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Introduction

Tensegrity, named by Buckminister Fuller [START_REF] Fuller | Synergetics: explorations in the geometry of thinking (Estate of R. Buckminster Fuller[END_REF] for the art form created by Ioganson (1921) and Snelson (1948) [START_REF] Lalvani | [END_REF]. It is a stable network of compressive members (bars) and tensile members (strings). If no compressive members are touching each other in the network, it is called a "class-1" structure. If there are a maximum of k compressive members connecting at one node, it is called a "class-k" structure [START_REF] Skelton | Tensegrity systems[END_REF]. From the definition, we know that the most fundamental property of the tensegrity structure is that all the structural members are axially loaded. The overall 3D structure is made from one-dimensional structure members. Thus, the structure members can be placed along the load path to make the best of each element [START_REF] Yuan | [END_REF]5], and the total mass of the structure can be greatly reduced [6]. And, since there is no material bending, the uncertainty of the onedimensional material movement also brings more accurate models [START_REF] Ma | Design and analysis of deployable clustered tensegrity cable domes[END_REF].

After years' study, many more properties and benefits of tensegrity systems have been discovered and verified by researchers: 1). Tensegrity in biological structures. For nano-scale evidence, Wang et al. found that living cell structure shape control is consistent with a tensegrity model [START_REF] Wang | [END_REF]. Seeman showed that tensegrity structures from DNA could be used to make nanomaterials [9]. For micro/macro-scale findings, Simmons et al. presented that the molecular structure of the spider fiber has both compressive and tensile members [10].

Scarr studied the significant features of a human's elbow as a tensegrity structure [11]. 2). Lightweight structure designs. For example, Fraternali et al. designed lightweight masonry domes and vaults by a tensegrity approach [12]. Ma et al. designed a lightweight tensegrity cantilever structure [START_REF] Ma | Composite Structures p[END_REF]. Wang et al. presented minimal mass algorithms for the design of active tensegrity structures [START_REF] Wang | [END_REF]. 3). Soft robot designs. For example, Caluwaerts et al. developed design and analysis tools for tensegrity robots and verified them by a spherical six-bar tensegrity ball [15]. Chen et al. derived a nonlinear shape control law for any class-k structures [16]. Kim et al. designed cable-driven spherical tensegrity robots for rolling locomotion [START_REF] Kim | Soft robotics[END_REF]. Sabelhaus et al. presented model-predictive control for tensegrity spine robots [START_REF] Sabelhaus | [END_REF]. Zheng et al. evaluated the robustness of the six-strut robot [19]. Baines et al. implemented the soft membrane to drive the tensegrity robot [20]. 4). Energy absorber/harvester. For example, Pajunen et al. analyzed the impact response of a 3D-printable tensegrity lander [21]. Baines et al. used pneumatic membrane actuators and a generalized path planning algorithm for rolling tensegrity robots [20].

There are a few studies have been conducted on tensegrity dynamics. For example, Sulton et al. derived linearized equations of motion for tensegrity models around arbitrary equilibrium configurations [22]. In 2005, Skelton [START_REF] Skelton | IUTAM symposium on vibration control of nonlinear mechanisms and structures[END_REF] presented one of the simplest dynamics forms for class-1 structure by using non-minimal coordinates and assumed the compressive elements to have no inertia about the longitudinal axis. Later, Wroldsen added wave forces to the dynamics of class 1 tensegrity structures [START_REF] Wroldsen | Proceedings of SPIE, the International Society for Optical Engineering[END_REF]. Cheong et al. extended the non-minimal dynamics to class-k tensegrity systems in a second-order matrix form [START_REF] Cheong | [END_REF]. Goyal et al. presented a compact matrix form of tensegrity dynamics by including massive strings, an analytical solution of Lagrange multipliers for class-k tensegrity structures, and bar length correction algorithms [26], a corresponding general software for modeling of any tensegrity structures can be found in [27]. Ma et al. formulated the tensegrity dynamics based on the finite element method by allowing the structure members to have elastic or plastic deformation [28]. Yang and Sultan investigated the deployment of foldable tensegrity-membrane systems [29]. Kan et al. derived tensegrity dynamics with clustered cables [30]. Multiphysics (thermoelasticity, fluidstructure interaction, piezoelectricity, magnetoelasticity, biomechanics, and intelligent systems) has become a popular topic in the past fifteen years [31]. And there are many research on fluid-structure interaction (FSI) problems, i.e., dynamics modeling for parafoil dynamics [32], study on the vibrations of cylinders [33], plate flut-ter and cavity [34], and beam/shell elements of a flapping wing [35]. However, in all these dynamics models, none of them considered fluid forces for tensegrity systems, which limited our ability to analyze fluid-based tensegrity structures. Applications include aquaculture, robotic fish, airplanes, etc. Fluid-structure interaction (FSI) simulation in the computational fluid dynamics (CFD) field is an option to do the analysis, but on the one hand, it requires skillful modeling experience in fluid dynamics and a lot of computational resources. On the other hand, the analytical fluid force model, i.e., the fluid force is proportional to the square of the relative velocity between the tensegrity element and fluid, has been successfully applied in the studies of aquatic animal swimming [36,37]. The accuracy of the analytical fluid force model was validated by the experimental data [38]. Thus, our study here provides a dynamics model to investigate the behaviors of tensegrity structure in the presence of fluid, also suitable for control design.

This paper is structured as follows: Section 2 derives the translation and rotation equation of motion of one single rod. Section 3 models the fluid particles interacting with the rod and the corresponding fluid force expressions on the rod. Section 4 stacks all the equation of motion for each rod to form the tensegrity network and develops a compact vector form of class-1 and class-k structures. Section 5 presents a compact matrix form of class-1 and class-k structures. Section 6 discusses the results of the dynamics by a 3D prism example. Section 7 gives the conclusions.

2 Dynamics of a single rod

Rotational dynamics

Let us consider a single rod immersed in an infinite volume of fluid field. The length of the rod is ||b|| = l, where b is a vector along the rod, shown in Fig. 1. Vector r gives the position of the rod center of mass O. We separate the forces on the rod into two parts: fluid force (f 0 and τ 0 ) and other external forces (f 1 and f 2 applied at the two nodes of the rod).

To describe the position of a rigid body, vectors are usually coordinatized in two different reference frames: inertia frame and body frame. Let the vectrices E = e 1 e 2 e 3 and B = b 1 b 2 b 3 denote the dextral set of unit vectors e i which are inertially fixed and the body-fixed dextral set of b i fixed in the coordinates of the rigid body [26]. The angular velocities of frame B relative to frame E is ω = Eω E = Bω B , where

ω B = ω B 1 ω B 2 ω B 3 
T . Coordinate transformation by a unitary direction cosine matrix Θ satisfies:

B = EΘ, Θ T Θ = I. (1) 
Take the first time derivative of Θ T Θ = I, one can get:

Θ T Θ = ωB =   0 -ω B 3 ω B 2 ω B 3 0 -ω B 1 -ω B 2 ω B 1 0   , (2) 
which is skew-symmetric matrix. Then, the time derivative of B can be obtained, 

Ḃ = E Θ = BΘ T Θ = B ωB . (3) 
ḃ = Ḃb B + B ḃB = Ḃb B = B ωB b B . (4) 
Then, since we have ωb = -bω and bb = -l 2 I +bb T , one can obtain:

b × ḃ = (Bb B ) × (B ωB b B ) = B bB ωB b B (5) = -B bB bB ω B = -B( bB ) 2 ω B (6) = B(b B T b B I -b B b B T )ω B (7) = B( b B 2 I -b B b B T )ω B (8) = B   l 2 I -   0 0 0 0 0 0 0 0 l 2     ω B (9) = B I 2 0 0 0 l 2 ω B = Bl 2   ω B 1 ω B 2 0   = l 2 ω b . ( 10 
)
The angular momentum of bar b about its mass center O is:

h = Jb × ḃ = m b 12 b × ḃ, ( 11 
)
where J is moment of inertia of the rod J = 1 12 m b l 2 , m b is bar mass. Take the first time derivative of Eq. ( 11), we obtain:

ḣ = J ḃ × ḃ + Jb × b = Jb × b. ( 12 
)
The time derivative of the angular momentum vector h equals to the sum of torques τ = τ e +τ 0 acting on the bar member about its center of mass, where τ 0 is the torque generated by the fluid force,

τ e = 1 2 b × (f 2 -f 1
) is torque given by the force at the two nodes of the bar. Then we have the following:

ḣ = Jb × b = τ , (13) 
τ = τ e + τ 0 = 1 2 b × (f 2 -f 1 ) + τ 0 . ( 14 
)
Eq. ( 13) can be written in any coordinates, but we choose inertial coordinates for simpler forms of final equations. To simplify notation hereafter, we define b = b E where b = Bb B = Eb E [26]. Using inertial coordinates, Eq. ( 13) can be written as:

J bb = 1 2 b(f 2 -f 1 ) + τ 0 . (15) 
Since bar length is a constant, we have ||b|| = l or b T b = l 2 . Take the first and second derivative of the bar length constraint, we get:

ḃT b + b T ḃ = 2b T ḃ = 0, ( 16 
) ḃT ḃ + b T b = 0, b T b = -ḃT ḃ = -|| ḃ|| 2 . ( 17 
)
Write Eq. ( 15) and Eq. ( 17) together in matrix form as: 

b b T b = 1 2J b(f 2 -f 1 ) -ḃT ḃ + τ0 J 0 . (18) 
= b b T † 1 2J b(f 2 -f 1 ) -ḃT ḃ + b b T † τ0 J 0 (19) = 1 l 2 -b b 1 2J b(f 2 -f 1 ) -ḃT ḃ + 1 l 2 -b b τ0 J 0 (20) = 1 l 2 (- 1 2J bb (f 2 -f 1 ) -b ḃT ḃ) - 1 l 2 b τ 0 J (21) = - 1 2Jl 2 (-l 2 I + bb T )(f 2 -f 1 ) - 1 l 2 b ḃT ḃ - 1 Jl 2 bτ 0 , (22) 
where superscript " †"denotes a matrix pseudoinverse.

Rearranging equations gives the final vector form of the single rod rotational dynamics:

J b = 1 2 (f 2 -f 1 ) - 1 2l 2 bb T (f 2 -f 1 ) - J l 2 b ḃT ḃ - 1 l 2 bτ 0 (23) = 1 2 (I - bb T ||b|| 2 )(f 2 -f 1 ) - J l 2 b ḃT ḃ - 1 l 2 bτ 0 . (24) 

Translational dynamics

The position of center of mass of the bar is given by vector r. The fluid force working at the center of mass of the bar is f 0 and the sum of the internal forces from the strings and the external forces, acting on the two ends of the bar, is described by f 1 and f 2 , where r = Er E ,

f i = Ef E i . From Newton's second law, we have r = r E and f i = f E i . m b r = f 1 + f 2 + f 0 ,
which can be written in the inertial coordinates as:

m b r = f 0 + f 1 + f 2 . ( 25 
)
3 Modeling of fluid forces on rod

The fluid force contributions are only considered on bar members due to their relatively bigger diameter than the strings [START_REF] Wroldsen | Proceedings of SPIE, the International Society for Optical Engineering[END_REF]. The continuously distributed fluid forces along the bar can be represented by a single force f 0 at the geometrical center O and a torque τ 0 , which are functions of velocities and angular velocities of the bar. Both vicious and fluid inertia forces are considered.

The fluid force on the geometrical center of the bar f 0 (a sum of tangent force f t and normal force f n ) and torque (τ 0 ) are given by [START_REF] Chen | Mechanisms underlying undulatory swimming: From neuromuscular activation to body-fluid interactions[END_REF]:

f 0 = f t + f n , (26) 
-f t = 2.7c t l ρµd||v n ||v t , (27) 
-f n = sgn(v n )c p (ρv 2 n /2)ld + c a ρπ(d/2) 2 l(a n -2v t θ), (28) 
-τ 0 = 1 12 sgn(v n )c p ρdl 3 v n θ + 1 12 c a ρπ(d/2) 2 l 3 θ, ( 29 
)
where θ = bḃ

||b|| 2 , θ = bb ||b|| 2 , ( 30 
)
v t = bb T ||b|| 2 ṙ, v n = (I - bb T ||b|| 2 ) ṙ, ( 31 
)
a t = bb T ||b|| 2 r, a n = (I - bb T ||b|| 2 )r, ( 32 
)
where ρ and µ are the fluid density and viscosity, d is the diameter of the rod, c t = 1 and c p = 0.9 ∼ 1.1 are the drag coefficients on a smooth circular cylinder in the range of Reynolds number 20 < R e < 10 5 from experiments [37], c a is the dimensionless coefficient to account for different object shape (for cylinder, c a = 1). v t , v n are velocities and a t , a n are accelerations of the center of mass of the bar in tangential and normal direction, θ and θ are the angular velocity and acceleration of the rod about e 3 axis (the axis along the bar direction), sgn(•) takes the sign of the variable in the parentheses.

In order to write the dynamic equations in a standard second order form, we separate fluid force and torque into two parts, acceleration dependent one (with subscript A) and the rest (with subscript R), and move the acceleration dependent parts to the left hand side of Eq. ( 24). Let us first define:

f 0 = f R + f A , τ 0 = τ R + τ A , (33) 
-f R := sgn(v n )c p (ρv 2 n /2)ld -2m A v t θ + 2.7c t l ρµd||v n ||v t , (34) 
-f A := m A a n , (35) 
-τ R := sgn(v n ) 1 12 c p ρdl 3 v n θ, -τ A := 1 12 m A l 2 θ, (36) 
where m A = c a ρπ(d/2) 2 l is the mass of fluid being accelerated by the bar, usually called the added mass of fluid. The moment of inertia of a rod is J = 1 12 m b ||b|| 2 , replace τ 0 in Eq. ( 24) by Eq. ( 33), we have:

m b 12 + m A 12 I - bb T ||b|| 2 b + m b 12 || ḃ|| 2 ||b|| 2 b = 1 2 I - bb T ||b|| 2 (f 2 -f 1 ) - b ||b|| 2 τ R , (37) 
m b + m A I - bb T ||b|| 2 r = f 2 + f 1 + f R . ( 38 
)
4 Vector form of tensegrity system dynamics with fluid forces incorporated 

H i := I 3 - b i b T i ||b i || 2 , m i := m bi I 3 + m Ai H i , (39) 
g i := m bi 12 || ḃi || 2 ||b i || 2 , κ i := - bi ||b i || 2 . (40) 
Then, Eq. ( 37) and Eq. ( 38) can be written into a compact form:

m 1 12 m r b + 0 0 0 ĝ ⊗ I 3 r b = 2C r ⊗ I 3 1 2 Ĥ(C b ⊗ I 3 ) f + f R κτ R , ( 41 
)
where • is a diagonal operator that converts a vector into a diagonal matrix,

f = f T 1 f T 2 • • • f T 2β T is the vec- tor of nodal forces, n = n T 1 n T 2 • • • n T 2β
T is the vector of node coordinates.

The nodal force f is then given by:

f = w + f s + f d + (P T c ⊗ I 3 )t c , ( 42 
)
where w is the external forces applied at each node, f s is the string forces, f d is the string damping force, t c is the internal force between joints. If the tensegrity system is subject to m constraints, we have:

(P c ⊗ I 3 )n = d c , (43) 
where P c ∈ R m×2β is the constraint matrix, and d c ∈ R 3m is a constant vector. Eq. ( 43) describes two types of constraint: P cij = 1, P c ik = -1 and d ci = 0 when nodes j and k are connected by a universal joint, where the subscript i is the i th constraint, and j, k are the nodes index; P ci,j = 1 and d ci ∈ R 3 when the j th node is fixed to the ground. The forces in the strings f s can be written as:

f s = -(C T s γC s ⊗ I 3 )n, ( 44 
)
γ i := k i (1 -l 0i /l i ), l i > l 0i 0, else , (45) 
where k i , l i and l 0i are the string stiffness, length and rest length. Since we have l 2 i = s T i s i ⇒ li = s T i ṡi /l i for each string, the damping force in each string is calculated by:

f di := -µ i li s i l i = -µ i s T i ṡi l 2 i s i , (46) 
written in a vector form, we have:

f d = -(C T s ζC s ⊗ I 3 )n, ( 47 
)
ζ i : =    µ i s T i ṡi l 2 i , l i > l 0i 0, else , (48) 
where µ i (N•s/m) is the damping coefficient. The angular displacement between the contact surface, as described by the constraint Eq. ( 43), introduces resistive torques to bars. The resistive torque on bar i by bar k due to angular velocities ω i and ω k is given by:

τ d ik = -η ik (ω i -ω k ), ω i = bi ḃi ||b i || 2 , ( 49 
)
where η ik (N•m•s) is the damping coefficient between bar i and bar k. The vector form of resistive torque is given by:

τ d = -2C r P T c ηP c 2C T r ω = 4C r P T c ηP c C T r κḃ . ( 50 
)
τ d is added to Eq. ( 41) by replacing τ R by τ R + τ d . Replace r, b, f and τ R in Eq. ( 41) by r = (C r ⊗I 3 )n, b = (C b ⊗ I 3 )n, Eq. ( 42) and τ R + τ d , where τ d is given by Eq. ( 50), and also left multiply C T r C T b ⊗ I 3 to Eq. ( 41) to make the mass matrix symmetric, we have:

M n + C ṅ + Kn = D(w + P T t c ) + z, (51) 
where:

M := (C T r ⊗ I 3 ) m(C r ⊗ I 3 ) + 1 12 (C T b ⊗ I 3 ) m(C b ⊗ I 3 ), (52) 
C := 4(C T b ⊗ I 3 )κ T (C r P T c ηP c C T r ⊗ I 3 )κ(C b ⊗ I 3 ), (53) 
D := I - 1 2 (C T b ⊗ I 3 )∆(C b ⊗ I 3 ), (54) 
∆ := block diagonal b i b T i ||b i || 2 , (55) 
K := D(C T s (γ + ζ)C s ⊗ I 3 ) + (C T b ⊗ I 3 )ĝ(C b ⊗ I 3 ), (56) 
z := (C T r ⊗ I 3 )f R + (C T b ⊗ I 3 )κτ R , (57) 
P := P c ⊗ I 3 . ( 58 
)
The vector z is how we add the fluid force, which is composed of a force vector f R at location r and a torque τ R both of which are acceleration independent, and m i is how we add the added mass effect of fluid (the fluid being accelerated by the bar) into the equation of motion. Note that Eq. ( 52) is the equation of motion for class-1 tensegrity with P = 0. Suppose the constraints are linearly independent, we can write:

(P c ⊗ I 3 )n = d c ⇒ n = P † d c + P ⊥ n c , (59) 
P † = P † c ⊗ I 3 , P ⊥ = P ⊥ c ⊗ I 3 , (60) 
where † means moore-penrose inverse, P ⊥ is the right null space of P . Replace n in Eq. ( 51) by above expression, we get:

M P ⊥ -DP T nc t c = -CP ⊥ ṅc -K(P † d c + P ⊥ n c ) + Dw + z. ( 61 
)
Rewrite the above equation in a compact form, we have the equation of motion for class-k tensegrity:

nc t c = M P ⊥ T -(DP T ) T Π -1 ϕ, (62) 
where:

Π := M P ⊥ (M P ⊥ ) T + DP T (DP T ) T , (63) 
ϕ := -CP ⊥ ṅc -K(P † d c + P ⊥ n c ) + Dw + z. (64) 
4.2 Normalization on P ⊥ to reduce numerical error

The condition number of Π is in order of 10 6 when the unit mass is in order of 10 -1 [START_REF] Chen | Mechanisms underlying undulatory swimming: From neuromuscular activation to body-fluid interactions[END_REF]. If 99% of unit mass is on bar 1, the condition number of Π will be in order of 10 10 . Note that the term DP T in Π has entries close to 1 when entries of P is so (the case of nodal constraint). To reduce numerical error, P ⊥ term in Π can be normalized as below:

M (P ⊥ /δ) -DP T nc t c = -C(P ⊥ /δ) ṅc - K(P † d c + (P ⊥ /δ)n c ) + Dw + z, nc := n c δ, ( 65 
)
where δ is a scalar such that the entries of M/δ is close to 1. After such normalization, the condition number of Π can be reduced from 10 10 to 10 8 .

Computational effort and numerical error reduction

From the structure of the matrices, we know that there are many repeated block entries in Eq. ( 62) resulted from the structure of C r := 1 2 I I and C b := -I I . We expand Eq. (62) to identify those repeated blocks to allow the computer to compute them only once. This also reduces the order of matrices by half in arithmetic operations. Furthermore, most matrices in Eq. (62) are block diagonal, and the matrices P , P † , and P ⊥ are sparse, the functions for sparse matrix in matlab help to reduce the computation effort and possible numerical errors. For example, the command sparse creates a sparse matrix by saving only the nonzero entries and their indices, and the arithmetic operators operate, for example, when we multiply two matrices, only on nonzero entries, which avoid unnecessary computation and numerical error from those zero entries.

By expanding, matrices in Eq. ( 62) can be rewritten as:

M = 1 3 m 1 6 m 1 6 m 1 3 m , C = C 11 -C 11 -C 11 C 11 , (66) 
C 11 := κT ((P T 1 + P T 2 )η(P 1 + P 2 ) ⊗ I 3 ) κ, (67)

P =: P 1 P 2 , D = I - 1 2 ∆ -∆ -∆ ∆ , (68) 
K = K 11 K 12 K T 12 K 22 ⊗ I 3 + ĝ -ĝ -ĝ ĝ ⊗ I 3 - 1 2 ∆ ((K 11 -K T 12 ) ⊗ I 3 ) ∆ ((K 12 -K T 22 ) ⊗ I 3 ) , ( 69 
)
K 11 := C T s1 (γ + ζ)C s1 , K 12 := C T s1 (γ + ζ)C s2 , (70) 
K 22 := C T s2 (γ + ζ)C s2 , C s =: C s1 C s2 , (71) 
where means the negative of the first row of the 2 by 1 block matrix. With above definition, the terms in ϕ in Eq. ( 62) were written as:

CP ⊥ ṅc = C 11 (P ⊥1 -P ⊥2 ) ṅc , P ⊥ =:

P ⊥1 P ⊥2 , (72) 
P † d c + P ⊥ n c = p c1 + P ⊥1 n c p c2 + P ⊥2 n c , P † d c =: p c1 p c2 , (73) 
Dw = w 1 w 2 - 1 2 ∆(w 1 -w 2 ) , w =: w 1 w 2 , (74) 
The terms in Π matrix in Eq. ( 62) are written as:

M P ⊥ = m( 1 3 P ⊥1 + 1 6 P ⊥2 ) m( 1 6 P ⊥1 + 1 3 P ⊥2 ) , ( 75 
)
DP T = P T 1 P T 2 - 1 2 
∆(P T 1 -P T 2 ) , (76) 
Π := M P ⊥ (P ⊥ ) T M + DP T P D =:

Π 11 Π 12 Π T 12 Π 22 . ( 77 
)
Using block matrix inverse formula:

A B C D -1 = Θ 11 Θ 12 Θ 21 Θ 22 , (78) 
where:

Θ 11 = (A -BD -1 C) -1 , (79) 
Θ 12 = -A -1 B(D -CA -1 B) -1 , (80) 
Θ 21 = -D -1 C(A -BD -1 C) -1 , (81) 
Θ 22 = (D -CA -1 B) -1 . ( 82 
)
The inverse of Π is then given by:

Π -1 = Λ 11 Λ 12 Λ 21 Λ 22 , (83) 
where:

Λ 11 = (Π 11 -Π 12 Π -1 22 Π T 12 ) -1 , (84) 
Λ 12 = -Π -1 11 Π 12 (Π 22 -Π T 12 Π -1 11 Π 12 ) -1 , (85) 
Λ 21 = -Π -1 22 Π T 12 (Π 11 -Π 12 Π -1 22 Π T 12 ) -1 , (86) 
Λ 22 = (Π 22 -Π T 12 Π -1 11 Π 12 ) -1 . ( 87 
)
For class-1 tensegrity, we still need to inverse M directly, which is given by:

M -1 = 4 m-1 -2 m-1 -2 m-1 4 m-1 . ( 88 
)

Calculate initial values of n c from n

In simulation, we set the initial conditions of the structure, and then check the time response. n is chosen to satisfy the constraints, the initial values of n c for ode solvers (ode45 is usually used) can be calculated from:

P ⊥ n c = (n -P † d c ), (89) 
we have:

n c = (P ⊥ ) † (n -P † d c ). ( 90 
)

Matrix formulation of tensegrity dynamics with fluid force incorporated

The dynamics of any given rod member in a tensegrity structure in the presence of fluid force are given by Eq. ( 37) and Eq. (38). To describe a full tensegrity structure, it basically stacks 2β vector equations for a system containing β rod members. In order to simplify the equation structure, one can assemble them in a matrix form.

We name nodes at the base of bar vectors as

N := n 1 • • • n 2β , for a network of β bars, define the 3 × β matrix B := b 1 • • • b β .
The mass centers of the bars is defined as R := r 1 • • • r β , where r i is the ith column of matrix R. The internal forces acting on nodes caused by string tensions is N C T s γC s , the full force matrix expression can then be written as F := W -N C T s γC s . Fluid forces can be assembled as

F R := f n1 1 + f t1 • • • f n1 β + f t β , ∆ R := τ R1 • • • τ R β . Let us also define B := b1 • • • bβ and e := 1 • • • 1 T ,
we have the following expression:

B m 1 12 + B ḂT Ḃ ml -2 1 12 + B T F C T b l-2 1 2 = F C T b 1 2 + e T ⊗ I 3 BT ∆ R l-2 , (91) 
R m = 2F C T r + F R , (92) 
where F R , τR and m are how we add the accelerationindependent and dependent fluid forces and torques into the equation, and l i := ||b i ||. Define [26]:

-λ := ḂT Ḃ ml -2 1 12 + B T F C T b l-2 1 2 , (93) 
M := 1 12 C T b mC b + C T r mC r , (94) 
K := C T s γC s -C T b λC b , (95) 
with the following formula:

1 2 C T b C b + 2C T r C r = I, C b C r = 1 2 C T b 2C T r -1 , (96) 
Eq. ( 91) and Eq. ( 92) can be written into:

N M + N K = W + e T ⊗ I 3 BT ∆ R l-2 C b + F R C r . ( 97 
)
When the system is subject to constraint of form [26]:

N P = D, P ∈ R β×m . (98) 
The constraint force T is given by:

T = ΩP T , (99) 
and W in Eq. ( 97) is replaced by W +ΩP T . A analytical solution for Ω can be found in [26].

We can also add an additional constraint that the e 2 coordinate of n 1 remains constant d y , i.e.: e T 2 N e 1 = d y , e 2 = 0 1 0

T ∈ R 3 , (100) 
e 1 = 1 0 T ∈ R 3β . (101) 
The total constraint is N P e T 2 N e 1 = D d y which can not be written in the form of Eq. (98). So Eq. ( 98) is only applicable to constraints on vectors n i , i = 1, • • • , 2β, but not on individual entries n ix , n iy , n iz . The vector form equation of motion in section 4 is more suitable for compact expression:

e T 2 (e T 1 ⊗ I 3 )n = d y , Pn = d, (102) 
where:

P := P ((e 1 ⊗ I 3 )e 2 )
T , d := 

d d y . (103) 

Numerical study

It has been observed that DNA has a similar structure as tensegrity prism, where rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables [START_REF] Liedl | [END_REF]. Many research on tensegrity prism has been conducted to study its properties in lightweight [START_REF] Skelton | Tensegrity systems[END_REF], configuration method for connecting [41], deployability by stimulus-responsive polymers [42], stiffness of the prism towers [43], etc. Thus, 3D three-bar prism example, shown in Fig. and6. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit without fluid are given in Figs. 7 and8. From these two figures, we can see that the prism is experiencing a free periodical oscillation. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in the presence of fluid are given in Figs. 9 and 10. It is shown that the structure quickly damped to its equilibrium. Comparing the results with no fluid results, we can see that the water provides large damping to the dynamics response of the structure, which agrees with the physics. The bar length and fixed node errors of the prism are shown in Figs. 3 and time history of nodes 4, 5, and 6 of the prism unit in the presence of fluid with 3 m/s velocity in the x-direction are given in Figs. 12 and13. The result showed that the structure quickly damped to its equilibrium, and the whole structure moves towards the x-direction, shown in Fig. 11. Comparing the results for fluid with and without velocity, we can conclude that the fluid provides large damping to the dynamics response of the structure and a pushing force to the whole structure in the fluid velocity direction, which matches well with the physics. 

Example 3: Landing in the presence of fluid

Landing problem has attracted a lot attentions from various researchers [START_REF] Kim | Soft robotics[END_REF]44,[START_REF] Rimoli | 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[END_REF]. All these simulations are assuming a non-fluid environment. This is true for lunar or asteroid landing, but for other scenarios, the influence of fluid should be considered. For example, landing on the ocean floor, Earth, Mars, and Titan would require the consideration of fluid. The example is to demonstrate the capability of the formulation to perform the dynamic simulation with inputs from the external environment (gravity and fluid). A dynamic simulation result was shown when the prism lander was dropped from a height of 1 m (distance between the bottom nodes of the prism and the ground). For this simulation, the frictionless ground was modeled as a spring-damper system of stiffness k g = 3,000 N/m and damping c g = 3 N•s/m. An initial prestress value of all the bars and vertical strings λ = λ v = 15 N/m, force densities in the top and bottom strings are

γ t = γ b = λ/ √ 3 = 5 √ 3 N/m,
which result in selfequilibrium for the structure without gravity force [START_REF] Skelton | Tensegrity systems[END_REF]. We should point out that adding gravity in landing to the structure will slightly change the equilibrium configuration, and one can observe this phenomenon before the structure hitting the ground, shown in the x and y coordinates and velocities at 0 s ∼ 0.52 s in Fig. 16 and 0 s ∼ 0.84 s in Fig. 18.

For this case, we compare the motion of the flexible structure landing simulation with and without fluid. can see that it takes about 0.52 s for the prism to hit the ground. After hitting the ground, the prism is experiencing a big bouncing up and down with small damping from the ground. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in the presence of fluid are given in Figs. 18 and19. It is shown that it takes a little longer, 0.84 s, for the prism to hit the ground because of the fluid damping influence. After hitting the ground, the structure quickly damped to its equilibrium. Comparing the results with no fluid results, we can see that the water provides large damping to the landing process, which takes a longer time to land on the floor but damped quicker to its equilibrium. 

Conclusion

This paper first derived the dynamics of one single rod. The continuously distributed fluid forces along the bar are represented by a single force at the geometrical center and a torque. Then, the fluid forces are added to the derived dynamics of equations. By stacking all the equations of motion for each rod, compact vector and matrix forms of class-1 and class-k tensegrity dynamics are formulated. Finally, based on a three-dimensional prism model, we simulate and compared results without considering fluid forces, fluid velocity, and gravity forces. Results show that fluid forces and velocity can give the structure damping and pushing force to the dynamics response of the structure, which agrees with the physics. This study gives an analytical dynamics formulation of fluid-structure interaction of any class-1 and class-k tensegrity structures. The integrated dynamic model of fluid-structure interaction developed in this paper is suitable for the design of feedback control or gives a quick and qualitative estimation of the behaviors of tensegrity systems in fluid in the initial design.

Fig. 1

 1 Fig. 1 Tensegrity bar member vector with fluid force nomenclature.

  Since the bar vector b described in body frame B is b = Bb B , where b B represents the components of the vector b as viewed in coordinate frame B. With b 3 along the rod, we have b B = 0 0 l T and ḃB = 0. The time derivative of vector b is:

  One can solve this linear algebra problem for b. Notice that b b T has full column rank, the unique solution for b is: b

4. 1

 1 Class-1 tensegrity with fluid incorporated Let the connectivity matrices of class-1 structure be C b = -I β I β for bars, where β is the number of bars in the system, and C s for strings, and C r = 1 2 I β I β [3]. Let us define:

Fig. 2 A

 2 Fig. 2 A 3D three-bar prism, thick black lines are bars and thin red lines are strings, prism height is 0.5 m, and bar length is 0.6952 m.

2 ,Fig. 3

 23 Fig. 3 Bar length errors of the prism.

4 . 6 . 2

 462 Example 2: Free oscillation in the fluid with an inlet velocity For this case, we compare the motion of the flexible structure dynamic with a fluid inlet velocity of 0 m/s and 3 m/s in the x-direction. The three-figure timelapse plots are given in Figs. 6 and 11. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in the presence of static fluid are given in Figs. 9 and 10. It is shown that the structure quickly damped to its equilibrium. The coordinate and velocity

Fig. 4

 4 Fig.4x, y, and z coordinates error of the fixed node.

Fig. 5

 5 Fig. 5 Free oscillation of the prism (no fluid) at T = 0s, 1s, and 2s.

Fig. 6

 6 Fig. 6 Free oscillation of the prism (immersed in the fluid) at T = 0s, 1s, and 2s.

Fig. 7

 7 Fig. 7 Coordinate time history of node 4, 5 and 6 from the free oscillation of the prism (no fluid).

Fig. 8

 8 Fig. 8 Velocity time history of node 4, 5 and 6 from the free oscillation of the prism (no fluid).

Fig. 9

 9 Fig. 9 Coordinate time history of node 4, 5 and 6 from the free oscillation of the prism (immersed in the fluid).

Fig. 10

 10 Fig. 10 Velocity time history of node 4, 5 and 6 from the free oscillation of the prism unit (immersed in the fluid).

Fig. 11

 11 Fig. 11 Dynamics simulation of the prism (fluid inlet velocity 3 m/s in x-direction) at T = 0s, 1s, and 2s.

Fig. 12

 12 Fig. 12 Coordinate time history of node 4, 5 and 6 from the dynamics simulation of the prism unit (fluid inlet velocity 3 m/s in x-direction).

Fig. 13

 13 Fig. 13 Velocity time history of node 4, 5 and 6 from the dynamics simulation of the prism unit (fluid inlet velocity 3 m/s in x-direction).

  The three-figure time-lapse plots are given in Figs. 14 and 15. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit without fluid are given in Figs. 16 and 17. From these two figures, we

Fig. 14

 14 Fig. 14 Landing simulation of the prism (no fluid) at T = 0s, 1s, and 2s.

Fig. 15

 15 Fig. 15 Landing simulation of the prism unit (immersed in the fluid) at T = 0s, 1s, and 2s.

Fig. 16

 16 Fig. 16 Coordinate time history of node 4, 5 and 6 from the landing simulation of the prism unit (no fluid).

Fig. 17

 17 Fig. 17 Velocity time history of node 4, 5 and 6 from the landing simulation of the prism unit (no fluid).

Fig. 18

 18 Fig. 18 Coordinate time history of node 4, 5 and 6 from the landing simulation of the prism unit (with fluid).

Fig. 19

 19 Fig. 19 Velocity time history of node 4, 5 and 6 from the landing simulation of the prism unit (with fluid).