are arbitrage opportunities; otherwise, there is something wrong with SDF
theory itself.

2.2 Multiple Comparisons Tests for the HJ Distance

The traditional HJ distance test compares HJ distance measures statis-
tically by making pairwise model comparison the null hypothesis: i.e., HJO

2
may be less than HJO

1 . Specifically, are the models significantly different
from one another once we account for sampling error?

Gospodinov et al. (2013) propose a new Lagrange multiplier test for joint
testing of misspecification of more than two asset-pricing models. They de-
velop chi-squared versions of model comparison tests for strictly nonnested,
nested and overlapping models. They also provide a multiple model com-
parison test that allows us to compare a benchmark model with a set of
alternative models in terms of their HJ distance metrics. They suggest that
we should separate models into three categories—nested, strictly nonnested
and overlapping—and introduce test methods for different types of models.

In addition to the new tests developed in Gospodinov et al. (2013) for
multiple model comparison, we also apply Chen and Ludvigson (2009)’s test
method. The details of these models are given in Appendix A.4.

3 Data and Candidate Models

We investigate international empirical evidences based on data of two
representative developed countries (US and UK) and of one representative
developing country (China).

Although the asset-pricing literature has proposed an extremely large
number of trading factors (McLean and Pontiff (2016); Harvey et al. (2016);
Barillas et al. (2019)), we focus on a few representative ones. Here is a list of
the models and corresponding risk factors considered for the US market:

1. The capital asset-pricing model (CAPM) is the value-weighted market
return, constructed from the Center for Research in Security Prices (CRSP)
for all stocks listed on the NYSE, AMEX, or NASDAQ.

2. The Fama-French three-factor model (FF3) includes, in addition to
the market return, SMB (size) and HML (value).

3. The Carhart four-factor model (Carhart) adds a momentum factor
(MOM) to FF3.

4. The Fama-French five-factor model (FF5), from Fama and French
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(2015), adds to FF3 the RMW (operating profitability) and CMA (invest-
ment) factors.

5. The four factors from the Q-factor model (HX Z) of Hou et al. (2015)
include the market return, ME (size), IA (investment), and ROE (profitabil-
ity).

6. The betting-against-beta factor (BAB) from Frazzini and Pedersen
(2014) is included.

7. Four factors from Stambaugh and Yuan (2016) (SY ), who extends the
CAPM by adding a size factor (SMBSY) and two mispricing factors, ‘man-
agement’ (MGMT) and ‘performance’ (PERF).

8. The Fama-French three-factor model plus the liquidity factor from
Pástor and Stambaugh (2003) (FF3+LIQ) is included.

9. The six-factor model adds the up-minus-down (UMD) momentum fac-
tor motivated by the work of Jegadeesh and Titman (1993) to the FF5CP
model (FF5CP +UMD) following Ball et al. (2016) and Fama and French
(2018).

10. The HX Z model substitutes RMWCP for ROE (HX ZCP), given that
the choice of the profitability factor is key to the performance of the five-
factor model of Fama and French.

11. The final model (FF5CPM +UMD) includes the more timely value
factor HMLm from Asness and Frazzini (2013) instead of the standard HML.

The empirical analysis uses both monthly and quarterly return data over
the period 1967-2015 for the US market. 230 portfolios are included as test
assets: 25 portfolios sorted by size and book-to-market ratio, 30 industry
portfolios, 100 portfolios sorted by operating profitability and investment,
25 portfolios sorted by size and variance, 25 portfolios sorted by size and
momentum, and 25 portfolios sorted by size and beta2.

We include some nontradable factors. The first one is Yogo (2006)’s durable
consumption (CG). To update the data to 2015, we use personal consumption
expenditures (PCE) on nondurables and services (obtained from the Bureau
of Economic Analysis), including food, clothing and shoes, housing, utilities,
transportation, and medical care. This series is then deflated by a weighted
average of the price index for nondurables and services. Other macro fac-
tors include the housing collateral ratio (HCG) in Lustig and Van Nieuwer-
burgh (2005), the nonhousing consumption expenditure share EX R in Pi-
azzesi et al. (2007) and the liquidity innovation for the non-tradable factor
in Pástor and Stambaugh (2003) (LIQINNOV ).

For each nontradable factor, we have a mimicking portfolio by regressing
the nontradable factor on a constant and all the traded-factors. We include

2The industry portfolios are included to provide a greater challenge to the various asset-
pricing models, as recommended by Lewellen et al. (2010)
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all tradable factors in the models that we have compared. Additional basis
assets could be considered but are not required. Although some of these re-
turns are highly correlated, we are interested in the fitted value (the overall
mimicking return), rather than the individual weights.

For studying the UK equity market, we follow Hanauer (2020) to repli-
cate all following UK tradable factors:

1. The capital asset-pricing model (CAPM).
2. The Fama-French three-factor model (FF3) includes CAPM, in addi-

tion to the market return, SMB (size) and HML (value).
3. The Carhart four-factor model (Carhart) adds a momentum factor

(MOM) to FF3.
4. The Fama-French five-factor model (FF5) adds to FF3 the RMW (op-

erating profitability) and CMA (investment) factors.
5. The four factors from the Q-factor model (HX Z −FF) of Hou et al.

(2015) include the market return, SMB (size), CMA (investment), and RMW_ROE
(profitability). Specifically, different from the original version of Hou et al.
(2015), the three factors are constructed based on 2×3 independent sort fol-
lowing Fama and French (2015), instead of the triple sort of Hou et al. (2015).

6. Four factors from Stambaugh and Yuan (2016) (SY −FF), who extend
the CAPM by adding a size factor, MGMT and PERF.

7. The model (FF5CP) following Ball et al. (2016) and Fama and French
(2018).

8. The Fama-French five-factor plus the the up-minus-down (UMD) mo-
mentum factor (FF5+UMD).

9. The six-factor model adds the up-minus-down (UMD) momentum fac-
tor to the FF5CP model (FF5CP +UMD).

10. The final model (FF5CPM +UMD) includes the more timely value
factor HMLm instead of the standard HML.

The test assets for the UK market include 122 portfolios from January
1990 to December 2017, in which there are 25 portfolios sorted by size and
book-to-market ratio, 25 portfolios sorted by size and momentum, 10 port-
folios sorted by size, 10 portfolios sorted by book-to-market ratio, 10 portfo-
lios sorted by momentum, 25 portfolios sorted by standard deviation, and 27
portfolios sorted by size, book-to-market ratio and momentum.

The nontradable factors considered for the UK market are all monthly.
We firstly include the UK yield level (Y ield) that is calculated as the av-
erage yield to maturity of the government bond with maturity of 1 year, 5
years and 10 years. The second marcro factor is the maturity spread (MS).
We calculated it as the difference of the yield to maturity between the gov-
ernment bonds with a maturity of 10 years and 5 years. The last three macro
variables are CPI, PPI and the inflation (INF).

China has become the largest stock market outside the US, as well as the
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largest emerging market. Hence, comparing the models’ performance in the
developing market like China should offer us some valuable information.
We fetch the data for the Chinese stock market from 2000 to 2018 in the
Wind database, which is one of the widely used financial databases in China.
We exclude financial firms, stocks under special treatment, and firms going
public within 12 months as well as stocks that stay at their daily price limits
for a whole day and stocks for which trading is suspended at the end of each
month. We also exclude the bottom 30% stocks to avoid so-called shell-value
contamination following Liu et al. (2019).

We replicate all the models for the US market mentioned except model
8 (FF3+ LIQ), Appendix A.5 provides the details of the factor models in
China. We consider 83 portfolios as the test assets: 25 portfolios sorted
by size and book-to-market ratio, 10 portfolios sorted by size, 10 portfolios
sorted by book-to-market ratio, 10 portfolios sorted by operating profitabil-
ity, and 28 industry portfolios3. For the nontradable factors, we consider six
macro factors, including the quarter-over-quarter consumption growth (CG),
the year-over-year wage growth (WG), the yield level (Y ield), the maturity
spread (MS), the credit spread (CS), and the inflation (INF).

4 Main Results

We present main empirical results in Section 4.1 for the US market, and
Section 4.2 and 4.3 for the UK and the China equity markets, respectively.

4.1 The US Market

4.1.1. Sequential Selection Procedure and Rank Tests. In Table 1, we
report the results of the rank tests of our candidate factors and the model
misspecification tests. Panel A presents the results of the rank restriction
test of each individual factor and the corresponding p-value of the null hy-
pothesis that the N×K matrix B = E[xt(1, f it)] is of column rank 1. Gospodi-
nov et al. (2014) propose this sequential procedure that allows us to elimi-
nate the useless factors from the model, since the presence of a useless fac-
tor would lead to a violation of the crucial condition for identification, which
states that B is of full rank. The results show that we can reject the null
of the factor being of column rank of one at the 5% level of significance for
all of the risk factors that the paper considers, which suggests that all of the
factors can be considered potentially useful.

3We proxy the industry portfolios by the SWS industry indexes compiled by the Shenwan
Hongyuan Securities. The SWS industry indexes are widely accepted in China, and the
Shenwan Hongyuan Securities is one of the largest securities companies in China.
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Panel B reports the results of the rank test of the models’ misspecifica-
tion. The tests based on the HJ distance measures show that none of the
models pass the tests. The null of the HJ distance equal to zero is rejected at
the 1% level of significance for all the models. The implication is that all the
models we consider are potentially misspecified based on the HJ distance
measures. Since the HJ distance measures have been shown to substan-
tially overreject the null, we also conduct an LM test, which has better size
and power properties. The results are similar to those of the HJ tests in
that all the models reject the null, suggesting that the HJ distance results
are not driven by the finite sample properties of the HJ distance tests. This
is consistent with the notion that all asset-pricing models are approximate
representations of reality and are therefore potentially misspecified.

In the rank test of the models, we find that none of our candidate models
suffer from identification problems at the 1% level. This is consistent with
the fact that the factors we consider are correlated with returns on the test
assets. Gospodinov et al. (2014) also note that the MKT, SMBC and HML
factors are highly correlated with the test asset returns. Overall, these find-
ings from Panel A and Panel B suggest that the empirical factor models do
not suffer from identification issues, although all of the models are misspec-
ified.

In Table 1, we also report the results of the sequential selection procedure
under correct model specification (Panel C) and potential model misspecifi-
cation (Panel D) assumptions. The sequential testing methodology uses the
Bonferroni correction to allow for multiple testing. The t-statistics under cor-
rect specification in Panel C show that while the MKT factor in the CAPM is
significant, in the FF3 model, the MKT and the HML are significant. In the
Carhart model, MKT, HML and MOM are significant. In the FF5 model,
MKT and HML are useful, while SMB, RMWC and CMA do not survive
the sequential testing procedure. In the HXZ model, the MKT and the I A
factors survive the sequential testing procedure at the 5% significance level.
The liquidity factor LIQTRADED does not pass the sequential test. The
factors that survive all the specifications are momentum MOM (UMD), the
betting-against-beta factor BAB, operating profitability RMWC, and the
two mispricing factors MGMT and PERF, followed by MKT and HML.
The results in Panel D are identical to the results in Panel C, when potential
model misspecification is taken into account.

4.1.2. HJ Distance Comparison Results. In Table 2, we report the re-
sults of the model comparison tests using both the gross returns and the
excess returns on our 230 portfolios assets.

In Panel A, we report the HJ distance
(
HJO)

, the modified HJ distance(
HJM)

and the constrained HJ distance
(
HJC)

measures for all the mod-
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els that we consider. These results allow us to compare the misspecification
measures across candidate SDFs with the point estimation and correspond-
ing inference. Here, lower values of the measures are preferred, as they
show lower levels of misspecification. The results show that across all can-
didate models that we consider, the HJ distance measures are greater than
zero. These results suggest that all the candidate SDFs are potentially mis-
specified. The model with the lowest HJO, HJM and HJC measures is the
Fama-French five-factor plus up-minus-down momentum model (FF5+UMD)
when we consider both gross returns and excess returns on 230 portfolios.

In Panel B, we present the results of the two formal tests of model com-
parison. In both of these tests, we take the least misspecified model, i.e., the
one that has the lowest HJO, HJM and HJC measures among all the mod-
els in Table 2 Panel A as the benchmark. The three HJ distance measures
of alternative models are then multiple tested against the measures of our
chosen model, i.e., the FF5+UMD model.

The first test is a multiple comparison test of whether the HJO, HJM

and HJC measures of any of the alternative models are significantly higher
than the distance measures of our chosen model. The null hypothesis in this
test is that the chosen model has HJO, HJM and HJC measures that are
less than those of any of the alternative models. A failure to reject the null
means that our chosen model is the least misspecified model. Using both the
gross returns and excess returns on our 230 pooled portfolios, we find that
the null is not rejected for any of the HJ distance measures. This suggests
that the FF5+UMD model is the least misspecified.

The second test is a simultaneous pairwise comparison test of whether
the HJO, HJM and HJC measures of each of the alternative models are
significantly greater than the distance measures of our chosen model. The
null hypothesis is that the chosen model has HJO, HJM and HJC measures
that are less than those of each of the alternative models. The tests are
conducted using both the gross and excess returns on the 230 portfolios of
assets. The results show that at the 1% level of significance, the FF5+UMD
model retains its position as the least misspecified of all the models.

In Table 3, we run tests for the multiple comparison tests only on the
Fama-French 25 size and book-to-market ratio sorted portfolios, as well as
other cross-sectional portfolios including 30 industry portfolios, 100 portfo-
lios sorted by operating profitability and investment, 25 portfolios sorted by
size and variance, and 25 portfolios sorted by size and momentum. Each
panel shows the result based on the candidate SDFs to price the cross-
sectional risky assets to search for the least misspecified SDF. In Panel A,
Panel B and Panel E, the table shows that the FF5+UMD model obtains the
least misspecified measure of 11 factor models. The multiple comparison
tests using a conservative size of 1% support the above conclusion. However,
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in Panel C, Panel D and the excess returns on 100 operating profitability
sorted portfolios (Panel E), the Fama-French five-factor including the up-
dated value factor HMLm from Asness and Frazzini (2013) instead of the
standard HML plus momentum factor model (FF5CPM+UMD) outperforms
other candidate SDFs. The standard method calculates book-to-price (B/P) at
portfolio formation using lagged book data, aligns price data using the same
lag (ignoring recent price movements), and holds these values constant until
the next rebalance. Thus, by the time the data are updated, the price used to
determine “value” is 18 months old. Asness and Frazzini (2013) shows that
B/P ratios based on more timely prices better forecast the true (unobserv-
able) B/P ratios at fiscal year-end. Value portfolios based on the timeliest
measures earn statistically significant alphas ranging from 305 to 378 basis
points per year. This suggests that any conclusions drawn are potentially
sensitive to the choice of test assets, although the Fama-French five factor
can be treated as the common factor.

4.1.3. Nontradable Factors. We turn to the problem that this paper mainly
focus on, i.e., whether any of the nontradable factors can reduce the HJ dis-
tance misspecification measures.

We find that the liquidity (nondurable consumption and services) mim-
icking portfolio has an average risk premium of 0.0005 (0.0129) per month
over our sample period, and the associated t-statistic is 0.39 (2.2678). How-
ever, the durable consumption (housing consumption) mimicking portfolio
has an average risk premium of -0.0614 (-0.0107) per month, and the associ-
ated t-statistic is -2.5791 (-7.4246). Insofar as marginal utility is low when
the market is highly liquid or the market is full of nondurable consump-
tion, holding these risks requires risk premia. However, as marginal utility
is high when the economy is in bad times (durable consumption or housing
consumption is low), asset-pricing theory suggests negative premia for these
risks.

In Table 4, we first show that all the mimicking portfolios for nontradable
factors, such as nondurable consumption growth (CG), durable consumption
growth (DCG), housing consumption (HCG), the expenditure ratio (EX R)
and liquidity innovation (LIQINNOV ), are useful.

Panel B shows the horse race between the tradable and nontradable fac-
tors in the candidate SDFs to price the 230 pooled portfolios. For the gross
returns, the misspecified measures for the Fama-French five plus durable
consumption growth or plus housing consumption growth are quite close and
smaller than others, even the Fama-French five plus up-minus-down mo-
mentum factor, which outperforms other tradable factors in Table 3. In the
excess returns, the Yogo durable consumption growth factor is the least mis-
specified SDF in pricing the 230 portfolios, as it is the model with the lowest
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HJM and HJC measures. These results suggest that given the Fama-French
five common factors, the nontradable factors can help the SDFs decrease
their misspecification error to an even greater extent than the up-minus-
down momentum factor (a tradable factor). Overall, the results suggest that
nontradable factors (housing consumption and durable consumption) out-
perform tradable factors (up-minus-down momentum) in pricing the large
cross-section of risky assets with the least misspecified errors.

Panel C in Table 4 gives the multiple comparison test of whether the
HJO, HJM and HJC measures of any of the alternative models are signifi-
cantly greater than the distance measures of the candidate models. The null
hypothesis in this test is that our chosen model (the FF5+UMD model)—the
‘winner’ SDF among the tradable factors—has HJO, HJM and HJC mea-
sures that are less than those of any of the alternative models. A failure
to reject the null means that the FF5+UMD model is the least misspecified
model. Then, we show the Chen and Ludvigson (2009) multiple compari-
son first and find that at the 5% significance level, the null hypothesis can-
not be rejected. The test results followed by the Gospodinov et al. (2013)
pairwise comparison test show that the last three models augmenting the
Fama-French five-factor model with nontradable factors obtain smaller HJ
distance measures at the 5% level of significance; their HJO, HJM and HJC

measures are statistically even smaller than the ‘winner’ Fama-French five
plus momentum model.

To explain why nontradable factors can improve SDF pricing errors, we
conduct further a univariate predictive regression to check whether the non-
tradable factors can predict the future returns of the test assets significantly.
For a specific nontradable factor and a given prediction period of k months,
we first run univariate predictive regression of the future k-month returns
of each portfolio on the current return of the factor mimicking portfolio of
the nontradable factor and calculate the adjusted R-squared, then average
across portfolios to arrive at the final result.

Here we focus on the durable consumption growth (DCG) and the hous-
ing consumption growth (HCG) factors based on the quarterly data from
1972 to 2011, and we consider prediction periods ranging from 1 quarter to
8 quarters. Table 5 reports the results. The two nontradable factors per-
form differently, where DCG mainly predicts the 1-quarter ahead asset re-
turns, while HCG has a lower predictive power for the short-term future re-
turns, but its impact is relatively long-lasting. For example, the average ad-
justed R-squared for the 8-quarter cumulative asset returns is 1.32%, which
is much higher than that of a shorter prediction period.
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4.2 The UK Market

We report the empirical results for the UK market in this section. Follow-
ing the procedures for the US market described above, we first present the
results for the tradable factors and related models, then turn to nontradable
factors. The results are similar with those for the US market.

4.2.1. Sequential Selection Procedure and Rank Tests. We conduct
tests for the tradable factors and related models based on the 122 pooled
portfolios for the UK market. Table 6 presents results of the rank tests
and model misspecification tests, as well as the sequential testing proce-
dure, when only tradable factors are considered. The rank test results in
Panel A shows that most of the tradable factors pass the rank test, except
the MKT and CMA factors. The rank restriction test results of models in
Panel B show that unlike those of the US market, many of the models with
only tradable factors in UK do suffer from the identification problems. More-
over, the results of HJ distance tests and LM tests show that all models are
potentially misspecified, as they all have significant HJ distance.

Panel C and Panel D of the table report the results of the sequential
selection procedure under correct model specification and potential model
misspecification assumptions, respectively. However, different from those of
the US market, few factors survive the sequential selection procedure at the
significance level of 5%. These results show that there is much room for the
nontradable factors in UK.

4.2.2. HJ Distance Comparison Results. Table 7 further reports the
model comparison results for models with only tradable factors. Similar to
Table 2, we consider both the gross returns and excess returns of the 122
pooled portfolios. The results are similar to those of the US. When gross
returns are considered, the FF5+UMD model always performs best with dis-
tance measures significantly lower than other models. While when excess
returns are used, CAPM and FF3 models have a bit lower original HJ dis-
tance and modified HJ distance measures and the FF5CPM+UMD model
has a slightly smaller constrained HJ distance. However, under these cir-
cumstances, the FF5+UMD model is still very competitive. As an interesting
sidenote, the Carhart model performs better than the FF5 model for most of
the situations, mainly due to the highly significance of the UMD factor and
insignificance of the CMA factor in UK.

4.2.3. Nontradable Factors. We analyze the value-added of the nontrad-
able factors based on 95 portfolios from January 1998 to December 2017.
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Due to the smaller sample of nontradable factors, we exclude the 27 portfo-
lios sorted by size, BM, and momentum, to eusure that we can get accurate
estimates. Table 8 presents the test results. The rank test results in Panel
A show that all nontradable factors alone can not pass the rank test. How-
ever, the model comparison results in Panel B show that, FF5+ INF, i.e.,
the Fama-French five-factor plus inflation model (FF5+INF) performs best
under most circumstances, except that the FF5CPM+UMD model still has
a slightly smaller constrained HJ distance when considering the excess re-
turns. This shows that similar to that of the US, nontradable factors also
help to improve SDF’s pricing performance in UK, although the best per-
forming factor is the inflation factor.

Then we conduct a predictive regression analysis to check how the non-
tradable factors help to explain the cross-section of asset returns. The test
is similar to that of the US market in Section 4.1.3 but also with two dif-
ferences. First, we use monthly data and we focus on the yield level and
inflation factors in this test. Second, for ease of reading, we consider 12-
month ahead prediction instead of 24-month ahead (which is equivalent to 8
quarters).

Table 9 reports the results. From the table, we can immediately figure
out that both the two nontradable factors help to predict the future asset re-
turns. Moreover, the predictive power drops with the increasing of prediction
period, as the average adjusted R2 declines. Since the explanatory variable
is the current 1-month return of the factor’s mimicking portfolio, we should
not be surprised at the results. Lastly, although the results of the model
comparison tests based on HJ distance suggest that the inflation factor per-
forms better than the yield level, it does not guarantee that the former would
always have higher predictive power than the latter one. And we indeed ob-
serve that for prediction periods ranging from 7 to 12 months, the yield level
factor has a higher predictive power than the inflation factor. Moreover, for
those longer prediction periods, the adjusted R-squared declines to nearly
zero, showing that the predictive power for the very long periods is much
smaller. Nevertheless, the results show that both factors have significant
predictive power for the future cumulative returns of the test assets, even
for the relatively long prediction periods.

4.3 The China Market

In this section, we report the empirical results for the UK market in
this section. Following the procedures for the US and UK markets, we first
present the results for the tradable factors and related models in Section
4.3.1, then we reports the model comparison test results in Section 4.3.2.
Lastly, we further explore the performance of the nontradable factors in Sec-
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tion 4.3.3. The results are very similar with those for the developed markets.

4.3.1. Sequential Selection Procedure and Rank Tests. Table 10 re-
ports the results of the tests for tradable factors and related models using 83
portfolios as test assets. Panel A shows that all factors except BAB pass the
rank restriction test, suggesting that most of these factors can be potentially
useful in China, which is similar to the findings for the US and UK markets.
Panel B indicates that all the candidate models may be misspecified based
on the HJ distance measures and LM test, which is also consistent with the
results for the US. However, the last two columns of Panel B show that a
large number of the factor models cannot pass the rank test and hence may
suffer from identification problems, which is similar to the situation in UK.

Panel C and Panel D of Table 10 present the results of the sequential
selection procedure under correct model specification and potential model
misspecification, respectively. Panel C shows that while all factors are in-
significant in the CAPM, FF3, and Carhart 4 models, the SMB, HML, and
RMW factors are significant in the FF5 and Fama-French five-factor plus
up-minus-down momentum (FF5+UMD) models. The story is similar for the
HXZ and HXZCP models, where the size factor (ME), profitability factors
(ROE and RMWC), and market factor (MKT) are significant. However,
when replacing RMW by RMWCP in FF5 and FF5+UMD, the profitability
factor (RMWC) becomes insignificant, while the investment factor (CMA)
becomes significant. When further replacing HML with the more updated
version HMLm, four factors, including MKT, SMB, HMLm and UMD, are
significant. The BAB factor and the two mispricing factors, i.e., MGMT and
PERF, are insignificant. Moreover, no factors survive in all model speci-
fications, with the HML, SMB and profitability factors (ROE and RMW
factors) performing relatively better. Panel D shows that the results under
potential model misspecification are similar. Hence, while the overall per-
formance of factor models for the Chinese stock market is similar to that for
the US market, there are also some differences.

4.3.2. HJ Distance Comparison Results. Table 11 reports the results
of model comparison tests in China using both the gross returns and ex-
cess returns. Panel A reports the HJ distance measures for each model.
The results using gross returns are very similar to those for the US mar-
ket, where FF5+UMD has the smallest HJ distance and still outperforms
when we consider the modified and constrained HJ distance using excess
returns. However, the Fama-French five-factor with cash-based profitabil-
ity plus up-minus-down momentum (FF5CP+UMD) model has the smallest
distance when the original HJ distance is considered using excess returns.
Nevertheless, FF5+UMD stands out under most circumstances. Panel B fur-
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ther presents the results of the multiple model comparison test. These high
p-values show that none of the alternative models have a smaller HJ dis-
tance than the models chosen above. Hence, the FF5+UMD model performs
best under most circumstances, which is consistent with the results for both
the US and UK markets.

4.3.3. Nontradable Factors. We also test how nontradable factors per-
form in China. Due to the availability of data on macro factors, the sample
for the nontradable factors is shorter. Specifically, there are only 64 obser-
vations for consumption growth and wage growth and 154 observations for
the other four factors; hence, we would encounter the “limited T versus large
N” problem (Kleibergen and Zhan (2020)) if we still use the 83 portfolios as
test assets to test the performance of the nontradable factors. Therefore, we
conduct empirical tests using fewer portfolios as test assets. Specifically, we
drop the 30 univariate sort portfolios and use the remaining 53 portfolios,
i.e., 25 portfolios sorted by size and book-to-market ratio, and 28 industry
portfolios as test assets. Under all circumstances, we always keep the indus-
try portfolios in test assets, following Lewellen et al. (2010).

Table 12 reports the results. Panel A gives the results of the rank test.
While consumption growth, wage growth, maturity spread, and credit spread
are useless, the yield level and inflation factors are significant and there-
fore potentially useful. Panel B further presents the HJ distance measures
for different models, where two models containing nontradable factors are
added. The Fama-French five-factor plus yield level factor model (FF5+Yield)
has the smallest HJ distance when we consider gross returns. Although it
has larger orignial HJ distance and modified HJ distance measures than the
FF5+UMD model when we consider excess returns, the FF5+Yield model is
still very competitive under those cirmustances. Panel C further presents
the results of the multiple model comparison test. The FF5+Yield model
has the smallest squared distance under all circumstances, and the high p-
values indicate that it does perform best from the perspective of HJ distance.
Hence, nontradable factors can help decrease the misspecification errors on
SDFs given the Fama-French five-factor models as common factors and per-
form better than the factor models consisting only of tradable factors. In
summary, the nontradable factors can help improve the performance of lin-
ear factor models for the Chinese market, which is consistent with the find-
ing for the US market, although the nontradable factors proven to be useful
may be different in the two markets.

We then check how the nontradable factors help improve the perfor-
mance of SDFs in China. We conduct a predictive regression test, which
is exactly what we have done for the UK market above. Table 13 shows the
results of the predictive regression test. Again, we see a pattern similar
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to that of the UK market reported in Table 9. Specifically, for both the yield
level and inflation factors, the short-term predictive power is extremely high,
while the predictive power drops a lot but still remains significant for longer
prediction periods. And it is worth noting that the predictive power of the
two nontradable factors are much higher than those of the UK market, for
all prediction periods.

In summary, we find that the risk premium of nontradable factors has
predictive power for future asset returns, and they work in the same way as
the tradable factors. Specifically, they have the strongest predictive power
for the short-term future asset returns, and the predictive power drops with
the increasing of the prediction period.

5 Conclusions

In this paper, we use the HJ distance to compare the degree of misspec-
ification among prominent linear factor models. We use recently developed
multiple comparison inference to determine how well tradable or nontrad-
able factors do in pricing a common set of risky portfolios.

We conclude that there is a unique proxy linear factor SDF that can con-
sistently price a cross-section of large pooled risky portfolios. We also find
cross-countries empirical evidences that nontradable factor mimicking port-
folios can decrease misspecification errors when the common factors such
as the Fama-French five-factor model are given. The risk premium of non-
tradable factors has predictive power for future asset returns, even for a
relatively long prediction periods. Specifically, we arrive at similar results
for the US, the UK and the China equity markets: models with only trad-
able factors, we show that the Fama-French five-factor plus up-minus-down
momentum model (FF5+UMD) stands out under most circumstances. When
nontradable factors are further considered, there always exist some nontrad-
able factors that can improve the performance of SDFs and drive out the
momentum factor, given the Fama-French five-factor model as benchmark.
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A Appendix

A.1 Sample Estimates on the Hansen–Jagannathan Distance
In sample estimation, if the test portfolios are in gross returns, we can define

DT = 1
T

T∑
t=1

∂αt(θ)
∂θ

= 1
T

R
′
f , (A.1)

gT (θ)= 1
T

T∑
t=1

αt(θ)= DTθ− IN , (A.2)

GT = 1
T

T∑
t=1

RtR
′
t =

1
T

R
′
R, (A.3)

where
R = [R1,R2, ...,RT ]

′
,

f = [ f1, f2, ..., fT ].

The sample analog of the HJ distance is thus

δT =
√

minθ gT (θ))′G−1
T gT (θ). (A.4)

Taking the derivative of the above equation

D
′
TG−1

T gT (θ)= 0, (A.5)

which gives an analytic expression for the sample minimizer

θ̂ = (D
′
TG−1

T DT )−1D
′
TG−1

T IN . (A.6)

From Hansen (1982) the asymptotic variance of θ̂ is given by

var(θ̂)= 1
T

(D
′
TG−1

T DT )−1D
′
TG−1

T ΩTG−1
T DT (D

′
TG−1

T DT )−1, (A.7)

where, if the data is serially uncorrelated, the estimate of the variance matrix of
pricing errors is given by

ΩT = 1
T

T∑
t=1

αt(θ̂)αt(θ̂)
′
. (A.8)

That is the estimator θ̂ that is equivalent to a GMM estimator defined by Hansen(1982)
with the moment condition E[g(θ)]= 0 and the weighting matrix G−1.

Following Kan and Robotti (2008), if the test portfolios are in excess returns, we
can define

yt+1(θ)= 1−θ′
f t+1, (A.9)

E t[yt+1(θ)Rt+1]= 0N , (A.10)
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the estimates of risk premiums will change into

θ̂ =−(D
′
tG

−1
t Dt)−1D

′
tG

−1
t R̄t, (A.11)

where R̄t is the average excess return across N.

A.2 Testing the Hansen–Jagannathan Distance

If the weighting matrix is optimal in the sense of Hansen (1982), then Tδ2
T is

asymptotically a random variable of χ2 distribution with N −K freedom, where is
the dimension of θ.

However, if G is generally not optimal, Tδ2
T is not asymptotically a random vari-

able of χ2. Instead, under the hypothesis that the SDF prices the returns correctly,
the sample HJ distance follows:

T[δ̂2] d→
N−K∑
j=1

a jχ
2(1), (A.12)

where χ2(1) are independent chi-squared random variables with one degree of free-
dom, and a j are N −K nonzero eigenvalues of the matrix A given by

A =Ω 1
2 G

−1
2 [IN − (G

−1
2 )

′
D(D

′
G−1D)−1D

′
G

−1
2 ](G

1
2 )

′
(Ω

1
2 )

′
. (A.13)

Here Ω = E[αtα
′
t] denotes the variance of pricing errors, and D = E(R

′
t f t). The

1
2 means the upper-triangle matrices from the Cholesky decomposition. As long
as we have a consistent estimate ΩT of the matrix Ω, we can estimate the matrix
A by replacing Ω and G by ΩT and GT , respectively. Under the hypothesis that
the SDF prices the returns correctly, The Ω can be estimated consistently by ΩT =
T−1 ∑T

t=1[αtα
′
t].

Following Jagannathan and Wang (1996), to adjust for the small sample bias,
we use Monte Carlo method to calculate the empirical distribution of HJ distance
(under the null hypothesis). First, draw M⊗ (N−K) independent random variables
from χ2(1) distribution. Then, calculate u j = ∑N−K

i=1 aiχ
2(1). Here M is the number

of simulation. Then the empirical p-value of the HJ distance is

ˆpHJ = 1
M

M∑
j=1

I(u j≥T[HJT (θT )]2), (A.14)

where I(.) is an indicator function which equals one if the expression in the brackets
is true and zero otherwise.

A.3 Testing the Constrained Hansen–Jagannathan Distance
To test the constrained HJ distance, we follow Gospodinov, Kan and Robotti

(Gospodinov et al. (2012)). They state an asset pricing model is correctly specified
if there exists a θ ∈ Γ such that yt(θ) ∈ ℵ+, which implies that ι= 0N and δ+ = 0; the
model is misspecified if yt(θ) ∉ ℵ+ for all θ ∈Γ, which implies that δ+ > 0.
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They show that
(a) if δ+ = 0, the pricing model is correctly specified,

Tδ̂2+
A→

N−K∑
t=1

ςiυi, (A.15)

where the υi are independent chi-squared random variables with one degree of free-
dom and the ςi are the eigenvalues of

A = P
′
U− 1

2 SU− 1
2 P, (A.16)

with S = ∑∞
j=−∞ E[(xt yt(θ∗)− qt−1)(xt+ j yt+ j(θ∗)− qt+ j−1)

′
], D = E[xt

∂yt(θ∗)
∂θ

′ ], U =
E[xtx

′
t], and P being an N × (N −K) orthonormal matrix whose columns are orthog-

onal to U− 1
2 D. This is the same as traditional HJ distance test.

(b)if δ+ > 0, the pricing model is misspecified,

p
T(δ̂2+−δ2

+) A→ N(0,υ), (A.17)

where υ=∑∞
j=−∞ E[(ϕt(λ∗)−δ2+)(ϕt+ j(λ∗)−δ2+)

′
] and δ= [θ

′
, ι

′
].

To conduct inference, the variance matrix should be replaced by consistent es-
timator. In sample, we can replace A with Â, and Û = 1

T
∑T

t=1 xtx
′
t, we also can

obtain Ŝ using a nonparametric heteroskedasticity and autocorrelation consistent
estimator.

A.4 Multiple Model Comparison Test
Gospodinov et al. (2013) provide a multiple model comparison test that allows

us to compare a benchmark model with a set of alternative models in terms of their
HJ distance metrics. They suggest that we should separate models into three cate-
gories: nested, strictly non-nested and overlapping. For non-nested and overlapping
models they introduce a multivariate inequality test based on Wolak (1987, 1989).

Let ρ = (ρ2, ...,ρp+1), where ρ i = δ2
1 − δ2

i . We set δ2
1 as the winner, and test

H0 : ρ ≤ 0p. We assume that

p
T(ρ̂−ρ) A→ N(0p,Ωρ̂). (A.18)

Let ρ̃ be the optimal solution in the following quadratic programming problem:

minρ(ρ̂−ρ)
′
Ω̂−1
ρ̂ (ρ̂−ρ), (A.19)

s.t.ρ ≤ 0r, (A.20)

where Ω̂−1
ρ̂

is a consistent estimator of Ω−1
ρ̂

. The likelihood ratio test of the null
hypothesis is

LR = T(ρ̂− ρ̃)
′
Ω̂−1
ρ̂ (ρ̂− ρ̃). (A.21)

Since the null hypothesis is composite, to construct a test with the desired size,
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they require the distribution of LR under the least favorable value of ρ, which is
ρ = 0p. Under this value, LR follows a ‘chi-bar-squared distribution’,

LR A→
p∑

i=0
wi(Ω−1

ρ̂ )X i, (A.22)

where the X i are independent χ2 random variables with i degrees of freedom and χ2
0

is simply defined as the constant zero. An explicit formula for the weights wi(Ω−1
ρ̂

)
is given in Kudo (1963).

For nested models, Gospodinov et al. (2013) suppose that yA
t (λ∗

1 )= yi
t (λ

∗
i ) can be

written as a parametric restriction of the form ϕi(λ∗
i )= 0ki−k1 , where ϕ(·) is a twice

continuously differentiable function in its argument. The null hypothesis for multi-
ple model comparison can therefore be formulated as H0 :ϕ2 = 0k2−k1 , ...,ϕp+1(λ∗

p+1)=
0kp+1−k1 . The comparison test statistic follows Wald test with the degree of freedom
(
∑p+1

i=2 ki − pk1).
Besides the new tests developed in Gospodinov et al. (2013) on multiple model

comparison test, we also apply the Chen and Ludvigson (2009)’s test method. We
denote the squared HJ distance for model j as

δ2
1,T = min(d2

j,T )K
j=1. (A.23)

Hence, the null hypothesis is stated as follows:

H0 : δ2
1,T −δ2

2,T ≤ 0,

where d2
2,T is the competing model with the next smallest squared distance. Now we

define the test statistic as TW = max2,...,5
p

T(d2
1,T−d2

j,T ), based on White (2003). The
distribution of TW is computed via block bootstrap. We note that the justification
for the bootstrap rests on the existence of a multivariate, joint, continues, limiting
distribution for the set (d2

j,T )K
j=1 under the null.

By repeated sampling, the bootstrap estimate of the p-value is

pW = 1
B

B∑
b=1

I(TW ,b>TW ), (A.24)

where B is the number of bootstrap samples and TW ,b stands for White’s original
bootstrap test statistic. If the null is true, the historical value of TW should not be
unusually large, given sampling error. Given the distribution of TW , reject the null
if its historical value, TW , is greater than the 95th percentile of the distributions
for TW . At a 5% level of significance, we reject the null if pW is less than 0.05, but
do not reject otherwise.

A.5 Factor Models in China
We replicate all the 11 models based on Chinese data except the Fama-French

three-factor plus the liquidity factor model (FF3+LIQ), with a few minor differences
in details due to data consideration. In this appendix, we give the details of the dif-
ferences with the original models when we replicate those models in China. Except
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for what mentioned as follows, we follow the procedures described in the original
papers. Other tests show that these differences have little impact on the results.

• For those factors rebanlanced annually, e.g., SMB and HML factors of the
Fama-French five-factor model, we rebalance portfolio at the end of April,
rather than the end of June. As the companies listed in the China’s A-Share
stock market are required to disclose their annual report no later than the
end of April following the correponding fiscal year, we can make use of the
information in a more timely manner and construct a more robust factor by
rebalancing portfolios at the end of April.

• For the MOM and UMD factors, we simply construct monthly rebalancing
portfolios instead of calculating the average returns of a series of portfolios
with a longer holding period.

• For the HXZ and HXZCP models, we construct monthly rebalancing portfo-
lios using the most recent data available, while Hou et al. (2015) group stocks
based on the most recent quarterly ROE, as well as the yearly market capi-
talization and investment.

• For Stambaugh and Yuan (2016)’s mispricing factors, we construct the two
mispricing factors based on eight, instead of eleven anomalies. We do not
consider financial distress, net issuance, and composite equity issues, due to
lack of data.

A.6 Macro Factors in China
We consider six macro factors in this paper. In this appendix, we describe how

the consumption growth, wage growth, and credit spread factors are constructed.
The other three factors are defined in the same way as those for the UK market.

• Consumption growth (CG). As there are no historical data of quarterly con-
sumption in China, we measure consumption as the total consumption of ur-
ban populations scaled by GDP. Specifically, the calculation of the consump-
tion growth is as follows:

– First, we interpolate the annual data of the urban population to get the
quarterly urban population.

– Then we multiply the urban per capita consumption by the urban pop-
ulation and arrive at the total quarterly consumption of urban popula-
tions.

– Next, we scale the total consumption of urban populations by the GDP
of the corresponding quarter, arriving at the share of urban consump-
tion.

– Finally, we calculate the quarter-over-quarter growth of the share of
urban consumption and get consumption growth.

• Wage growth (WG). We calculate wage growth as the year-over-year growth
of the total wage of urban populations. Moreover, as quarterly total wage and
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wage growth data is unavailable for 2014 to 2018, we interpolate year-over-
year wage growth data for that period.

• Credit spread (CS). We calculate the credit spread as the difference between
the YTM of the AAA-rating enterprise bond and government bond with the
same maturity. We calculate the spread for 1-year, 5-year, and 10-year, and
then average across these maturities.
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Table 1: Rank Test and Misspecification Identification in US

Notes: the table presents the results of the ranks tests of the individual factors, the model misspecification tests, and rank tests of the models in US.
The models are estimated using monthly returns from 1967 to 2015 on the 230 pooled portfolios. Panel A reports the rank restriction test (w) and its
p-value of the null that E[xt(1, f it)] has a column rank of one. Panel B reports the sample HJ distance (δ̂), the Lagrange multiplier (LM) test, and
the rank restriction test (W∗) with the corresponding p-values for each model. Panels C and D show t-tests of the model selection procedures based
on the standard errors under correct model specification and model misspecification, respectively. The boldface denotes the 5% significance level.

Panel A: Rank test for individual factors

Test MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM LIQTRADED BAB MGMT PERF

w 206.6 214.8 200.0 207.5 199.6 186.2 215.7 192.5 160.5 115.6 115.5 189.5 117.9 153.2 199.1 190.3

p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.016 0.000 0.011 0.000 0.000 0.000

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model delta p-val LM p-val w p-val

CAPM 0.701 0.00 176.91 0.00 206.6 0.00

FF3 0.680 0.00 172.00 0.00 198.2 0.00

FF3+LIQ 0.673 0.00 168.79 0.00 115.7 0.02

BAB 0.686 0.00 167.90 0.00 147.6 0.00

Carhart 0.648 0.00 154.67 0.00 102.3 0.06

HXZ 0.684 0.00 171.78 0.00 122.3 0.00

SY 0.628 0.00 142.00 0.00 132.0 0.00

FF5 0.625 0.00 145.89 0.00 140.7 0.00

FF5+UMD 0.607 0.00 140.21 0.00 149.5 0.00

HXZCP 0.666 0.00 168.31 0.00 150.7 0.00

FF5CPM+UMD 0.615 0.00 136.53 0.00 135.5 0.00
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Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM LIQTRADED BAB MGMT PERF

CAPM -2.51

FF3 -3.03 -1.03 -3.64

-3.30 -3.51

FF3+LIQ -3.11 -0.99 -3.69 -2.03

-2.60 -2.23

-2.36 -0.83 -2.21

-3.38 -3.58 -2.05

BAB -2.49 -2.93

FF5 -4.09 -2.77 -3.55 0.28 -5.68

-2.81 -1.03 -2.17 0.11

-4.46 -2.73 -5.72 -5.69

Carhart -3.47 -0.98 -4.12 -3.13

-2.83 -2.61

HXZ -2.99 -2.06 -2.35 -2.20

-2.18 -1.23

-2.81 -1.33 -2.26

-2.22 -2.20 -2.18

-3.29 -2.15 -1.55
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Table continued.

Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM LIQTRADED BAB MGMT PERF

HXZCP -4.39 -4.15 -3.33 0.90

-3.36 -3.46

-4.35 -4.34 -3.17

-3.34 -3.21 0.53

SY -4.49 -2.96 -4.86 -3.65

-2.08 -1.77

-2.75 -1.89 -3.08

-3.77 -2.67 -4.50

FF5+UMD -3.86 -2.55 -4.01 0.86 -4.73 -2.38

FF5CPM+UMD -4.17 -2.13 0.18 -4.99 -3.84 -3.65

Panel D: Model selection procedure using model misspecification-robust standard errors

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM LIQTRADED BAB MGMT PERF

CAPM -2.51

FF3 -3.02 -1.02 -3.63

-3.29 -3.51

FF3+LIQ -3.09 -0.98 -3.68 -1.51

-2.59 -1.61

-2.35 -0.83 -1.59

-3.36 -3.57 -1.54
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BAB -2.49 -2.73

FF5 -3.95 -2.80 -3.19 0.24 -5.24

-2.74 -1.04 -1.89 0.09

-4.36 -2.73 -5.59 -5.25

Carhart -3.42 -0.98 -4.01 -3.01

-2.83 -2.48

HXZ -2.94 -1.98 -2.14 -2.06

-2.18 -1.22

-2.41 -1.81 -1.89

-2.22 -2.09 -1.92

-3.22 -1.94 -1.48

HXZCP -4.16 -3.58 -2.89 0.84

-3.33 -3.12

-4.14 -3.80 -2.79

-3.31 -2.84 0.49

SY -4.31 -2.89 -4.46 -3.43

-2.08 -1.73

-2.73 -1.86 -2.86

-3.63 -2.60 -4.07

FF5+UMD -3.76 -2.55 -3.71 0.77 -4.24 -2.30

FF5CP+UMD -4.05 -2.14 0.15 -4.48 -3.32 -3.21
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Table 2: HJ Distance and Large Cross-sectional Portfolios in US

Notes: the table represents the results of tradable factors SDF comparison tests using both
gross returns and excess returns on the 230 pooled portfolios: 25 portfolios sorted by size and
book-to-market ratio, 30 industry portfolios, 100 portfolios sorted by operating profitability
and investment, 25 portfolios sorted by size and variance, 25 portfolios sorted by size and
momentum, and 25 portfolios sorted by size and beta. Panel A reports the HJ distance(
HJO

)
, the modified HJ distance

(
HJM

)
and the constrained HJ distance

(
HJC

)
measures.

Panel B presents the results of the two formal tests of model comparison. The null hypothesis
in the first test is that the chosen model has a HJO , HJM and HJC measure that is less
than that of any of the alternative models. The second test is a pairwise comparison test of
whether HJO , HJM and HJC measures of each of the alternative models are significantly
greater than the distance measures of the chosen model.

Pooled Portfolios Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CAPM 0.8841 0.8841 0.9631 CAPM 0.6849 0.9397 0.5562

FF3 0.8736 0.8736 0.9535 FF3 0.6817 0.929 0.5518

FF5 0.8388 0.8388 0.925 FF5 0.6761 0.8915 0.5446

Carhart 0.8541 0.8541 0.9361 Carhart 0.6734 0.9026 0.5505

HXZ 0.8672 0.8672 0.9482 HXZ 0.6939 0.9413 0.5487

HXZCP 0.8467 0.8467 0.9344 HXZCP 0.6841 0.9046 0.5472

FF3+LIQ 0.8732 0.8732 0.9534 FF3+LIQ 0.6847 0.9337 0.5518

BAB 0.8821 0.8821 0.9609 BAB 0.6875 0.9362 0.5522

SY 0.8417 0.8417 0.9328 SY 0.6718 0.8845 0.5478

FF5+UMD 0.8276 0.8276 0.914 FF5+UMD 0.6688 0.8759 0.5422

FFCP+UMD 0.828 0.828 0.9147 FFCP+UMD 0.6711 0.8763 0.5423

Panel B: HJ Multiple Comparison

FF5+UMD<(FFCPUMD/FF5/SY/HXZCP FF5+UMD<(FFCPUMD/SY/FF5/Carhart

Carhart/HXZ/FF3+LIQ/FF3/BAB/CAPM) HXZCP/FF3/FF3+LIQ/BAB/CAPM/HXZ)

H0 (p-value) 0.306 0.316 0.32 H0 (p-value) 0.3134 0.19 0.302

FF5+UMD< FF5+UMD<
FF5 (p-value) 0.054 0.054 0.23 FF5CPM+UMD (p-value) 0.099 0.067 0.070

FF5CPM+UMD (p-value) 0.129 0.127 0.138 SY (p-value) 0.138 0.085 0.092

SY (p-value) 0.131 0.131 0.234 FF5 (p-value) 0.132 0.98 0.18

HXZCP (p-value) 0.153 0.153 0.182 HXZCP (p-value) 0.096 0.123 0.212

Carhart (p-value) 0.124 0.124 0.212 Carhart (p-value) 0.109 0.14 0.162

HXZ (p-value) 0.138 0.138 0.124 FF3+LIQ (p-value) 0.145 0.157 0.181

FF3+LIQ (p-value) 0.131 0.131 0.236 FF3 (p-value) 0.137 0.164 0.146

FF3 (p-value) 0.100 0.100 0.184 HXZ (p-value) 0.103 0.173 0.133

BAB (p-value) 0.131 0.131 0.222 BAB (p-value) 0.17 0.17 0.16

CAPM (p-value) 0.153 0.153 0.227 CAPM (p-value) 0.198 0.198 0.139
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Table 3: HJ Distance and Specific Cross-sectional Portfolios in US

Notes: the table represents the results of the tradable factors SDFs comparison in US using both gross returns and excess returns on 25 portfolios
sorted by size and book-to-market ratio, 30 industry portfolios, 100 portfolios sorted by operating profitability and investment, 25 portfolios sorted by
size and operating profitability and 25 portfolios sorted by size and momentum. The table reports the HJ distance

(
HJO

)
, the modified HJ distance(

HJM
)

and the constrained HJ distance
(
HJC

)
measures. Then the table presents the results of the multiple comparison. The null hypothesis is

that the chosen model has a HJO , HJM and HJC measure that is less than that of any of the alternative models.

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: Size/BM/OP Sorted
CAPM 0.573 0.573 0.578 CAPM 0.554 0.666 0.303
FF3 0.556 0.556 0.564 FF3 0.5418 0.6439 0.295
FF5 0.515 0.515 0.5265 FF5 0.5034 0.5785 0.285
Carhart 0.543 0.5432 0.5541 Carhart 0.5201 0.6062 0.2949
HXZ 0.5554 0.5554 0.5649 HXZ 0.5497 0.6521 0.2904
HXZCP 0.5308 0.5308 0.544 HXZCP 0.5194 0.6014 0.2891
FF3+LIQ 0.5555 0.5555 0.5634 FF3+LIQ 0.541 0.6415 0.2944
BAB 0.57 0.57 0.578 BAB 0.5515 0.6583 0.2963
SY 0.5275 0.5275 0.544 SY 0.4993 0.5725 0.2901
FF5+UMD 0.5067 0.5067 0.5201 FF5+UMD 0.4889 0.5576 0.2851
FFCPM+UMD 0.5161 0.5161 0.5304 FFCPM+UMD 0.4947 0.5656 0.2878
FF5+UMD<(FF5/FFCPM+UMD/SY/HXZCP FF5+UMD<(FFCPM+UMD/SY/FF5/HXZCP
Carhart/HXZ/FF3+LIQ/FF3/BAB/CAPM) Carhart/FF3+LIQ/FF3/HXZ/BAB/CAPM)
H0 (p-value) 0.172 0.221 0.191 H0 (p-value) 0.108 0.124 0.271
Panel B: Size/BM Sorted
CAPM 0.3636 0.3636 0.3641 CAPM 0.4181 0.4602 0.1752
FF3 0.34 0.34 0.3407 FF3 0.3937 0.4281 0.1626
FF5 0.2911 0.2911 0.3068 FF5 0.3291 0.3494 0.1585
Carhart 0.3167 0.3167 0.3243 Carhart 0.3338 0.3542 0.1626
HXZ 0.3348 0.3348 0.3382 HXZ 0.3771 0.4061 0.1605
HXZCP 0.3135 0.3135 0.3236 HXZCP 0.3456 0.3686 0.1603
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FF3+LIQ 0.3385 0.3385 0.3393 FF3+LIQ 0.3846 0.4161 0.1626
BAB 0.3624 0.3624 0.3629 BAB 0.394 0.4279 0.1726
SY 0.3129 0.3129 0.3216 SY 0.3221 0.3411 0.1588
FF5+UMD 0.2743 0.2743 0.2973 FF5+UMD 0.2947 0.311 0.1584
FFCPM+UMD 0.2883 0.2883 0.3085 FFCPM+UMD 0.3106 0.33 0.1606
FF5+UMD<(FFCPM+UMD/FF5/SY/HXZCP FF5+UMD<(FFCPM+UMD/SY/FF5/HXZCP
Carhart/HXZ/FF3+LIQ/FF3/BAB/CAPM) Carhart/FF3+LIQ/HXZ/FF3/BAB/CAPM)
H0 (p-value) 0.143 0.102 0.231 H0 (p-value) 0.167 0.112 0.271
Panel C: Size/Mom Sorted
CAPM 0.4187 0.4187 0.4271 CAPM 0.4276 0.473 0.2289
FF3 0.3937 0.3937 0.4079 FF3 0.4186 0.4607 0.2
FF5 0.3286 0.3286 0.3712 FF5 0.3344 0.3564 0.1993
Carhart 0.3733 0.3733 0.3824 Carhart 0.3671 0.3943 0.1998
HXZ 0.3441 0.3441 0.3534 HXZ 0.3324 0.3527 0.2069
HXZCP 0.3669 0.3669 0.3832 HXZCP 0.3559 0.3813 0.2092
FF3+LIQ 0.3878 0.3878 0.4018 FF3+LIQ 0.4183 0.4603 0.1988
BAB 0.388 0.388 0.3929 BAB 0.3642 0.3907 0.227
SY 0.3637 0.3637 0.3792 SY 0.3488 0.3722 0.1975
FF5+UMD 0.3285 0.3285 0.3606 FF5+UMD 0.3427 0.3664 0.1986
FFCPM+UMD 0.2913 0.2913 0.3411 FFCPM+UMD 0.3162 0.3355 0.1947
FFCPM+UMD<(FF5+UMD/FF5/HXZ/SY/HXZCP FFCPM+UMD<(FF5+UMD/FF5/HXZ/SY/HXZCP
Carhart/FF3+LIQ/FF3/BAB/CAPM) BAB/Carhart/FF3+LIQ/FF3/BAB/CAPM)
H0 (p-value) 0.119 0.129 0.133 H0 (p-value) 0.108 0.321 0.22
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Table continued.

Panel D: Industry Sorted
CAPM 0.2229 0.2229 0.223 CAPM 0.2359 0.2428 0.2134
FF3 0.2167 0.2167 0.2176 FF3 0.2207 0.2263 0.2005
FF5 0.1935 0.1935 0.1994 FF5 0.1974 0.2014 0.191
Carhart 0.2151 0.2151 0.2162 Carhart 0.2224 0.2281 0.1969
HXZ 0.2133 0.2133 0.2146 HXZ 0.2178 0.2232 0.1981
HXZCP 0.2041 0.2041 0.2052 HXZCP 0.2073 0.2118 0.1981
FF3+LIQ 0.2157 0.2157 0.2166 FF3+LIQ 0.2182 0.2236 0.1979
BAB 0.2226 0.2226 0.2226 BAB 0.234 0.2407 0.1974
SY 0.2115 0.2115 0.2121 SY 0.2133 0.2183 0.1968
FF5+UMD 0.1929 0.1929 0.1987 FF5+UMD 0.1981 0.2021 0.1894
FFCPM+UMD 0.1918 0.1918 0.1956 FFCPM+UMD 0.1967 0.2006 0.1907
FFCPM+UMD<(FF5+UMD/FF5/HXZCP/SY FFCPM+UMD<(FF5+UMD/FF5/HXZCP/SY
HXZ/Carhart/FF3+LIQ/FF3/BAB/CAPM) HXZ/FF3+LIQ/FF3/Carhart/BAB/CAPM)
H0 (p-value) 0.365 0.23 0.2666 H0 (p-value) 0.163 0.212 0.240
Panel E: OP Sorted
CAPM 0.0935 0.0935 0.0935 CAPM 0.2359 0.2428 0.2134
FF3 0.0788 0.0788 0.08 FF3 0.2207 0.2263 0.2005
FF5 0.046 0.046 0.0794 FF5 0.1974 0.2014 0.191
Carhart 0.0768 0.0768 0.0768 Carhart 0.2224 0.2281 0.1969
HXZ 0.0801 0.0801 0.0805 HXZ 0.2178 0.2232 0.1981
HXZCP 0.0791 0.0791 0.0814 HXZCP 0.2073 0.2118 0.1981
FF3+LIQ 0.0768 0.0768 0.0792 FF3+LIQ 0.2182 0.2236 0.1979
BAB 0.083 0.083 0.0907 BAB 0.234 0.2407 0.1974
SY 0.071 0.071 0.0767 SY 0.2133 0.2183 0.1968
FF5+UMD 0.046 0.046 0.0679 FF5+UMD 0.1981 0.2021 0.1894
FFCPM+UMD 0.0465 0.0465 0.0681 FFCPM+UMD 0.1967 0.2006 0.1907
FF5+UMD<(FF5/FFCPM+UMD/SY/Carhart FFCPM+UMD<(FF5/FF5+UMD/HXZCP/SY
FF3+LIQ/FF3/HXZCP/HXZ/BAB/CAPM) HXZ/FF3+LIQ/FF3/Carhart/BAB/CAPM)
H0 (p-value) 0.396 0.365 0.233 H0 (p-value) 0.212 0.267 0.313
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Table 4: Mimicking Non-traded Factors and HJ Distance in US

Notes: the table represents the results of the non-tradable and tradable SDFs comparison
in US using both gross returns and excess returns on the pooled 230 risk portfolios.
Non-tradable mimicking portfolio are regressed by all the traded-factor returns by using
adjusted R2 and the F test. Panel A reports the rank restriction test (w) and its p-value of
the null that E[xt(1, f it)] has a column rank of one. Panel B reports the HJ distance

(
HJO

)
,

the modified HJ distance
(
HJM

)
and the constrained HJ distance

(
HJC

)
measures among

tradable and non-tradable factors SDFs. Panel C and D present results of the two formal
tests of model comparison. The null hypothesis in the first test is that the chosen model has
a HJO , HJM and HJC measure that is less than that of any of the alternative models. The
second test is a pairwise comparison test of whether HJO , HJM and HJC measures of each
of the alternative models are significantly greater than the distance measures of the chosen
model.

Panel A: Rank test for individual factors
Test CG DCG HCG EXR LIQINNOV

w 94.2 100.4 84.5 91.6 86.1
p-val 0.001 0.000 0.006 0.001 0.005

Panel B: HJ Measures
Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

CAPM 0.8841 0.8841 0.9631 CAPM 0.6947 0.9655 0.6234
FF3 0.8736 0.8736 0.9535 FF3 0.6919 0.9553 0.6188
FF5 0.8388 0.8388 0.925 FF5 0.6892 0.9117 0.6102
Carhart 0.8541 0.8541 0.9361 Carhart 0.6903 0.9321 0.6172
HXZ 0.8672 0.8672 0.9482 HXZ 0.7071 0.9756 0.6162
HXZCP 0.8467 0.8467 0.9344 HXZCP 0.6966 0.9326 0.6135
FF3+LIQ 0.8732 0.8732 0.9534 FF3+LIQ 0.6935 0.9551 0.6182
BAB 0.8821 0.8821 0.9609 BAB 0.6994 0.9699 0.6202
SY 0.8417 0.8417 0.9328 SY 0.6854 0.9154 0.6137
FF5+UMD 0.8276 0.8276 0.914 FF5+UMD 0.6796 0.8995 0.609
FFCPM+UMD 0.828 0.828 0.9147 FFCPM+UMD 0.682 0.9 0.6081
FF5CG+DCG 0.818 0.818 0.9045 FF5CG+DCG 0.6778 0.89 0.6079
FF5+HCG 0.8178 0.8178 0.9041 FF5HCG 0.68 0.895 0.6098
FF5+LIQINO 0.8278 0.8278 0.9143 FF5+LIQINO 0.6759 0.899 0.619
Panel C: HJ Multiple Comparison
FF5+UMD< (DCG/FFCPM+UMD/HCG/ FF5+UMD< (FFCPM+UMD/DCG/HCG/
LIQINO/FF5/SY /HX ZCP/Carhart LIQINO/FF5/SY /Carhart/HX ZCP
HX Z/FF3+LIQ/FF3/BAB/CAPM) FF3/FF3+LIQ/BAB/CAPM/HX Z)
H0 (p-value) 0.031 0.02 0.030 H0 (p-value) 0.048 0.018 0.0404
FF5+UMD< FF5+UMD<
FF5 (p-value) 0.054 0.054 0.23 FF5CP+UMD (p-value) 0.099 0.067 0.070
FF5CP+UMD (p-value) 0.127 0.127 0.138 SY (p-value) 0.138 0.085 0.092
SY (p-value) 0.131 0.131 0.234 FF5 (p-value) 0.132 0.98 0.18
HXZCP (p-value) 0.153 0.153 0.182 HXZCP (p-value) 0.096 0.123 0.212
Carhart (p-value) 0.124 0.124 0.212 Carhart (p-value) 0.109 0.14 0.162
HXZ (p-value) 0.138 0.138 0.124 FF3+LIQ (p-value) 0.145 0.157 0.181
FF3+LIQ (p-value) 0.131 0.131 0.236 FF3 (p-value) 0.137 0.164 0.1464
FF3 (p-value) 0.100 0.104 0.184 HXZ (p-value) 0.103 0.173 0.133
BAB (p-value) 0.131 0.131 0.222 BAB (p-value) 0.17 0.17 0.16
CAPM (p-value) 0.1532 0.1532 0.2272 CAPM (p-value) 0.198 0.198 0.139
FF5CG+DCG (p-value) 0.008 0.008 0.014 FF5CG+DCG (p-value) 0.01 0.012 0.017
FF5+HCG (p-value) 0.014 0.013 0.011 FF5+HCG (p-value) 0.014 0.017 0.015
FF5+LIQINO (p-value) 0.026 0.021 0.066 FF5+LIQINO (p-value) 0.022 0.023 0.029
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Table 5: Predictive regression of nontradable factors in US

Notes: the table presents the predictive regression estimation results of the nontradable
factors in US. Specifically, for each factor, we run univariate predictive regression of n-month
cumulative excess returns of test assets on the cumulative risk premium of the mimicking
factor portfolio of the inflation factor over the same periods. The test assets include 230
pooled portfolios: 25 portfolios sorted by size and book-to-market ratio, 30 industry portfolios,
100 portfolios sorted by operating profitability and investment, 25 portfolios sorted by size
and variance, 25 portfolios sorted by size and momentum, and 25 portfolios sorted by size
and beta. We consider prediction periods ranging from 1 quarter to 8 quarters. For a given
prediction period, we first run univariate predictive regression for each portfolio, and report
the average adjusted R-squared (%) across different portfolios in the last column. The
analysis is based on quarterly data from the first quarter of 1972 to the third quarter of
2011.

Quarter DCG HCG

1 0.57 0.40

2 −0.30 0.18

3 −0.52 0.13

4 −0.50 −0.01

5 −0.34 0.89

6 −0.40 0.14

7 −0.52 0.57

8 −0.52 1.32
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Table 6: Rank Test and Misspecification Identification in UK

Notes: the table presents the results of the ranks tests of the individual factors, the model misspecification tests, and rank tests of the models for
the UK stock market. The models are estimated using monthly returns from 1990 to 2017 on the 122 pooled portfolios. Panel A reports the rank
restriction test (w) and its p-value of the null that E[xt(1, f it)] has a column rank of one. Panel B reports the sample HJ distance (δ̂), the Lagrange
multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values for each model.

Panel A: Rank test for individual factors

Test MKT SMB HML CMA RMW RMWC RMW_ROE UMD HMLM MGMT PERF

w 141.0 169.6 173.8 138.1 159.1 161.8 165.1 155.4 172.6 153.3 158.3

p-val 0.103 0.002 0.001 0.137 0.012 0.008 0.005 0.019 0.001 0.025 0.013

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model delta p-val LM p-val w p-val

CAPM 0.829 0.000 135.640 0.156 141.0 0.203

FF3 0.826 0.000 135.020 0.135 142.3 0.072

FF5 0.826 0.000 135.160 0.108 117.2 0.476

Carhart 0.817 0.000 129.590 0.201 119.4 0.447

HXZ-FF 0.827 0.000 135.900 0.112 142.0 0.066

FF5CP 0.825 0.000 134.600 0.114 119.6 0.417

SY-FF 0.827 0.000 134.840 0.124 118.0 0.482

FF5+UMD 0.816 0.000 128.980 0.176 115.5 0.495

FF5CP+UMD 0.816 0.000 129.200 0.173 117.7 0.440

FF5CPM+UMD 0.818 0.000 130.090 0.159 117.6 0.440
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Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMB HML CMA RMW RMWC RMW_ROE MOM HMLM MGMT PERF

CAPM 0.57

FF3 0.92 -1.19 -1.00

-1.06 -0.73

-0.96

FF5 0.68 -1.11 -0.62 0.07 -0.20

0.69 -1.19 -0.77 -0.19

0.92 -1.19 -1.00

-1.06 -0.73

-0.96

Carhart 0.23 -1.48 -1.96 -1.93

-1.46 -1.90 -2.08

-1.51 -1.79

-1.29

HXZ-FF 0.39 -1.02 -0.56 0.12

0.38 -1.07 -0.64

-1.05 -0.84

-0.96

SY-FF 0.40 -1.09 -0.53 -0.16

0.56 -1.08 -0.51

0.66 -1.02

-0.96
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Table continued.

Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMB HML CMA RMW RMWC RMW_ROE MOM HMLM MGMT PERF

FF5+UMD 0.47 -1.29 -1.31 0.26 0.55 -1.97

0.39 -1.28 -1.51 0.59 -1.94

-1.28 -1.50 0.50 -2.02

-1.46 -1.90 -2.08

-1.51 -1.79

-1.29

FF5CP+UMD 0.34 -1.48 -1.67 0.33 -0.33 -1.86

0.36 -1.49 -1.69 0.33 -1.96

0.23 -1.48 -1.96 -1.93

-1.46 -1.90 -2.08

-1.51 -1.79

-1.29

FF5CPM+UMD 0.28 -1.41 0.16 -0.29 -1.92 -1.38

0.23 -1.41 -0.29 -1.98 -1.54

-1.38 -0.30 -2.07 -1.50

-1.39 -2.06 -1.61

-1.76 -1.29

-1.29
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Panel D: Model selection procedure using standard errors under model misspecification

Model MKT SMB HML CMA RMW RMWC RMW_ROE MOM HMLM MGMT PERF

CAPM 0.47

FF3 0.74 -1.15 -0.92

-1.04 -0.69

-0.94

FF5 0.51 -1.07 -0.53 0.06 -0.16

0.51 -1.15 -0.66 -0.15

0.74 -1.15 -0.92

-1.04 -0.69

-0.94

Carhart 0.19 -1.42 -1.67 -1.67

-1.40 -1.65 -1.78

-1.34 -1.57

-1.19

HXZ-FF 0.29 -1.00 -0.44 0.10

0.30 -1.05 -0.52

-1.03 -0.72

-0.94

SY-FF 0.30 -1.07 -0.47 -0.13

0.46 -1.06 -0.45

0.55 -1.00

-0.94
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Table continued.

Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMB HML CMA RMW RMWC RMW_ROE MOM HMLM MGMT PERF

FF5+UMD 0.35 -1.25 -1.11 0.21 0.47 -1.69

0.31 -1.24 -1.32 0.50 -1.67

-1.23 -1.31 0.43 -1.73

-1.40 -1.65 -1.78

-1.34 -1.57

-1.19

FF5CP+UMD 0.25 -1.41 -1.38 0.26 -0.26 -1.61

0.27 -1.43 -1.40 0.26 -1.70

0.19 -1.42 -1.67 -1.67

-1.40 -1.65 -1.78

-1.34 -1.57

-1.19

FF5CPM+UMD 0.21 -1.34 0.13 -0.24 -1.66 -1.16

0.19 -1.34 -0.23 -1.71 -1.29

-1.32 -0.24 -1.77 -1.26

-1.34 -1.76 -1.43

-1.54 -1.16

-1.19
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Table 7: HJ Distance and Large Cross-sectional Portfolios in UK

Notes: the table represents the results of tradable factors SDF comparison tests using both
gross returns and excess returns on the 122 pooled portfolios in UK, including 25 portfo-
lios sorted by size and book-to-market ratio, 25 portfolios sorted by size and momentum, 10
portfolios sorted by size, 10 portfolios sorted by book-to-market ratio, 10 portfolios sorted by
momentum, 25 portfolios sorted by standard deviation, and 27 portfolios sorted by size, book-
to-market ratio, and momentum. Panel A reports the HJ distance

(
HJO

)
, the modified HJ

distance
(
HJM

)
and the constrained HJ distance

(
HJC

)
measures. Panel B presents the

results of the two formal tests of multiple model comparison. The null hypothesis in the first
test is that the chosen model has a HJO , HJM and HJC measure that is less than that of
any of the alternative models. The dataset ranges from January 1990 to December 2017.

Pooled Portfolios Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CAPM 0.8293 0.8293 0.8949 CAPM 0.6846 0.9388 0.6572

FF3 0.8257 0.8257 0.8913 FF3 0.6846 0.9388 0.6521

FF5 0.8256 0.8256 0.8912 FF5 0.6891 0.9443 0.6497

Carhart 0.8169 0.8169 0.8837 Carhart 0.6872 0.9347 0.6507

HXZ-FF 0.8266 0.8266 0.8926 HXZ-FF 0.6896 0.9432 0.6512

FF5CP 0.8246 0.8246 0.8906 FF5CP 0.6929 0.9512 0.6487

SY-FF 0.8267 0.8267 0.8911 SY-FF 0.6913 0.9476 0.6540

FF5+UMD 0.8161 0.8161 0.8825 FF5+UMD 0.6870 0.9316 0.6469

FF5CP+UMD 0.8165 0.8165 0.8830 FF5CP+UMD 0.6897 0.9361 0.6466

FF5CPM+UMD 0.8182 0.8182 0.8837 FF5CPM+UMD 0.6906 0.9382 0.6450

Panel B: HJ Multiple Comparison

FF5+UMD<(FF5CP+UMD/FF5CPM+UMD/FF5/SY-FF FF5+UMD<(FF5CP+UMD/ FF5CPM+UMD/FF5/SY-FF

Carhart/HX Z−FF/FF3/CAPM) Carhart/HX Z−FF/FF3/CAPM)

H0 (p-value) 0.257 0.278 H0 (p-value) 0.267 0.208

45



Table 8: Mimicking Non-traded Factors and HJ Distance in UK

Notes: the table presents the rank test results of the non-tradable factors on the 95
pooled portfolios in UK, including 25 portfolios sorted by size and book-to-market ratio, 25
portfolios sorted by size and momentum, 10 portfolios sorted by size, 10 portfolios sorted
by book-to-market ratio, 10 portfolios sorted by momentum, and 25 portfolios sorted by
standard deviation. Non-tradable mimicking portfolio are regressed by all the traded-factor
returns by using adjusted R2 and the F test. Panel A reports the rank restriction test
(w) and its p-value of the null that E[xt(1, f it)] has a column rank of one. We consider 6
nontradable factors in total. Yield is the yield level factor; MS is the maturity spread; CPI
and PPI are year-over-year growth of the consumer price index and producer price index,
respectively, and INF is inflation. For the macro factors, as monthly data are available,
we estimate the factor risk premiums and conduct the rank test using monthly data from
January 1998 to December 2017.

Panel A: Rank test for individual factors

Test Yield MS CPI PPI INF

w 99.4 103.1 102.7 95.7 98.2

p-val 0.332 0.244 0.253 0.433 0.362

Panel B: HJ Measures

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

CAPM 0.8889 0.8889 0.9749 CAPM 0.7160 1.0256 0.7681

FF3 0.8815 0.8815 0.9708 FF3 0.7167 1.0274 0.7621

FF5 0.8773 0.8773 0.9674 FF5 0.7308 1.0621 0.7600

Carhart 0.8809 0.8809 0.9703 Carhart 0.7244 1.0439 0.7615

HXZ-FF 0.8841 0.8841 0.9716 HXZ-FF 0.7318 1.0611 0.7633

FF5CP 0.8773 0.8773 0.9683 FF5CP 0.7308 1.0633 0.0.7595

SY-FF 0.8844 0.8844 0.9725 SY-FF 0.7251 1.0458 0.7617

FF5+UMD 0.8754 0.8754 0.9667 FF5+UMD 0.7313 1.0597 0.7597

FF5CP+UMD 0.8756 0.8756 0.9673 FF5CP+UMD 0.7317 1.0612 0.7592

FF5CPM+UMD 0.8737 0.8737 0.9653 FF5CPM+UMD 0.7323 1.0622 0.7557

FF5+Yield 0.8772 0.8772 0.9669 FF5+Yield 0.7315 1.0640 0.7594

FF5+INF 0.8728 0.8728 0.9611 FF5+INF 0.7312 1.0519 0.7592

Panel C: HJ Multiple Comparison

FF5+INF<(FF5+Yield/FF5+UMD/FF5/ FF5+INF<(FF5+Yield/FF5+UMD/FF5/

FF5CPM+UMD/FF5CP +UMD/FF3/ FF5CPM+UMD/FF5CP +UMD/FF3/

Carhart/HX Z−FF/SY −FF/CAPM) Carhart/HX Z−FF/SY −FF/CAPM)

H0 (p-value) 0.2880 0.2810 H0 (p-value) 0.2170 0.1620
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Table 9: Predictive regression of inflation factor in UK

Notes: the table presents the predictive regression estimation results of the yield level
(Yield) and inflation (INF) factors in UK. Specifically, for each factor, we run univariate
predictive regression of n-month cumulative excess returns of test assets on the cumulative
risk premium of the mimicking factor portfolio of the inflation factor over the same periods.
The test assets include the 95 pooled portfolios in UK, including 25 portfolios sorted by size
and book-to-market ratio, 25 portfolios sorted by size and momentum, 10 portfolios sorted by
size, 10 portfolios sorted by book-to-market ratio, 10 portfolios sorted by momentum, and 25
portfolios sorted by standard deviation. We consider prediction periods ranging from 1 month
to 12 months. For a given prediction period, we first run univariate predictive regression for
each portfolio, and report the average adjusted R-squared (%) across different portfolios in
the last column. The analysis is based on monthly data from January 1998 to December 2017.

Month Yield INF

1 7.50 12.31

2 4.77 6.82

3 4.22 5.20

4 4.88 6.02

5 4.44 5.07

6 4.24 4.42

7 5.22 3.26

8 3.29 1.86

9 3.16 1.53

10 3.04 1.38

11 2.51 0.94

12 1.72 0.72
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Table 10: Rank Test and Misspecification Identification in China

Notes: the table presents the results of the ranks tests of the individual factors, the model misspecification tests, and rank tests of the models for
the China’s stock market. The models are estimated using monthly returns from 2000 to 2018 on the 83 pooled portfolios. Panel A reports the rank
restriction test (w) and its p-value of the null that E[xt(1, f it)] has a column rank of one. Panel B reports the sample HJ distance (δ̂), the Lagrange
multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values for each model. Panels C and D show t-tests of the model
selection procedures based on the standard errors under correct model specification and model misspecification, respectively. The boldface denotes
the 5% significance level.

Panel A: Rank test for individual factors

Test MKT SMB HML SMBSY CMA RMW RMWC ME IA ROE MOM UMD HMLM BAB MGMT PERF

w 111.9 116.3 111.2 116.6 123.1 116.9 104.9 121.3 111.8 109.3 113.2 115.4 118.8 101.3 106.6 124.2

p-val 0.016 0.008 0.018 0.007 0.002 0.007 0.045 0.003 0.016 0.024 0.013 0.009 0.005 0.073 0.036 0.002

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model delta p-val LM p-val w p-val

CAPM 1.038 0.000 119.700 0.003 111.9 0.016

FF3 1.029 0.000 118.750 0.003 101.8 0.051

BAB 1.032 0.000 123.290 0.001 95.3 0.132

Carhart 1.014 0.000 119.090 0.002 86.1 0.274

HXZ 1.013 0.000 129.420 0.000 97.5 0.077

HXZCP 1.011 0.000 125.200 0.001 107.0 0.020

SY 1.024 0.000 127.760 0.000 89.4 0.198

FF5 0.952 0.000 109.950 0.008 82.3 0.347

FF5+UMD 0.954 0.000 107.170 0.013 92.7 0.122

FF5CP+UMD 0.951 0.000 107.020 0.011 102.3 0.029
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FF5CPM+UMD 0.957 0.000 113.770 0.003 92.9 0.105

Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM BAB MGMT PERF

CAPM -1.88

FF3 -1.09 -1.40 -1.82

-1.74 -2.13

-1.73

BAB -1.91 -1.78

-1.88

FF5 -0.90 -4.50 -4.51 1.21 -2.75

-4.48 -4.99 1.64 -2.40

-4.84 -4.73 -4.69

Carhart -1.18 -2.04 -2.25 -2.55

-2.35 -2.51 -2.39

-1.82 -1.34

-1.73

HXZ -2.49 -2.28 0.25 -2.69

-2.51 -2.53 -2.99

HXZCP -2.66 -2.60 -2.45 0.46

-2.74 -3.32 -2.65

SY -2.41 -1.55 -0.77 -2.53

-2.24 -1.35 -2.37

-2.37 -2.10
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Table continued.

Panel C: Model selection procedure using standard errors under correct model specification

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM BAB MGMT PERF

-1.88

FF5+UMD -0.77 -4.19 -4.48 1.41 -1.91 -1.05

-4.15 -4.91 1.80 -1.60 -1.14

-4.48 -4.99 1.64 -2.40

-4.84 -4.73 -4.69

FF5CP+UMD -0.76 -3.98 -4.22 3.28 -1.76 -1.07

-3.98 -4.64 3.64 -1.56 -1.19

-4.25 -4.54 3.77 -2.41

-3.99 -4.30 4.55

FF5CPM+UMD -1.21 -4.21 3.08 -2.35 -2.45 -4.39

-4.18 3.47 -2.02 -2.77 -4.77

-3.96 3.77 -3.68 -4.64

Panel D: Model selection procedure using model misspecification-robust standard errors

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM BAB MGMT PERF

CAPM -1.61

FF3 -0.95 -1.36 -1.84

-1.74 -2.13

-1.73
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BAB -1.62 -1.36

-1.61

FF5 -0.80 -4.39 -4.23 0.97 -2.44

-4.36 -4.73 1.34 -2.18

-4.74 -4.67 -4.57

Carhart -1.04 -1.89 -2.15 -1.95

-2.18 -2.35 -1.83

-1.76 -1.09

-1.73

HXZ -1.94 -2.02 0.21 -2.19

-1.97 -2.41 -2.59

HXZCP -2.17 -2.12 -2.17 0.41

-2.24 -2.82 -2.45

SY -1.96 -1.48 -0.61 -2.13

-1.84 -1.34 -2.23

-1.99 -1.94

-1.61

FF5+UMD -0.67 -4.10 -4.12 1.13 -1.69 -0.88

-4.06 -4.61 1.49 -1.47 -0.97

-4.36 -4.73 1.34 -2.18

-4.74 -4.67 -4.57

FF5CP+UMD -0.65 -3.66 -3.95 2.85 -1.50 -0.92

-3.67 -4.35 3.14 -1.37 -1.03

-3.91 -4.24 3.21 -2.08
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Table continued.

Panel D: Model selection procedure using model misspecification-robust standard errors

Model MKT SMBC HML SMBSY CMA RMWC ME IA ROE MOM UMD HMLM BAB MGMT PERF

-3.86 -3.96 3.87

FF5CPM+UMD -1.01 -3.76 2.70 -1.95 -2.07 -3.97

-3.76 2.99 -1.73 -2.35 -4.30

-3.80 3.24 -3.08 -4.21
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Table 11: HJ Distance and Large Cross-sectional Portfolios in China

Notes: the table represents the results of tradable factors SDF comparison tests using both
gross returns and excess returns on the 83 pooled portfolios in China, including 25 portfo-
lios sorted by size and book-to-market ratio, 10 portfolios sorted by size, 10 portfolios sorted
by book-to-market ratio, 10 portfolios sorted by operating profitability, and 28 industry port-
folios. Panel A reports the HJ distance

(
HJO

)
, the modified HJ distance

(
HJM

)
and the

constrained HJ distance
(
HJC

)
measures. Panel B presents the results of the two formal

tests of multiple model comparison. The null hypothesis in the first test is that the chosen
model has a HJO , HJM and HJC measure that is less than that of any of the alternative
models.
Pooled Portfolios Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CAPM 1.0082 1.0082 1.1822 CAPM 0.7111 1.0115 0.8412

FF3 0.9970 0.9970 1.1723 FF3 0.7098 1.0067 0.8340

FF5 0.9305 0.9305 1.1218 FF5 0.6911 0.9444 0.8149

Carhart 0.9857 0.9857 1.1640 Carhart 0.7072 0.9978 0.8328

HXZ 0.9905 0.9905 1.1669 HXZ 0.7333 1.0475 0.8389

HXZCP 0.9865 0.9865 1.1700 HXZCP 0.7227 1.0264 0.8375

BAB 0.9994 0.9994 1.1795 BAB 0.7136 1.0169 0.8411

SY 0.9958 0.9958 1.1703 SY 0.7171 1.0235 0.8379

FF5+UMD 0.9263 0.9263 1.1203 FF5+UMD 0.6901 0.9422 0.8148

FF5CP+UMD 0.9279 0.9279 1.1318 FF5CP+UMD 0.6897 0.9425 0.8176

FF5CPM+UMD 0.9366 0.9366 1.1396 FF5CPM+UMD 0.7001 0.9575 0.8253

Panel B: HJ Multiple Comparison

FF5+UMD<(FF5CP+UMD/FF5CPM+UMD/FF5/SY FF5+UMD<(FF5CP+UMD/ FF5CPM+UMD/FF5/SY

Carhart/HX Z/HX ZCP/FF3/BAB/CAPM) Carhart/HX Z/HX ZCP/FF3/BAB/CAPM)

H0 (p-value) 0.257 0.240 H0 (p-value) 0.321 0.282
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Table 12: Mimicking Non-traded Factors and HJ Distance in China

Notes: the table presents the rank test results of the non-tradable factors on the pooled 53
risk portfolios in China, including 25 portfolios sorted by size and book-to-market ratio, and
28 industry portfolios. Non-tradable mimicking portfolio are regressed by all the traded-
factor returns by using adjusted R2 and the F test. Panel A reports the rank restriction test
(w) and its p-value of the null that E[xt(1, f it)] has a column rank of one. We consider 6
nontradable factors in total. CG represents the quarter-over-quarter consumption growth,
and WG is the year-over-year growth of the quarterly total wage of urban populations, scaled
by the quarterly GDP (gross domestic production) of the same quarter. Yield is the yield
level factor; MS and CS are the maturity spread and credit spread, respectively, while INF
is inflation. The details of the computation of these macro factors are given in Appendix
A.6. For CG and WG, as there are only quarterly data available, we estimate the factor
risk premiums and conduct the rank test based on quarterly data from 2003 to 2018. For
the other four macro factors, as monthly data are available, we estimate the factor risk
premiums and conduct the rank test using monthly data from March 2006 to December 2018.

Panel A: Rank test for individual factors

Test CG WG Yield MS CS INF

w 51.8 49.5 71.8 68.6 68.6 71.5

p-val 0.483 0.572 0.036 0.062 0.059 0.038

Panel B: HJ Measures

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

CAPM 0.8788 0.8788 0.9946 CAPM 0.6646 0.8894 0.4601

FF3 0.8693 0.8693 0.9882 FF3 0.6634 0.8861 0.4562

FF5 0.7919 0.7919 0.9331 FF5 0.6271 0.8010 0.4465

Carhart 0.8500 0.8500 0.9683 Carhart 0.6537 0.8634 0.4500

HXZ 0.8518 0.8518 0.9793 HXZ 0.6704 0.8822 0.4579

HXZCP 0.8629 0.8629 0.9892 HXZCP 0.6708 0.8956 0.4582

BAB 0.8719 0.8719 0.9883 BAB 0.6671 0.8922 0.4597

SY 0.8553 0.8553 0.9811 SY 0.6580 0.8711 0.4594

FF5+UMD 0.7870 0.7870 0.9280 FF5+UMD 0.6253 0.7976 0.4451

FF5CP+UMD 0.8352 0.8352 0.9579 FF5CP+UMD 0.6543 0.8612 0.4479

FF5CPM+UMD 0.8243 0.8243 0.9538 FF5CPM+UMD 0.6569 0.8576 0.4468

FF5+Yield 0.7758 0.7758 0.9259 FF5+Yield 0.6700 0.8966 0.4459

FF5+INF 0.7878 0.7878 0.9315 FF5+INF 0.7047 0.9252 0.4455

Panel C: HJ Multiple Comparison

FF5+Yield<(FF5+INF/FF+5UMD/FF5CP+UMD/FF5CPM+UMD/ FF5+Yield<(FF5+INF/FF5+UMD/FF5CP+UMD/FF5CPM+UMD/

FF5/SY /Carhart/HX Z/HX ZCP/FF3/BAB/CAPM) FF5/SY /Carhart/HX Z/HX ZCP/FF3/BAB/CAPM)

H0 (p-value) 0.3060 0.2920 H0 (p-value) 0.2750 0.3430
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Table 13: Predictive regression of nontradable factors in China

Notes: the table presents the predictive regression estimation results of the yield level
(Yield) and inflation (INF) factors in China. Specifically, for each factor, we run univariate
predictive regression of n-month cumulative excess returns of test assets on the cumulative
risk premium of the mimicking factor portfolio of the inflation factor over the same periods.
The test assets include the 53 risk portfolios in China, i.e., 25 portfolios sorted by size and
book-to-market ratio, and 28 industry portfolios. We consider prediction periods ranging
from 1 month to 12 months. For a given prediction period, we first run univariate predictive
regression for each portfolio, and report the average adjusted R-squared (%) across different
portfolios in the last column. The analysis is based on monthly data from March 2006 to
December 2018.

Month Yield INF

1 29.17 35.05

2 16.01 29.48

3 16.45 23.73

4 11.42 18.80

5 12.94 15.75

6 9.74 15.04

7 9.87 11.26

8 11.47 11.68

9 9.73 10.00

10 7.92 8.33

11 7.78 7.43

12 9.67 7.01
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