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Uncertainty Quantification for
Fatigue Life of Offshore Wind
Turbine Structure
This study aims to address the question: can the structural reliability of an offshore wind
turbine (OWT) under fatigue loading conditions be predicted more consistently? To
respond to that question this study addresses the following specific aims: (1) to obtain a
systematic approach that takes into consideration the amount of information available
for the uncertainty modeling of the model input parameters and (2) to determine the
impact of the most sensitive input parameters on the structural reliability of the OWT
through a surrogate model. First, a coupled model to determine the fatigue life of the sup-
port structure considering the soil-structure interaction under 15 different loading condi-
tions was developed. Second, a sensitivity scheme using two global analyses was
developed to consistently establish the most and least important input parameters of the
model. Third, systematic uncertainty quantification (UQ) scheme was employed to model
the uncertainties of model input parameters based on their available—data-driven and
physics-informed—information. Finally, the impact of the proposed UQ framework on
the OWT structural reliability was evaluated through the estimation of the probability of
failure of the structure based on the fatigue limit state design criterion. The results show
high sensitivity for the wind speed and moderate sensitivity for parameters usually con-
sidered as deterministic values in design standards. Additionally, it is shown that apply-
ing systematic UQ not only produces a more efficient and better approximation of the
fatigue life under uncertainty, but also a more accurate estimation of the structural reli-
ability of offshore wind turbine’s structure during conceptual design. Consequently, more
reliable, and robust estimations of the structural designs for large offshore wind turbines
with limited information may be achieved during the early stages of design.
[DOI: 10.1115/1.4051162]
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1 Introduction

Offshore wind energy is steadily growing due to (1) offshore
wind speed is faster and less turbulent than onshore wind speed,
(2) offshore wind farms have less space limitation and transport
issues associated with the construction and erection of taller tur-
bines in contrast to onshore farms, and (3) offshore wind power is
a clean source of energy that contributes to reducing carbon emis-
sions [1,2]. Nevertheless, the structure of offshore wind turbines
(OWTs), i.e., tower and foundation, is highly sensitive to dynamic
amplification and fatigue damage, as the excitation frequencies
resulting from wind and wave loads approach the natural fre-
quency of the structure [3–5]. Whilst Fatigue damage calculations
involve several parameters, and also several combinations of envi-
ronmental conditions to account for realistic operation scenarios,
it is also paramount to account for the uncertainty in the models
and parameters to ensure a service life of at least 20 years [4,6].
Albeit accounting for the variability of certain parameters, such as
wind speed and wave height, is a common practice in the industry,
other parameters are normally considered as constants, even
though data has suggested that they may vary significantly [7,8].
Therefore, it is necessary to analyze the importance of those varia-
bles in terms of the structural response and reliability of the OWT.

Sensitivity analysis (SA) has received a lot of attention in the
field of offshore wind energy due to the need to identify the most
significant parameters that affect the design of support structures.
However, identifying such parameters is a rather challenging task

since OWT structural design involves several elements: design
criteria, complex nonlinear models, and a large number of input-
model parameters, which altogether add a significant amount of
uncertainty to the sensitivity results [9].

To account for the model uncertainties and nonlinearities in the
sensitivity results, researchers across several disciplines suggest
the use of global sensitivity analysis (GSA) [10]. GSA aims to
assess the most relevant input-model parameters by analyzing the
individual and combined effects that the uncertainty of each input
parameter has on the total variance of the response. As a result, a
complete exploration of design space considering interaction
effects among input-model parameters can be analyzed giving
more robust sensitivity indices [11]. Given the benefits of GSA,
various authors have attempted to apply GSA in the field of OWT
structural design. Nevertheless, due to the inconsistency in the
selection of the initial set of input-model parameters, and the lack
of clear convergence metrics on the results, no substantial conclu-
sions regarding parameters that should be either discarded or
maintained (which is also known as model reduction and prioriti-
zation) were observed [9,12]. To overcome this situation, the utili-
zation of more than one GSA method has been proposed. For
example, two efficient methods such as the Morris approach also
called the elementary effects (EE) approach and rank regression
was applied and showed good agreement in the results [10]. The
application of the aforementioned methods, however, is limited
due to their lack of robustness to identify the most important
parameters, thereby reducing their utilization for model reduction,
before using more sophisticated methods [11]. Analysis of var-
iance approaches, i.e., Sobol indices, have been consistently
applied in models with noncorrelated inputs, and are usually used
as a benchmark for testing other sensitivity approaches [10]. That
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is explained by their capacity to accurately identify (1) nonin-
fluential and influential parameters and (2) their interaction
effects. Despite that, their accuracy heavily relies on the number
of simulations performed to achieve convergence, thereby making
them computationally expensive and prohibited for complex mod-
els with a large number of input parameters [13]. To improve the
efficiency of the Sobol’ approach, new sampling techniques and
metamodels (surrogate models) have been suggested; the use of
metamodels, however, paired with Monte Carlo (MC) simulation
has shown more accurate results than their sampling counterparts
[10]. Although metamodels have been widely used for uncertainty
quantification (UQ) in OWT structures [14], these models coupled
with Sobol’ GSA have not been applied to support the design of
OWT under fatigue loads yet. Hence, there is a need to develop
sensitivity schemes that improve the efficiency and decision-
making of current sensitivity analyses in the design under fatigue.

As far as reliability is concerned, uncertainties in the loading
conditions, soil, and material properties highly influence the
fatigue response, and thus the OWT reliability predictions. In
most cases, ensuring a certain reliability value has been shown to
drive the cost of the structure to around 30% of the entire OWT
because conservative design approaches are often employed to
make up for the model input-parameters uncertainties in the
model response [5]. Several probabilistic analyses have been con-
ducted using simplified methods to account for model input-
parameters uncertainties in a more sophisticated fashion [1,6,15].
However, those analyses have failed to systematically account for
uncertainties, leading eventually to underestimations or overesti-
mations of the reliability [16].

The quality of probabilistic predictions, constructed with a sto-
chastic model, is closely linked to its physical consistency, as well
as its reliability with the known information about the system of
interest. Low-quality probabilistic forecasts can be a strong indi-
cation that the used probabilistic model is physically inconsis-
tent, either because it does not take into account known
information about the system of interest, or possibly because it
does not respect the basic physics of the problem. Therefore,
there is still a need to develop a robust UQ scheme to assess the
uncertainties in the main input parameters of the OWT models,
which go in the direction of constructing probabilistic models
which are more consistent with the physical constraints of the
input parameters.

Based on the above-mentioned issues regarding the selection of
the input parameters, uncertainty modeling, and accurate reliabil-
ity estimation, this study responds to the following question: can
the structural reliability of an OWT under fatigue loading be pre-
dicted more consistently? The specific aims to address this ques-
tion are: (1) to obtain a systematic approach that takes into
consideration the amount of information available for the uncer-
tainty modeling of the model input parameters and (2) to deter-
mine the impact of the most sensitive input parameters on the
structural reliability of the OWT through a surrogate model. To
achieve the two specific aims, a coupled model, which combines
the simulation codes FAST and TurbSim, developed by the
National Renewable Energy Laboratories (NREL), the Rainflow
counting (RFC) technique, and the Palmgren-Miner rule, was
developed to determine the fatigue life of the OWT structure. The
probability density functions (PDFs) were determined by develop-
ing a systematic UQ scheme. The scheme models the uncertainties
of the input parameters based on the type of information available
at the moment of the analysis: (1) physics-based information and
(2) data-driven information. The most and less sensitive input
parameters of the OWT design under fatigue loading were estab-
lished by conducting a global sensitivity analysis. Finally, the pre-
diction of the structural reliability using a probabilistic model to
establish the damage probability distribution under 30 years of
service. The rest of the paper is organized as follows: methodol-
ogy, results, and discussions of the main findings of this work, and
finally, conclusions and recommendations for future research on
this topic.

2 Methodology

In this study, a deterministic model and a UQ framework were
developed to investigate the potential inconsistencies in the esti-
mation of the reliability of a 5 MW OWT [17] with a monopile
foundation under fatigue loading conditions. The overarching
methodology is depicted in Fig. 1. The rest of this section is
divided as follows: deterministic modeling, sensitivity analysis,
probabilistic modeling, and specification of the analysis.

2.1 Deterministic Modeling. The deterministic model used
in this paper is a combination of two models: the first model aims
to establish the main characteristics of a monopile foundation
accounting for the structural, geotechnical, and environmental
complexities with a limited amount of data [18,19]. The second is
the combination of FAST and TurbSim codes developed by
NREL that aims to determine the dynamic response of a 5 MW
OWT. The main benefits of using FAST and TurbSim are their
capabilities: (1) to simulate realistic random turbulent time series;
(2) to account for the rotational sampling effect, and the geometry
of the blades by using the corrected blade momentum theory; and
(3) to account for the effects of turbine control mechanisms in the
below-rated and above-rated power conditions by using two inde-
pendent control systems (i.e., a generator-torque controller and a
full-span rotor-collective blade-pitch controller) [20]. A schematic
diagram of the different submodels, i.e., environmental model,
loading model, and fatigue model, that comprise the simplified
model developed to compute the fatigue damage of the structure,
is illustrated in Fig. 2. The details of each model and parameters
used in each submodel are introduced in the following Secs. 2.1.1
and 2.1.2.

2.1.1 Environmental and Loading Models. In this section, the
methods to simulate random time series for the turbulent wind
speed, uH(t), and wave surface elevation, g(t), from their respec-
tive power spectral densities are explained. On the one hand,
TurbSim was used to generate coherent stochastic turbulent 10-
minute time series that represent the full-field flow around the tur-
bine rotor. The JONSWAP spectrum, Sg(t), on the other hand, was
used for modeling the stochastic behavior of the waves
[19,21,22].

After the stochastic time series were determined, they served as
inputs to the loading model, wherein the loads exerted over the
structure were assessed. The wind loads, i.e., force and moment,
FU (t) and MU (t), at the tower base were determined through the
FAST simulations, which not only accounts for the effects of the
control system and rotational sampling but also the geometric
effects of the blades in the structural response of the turbine. The
hydrodynamic load, FW(t), which is the force exerted on the pile

Fig. 1 Schematic representation of the general methodology
of analysis employed to access the OWT system

040901-2 / Vol. 7, DECEMBER 2021 Transactions of the ASME



due to the action of the drag and inertia of the waves, was mod-
eled as a point load at the mean sea level (MSL), using Morison’s
equation

FwðtÞ ¼ FwiðtÞ þ FwdðtÞ (1)

Fwi tð Þ ¼
ðg zð Þ

%dw
0:25qswcmpDP

2 €W z; tð Þ dz (2)

Fwd tð Þ ¼
ðg zð Þ

%dw
0:5qswcdDPj _W z; tð Þj _W z; tð Þdz (3)

wherein Fwi and Fwd are inertial and drag components of the wave
loads, _W z; tð Þ& €Wðz; tÞ, are the wave speed and acceleration com-
puted assuming the Airy wave theory [4–6]. A dynamic amplifica-
tion factor, DAF, was multiplied to hydrodynamic load and its
value was estimated as [22]

DAF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% f0Þ2 þ ð2ff0Þ2

q (4)

where the parameter n is the total damping which combines all
forms of damping (i.e., aerodynamic, hydrodynamic, and struc-
tural), and f0 is the natural frequency of the structure. The natural
frequency of the structure was determined based on the simplified
dynamic soil-structure interaction model, which models the foun-
dation stiffness as a set of nonlinear springs at the mudline based
on information about the pile parameters, DP and tP, and Young
modulus of the soil, ESO [18,19].

The mudline bending moment was calculated as

Msb tð Þ ¼ FU tð Þ þMUðtÞ þ Fw tð Þdw (5)

where FU (t) and MU (t) are the resulting force and moment gener-
ated by the wind loads at the tower base calculated using FAST
and TurbSim, dHUB is the hub height, and dW is the height from
the mudline to the MSL (see Fig. 3).

It is important to mention that the mudline bending moment
was determined assuming that the wind-wave misalignment either
from the onshore or offshore winds is negligible base on the data

provided for the area of Blyth—that is from the environmental
conditions for the analysis were taken [23]. Despite the low proba-
bilities of wind-wave misalignment for the area used in this study,
this assumption may have significant impacts on the structural
response of the OWT, in particular for large OWT [24]. As a
result, albeit in this study the misalignment happened to be negli-
gible, future studies may consider other locations to study this
phenomenon in more detail. Finally, the main characteristics of a
5 MW OWT with a monopile foundation, such as geometrical
properties, were summarized in Table 1 [17].

2.1.2 Fatigue Model. The time-variant bending stress at the
mudline is computed considering the following expression [25]:

Sb tð Þ ¼ cMsbðtÞ
ICM

(6)

in which c is the horizontal distance from the neutral axis of the
pile to point of analysis, ICM is the moment of inertia around the
direction perpendicular to the neutral axis. While frequency
domain and time domain methods are suitable to determine the
midrange stresses, the time domain is preferable because it is pro-
ven to be more accurate than its frequency counterpart; conse-
quently, the RFC method is applied in this study [4]. The RFC
transforms the time-variant stress input into several blocks of
loadings, DSi, also termed midrange stress, and counts the number
of cycles, ni, that every block was applied to the structure. There-
after, the total number of cycles to failure of every individual
loading block, Ni, can be found using the bilinear S–N curve class
E for circular welded joints [26]

Ni ¼ 10
log að Þ%mlog DSi SCFð Þð Þ tp

tref

# $k

(7)

wherein log(a) is the intercept with the log(N) axis, tp is the pile
thickness, tref is reference thickness and SCF is the stress intensity
factor. The cumulative damage due to the combination of all the
stress conditions DSi can be assessed using the Palmgren–Miner
rule [4,21,26]. In which the total life of the structure is expressed
in terms of the damage, D, that is calculated as the ratio between
ni and Ni, so when D is equal to one the structure fails

D ¼
XEs

i¼1

ni

Ni
(8)

Finally, the 15-environmental states, ES, considered for
fatigue life calculations extracted from the joint probability distri-
bution of HS, TZ, and U10 in the area of Blyth [25] are shown in
Table 2.

2.2 Sensitivity Analysis. In this work, a sensitivity scheme,
combining three sensitivity analyses, i.e., two-dimensional (2D)
scatter plots, EE, and Sobol’ indices, was developed to establish
the least and most influential model input parameters (see Fig. 4).
The 2D scatter plot displays the model response in terms of one of
their input parameters to observe patterns that reveal a certain
degree of correlation between the two variables. In this work, 2D
scatter plots were used to visually identify the sensitive factors in
the design based on potential shapes or patterns on the plotted
data [11]. EE method, in contrast, aims to provide information
about: (1) the influence of a certain input parameter in the
response and (2) other indirect influences that the parameter may
have in the model response due to nonlinear effects and interac-
tion with other input parameters [10]. Scatter plots and EE can be
classified as screening methods and are usually used simultane-
ously due to their efficiency, and simplicity to identify the less-
influential parameters when complex models with a large number
of parameters are analyzed. Nevertheless, they face some short-
comings associated with local sensitivity analysis, which under-
mine their capacity to identify the most influential factors [10].

Fig. 2 Schematic representation of the deterministic model for
the OWT system
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To overcome that situation, analysis of variance analyses are
normally employed, in which the Sobol’ approach is one of the
most used, and thereby considered as a benchmark for comparing
other sensitivity approaches [10]. In this approach, the sensitivity
indices are determined based on the variance decomposition of
the output samples regarding the contribution of the inputs. There
are two main outputs from the Sobol’ sensitivity scheme: the first-
order and the total Sobol’ indices, respectively. The first-order
index accounts for the influence of an individual random variable

(RV) on the total variance of the system, whereas the total Sobol’
indices account for the higher-order interactions between all the
input parameters [11]. In this study, the information extracted
from the total effects is usually used for model reduction along-
side the screening methods. The information of the first effects
and the variations between the first and total indices, instead, is
used for model prioritization, which aims to identify the most
influential parameters to draw suggestions of how their uncer-
tainty can be reduced to minimize the variability of the
response [11].

Table 1 Main characteristics of the 5 MW OWT

Parameter Value

Grout thickness 0.05 m
Transition piece thickness 0.1 m
Soil Poisson’s ratio 0.2
n 6%
Dt 3.87 m
Db 6 m
dHUB 90 m
dw 9.3 m
Rt 63 m
DP 6 m
log(a) (11.7–11.3)
m (3–5)
tp 67 mm
k 0.25
SCF 1.13
Rated speed 11.4 m/s
Rotational speed 12.1 RPM
Cut-in speed 3 m/s
Cutout speed 25 m/s

Table 2 Environmental states (ES)

State HS(m) TZ (s) U10 (m/s) Pi(%)

1 0.25 2.0 5.0 20.47
2 0.25 5.2 4.9 3.73
3 0.25 4.0 11.8 21.76
4 0.25 5.6 15.7 3.85
5 0.25 5.8 20.6 1.00
6 0.75 3.4 6.7 8.62
7 0.75 5.3 5.8 13.25
8 0.75 5.5 11.7 5.58
9 1.25 5.2 8.8 10.66
10 1.25 8.0 8.5 1.25
11 1.75 6.0 9.9 4.83
12 1.75 6.7 16.2 0.55
13 2.4 6.8 12.8 3.54
14 3.4 7.8 14.5 0.77
15 3.3 9.7 18.7 0.14

Fig. 3 Schematic of the OWT loads: (a) turbine and monopile and (b) monopile
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2.3 Uncertainty Quantification. The Uncertainty quantifica-
tion scheme presented in this work is divided into three steps:
probabilistic modeling, uncertainty propagation, and statistical
certification (see Fig. 5). In the probabilistic modeling, a consist-
ent probabilistic law is specified for the joint PDFs of the model
parameters using the known information about them. Then, the
uncertainty propagation step uses Monte Carlo simulation to
access how this input PDF is modified by the model operator.
Finally, the statistical certification step is devoted to the visualiza-
tion of the results, in terms of their PDFs, and probability of fail-
ure, Pf.

2.3.1 Probabilistic Modeling. The probabilistic modeling step
in the UQ scheme is schematically represented in Fig. 6, where
the selected RVs (see Table 3) from the sensitivity analysis were
classified in accordance to the type of information available: (1)
physics-informed theoretical information and (2) data-driven
information. Physics-informed theoretical information, on the one
hand, is considered to ensure the consistency of the probability
distributions used in the stochastic model, as it forces them to

respect the laws of physics and their underlying constraints, e.g.,
support positivity, finite variance due to limited fluctuations, and
smooth decaying in the tails. This information influences the form
of the probability distribution to be chosen, as well as the choice
of acceptable support, ignoring these restrictions can lead to a
probabilistic model that violates the fundamental physics of the
problem. Data-driven information, on the other hand, the latter
information, obtained from experiments or field measurements
datasets, guides the choice of plausible values for the hyperpara-
meters of probabilistic distributions, as well as their statistics.

Thus, joint PDF of the model input needs to be specified, man-
datorily, with the aid of these two types of information, since, by
neglecting the restrictions arising from physics, the probabilistic
model will very likely be inconsistent, while when not considering
reliable data, the nominal values of the hyperparameters and sta-
tistics can be very flawed so that the predictions are very different
from the reality.

In a scenario where a large dataset with information about the
model parameters, and their mutual dependence, is available, clas-
sical inference techniques of nonparametric statistics (e.g., kernel
density methods) may be used to construct the probabilistic
model. However, when a small (i.e., sparse) set of observations is
available or, in the limit, only theoretical information is given,
this classical approach is unfeasible; thus, another strategy is nec-
essary for robust inference. In this second context, the most con-
sistent approach is to use an information-theoretic approach based
on the maximum entropy principle (MaxEnt) which seeks to spec-
ify as the model input joint-distribution the maximum entropy
probabilistic law that is compatible with the known physics-
informed or data-driven-information about the system parameters
[31,32]. The idea behind this formalism is that the obtained proba-
bilistic distribution is consistent because it is compatible with the
constraints imposed by the physics and the known statistical infor-
mation, as well as conservative since it is the most uncertain

Fig. 4 Schematic representation of the sensitivity analysis
scheme for the OWT system

Fig. 5 Schematic representation of the uncertainty quantifica-
tion framework

Fig. 6 Schematic representation of the probabilistic modeling
scheme
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distribution (thus, covering a bigger portion of the sample space).
To the best of the authors’ knowledge, a distribution obtained in
this way is the most consistent one in a scenario with sparsely
known statistical information or even when only theoretical infor-
mation is available [32].

As far as correlated random variables are concerned, the most
conservative approach is to assume them independent random var-
iables, if there is no statistical information about the cross-
correlation of the parameters is available. The latter follows
directly from MaxEnt formalism since assuming values of cross-
correlation would add bias to the analysis [31,32].

After the information concerning the selected RVs was sorted,
the joint PDF of the input RVs was determined either using maxi-
mum MaxEnt or the kernel density estimator when a large dataset
was available [16,34]. Finally, the inverse transform method was

used to randomly draw samples from the input joint PDF, which
later was employed in the processing step [16].

2.3.2 Uncertainty Propagation. The uncertainty propagation
scheme used in the proposed model is illustrated in Fig. 7. The
uncertainty from the input parameters was propagated into the
model to obtain samples of the model response parameter, i.e.,
D30, which later will be used to infer its statistical information
(e.g., mean, standard deviation, and PDF). As it was discussed in
Ref. [34], it is necessary to run several millions of scenarios, also
known as MC simulation to obtain meaningful results from an
OWT probabilistic analysis for ten RVs. Thus, in this study, an
efficient surrogate was constructed to conduct the processing step
due to the computational cost involved in the running of the com-
plex deterministic model introduced previously.

Table 3 Information about the random variables

RV Data-driven Physics-informed MaxEnt References

qair Supp¼ [1.146, 1.315] Supp¼Rþ Gamma Theoretical [7,22,27]
E[X]¼ 1.27 E[X]¼m, 0<m<þ1
dX¼ 3 [1–4]% E[X%2]¼ c, c<þ1

E[Log(X)]¼ d, d<þ1
a Supp¼ [0.1, 0.2] Supp¼Rþ Gamma Theoretical [7,21,28]

E[X]¼ 0.14 E[X]¼m, 0<m<þ1
dX¼ 3 [0–5]% E[X%2]¼ c, c<þ1

E[Log(X)]¼ d, d<þ1
U10 Supp¼ [0, 63] Supp¼Rþ Log-normal Data [25]

E[X]¼U10 (state) E[X%2]¼ c, c<þ1
E[(X–l)2]¼ (rNTM)2 E[Log(X)]¼ d, d<þ1

E[(Log(X)–l)2]¼m,
0<m <þ1

qsw Supp¼ [1,020, 1,030] Supp¼Rþ Gamma Theoretical [22,28]
E[X]¼ 1,027 E[X]¼m, 0<m<þ1
dX¼ 1 [0–2]% E[X%2]¼ c, c<þ1

E[Log(X)]¼ d, d<þ1
Cm Supp¼ [1.7, 2.15] Supp¼ [a, b] Uniform Theoretical [21,22]

E[X]¼ 2
dX¼ 10 [6–30]%

Cd Supp¼ [0.7–1.2] Supp¼ [a, b] Generalized Beta Theoretical [21,22]
E[X]¼ 0.95 E[Log(X–a)]¼ d
dX¼ 10 [6–25]% E[Log(b–X)]¼ e jdj and jej<þ1

HS E[X]¼ lumped Supp¼Rþ Gamma Data [25]
dX¼ 0.10 [6.5–16]% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

TZ E[X]¼ lumped Supp¼Rþ Gamma Data [25]
dX¼ 0.10 [3–16]% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

E Supp¼ [189, 230] Supp¼Rþ Gamma Data [30]
E[X]¼ 208 E[X]¼m, 0<m<þ1
dX¼ 5.4% E[X%2]¼ c, c<þ1
E[((X–l) /r)3]¼ 0.16 E[Log(X)]¼ d, d<þ1
E[((X–l) /r)4]¼ 2.68

qST E[X]¼ 8500 Supp¼Rþ Gamma Theoretical [17]
dX¼ 1 [0–2]% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

SN Supp¼ [0, 1] Supp¼ [0, 1] Beta Theoretical [26]
E[X]¼ 0.1 E[Log(X)]¼ d
dX¼ 10 [5–15]% E[Log(1–X)]¼ e

jdj and jej<þ1
ESO Supp¼ [4000, 7500] Supp¼ [a, b] Uniform Theoretical and expert [30]

E[X]¼ 5160
dX¼ 30 [20–50]%

040901-6 / Vol. 7, DECEMBER 2021 Transactions of the ASME



Among the different surrogates available in the literature, the
kriging approach was shown to produce more accurate results for
the fatigue life estimations [35]. Hence, in this study, a general-
ized kriging metamodel with a linear trend and Mantern 3/2 corre-
lation function was selected to replace the deterministic model
shown in Fig. 2. To ensure accurate approximations of the surro-
gate, a dataset of 2250 points, a combination of 150 samples per
environmental condition, was drawn from the deterministic model
using the Latin hypercube sampling (LHS) approach, wherein the
UQlab toolbox, free software for UQ in MATLAB, was used to
obtain the LHS sample and kriging model [36]. In addition, to fur-
ther improve the capabilities of the kriging surrogate, a natural log
transformation was applied to the model response to improve the
surrogate interpolation process by having a more sparse resolution
of the results.

After the surrogate was developed, the MC approach was uti-
lized to generate more than 8& 108 samples from the D30, to
determine their statistical information. Lastly, to show the accu-
racy of estimators determined from the samples generated from
MC, the mean square convergence criterion was conducted to
ensure the convergence of the results for the selected number of
samples in this study [33].

2.3.3 Statistical Certification. In this stage, the samples
obtained during processing were employed to (1) construct the
PDF and cumulative density function (CDF) for the fatigue dam-
age of the structure, and (2) to compute the structural probability
of failure (Pf) during an operation life of at least 30 years.

To verify the accuracy of the proposed UQ framework, the
Kolmogorov–Smirnov (KS) goodness of fit test was carried out.
The KS test aims to prove the hypothesis that the chosen probabil-
istic model, i.e., CDF, is a suitable representation of the physical
behavior of the parameter of interest, with a certain significance
level, aKS- that is, 0.1, 1, or 5%. In this study, 0.1% was used since
it represents the better fit [29].

Regarding the structural reliability, this is typically represented
by the Pf, which can also be defined as 1-ROWT, where ROWT is
the reliability of the structure in percentage units. To determine
the Pf, the limit state function Z was defined in terms of the fatigue
limit state (FLS) design criterion, which is 1 for this study, and
the calculated damage of the response for a service life of
30 years, D30

Z ¼ FLS% FD30 vð Þ (9)

Then, the Pf was calculated as the probability of Z being less or
equal to zero, which was found by sampling NP samples from the
distribution of D30. Finally, the error relative to the true target

probability of failure, Pf
T, associated with the selected NP, as well

as the variability of the Pf was given in terms of their relative
error, epf, and coefficient of variation, dpf, respectively [29],

ePf ¼ 200ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% PT

f Þ
ðNp 'PT

f Þ

s

%½ ) (10)

dPf ¼
100

Pf

% & ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% Pf ÞPf

Np

s

%½ ) (11)

2.4 Specific Analyses. The specific analyses for specific aim
1 and 2 are introduced in the Secs. 2.4.1 and 2.4.2, respectively.

2.4.1 Model Response Parameters That Impact Fatigue Life.
To quantitatively assess the influence of input parameters in the
design of OWT in terms of total damage accumulated on the
structure for 30 years, D30, the overall analysis was divided as fol-
lows: model reduction, and model prioritization. On the one hand,
in the model reduction analysis 12 input-model parameters were
selected, e.g., TZ, U10, HS, qair, a, cd, SN, to be investigated to
identify the less influential parameters and potentially fixed
them—that is, transforming into deterministic quantities. The
analysis was conducted using the efficient EE approach for four
different environmental conditions (1) cut-in speed to rated-speed,
(2) rated-speed, (3) rated-speed and cutout speed, and (4) extreme
conditions (highest speed interval recorded of the environmental
states). Furthermore, the 2D scatter plots of the variables were
also computed to verify the results. In the model prioritization, on
the other hand, part of the parameters that significantly contribute
to the total variance was assessed by conducting the first and total
Sobol’ global-sensitivity approach. Then, recommendations to
improve the model robustness were provided based on reducing
epistemic uncertainty of influential parameters.

2.4.2 Probability Distributions of the Model Response
Parameters. The PDFs for the model input parameters were estab-
lished following the procedure in section 2.3.1 and using the data-
driven and physics-informed information displayed in Table 3.
For example, the PDFs for qair, a, cd, SN was derived using data-
driven information about the limits, the sample mean, E[X], and
coefficient of variation, dX, as well as physical-informed informa-
tion regarding their domain, support, finite variance, E[X-2]¼ c
for c<1, and tail behavior, E[log(X)]¼ d for d<1, in which
d<1 represents a decaying right tail converging to zero at d.
This information about the RVs is available in the literature, such
as books and standards. The PDFs of Eso, and cm, instead, were
derived based on information about their sample mean and limits
only. From the aforementioned distributions, random samples
were drawn and propagated into the deterministic model to gener-
ate samples of D30, i.e., synthetic data, with MC simulation; and
then, an informational maximum entropy distribution was con-
structed to model the variability of synthetic data. Finally, the
consistency of the synthetic data was verified using the mean
square convergence criterion, whereas the suitability of the non-
parametric fit is analyzed using the KS goodness of fit test with an
aKS of 0.1%.

3 Results and Discussions

In this section, the results obtained from the analyses for spe-
cific aims 1 and 2 are presented and discussed.

To begin with, Fig. 8 and Table 4 depict the validation results
of the developed generalized kriging metamodel for the environ-
mental states 1, 8, 11, and 15 described in Table 2. From the sta-
tistics, it stands out the high levels of correlation between the
surrogate model and the computational model, as well as low error
values, which in turn show the high level of accuracy of the pre-
dicted values by the developed surrogate model. For example, the

Fig. 7 Schematic representation of the propagation of uncer-
tainties step
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training process—wherein the accuracy is presented in terms of
the root-mean-square error (RMSE), and the leave-one-out error,
eLOO—showed error values below 2& 10%3 for the RMSE, and
0.15 for the eLOO. Similarly, the validation process—where the
accuracy is assessed in terms of the correlation coefficient, R, and
the empirical error, eemp—showed R values between the validation
set and the surrogate prediction in the order of 99%, and eemp val-
ues below 1& 10%3 for all the environmental states used in this
analysis. As a result, the ratio of 10 samples per random variable
selected for the analysis—which resulted in a dataset of 150 sam-
ples per environmental state, and thereby total dataset of 2250
samples—to train the Kriging surrogate model provided a fairly
accurate approximation of the response of the deterministic
model.

The rest of the results of the paper: (1) sensitivity analysis of
the model input parameters, (2) calculation of the probability dis-
tributions of model input parameters, and (3) analysis of the
impact of the proposed UQ scheme on the OWT structural reli-
ability is discussed in Secs. 3.1 through 3.3.

3.1 Sensitivity Analysis of the Model Input Parameters.
The results of the influence of input parameters in the design of
OWT using the sensitivity scheme for environmental states (ES) 6,
8, 11, and 15, which also represent four different loading condi-
tions, are depicted in Figs. 9–11.

As can be seen from the graphs, in particular Fig. 11, it is clear
that U10 presented the higher sensitivities, followed by the air den-
sity, qair, particularly for the first three loading conditions,
whereas HS had the third-largest contribution in the third and
fourth conditions. The impact of U10 on the variance of the
response can be explained by the fact that this parameter is
directly proportional to wind pressure, which increases

quadratically with the wind speed. As a result, small variations in
U10 can significantly increase the thrust force and the mudline
bending moment of the structure, which in turn, increases the
accumulated structural damage during the OWT operational life.

Parameters a and qair also presented slight contributions to the
response in particular qair. Although a and qair also impact the
wind loads, albeit, to a lesser degree than U10, it is normal to
assume these parameters as constant values in OWT design stand-
ards [21,22]. However, recent studies, have shown that a and qair

may vary considerably from the values suggested by design stand-
ards, thus impacting the wind loads [7,37]. The air density (qair),
on the one hand, is typically determined as the expected value of
the air density based on the long-term site environmental
conditions—which are humidity, temperature, and pressure—and
shows a low variability, i.e., dX ranging between 1 and 4% in most
cases. Nevertheless, studies have shown some locations that pres-
ent higher values [37]. This is a problematic fact, because changes
in qair may produce around 15% variability in long-term average
power production, and 26% in hourly power production. The wind
and wave loading also change since qair is directly proportional to
the wind pressure [37,38]. On the other hand, the parameter a is
considered, for design purposes, an average value based on long-
term conditions. In other words, the expected value of the shear

Fig. 8 Surrogate modeling validation: (a) environmental state #1; (b) environmental state #8; (c) envi-
ronmental state #11; and (d) environmental state #15

Table 4 Surrogate model validation metrics

State RMSE eLOO R eemp

1 1.23& 10%10 0.106 0.99 3.5& 10%3

8 1.23& 10%10 0.106 0.99 1.4& 10%3

11 1.23& 10%10 0.106 0.99 1& 10%3

15 1.23& 10%10 0.107 0.99 6& 10%3
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coefficient in terms of the long-term mean wind speed at different
altitudes is recorded for a specific location. Since the wind speed
has daily and seasonal variations, a also varies. For example, it
was observed that the mean value of a can oscillate between 0.08
and 0.15 in coastal and offshore areas, and up to 0.35 in onshore
areas [29]. Regarding the coefficient of variation of the parameter
a, da, it has been reported that high wind speeds present small da
values, around than 10%, whereas small wind speeds present large

da values, more than 50% [7]. This in turn impacts the wind speed
at the hub height.

Whilst U10 was the input parameter of the wind load that con-
sistently presented the higher index for each condition, the inputs
parameters for the wave load, i.e., cd, cm TZ, and especially HS,
showed a slight increase in the third and fourth loading condition
in comparison with the previous ones. This can be explained due
to the action of the pitch control, which reduces the influence of

Fig. 9 Elementary effects sensitivity plots: (a) environmental state #6, (b) environmental
state #8, (c) environmental state #11, and (d) environmental state #15
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the wind load, thereby giving more importance to the wave load-
ing in the fatigue calculations.

Regarding the remaining RVs, such as E, SN, qst, as well as
qwater, they only had a marginal contribution to the variance of the
response. For example, the variability of E, qst, and SN arises from
the material properties and welding quality of the tubular section
of the pile. The variability of qwater is mainly due to measuring
errors and variability of other parameters such as humidity, tem-
perature, and salinity of the seawater employed to compute qwater.

Although the aforementioned parameters may have a mild impact
on the wind and wave loading, the overall contribution to the
damage in terms of direct effects and nonlinear effects was not
significant in this study in comparison with other model input
parameters.

In summary, considering that all model input parameters for
this analysis do not behave equally at different environmental
states, the selection of the most and less important input parame-
ters should not only include the information from all the operation
conditions, but also about the potential higher-order and nonlinear
interactions with other parameters [11]. Regarding the less influ-
ential parameters (E, qst, and qwater) they consistently presented
negligible effects in terms of the direct effects to the response,
i.e., u* index in the EE method and first-order Sobol’ index. These
parameters showed negligible nonlinear interactions with other
input parameters based on the r index of the EE approach and
total Sobol’ indices. As a result of that, their scatter plots in
Fig. 10 do not show a clear pattern that implies correlations with
the structural damage, and the input parameters E, qst, as well as
qwater, can be transformed to deterministic quantities to improve
efficiency and reduce the complexity of the problem since their
contribution was proved to be negligible in all the analyses.

The most influential parameters, in contrast, were found to be
U10 and qair, so to reduce the variance of the response, it is recom-
mended to collect more data and conduct more sophisticated sim-
ulations to reduce the uncertainty of those parameters. Finally,
other environmental parameters, such as Eso, TZ, HS, and a, are
not recommended to be discarded since they may significantly
vary for other locations not considered in this study. Conse-
quently, ignoring their variability may cause significant impacts
on the fatigue damage, particularly large OWT that is more sensi-
tive to dynamic amplification due to wave loading [34,39].

Fig. 10 Scatter plots for sensitivity analysis environmental
state # 11 (rated power conditions)

Fig. 11 Sobol’ sensitivity analysis: (a) environmental state #6, (b) environmental state #8, (c) environ-
mental state #11, and (d) environmental state #15
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3.2 Probability Distributions of the Model Input Parame-
ters. In this section, the model input PDFs determined using the
systematic UQ scheme for the Blyth location, as well as the risks
of using arbitrary distributions versus the UQ scheme are pre-
sented and discussed. To begin with, Fig. 12 shows the maximum
entropy marginal PDFs, for 6 RV (i.e., cd, qair, U10, a, E, and ESO)
of the total 12 RVs used for this study. Their PDFs were con-
structed using MaxEnt for a different set of constraints based on
available data-driven and physics-informed information about the
selected RVs and the model response (see Table 3) [31,32].

Figure 12(a) depicts the PDF for the inertia coefficient, cd,
which was constructed considering three constraints that charac-
terize the physics of this structural parameter: (1) the domain of cd

is a strictly positive finite interval in the range of 0.7–1.2, (2) the
expected value of cd must be the same that its mean value
(E[cd]¼lcd), and (3) the geometric means of cd centered at the
support limits must be finite (E[log(ct–a)]¼<1 and
E[log(b–ct)]¼<1). From the set of constraints imposed on the

problem, the result of the application of the MaxEnt yields the
generalized beta distribution [31,32]. Structural parameters such
as the elastic modulus, E, and the steel density, qst, and also to
environmental parameters like, qwater and qair, and shear coeffi-
cient a, were also subjected to the same set of constraints except
for E and qst whose domain is the set of positive real numbers,
Rþ. Hence, the Gamma PDF was utilized for the aforementioned
parameters, in which their PDFs can be seen in Figs. 12(a), 12(d),
and 12(e). The 10-min wind instantaneous speed, U10, MaxEnt
distribution (Fig. 12(c)) was found to be the lognormal distribu-
tion, whereas the significant wave height, HS, and the up-crossing
wave period, TZ, were modeled as a gamma random variable.

The soil stiffness, Eso, MaxEnt density, in contrast, was found
to be the uniform distribution. This is because the estimation of
soil parameters usually present high uncertainty (dX ranging from
30 to 50%) in the absence of reliable information provided by
geotechnical surveys or experiments [6]. The parameter cm was
also modeled as uniform distributions since only information

Fig. 12 MaxEnt probability densities of input random variables: (a) inertia coefficient, (b) air
density, (c) 10-min wind speed, (d) shear coefficient, (e) modulus of elasticity, and (f) soil
modulus of elasticity
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about their ranges was available [28]. The hyperparameters and
other statistics of the aforementioned probabilistic models used in
this study, i.e., Gamma, beta, and log-normal, were found from lit-
erature as indicated in Table 3.

Since the presented UQ scheme consistently models the ran-
domness in input parameters based on the maximization of the
uncertainty in terms of the type of available information, the need
to make additional assumptions to determine the input distribu-
tions can be minimized. Therefore, considerably reducing the bias
that can be potentially passed on to the next steps in the probabil-
istic modeling, i.e., processing and postprocessing, and ultimately
providing more reliable approximations of the response [33].

3.3 Impact of the Uncertainty Quantification Scheme on
the Offshore Wind Turbine Structural Reliability. In this
section, the results concerning (1) the effects on the reliability
estimation due to inconsistencies in its calculation and (2) the
impacts of the UQ scheme of the most sensitive input parameters
on the structural damage of the OWT are presented and discussed.

3.3.1 Structural Reliability Estimation Effects. To ensure
accurate reliability results (that is, ePf values below 10%), the con-
vergence metrics of the Pf were analyzed and displayed in Fig. 13.
Figure 13(a) depicts the ePf of the Pf

T used in the industry as a
function of the number of samples. In industry typical, Pf

T for sup-
port structures are 1& 10%3 or 1& 10%4 in more conservative
cases, since the failure of the OWT support structure may not pro-
duce human damage or severe environmental damage [39,40].
Hence, from Fig. 13(a) the minimum number of samples NP that
is necessary to yield an ePf below 10% for both target probabilities
is 4& 106. Nevertheless, after running the analysis, for the default
and reduced cases, using 4& 106 samples, it was found that the Pf

of the structure for an operational life of 30 years was around
1& 10%6 with a dPf over 60%. To reduce the high values of dPf,
and to investigate the influence of the NP in the Pf more simula-
tions were conducted, for the default and reduced cases, which the
results can be seen in Fig. 13(b). From the plots, it is apparent that
after 8& 106 samples, not 4& 106, the Pf presents a steady behav-
ior, thus convergence. At the same time, values of dPf of 35%, and
the ePf of 3.5 and 7.1% for the two respective Pf

T, were found,
which in turn are significantly lower than the initial estimation

Besides, the results of the mean-square convergence criterion
for 8& 106 samples of D30 generated with MC during the process-
ing step are shown in Fig. 14. From the graphs, it is observed that
after 104 samples the RMSE presents negligible values, less than
1& 10%3, and the mean estimator presents a steady behavior. The
standard deviation (STD) estimator, instead, tends to converge at
a slightly higher number of samples, greater than 5& 104 samples;
despite that, the three estimators computed out the samples show

Fig. 13 Convergence metrics: (a) convergence of relative error for two target probability of
failures used in industry and (b) convergence of probability of failure for the reduced and
default case

Fig. 14 MC convergence metrics: (a) mean, (b) STD, and (c)
RMSE
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a relatively steady behavior after 105 samples, which in turn
ensure the convergence of samples from MC. As a result, the sam-
ples obtained can be used as reliable information to determine the
statistical information of the response, that is, statistical moments
and PDFs from the default and reduce cases during the postpro-
cessing step [33,34].

Finally, an NP value of 8& 106 was selected as the optimum,
since it does not only meet the mean-square convergence criterion
but also provides low error and variability values related to the Pf.
Consequently, the selected NP ensured the robustness of the

estimations obtained in this work, as well as reduces the need for
extra sampling considering that values above 8& 106 would not
yield a significant gain in the accuracy of Pf estimations.

3.3.2 Uncertainty Quantification Modeling Impacts on
Fatigue Life Prediction. In this section, the application of the UQ
scheme to select the appropriate distribution to model the random-
ness of D30, and to analyze the shortcomings of a simplified UQ
analysis are discussed.

To begin with, the results of the suggested probabilistic model
to model the randomness of the structural damage, D30, of the
OWT under fatigue loading conditions are shown in Figs. 15 and
16. The proposed model was determined using the MaxEnt to
ensure the least bias PDF for a set of constraints given by the
physics of the problem. The first constrain refers to the limits of
the density that are dictated by the domain of the damage, which
has to be strictly positive (Rþ) and starting from zero; the second
constrain refers to the scattering of fatigue experiments, which
arise from the fact that its variability is finite, E[(X–l)2]¼ c &
c<1, and tends to cluster around the mode and the mean of the
histogram of the data; the third constrain is related to the tails, in
which both tails, left and right, must decay converging to zero at a
constant d, with d<1, respectively; and the last constrain is related
to the positive skewness, i.e., longer right tail, observed in experi-
mental fatigue data, E[((X–l)/r)3]¼m & 0<m<1, which is why
structural damage is usually modeled as lognormal or Weibull [41].

Two parametric distributions fulfilled the previous conditions
that are the Gamma and Lognormal distribution since both have,
(1) positive support and mean value, (2) finite variance, and (3)

Fig. 15 Probabilistic results comparison for the OWT fatigue damage: (a) gamma PFD and
(b) lognormal PDF

Fig. 16 Natural log of the structural damage for the OWT
fatigue damage

Fig. 17 Probability density functions of the accumulated damage on the OWT structure
over 30 years (D30) and the resulting probability of failure for different scenarios for the avail-
able information for the most sensitive input parameters: (a) default information scenario
and (b) reduced information scenario
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positive skewness. Figure 15 depicts both parametric models,
gamma and log-normal PDF, for the 30-year damage of the OWT
structure, D30, in which their goodness of fit was assessed using
the KS goodness of fit test at a 0.1% significance level; and the

hyper-parameters of the distributions, scale and shape parameters,
were determined using the maximum likelihood estimator for
8& 106 samples drawn from MC [29].

From the figures it can be seen that there is no apparent differ-
ence between the parametric models; nevertheless, as it was
pointed out in [29], a random variable is a lognormal variable
only if the natural log of such random variable follows a normal
distribution—that is, Log[X]*N(l,r). To analyze the suitability of
the lognormal fit, the plot of the natural log of the D30 was calcu-
lated and displayed in Fig. 16. As can be seen from the figure, the
data is slightly skewed to the right; hence, the data have different
values for the mean, mode, and median, which in turn violate the
properties of a Gaussian distribution [42]. Therefore, considering
that the proposed Gamma model (1) fulfilled the physical con-
straints of the problem with the minimum bias and (2) provided a
good fit for the synthetic data at a highly significant level, the

Table 5 Statistics of the PDFs of the accumulated damage
over 30 years of operation (D30) for the default and reduced
information scenarios

Default scenario Reduced scenario Variation (%)

Mean 0.0764 0.0833 8.3
STD 0.021 0.031 32.3
dX 0.28 0.376 25.5
Range [0.024 0.45] [0.021 1.24] —
Pf < 1& 10%7 1.2& 10%6 —

Table 6 Information about the reduced case

RV Data-driven Physics- informed MaxEnt References

qair Supp¼ [1.146–1.315] Supp¼Rþ Gamma Theoretical [7,22,27]
E[X]¼ 1.27 E[X]¼m,
dX¼ 3 [2–4]% 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

a E[X]¼ 0.14 Supp¼Rþ Gamma Theoretical [7,21,27]
dX¼ 10% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

U10 E[X]¼U10(state) Supp¼Rþ Log-normal Data [25]
E[(X–l)2]¼ (rNTM)2 E[X%2]¼ c, c<þ1

E[Log(X)]¼ d, d<þ1
E[(Log(X)–l)2]¼m,
0<m <þ1

qsw Supp¼ [1020–1030] Supp¼Rþ Gamma Theoretical [22,28]
E[X]¼ 1027 kg/m3 E[X]¼m, 0<m<þ1
dX¼ 1 [0–2]% E[X%2]¼ c, c<þ1

E[Log(X)]¼ d, d<þ1
Cm Supp¼ [1.7–2.15] Supp¼ [a, b] Uniform Theoretical [21,22]

E[X]¼ 2
dX¼ 10 [6–30]%

Cd Supp¼ [0.7–1.2] Supp¼ [a, b] Generalized beta Theoretical [21,22]
E[X]¼ 0.95 E[Log(X–a)]¼ d
dX¼ 10 [6–25]% E[Log(b–X)]¼ e

jdj and je j< þ1
HS E[X]¼HS (state) Supp¼Rþ Gamma Data [25]

dX¼ 15% E[X]¼m, 0<m<þ1
E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

TZ E[X]¼Tz (state) Supp¼Rþ Gamma Data [25]
dX¼ 15% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

E Supp¼ [189, 230] Supp¼Rþ Gamma Data [29]
E[X]¼ 208 GPa E[X]¼m, 0<m<þ1
dX¼ 5.4% E[X%2]¼ c, c<þ1
E[((X–l)/r)3]¼ 0.16 E[Log(X)]¼ d, d<þ1
E[((X–l)/r)4]¼ 2.68

qST E[X]¼ 8500 Supp¼Rþ Gamma Theoretical [17]
dX¼ 1 [0–2]% E[X]¼m, 0<m<þ1

E[X%2]¼ c, c<þ1
E[Log(X)]¼ d, d<þ1

SN Supp¼ [0, 1] Supp¼ [0, 1] Beta Theoretical [26]
E[X]¼ 0.1 E[Log(X)]¼ d
dX¼ 10 [5–15]% E[Log(1–X)]¼ e

jdj and jej<þ1
ESO Supp¼ [4000, 7500] Supp¼ [a, b] Uniform Theoretical and expert [30]

E[X]¼ 5160
dX¼ 30 [20–50]%
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Gamma estimator of D30 can be regarded as a robust approxima-
tion of the true PDF of the cumulative fatigue response for the
OWT conceptual design.

Finally, to evaluate the response impacts due to simplifications
in the data-driven information used in UQ analyses, a comparison
between two cases considering the most sensitive variables is pre-
sented in Fig. 17 and Table 5. Figure 17(a) shows the obtained
PDF for accumulated damage on the OWT structure over 30 years
of operation (D30) for the default case in Table 3, whereas
Fig. 17(b) shows the PDF for the reduced case in Table 6. From
Fig. 17 and Table 5, there are apparent differences between the
D30 distributions for the two different scenarios; for example, the
D30 mean and a standard deviation for the reduced scenario were
0.0764 and 0.021, respectively; whereas the D30 mean and a
standard deviation for the reduce scenario were 0.0833 and 0.031,
respectively. The results from the D30 statistics show variations of
around 8% in the mean and more than 30% in the standard devia-
tion. Regarding the probability of failure of the structure (i.e., the
probability that the accumulated damage over 30 years exceeds
one), the default information scenario showed a negligible
Pf,< 1& 10%7, whereas the reduced information scenario showed
a Pf of 1.2& 10%6. Whilst both values of the Pf are below the tar-
get probabilities (1& 10%3 and 1& 10%4) it is evident the increase
of an order of magnitude between the default and reduces
scenarios.

These results reveal that the reduced information scenario can
potentially lead to over-estimated calculations of the probability
of failure, mainly due to higher uncertainty levels embedded on
the model input parameters, compared with the default informa-
tion scenario. This indicates that, at least for the input parameters
which have the highest impact on the model output parameters,
thorough uncertainty quantification should be performed to avoid
over/under-estimations of the fatigue life of the OWT structure,
which in turn would result in over/under-estimations their respec-
tive costs, during the initial stages of design.

4 Conclusion

A UQ framework has been developed to predict, in a consistent
way, the reliability and to identify the most relevant parameters of
the structural design of a monopile-support structure of an OWT
operating in shallow waters under fatigue loads. This UQ frame-
work constructs the probabilistic model taking into account not
only the data-driven information but also the restrictions imposed
by the physics of the problem, which shapes the form of the distri-
butions involved so as not to violate any physical law. In other
words, the proposed method fuses data-driven and physics-based
information into a UQ framework, in which the features and
advantages of both methods are combined to provide a more sys-
tematic and consistent uncertainty model to the OWT input
parameters.

On the one hand, the SA framework combining three SA
approaches showed U10 and qair were the most sensitive parame-
ters; while E, qst, and qwater were the least sensitive. Conse-
quently, considering the less-sensitive parameters as deterministic
quantities would not significantly impact the system response. In
contrast, using low-quality information or omitting information
about the most sensitive parameters may considerably affect the
fatigue life estimations. Furthermore, the reduced sensitivity of
other parameters regarded as critical in the literature, such as HS

and ESO, may be explained by the environmental conditions and
characteristics of the location, as well as the type of turbine of the
farm used in the study. Consequently, albeit the high sensitivity
U10 shows the suitability of the proposed SA framework for deci-
sion making since it agrees with previous studies, special attention
should be played to the previous elements (i.e., location, weather,
and foundation) before generalizing the results of this study to
other wind farm characteristics. Therefore, the selection of the
most and less sensitive parameters is a complex exercise that
requires several input-model parameters, environmental

conditions, and more than one sensitivity approach to yield mean-
ingful results for decision-making purposes.

On the other hand, the systematic UQ approach developed in
this study showed that uncertainty quantification and probabilistic
approaches can be performed in a rather efficient and accurate
manner by using generalized surrogate models developed with a
DoE with a minimum ratio of ten samples per random variable.
Furthermore, it was found that combining data-driven and
physical-informed information in the development of the input-
model parameter reduces the error passed to posterior stages of the
UQ scheme. Hence, more consistent estimations of the statistics
and PDF of the system response D30, as well as the variability and
error of the Pf estimator, and therefore reducing the risk of overesti-
mating/underestimating the operational life of the OWT. Finally,
although the proposed UQ framework leads to more consistent pre-
dictions of the OWT structural reliability, a thorough model valida-
tion using field/experimental data of OWT fatigue life still needs to
be carried out to fully assess the accuracy of the model.

Nomenclature

c ¼ horizontal distance from the neutral axis
ct ¼ variable thrust coefficient

Cd ¼ drag coefficient
Cm ¼ inertia coefficient

CDF ¼ cumulative density function
CVSN ¼ coefficient of variation of S–N curve

D ¼ structural damage
dHUB ¼ hub height

dw ¼ height from mudline to mean surface elevation
Db ¼ tower diameter at the tower bottom
DP ¼ pile diameter
Dt ¼ tower diameter at the tower top

D30 ¼ 30-year OWT structural damage
DAF ¼ dynamic amplification factor
DoE ¼ design of experiments

E ¼ Young’s modulus
ES ¼ environmental states

ESO ¼ Young’s modulus of the soil
EE ¼ elementary effects

f0 ¼ natural frequency of the structure
FU(t) ¼ wind force at tower bottom
FW(t) ¼ hydrodynamic load

Fwd(t) ¼ inertial component of the wave load
Fwi(t) ¼ drag component of the wave load

FD30(v) ¼ cumulative density function of D30

FLT ¼ fatigue limit state
GSA ¼ global sensitivity analysis

HS ¼ significant wave height
ICM ¼ moment of inertia

k ¼ thickness exponent
KS ¼ Kolmogorov–Smirnov goodness of fit

log(a) ¼ intercept with the S–N axis
LHS ¼ Latin hypercube sampling

m ¼ negative inverse slope
Msb(t) ¼ mudline bending moment
MU(t) ¼ wind moment at tower bottom

MaxEnt ¼ maximum entropy principle
MC ¼ Monte Carlo simulation

MSL ¼ mean sea level
Np ¼ number of samples
ni ¼ number of cycles
Ni ¼ number of cycles of each loading block

OWT ¼ offshore wind turbine
Pf ¼ probability of failure

Pf
T ¼ target probability of failure

PDF ¼ probability density function
R ¼ correlation coefficient

ROWT ¼ reliability of the structure
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Rt ¼ rotor radius
RFC ¼ rain flow counting

RMSE ¼ root mean square error
RV ¼ random variable

Sb(t) ¼ time-variant bending stress at the mudline
Sg(t) ¼ JONSWAP spectrum

SN ¼ S–N curve variability
SCF ¼ stress intensity factor
STD ¼ standard deviation

tp ¼ pile thickness
tpef ¼ reference thickness
TZ ¼ wave period

uH(t) ¼ turbulent wind speed
UH ¼ hub-height wind speed
UQ ¼ uncertainty quantification

_W z; tð Þ ¼ wave speed
€W z; tð Þ ¼ wave acceleration

Z ¼ limit state function
a ¼ power-law exponent

aKS ¼ K–S test significance level
dpf ¼ Pf coefficient of variation
dX ¼ coefficient of variation
da ¼ a coefficient of variation
ePf ¼ relative error of the Pf

DSi ¼ midrange stress
eemp ¼ empirical error
eLOO ¼ leave one out error
g(t) ¼ wave surface elevation

n ¼ damping ratio
qair ¼ density of air
qs ¼ steel density

qsw ¼ seawater density
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