
HAL Id: hal-03287594
https://hal.science/hal-03287594v1

Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Almost-Optimal Deterministic Treasure Hunt in
Arbitrary Graphs

Sébastien Bouchard, Yoann Dieudonne, Arnaud Labourel, Andrzej Pelc

To cite this version:
Sébastien Bouchard, Yoann Dieudonne, Arnaud Labourel, Andrzej Pelc. Almost-Optimal Determin-
istic Treasure Hunt in Arbitrary Graphs. International Colloquium on Automata, Languages and
Programming (ICALP) 2021, Jul 2021, Glasgow, United Kingdom. �hal-03287594�

https://hal.science/hal-03287594v1
https://hal.archives-ouvertes.fr

Almost-Optimal Deterministic Treasure Hunt

in Arbitrary Graphs

Sébastien Bouchard∗ Yoann Dieudonné† Arnaud Labourel‡ Andrzej Pelc§

Abstract

A mobile agent navigating along edges of a simple connected graph, either finite or countably
infinite, has to find an inert target (treasure) hidden in one of the nodes. This task is known as
treasure hunt. The agent has no a priori knowledge of the graph, of the location of the treasure
or of the initial distance to it. The cost of a treasure hunt algorithm is the worst-case number
of edge traversals performed by the agent until finding the treasure. Awerbuch, Betke, Rivest
and Singh [3] considered graph exploration and treasure hunt for finite graphs in a restricted
model where the agent has a fuel tank that can be replenished only at the starting node s. The
size of the tank is B = 2(1 + α)r, for some positive real constant α, where r, called the radius
of the graph, is the maximum distance from s to any other node. The tank of size B allows the
agent to make at most bBc edge traversals between two consecutive visits at node s.

Let e(d) be the number of edges whose at least one extremity is at distance less than d from s.
Awerbuch, Betke, Rivest and Singh [3] conjectured that it is impossible to find a treasure hidden
in a node at distance at most d at cost nearly linear in e(d). We first design a deterministic
treasure hunt algorithm working in the model without any restrictions on the moves of the agent
at cost O(e(d) log d), and then show how to modify this algorithm to work in the model from
[3] with the same complexity. Thus we refute the above twenty-year-old conjecture. We observe
that no treasure hunt algorithm can beat cost Θ(e(d)) for all graphs and thus our algorithms
are also almost optimal.

keywords: treasure hunt, graph, mobile agent

∗Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France. E-mail:
sebastien.bouchard@u-bordeaux.fr
†MIS Lab., Université de Picardie Jules Verne, France. E-mail: yoann.dieudonne@u-picardie.fr
‡Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France. Email: arnaud.labourel@lis-lab.fr
§Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:

pelc@uqo.ca. Supported in part by NSERC discovery grant 2018-03899 and by the Research Chair in Distributed
Computing of the Université du Québec en Outaouais.

1

1 Introduction

1.1 The background

A mobile agent has to find an inert target (treasure) in some environment that can be a network

modeled by a graph or a terrain in the plane. This task, known as treasure hunt, has important

applications when the environment is dangerous for humans. When a miner is lost in a contaminated

mine, it may have to be found by a robot, and the length of the robot’s trajectory should be as

short as possible, in order to minimize rescuing time. In this example, a graph models the corridors

of the mine with nodes representing crossings. Another application of treasure hunt in graphs is

searching for a data item in a communication network modeled by a graph.

1.2 The models and the problem

We consider a simple connected undirected locally finite graph G = (VG , EG), i.e., a graph with nodes

of finite degrees. Such a graph can be either finite or countably infinite. A mobile agent (robot)

starts at a node s of G, called the source node, and moves along its edges. The maximum distance of

any node from s is denoted by r and called the radius of the graph (the radius of countably infinite

graphs is infinite). We make the same assumption as in [3] that the agent has unbounded memory

and can recognize already visited nodes and traversed edges. This is formalized as follows. Nodes

of G have distinct labels that are positive integers. Each edge has ports at both of its extremities.

Ports corresponding to edges incident to a node of degree δ are numbered 0, 1, . . . , δ − 1 in an

arbitrary way. At the beginning, the agent situated at node s sees its degree. The agent executes

a deterministic algorithm: at each step, it selects a port number on the basis of currently available

information, and traverses the corresponding edge. When the agent enters the adjacent node, it

learns its label, its degree, and the incoming port number.

Each node of VG will be identified with its label, and each edge of EG will be identified as the

quadruple (v, w, p, q), where v < w are labels of the edge extremities, p is its port number at node

v and q is its port number at node w.

The above simple model will be called unrestricted. However, some authors imposed additional

restrictions, in the case when the graph is finite. The authors of [3] used a restriction of moves

of the agent that we will call the fuel-restricted model. They assumed that the agent has a fuel

tank that can be replenished only at the starting node s of the agent. The size of the tank is

B = 2(1 + α)r, for some positive real constant α, where r is the radius of the graph. The tank of

size B allows the agent to make at most bBc edge traversals between two consecutive visits at node

s. The restriction used in [11] was of a different kind. We will call it the rope-restricted model. It

was assumed in [11] that the agent is tethered, i.e., attached to s by a rope that it unwinds by a

length 1 with every forward edge traversal and rewinds by a length of 1 with every backward edge

traversal. The rope is infinitely extendible but has to satisfy the following constraint: the segment

of the rope unwinded by the agent must never be longer than L = (1 + α)r, for some positive real

constant α. Hence the agent is forced to match every forward edge traversal of an edge with a

2

backward edge traversal, rewinding the rope, in a first-in last-out stack order.

The task of treasure hunt, in any of the above three models, is defined as follows. An adversary

hides the treasure in some node of the underlying graph G. The agent has no a priori knowledge of

the graph, of the location of the treasure or of the initial distance to it, and has to find the treasure.

The cost of a treasure hunt algorithm is the worst-case number of edge traversals performed by the

agent until finding the treasure.

In order to state our problem we need the notion of a ball. Given a non-negative integer k, a graph

G, and a node u, the ball Bk(G, u) is defined as the subgraph K = (VK , EK) of G, where VK is the

set of all nodes at distance at most k from u in G, and EK is the set of all edges of G whose at

least one extremity is at distance smaller than k from u in G. (Thus Bk(G, u) is the subgraph of G

induced by nodes at distance at most k without edges joining nodes at distance exactly k from u in

G). The number of edges in ball Bk(G, s), where s is the source node, will be denoted by e(k,G).

Whenever the graph G is clear from the context, we will write e(k) instead of e(k,G).

The main problem considered in this paper is inspired by the following conjecture of Awerbuch,

Betke, Rivest and Singh [3], formulated for their fuel-restricted model:

Is it possible (we conjecture not) to find a treasure in time nearly linear in the

number of those vertices and edges whose distance to the source is less than or equal

to that of the treasure? 1

1.3 Our results

Our main result refutes the above twenty-year-old conjecture. Let d be any integer such that

1 < d ≤ r, where r is the radius of the underlying graph G. We first design a deterministic treasure

hunt algorithm working in the unrestricted model and always finding a treasure located at distance

at most d from the source node, at cost O(e(d) log d). We then show how to modify this algorithm

to work in the fuel-restricted and rope-restricted models with the same complexity. Since d ≤ e(d),

the cost of our algorithms differs from e(d) only by a logarithmic factor, and hence it is nearly linear

in e(d), contrary to the conjecture. Due to the ignorance of the agent concerning the graph in which

it operates, no treasure hunt algorithm can beat cost Θ(e(d)) for all graphs (cf. Proposition 2.1)

and thus our algorithms are also almost optimal. The main difficulty is to design the algorithm

for the unrestricted model. This algorithm is then suitably modified for each of the two restricted

models.

Solving the problem of treasure hunt at a cost quasi-linear in e(d) required to respect two fun-

damental principles, whose joint implementation seemed precarious in the light of the existing

literature.

The first one is a prudence principle. It consists in never getting “for too long” beyond the unknown

distance d in order to guarantee a cost that depends on e(d). This can be ideally achieved by

1Time in this conjecture is what we call cost, i.e., the worst-case number of edge traversals until finding the
treasure.

3

emulating BFS. However, since in such an emulation the agent must physically move from one

node to the next, it may be forced to traverse Ω(e(d)2) edges before finding the treasure, in some

graphs. In particular, this could be the case when G is an infinite line.

The second principle is what we could call an efficiency principle. It consists in getting a cost

that is asymptotically close to the number of edges of the subgraph that has been explored till

finding the treasure, if the treasure is far away. This can be ideally achieved using the treasure

hunt algorithm of [11], the cost of which is linear in the number of edges of the explored subgraph.

However, using this algorithm, the agent may go for too long beyond the unknown distance d and

consequently the cost of treasure hunt could not be upper bounded by any function of e(d). The

key challenge overcome by our work was combining these two principles within the same algorithm.

It is precisely the combination of prudence with efficiency that finally made possible the design of

an almost-optimal treasure hunt algorithm.

1.4 Related work

The task of treasure hunt, i.e., finding an inert target hidden in some environment, has been studied

for over fifty years [5, 6, 7]. The environment where the target is hidden may be a graph or a plane,

and the search may be deterministic or randomized. The book [1] surveys both treasure hunt and

the related rendezvous problem, where the target and the searching agent are both mobile and they

cooperate to meet. This book is concerned mostly with randomized search strategies. In [23, 26]

the authors studied relations between treasure hunt and rendezvous in graphs. The authors of [4]

studied the task of treasure hunt on the line and in the grid, and initiated the study of the task of

searching for an unknown line in the plane. This research was continued, e.g., in [16, 21].

Several papers considered treasure hunt in the plane, see surveys [14, 15]. In [20], the author designs

an optimal algorithm to sweep the plane in order to locate an unknown fixed target, where locating

means getting the agent originating at point O to a point P such that the target is in the segment

OP . In [13], the authors generalized the search problem in the plane to the case of several searchers.

Efficient treasure hunt in the plane, under complete ignorance of the searching agent, was studied

in [24]. Treasure hunt on the line (called the cow-path problem [17]) has been also generalized to

the environment consisting of multiple rays originating at a single point [2, 10, 22, 25].

In [12], the authors considered treasure hunt in several classes of graphs including trees. Treasure

hunt in trees was studied in [8, 9, 18]. In [8, 9], the authors considered complete b-ary trees, and

in [18], treasure hunt was studied in symmetric trees, with possibly multiple treasures.

In [19, 23], treasure hunt in graphs was considered under the advice paradigm, where a given

number of bits of advice can be given to the agent, and the issue is to minimize this number of bits.

The impact of different types of knowledge on the efficiency of the treasure hunt problem restricted

to symmetric trees was studied in [18].

The two papers closest to the present work are [3, 11]. Both of them are mainly interested in

exploration of finite unknown graphs but they both get interesting corollaries for the treasure hunt

problem. [3] adopts the fuel-restricted model and [11] adopts the rope-restricted model. In [3], the

4

authors get a treasure hunt algorithm working at cost O(E + V 1+o(1)), where E (resp. V) is the

number of edges (resp. nodes) in a ball B∆(G, s), with ∆ ≤ d+ o(d), if the treasure is at distance

at most d from the starting node of the agent. Since e(∆) may be a lot larger than e(d), this does

not permit to bound the cost of the algorithm by any function of e(d). This impossibility may be

the reason for their conjecture that we refute in this paper. In [11], the authors design, for any

constant 0 < α < 1, a treasure hunt algorithm whose cost is linear in e((1 + α)d). Again, since

e((1 +α)d) may be much larger than e(d), this does not permit to bound the cost of the algorithm

by any function of e(d).

2 Preliminaries

In this section we introduce some conventions, definitions and procedures that will be used to

describe and analyze our algorithm.

Consider any graph H = (VH , EH) ⊆ G. If H is finite, its size i.e., its number of edges is denoted

by |H|. A graph is said to be empty if it contains no node. In the rest of this section, we assume

that H is not empty.

Let u and v be two (not necessarily distinct) nodes of H. We say that a sequence of i integers

(x1, x2, . . . , xi) is a path (of length i) in H from node u to v iff (1) i = 0 and u = v, or (2) there

exists an edge e in H between node u and a node w of H such that the port number of edge e

at node u is x1 and (x2, . . . , xi) is a path from node w to v in H. The lexicocraphically smallest

shortest path from node u to v in H, if any, is denoted by PH(u, v), and the length of this path is

denoted by |PH(u, v)|. The distance between u and v in H is denoted by dH(u, v) and is equal to

|PH(u, v)| if PH(u, v) exists, ∞ otherwise. If H is finite and connected, the eccentricity εH(u) of

node u is defined as maxw∈VH dH(u,w). The degree of u in H will be denoted by degH(u), or simply

by deg(u) if H = G. We say that node u is incomplete (resp. complete) in H if degH(u) < deg(u)

(resp. degH(u) = deg(u)). We also say that a port p is free at node u in H, if p ≤ deg(u)− 1 and

there is no edge (u, ∗, p, ∗) or (∗, u, ∗, p) in EH .

We will often need to handle subgraphs of G through union and intersection operations. More

precisely, given two subgraphs H ′ = (VH′ , EH′) and H ′′ = (VH′′ , EH′′) of G, the union of (resp. the

intersection of) H ′ and H ′′ is denoted by H ′tH ′′ (resp. H ′uH ′′) and is equal to (VH′ ∪VH′′ , EH′ ∪
EH′′) (resp. (VH′ ∩ VH′′ , EH′ ∩ EH′′)).

We define the boundary of a ball Bf (G, s), where s is the source node, as the set of nodes u

satisfying the following condition: u is a node of Bf (G, s) and for each neighbor v of u in Bf (G, s),
dBf (G,s)(s, v) ≤ dBf (G,s)(s, u).

To design our algorithm, we will also make use of three basic routines presented below. The first

routine is MoveTo(H, v). Assuming that the agent currently occupies a node w of H and PH(w, v)

exists, this routine moves the agent from node w to node v by following path PH(w, v). The second

routine is IncompleteNodes(v,H, l) where l is a positive integer. This routine returns the set of

all nodes w of H such that dH(v, w) ≤ l and w is incomplete in H. The third routine is Nodes(S),

5

where S is a finite set of finite subgraphs of G. This routine returns the union of all nodes in all

subgraphs from S.

Given an execution E of a series of instructions, the cost of E is the number of edge traversals

performed by the agent during E .

We will use the following convention. The agent will sometimes need to use Depth First Search

traversal of graphs (not performed physically, but performed as a computation in the memory of

the agent). Such a traversal depends on the order in which edges incident to a given node are

traversed for the first time. We fix this order as the increasing order of port numbers at the given

node. In this way the traversal is unambiguous, and we call it DFS.

We end this section with the following straightforward observation implying that no treasure hunt

algorithm can beat cost Θ(e(d)) for all graphs and hence our treasure hunt algorithm is almost

optimal 2. This observation holds in all three considered models: unrestricted, fuel-restricted and

rope-restricted. In fact, the proposition shows that graphs G for which the cost of treasure hunt is

at least Θ(e(d)) can be found for any density of edges in the ball Bd(G, s).

Proposition 2.1 For every treasure hunt algorithm A, for every integer d > 1, for every integer

m ≥ d and for every integer m ≤ x ≤ m2, there exists a graph G of radius d such that Bd(G, s) has

Θ(m) nodes and Θ(x) edges and the cost incurred by A to find the treasure located at some node at

distance at most d from the source node s in graph G is at least e(d,G)− 1.

Proof. It is enough to prove the proposition for the unrestricted model. Our proof works even if

the radius d is known to the agent. Fix a treasure hunt algorithm A, an integer d > 1, an integer

m ≥ d and an integer m ≤ x ≤ m2.

We start with the construction of the following graph H. The set of nodes of H is the union of

disjoint sets {s} ∪A ∪B, where A = {a1, a2, . . . , ad} and B = {b1, b2, . . . , bm}. The set of edges of

H is the union of disjoint sets X ∪ Y ∪ Z, where X = {{s, a1}, {a1, a2}, {a2, a3}, . . . , {ad−1, ad}},
Y = {{s, b1}, {s, b2}, . . . , {s, bm}}, and Z is any set of edges of size min(x,m(m − 1)/2) between

nodes of the set B. The graphH is connected, has 1+d+m ∈ Θ(m) nodes and d+m+min(x,m(m−
1)/2) ∈ Θ(x) edges. Moreover, Bd(H, s) = H and H has radius d.

Let x be the first step when all nodes of H are visited, assuming that the treasure has not been

found before. Let y be the number of untraversed edges of H at step x. There are two cases. If

y < 2 then the adversary puts the treasure at the last-discovered node of H and the proposition

is satisfied by graph H itself. Hence we may assume that y ≥ 2. Let e1, ..., ey be the edges of H
untraversed by step x, and let Hi, for i = 1, . . . , y, be the graph H with a midpoint added on edge

ei. Note that none of the edges ei can be an element of the set X because this would contradict

the fact that node ad has been visited by step x. Consequently, the radius of each graph Hi is d.

The set of nodes of Bd(Hi, s) is the set of nodes of Bd(H, s) augmented by the midpoint added on

edge ei, and we have e(d,Hi) = e(d,H) + 1. Thus, for all i, Bd(Hi, s) has Θ(m) nodes and Θ(x)

2Since the treasure has to be hidden in a node, the agent does not necessarily have to traverse all edges of the ball
Bd(G, s).

6

edges. In this case the adversary will put the treasure at one of the added midpoints and claim

that the actual graph is the corresponding graph Hi. Below we show how to choose the index i.

Since the treasure is not placed at any node of H, the execution of A until step x is the same in

graphs H, H1,...,Hy. In order to find the treasure placed at the added node of some of the graphs

Hi, algorithm A must take the port corresponding to edge ei at one of its extremities. If it does not

find a midpoint inserted in ei, i.e., if the actual graph is not Hi, algorithm A must take the port

corresponding to some other edge ej at one of its extremities, in order to find the treasure situated

at the added midpoint of ej , if the actual graph were Hj , and so on. Let ef be the last of the edges

ei examined in this way. Suppose that the actual graph G is Hf and that the adversary places the

treasure at the midpoint of ef . Hence the cost of finding the treasure in the graph G = Hf is at

least e(d,H)− y + y = e(d,H) ≥ e(d,G)− 1. This concludes the proof. �

3 Intuition

The purpose of this section is to sketch an intuitive overview of our algorithm that allows to find

the treasure at an almost-optimal cost in the unrestricted model. To this end and to simplify the

discussion, we will assume that the underlying graph G is countably infinite with nodes of finite

degrees. We will rely on the notion of largest explored ball. By “largest explored ball”, at a given

phase of treasure hunt, we mean the ball Bf (G, s) where f is the largest integer such that each

edge of Bf (G, s) has been traversed at least once. This largest integer f is the radius of the largest

explored ball.

At a high level, our algorithm works in phases i = 1, 2, 3, . . . and immediately stops as soon as the

treasure is found. At the beginning of phase i, the agent is located at node s and the radius of

the largest explored ball is equal to fi. The goal for the agent is to terminate the phase at node

s while satisfying at least one of the following three conditions unless, of course, the treasure has

been found before.

• Condition 1. The agent has entirely explored ball Bfi+1(G, s), e(fi + 1) ≥ 2e(fi) and the cost

of the phase is O(e(fi + 1)).

• Condition 2. The agent has entirely explored ball B2fi(G, s), fi ≥ 1 and the cost of the phase

is O(e(fi)).

• Condition 3. The agent has entirely explored ball Bfi+k(G, s) for some positive integer k,

e(fi + k + 1) ≥ 2e(fi), fi ≥ 2, and the cost of the phase is O(e(fi) log fi).

Actually, the conditions we really seek to meet in our algorithm are a little more intricate than

those presented above, because we needed stronger technical requirements to show Theorem 6.1,

which refutes the conjecture of Awerbuch, Betke, Rivest and Singh [3]. However, this would add an

unnecessary level of complexity to understand the intuition, hence we omit these technical details

here.

7

Before seeing how we implement our strategy, let us briefly examine why it permits us to get a

cost quasi-linear in e(d). Since f1 = 0 and the radius of the largest explored ball increases by

at least one during each phase in which the treasure is not found, the agent necessarily finds the

treasure by the end of some phase λ ≤ d, and fi < fλ < d for every 1 ≤ i < λ. During each phase

satisfying Condition 1, the size of the largest explored ball at least doubles, which means that the

total cost of these phases is upper bounded by twice the worst-case cost of the last phase satisfying

Condition 1 i.e., O(e(fλ + 1)). Concerning the phases fulfilling Condition 2, their number is at

most O(log(fλ + 1)) and the cost of each of them cannot be more than O(e(fλ)), which implies

that their total cost is O(e(fλ) log(fλ + 1)). It remains to consider the case of the phases satisfying

Condition 3. Given such a phase i, we have the guarantee that the size of the largest explored ball

at least doubles between the beginning of phase i and the end of phase i+ 1, provided phase i+ 1

exists and is not prematurely interrupted by the discovery of the treasure. Indeed, at the end of

phase i, the agent has at least entirely explored ball Bfi+k(G, s) for some positive integer k and

e(fi + k + 1) ≥ 2e(fi), while at the end of the (not prematurely interrupted) phase i+ 1 the agent

has at least entirely explored ball Bfi+1+1(G, s) with fi+1 ≥ fi + k. Using this, it can be shown

that the total cost of the phases satisfying Condition 3 is at most four times the worst-case cost of

the last phase satisfying this condition i.e., O(e(fλ) log(fλ + 1)). Given that the last phase λ can

be viewed as a truncated phase that should have normally satisfied one of the three conditions, our

sketch of analysis leads to the conclusion that the cost incurred by the agent till the discovery of the

treasure is in O(e(fλ + 1) log(fλ + 1)), which is O(e(d) log d) and is in line with our expectations.

Having justified the pertinence of such a strategy, we can turn our attention to its implementation.

To do so, we need to introduce a technical building block, called GlobalExpansion(l,m) to which

we will go back at the end of this section to give additional details. Always executed from the

source node s, it is a function that returns a boolean and whose two input parameters are positive

integers except m that may be sometimes equal to the special symbol ⊥. Assuming that Bf (G, s) is

the largest explored ball, the execution of GlobalExpansion(l,⊥) permits the agent to traverse all

the edges of Bf+l(G, s) that are outside of Bf (G, s) before coming back to node s. Under the same

assumption, the execution of GlobalExpansion(l,m), when m is a positive integer, consists for the

agent in acting as if m was ⊥ but with the following extra requirement: as soon as more than m

distinct edges outside of Bf (G, s) have been traversed during the execution of the function, the

agent backtracks to node s and aborts this execution. If m is ⊥ or at least large enough to avoid an

aborted execution, the agent ends up exploring Bf+l(G, s) and the function returns true. Otherwise,

the function returns false. It should be stressed that all of this is made while guaranteeing two

properties. The first one is that the agent is always in Bf+2l−1(G, s) during the execution of

GlobalExpansion(l,m). The second is that the cost of the execution of GlobalExpansion(l,m)

is O(e(f + 2l − 1)) (resp. O(min{e(f) + m, e(f + 2l − 1)})) when m =⊥ (resp. m 6=⊥). Both

these properties will turn out to be crucial to ensure a proper design of the phases. Finally, even

if by chance the agent could explore a larger ball, we will assume for the ease of our intuitive

explanations that Bf+l(G, s) (resp. Bf (G, s)) is the largest ball explored by the agent at the end

of GlobalExpansion(l,m) in the case where the returned value is true (resp. false).

Let us consider a phase i of our algorithm and, in order not to burden the text with a lot of “unless

the treasure is found”, let us assume that the treasure will not be found by the end of it. Phase i

8

is made of at most three successive attempts, each of them aiming at fulfilling at least one of the

three conditions described earlier, with the help of our building block. In the first attempt, the

agent executes GlobalExpansion(1,⊥) from node s, the cost of which is O(e(fi + 1)). At the end

of this execution, the agent is at node s and Bfi+1(G, s) has been entirely explored by the agent.

If e(fi + 1) ≥ 2e(fi) or fi ≤ 1, the first attempt is a success as Condition 1 or Condition 2 is

verified, and the agent directly switches to phase i + 1. Otherwise, the attempt is a failure, but

we can nonetheless observe that the cost incurred because of the attempt is just O(e(fi)) because

e(fi + 1) < 2e(fi).

If the first attempt has failed, the agent starts the second attempt of phase i that consists of an

execution of function GlobalExpansion(fi − 1, e(fi)). The hope here is to expand by a distance

of fi − 1 the radius of the largest explored ball, which is Bfi+1(G, s). According to the properties

of GlobalExpansion and the fact that e(fi + 1) < 2e(fi), the cost of this execution, and thus of

the second attempt, is O(e(fi)). If GlobalExpansion(fi − 1, e(fi)) returns true, then at the end

of the second attempt, the radius of the largest explored ball is 2fi. Hence, the cost of the first

two attempts being equal to O(e(fi)) and fi being at least 2, Condition 2 is satisfied and the agent

starts phase i+ 1 without making the third attempt.

On the other hand, if GlobalExpansion(fi − 1, e(fi)) returns false, it is a different story. Indeed,

the largest explored ball is still only Bfi+1(G, s) and we cannot ensure the fulfillment of Condition 1

or Condition 2. This is exactly where Condition 3 comes into the picture. In order to remedy the

failures of the two previous attempts, the agent will start a third and last attempt which consists

of a dichotomic process that is described in Algorithm 1. At the end of this process, Condition 3

is guaranteed to be satisfied.

Algorithm 1: Third attempt

1 floor := fi + 1; ceil := 3fi − 2; l := b ceil−floor2 c;
2 while l ≥ 1 and |Bfloor(G, s)| < 2e(fi) do
3 success := GlobalExpansion(l, e(fi));
4 if success = true then

5 floor := floor + l; l := b ceil−floor2 c;
6 else

7 ceil := floor + 2l − 1; l := b l2c;

In order to better understand why we can get such a guarantee, let us take a look at the properties

that are satisfied during the third attempt and at its end.

Since the execution of GlobalExpansion(fi−1, e(fi)) returned false, the agent has explored at least

e(fi) distinct edges outside of ball Bfi+1(G, s) during the second attempt. Moreover, during this

execution, the agent was always in B3fi−2(G, s) according to the properties of GlobalExpansion.

As a result, in view of line 1 of Algorithm 1, we necessarily have the following feature before the

execution of the while loop of Algorithm 1: Bfloor(G, s) is the largest explored ball and e(ceil) ≥
2e(fi). Actually, by carefully examining the pseudocode of the while loop and using again the

properties of GlobalExpansion, it can be inductively proven that this feature is a loop invariant.

9

Alone, this loop invariant is not enough to bring the sought guarantee, but as highlighted below,

it is of precious help to do the job.

The number of iterations of the while loop can be shown to be O(log fi). Furthermore, at the

beginning of each iteration, Bfloor(G, s) has size smaller than 2e(fi) in view of the condition of

the while loop, and is the largest explored ball in view of the loop invariant. Hence, according to

the cost property of GlobalExpansion, each execution of GlobalExpansion(l, e(fi)) costs at most

O(e(fi)) like the previous two attempts, which gives a total cost of O(e(fi) log fi) of the whole

phase. This corresponds exactly to the target value of Condition 3. Along with this, at the end of

the while loop, the size of Bfloor(G, s) is at least 2e(fi), or l < 1. In the first case, we immediately

have e(floor + 1) ≥ 2e(fi), while in the second case it can be shown that ceil ≤ floor + 1. This,

combined with the fact that e(ceil) is always at least 2e(fi) (by the loop invariant) and the fact that

floor is always at least fi+1, allows us to show the last missing piece of the puzzle, which is precisely

this: when Algorithm 1 terminates, ball Bfi+k(G, s) is entirely explored and e(fi + k + 1) ≥ 2e(fi)

for some integer k ≥ 1.

To conclude with the intuitive explanations, let us give, as promised, some more insight concerning

the building block GlobalExpansion(l,m). At first glance, one might think that GlobalExpansion

could be directly derived from the exploration algorithm CFX(v, r, α) of [11], which permits to explore

a ball Br(G, v) at a cost of O
(
|B(1+α)r(G,v)|

α

)
for any given real α > 0 (this corresponds to a cost

of O
(
e((1+α)r)

α

)
when v = s) provided αr ≥ 1. Indeed, the task of GlobalExpansion(l,m) that

consists in expanding the radius f of the largest explored ball by a distance l in the case where m is

appropriately set, can be done with CFX(s, f + l, α). However, in this case we want the cost of this

expansion to be O(e(f + 2l − 1)), which is an important property of our strategy. This cannot be

guaranteed using CFX(s, f+ l, α) because, in order to get a cost depending on e(f+2l−1), we would

have to set α to a value lower than l−1
f+l , which cannot lead to a cost that is linear in e(f+2l−1), as

l−1
f+l can be arbitrarily small. True, during the design we could have been “less demanding” about

some of the properties of GlobalExpansion(l,m), but not significantly enough to permit the use

of CFX(s, f + l, α) without spoiling the validity or the cost complexity of our strategy. Another

solution that may come to mind would be to apply CFX(v, l, α) from each node v located on the

boundary of the largest explored ball Bf (G, s). Visiting each node of the boundary can be done in

O(e(f)). Hence, this solution looks attractive because by setting α to 1
2 or less (which overcomes

the above problem of the arbitrarily small value) and provided the zones explored by the different

executions of CFX do not overlap, we would get a cost that is linear in e(f + 2l− 1). The bad news

is that there may be overlaps. Of course, some overlaps can be easily avoided, especially those

appearing within Bf (G, v), but some others cannot without running the risk of missing some nodes

of Bf+l(G, s) that are outside of Bf (G, s). These “necessary overlaps” may be pernicious and may

occur in a way that prevents us from guaranteeing a cost of O(e(f + 2l − 1)).

So, what did we do? Although it was not possible to use CFX as a black box, we managed to tailor

GlobalExpansion by adapting to our needs an elegant algorithmic technique used in CFX. Through

a set of judiciously pruned trees spanning some already explored area, it allowed us to satisfy the

desired cost property of GlobalExpansion by controlling and amortizing efficiently the number of

10

times the same edges are traversed. The technique in question is detailed in the next section that

presents the pseudocode of our treasure hunt algorithm.

4 Algorithm

Solving the treasure hunt problem in the unrestricted model can be done by executing Algorithm

TreasureHunt(x) described below in Algorithm 2 and by interrupting it as soon as the treasure

is found. The input parameter x is a positive real constant. It is a technical ingredient that will

have an impact on the maximal distance at which the agent can be from node s. In our present

context, parameter x does not really matter and it can be fixed as any positive real constant. In

fact, it will show its full significance in Section 6 that is dedicated to the same problem in restricted

models: there, we will reuse TreasureHunt(x) in a context where x will have to be carefully chosen.

The variable M in line 2 of Algorithm 2 is a global variable that will always correspond to some

explored subgraph of G. For this reason, it will recurrently appear in most of the pseudocodes of

the functions described thereafter.

Algorithm 2: TreasureHunt(x)

1 v := the current node;
2 M := ({v}, ∅); /* M is a global variable */

3 repeat
4 Search(x);

As the reader can see, the execution of Algorithm TreasureHunt(x) essentially consists of a se-

ries of executions of procedure Search(x), whose pseudocode is described in Algorithm 3: these

executions correspond to what we called “phases” in our intuitive explanations of Section 3. Pro-

cedure Search(x) should be seen as the organizer of our solution. At the beginning of each call to

Search(x),M is some explored ball Bf (G, s) and the goal of the call is to make this ball grow while

satisfying some conditions. These conditions, whose simplified version we gave at the beginning of

Section 3, are formally described in Lemma 5.4.

11

Algorithm 3: Search(x)

1 v := the current node; m := |M|;
2 floor := εM(v); ceil := b(1 + x) · floorc;
3 success := GlobalExpansion(1,⊥);

4 floor := floor + 1; i := 0; l := b ceil−floor2 c;
5 while l ≥ 1 and |M| < 2m and (i 6= 1 or success = false) do
6 success := GlobalExpansion(l,m);
7 if success = true then

8 floor := floor + l; l := b ceil−floor2 c;
9 else

10 ceil := floor + 2l − 1; l := b l2c;
11 M := Bfloor(M, v);
12 i := i+ 1;

Although there are some technical differences, we can discern, throughout the lines of Algorithm 3,

the three attempts outlined in Section 3 that rely on function GlobalExpansion. Roughly speaking,

line 3 of Algorithm 3 relates to the first attempt, the first iteration of the while loop of Algorithm 3

relates to the second attempt, and the other iterations relate to the third attempt.

The pseudocode of function GlobalExpansion(l,m) is given by Algorithm 4. It has primarily

the same specifications as those given in Section 3 except that we did not implement the case

where m =⊥ and l ≥ 2 as it was not necessary for our purpose. Hence, the function precisely

handles the case where l = 1 and m =⊥, and the case where l ≥ 1 and m 6=⊥. The general

scheme of the function is as follows. At the beginning, the agent knows a ball Bf (G, s) that is

stored in variableM and the objective is to expand the radius of this ball by a distance l, without

exploring more than m edges outside of Bf (G, s), if m 6=⊥. To do this, the agent visits the nodes

L[1], L[2], . . . (stored in the array L) of the boundary of Bf (G, s) and executes from these nodes

function CDFS (described in Algorithm 5 and whose name stands for Constrained DFS) or function

LocalExpansion (described in Algorithm 6) depending on the initial values of l and m. Each of

these executions, which starts and ends at the same node, locally contributes to the global expansion

of the ball. In the case where m 6=⊥, variable b of Algorithm 4 is updated with the return value of

the two aforementioned functions, and corresponds at each stage to the remaining number of new

edges the agent is authorized to traverse outside of Bf (G, s). If b becomes negative before the end

of the while loop of Algorithm 4, the objective of expansion is simply not reached. Note that, in

order to avoid that the moves from one node of the boundary of Bf (G, s) to the next get too costly,

they are made according to a precise order that results from the definition of L given in line 2 of

Algorithm 4.

12

Algorithm 4: GlobalExpansion(l,m)

1 v := the current node;
2 L := the array containing all the nodes of the boundary of M sorted in the order of the

first visit through the DFS traversal of M from node v;
3 T := the tree produced by the DFS traversal of M from node v;
4 i := 1; b := m; T := ∅; /* T is a global variable */

5 while i ≤ |L| and (b ≥ 0 or b =⊥) do
6 MoveTo(T, L[i]);
7 if l = 1 then
8 if b =⊥ then

/* We run CDFS(1, deg(L[i])) without using its return value. */

9 (∗, ∗) :=CDFS(1, deg(L[i]));

10 else
/* We run CDFS(1, b) without using the second term of its return

value. */

11 (b, ∗) :=CDFS(1, b);

12 else
13 b := LocalExpansion(l, b);

14 i := i+ 1;

15 MoveTo(T, v);
16 return the logical value of “b ≥ 0 or b =⊥”;

As one can see in lines 9 and 11 of Algorithm 4, the implementation of the case l = 1 in Algorithm 4

directly relies on function CDFS. We will see below that this function is also involved in the trickier

case where l ≥ 2 and m 6=⊥ through the calls to function LocalExpansion. Function CDFS(l, b)

permits the agent to perform a depth-first search in the zone that does not belong to M when

it starts executing it. During the execution of this function M grows, augmented with the edges

that are traversed by the agent. The two input parameters l ≥ 1 and b ≥ 0 are integers that bring

constraints to the execution of the depth-first search. The first indicates the limit depth of the

search, while the second indicates an upper bound on the number of distinct edges the agent can

traverse during the search: when this bound is violated, the agent stops the search and goes back

to the node it occupied at the beginning of the search. The return value of CDFS(l, b) is a couple

(n, T). The first term n is an integer such that b − n is the number of distinct edges that have

been traversed during the execution of CDFS(l, b). If the bound b has been respected then n ≥ 0,

otherwise n = −1. Concerning the second term T of the return value, it simply corresponds to the

resulting DFS tree of the execution of CDFS(l, b). If n ≥ 0 and v is the occupied node at the start of

CDFS(l, b), then for every node u such that dT (u, v) < l, u is complete inM at the end of CDFS(l, b).

Note that in the particular case where l = 1 and m =⊥ in Algorithm 4, the second argument of

each call to CDFS is always set to the degree of the node from which the function is executed (cf.

line 9 of Algorithm 4) in order to ensure that this node becomes complete in M at the end of the

call.

13

Algorithm 5: CDFS(l, b)

1 v := the current node; T := ({v}, ∅); bound := b;
2 if l > 0 then
3 Mark node v;
4 while node v is incomplete in M and bound ≥ 0 do
5 pt1 := the smallest free port at node v in M;
6 Take port pt1;
7 w := the current node;
8 pt2 := the port by which the agent has just entered node w;
9 if v < w then

10 K := ({v, w}, {(v, w, pt1, pt2)});
11 else
12 K := ({v, w}, {(w, v, pt2, pt1)});
13 M :=MtK; bound := bound− 1;
14 if w is not marked then
15 (bound, T ′) := CDFS(l − 1, bound);
16 T := T t T ′ tK;

17 Take port pt2;

18 Unmark node v;

19 return (bound, T);

The case where l ≥ 2 and m 6=⊥ in Algorithm 4 relies on function LocalExpansion. It is exactly

here that we make use of the algorithmic technique of [11] mentioned at the end of Section 3, which is

based on a set of adequately pruned trees. In our solution, this set corresponds to the variable T . It

is a global variable likeM and it is initialized to ∅ at the beginning of each call to GlobalExpansion

(cf. line 4 of Algorithm 4). Let us consider the ith call LEi to LocalExpansion(l, b) made from

node L[i] during an execution of GlobalExpansion(l,m). At the end of LEi, the return value of

LocalExpansion(l, b) is an integer n ≥ −1 such that b−n is the number of distinct edges that have

been traversed during LEi and that were not in M at the start of LEi. Besides, in the case where

n ≥ 0, at the end of LEi we can guarantee that for each incomplete node u of M, dM(L[i], u) > l

or u is one of the last |L|− i nodes of L (i.e., a node of L from which the agent has not yet executed

LocalExpansion(l, b)).

To see the algorithmic technique in question at work, let us focus on an iteration I of the first

while loop of Algorithm 6 occuring in LEi. This iteration starts at node L[i] and we will show in

Section 5 that at the beginning of I, we necessarily have the following properties.

• T is a set of node disjoint trees that are all subgraphs of M.

• For each tree Tr of T , |Tr| ≥ b l8c if Tr contains a node different from L[i].

• Every incomplete node of M belongs to a tree of T or is one of the last |L| − i nodes of L.

14

Algorithm 6: LocalExpansion(l, b)

1 bound := b; v := the current node;
2 if v is incomplete in M and no tree of T contains node v then
3 T := T ∪ {({v}, ∅)};
4 while IncompleteNodes(v,M, l) ∩ Nodes(T) 6= ∅ and bound ≥ 0 do
5 u := the node with the smallest label in IncompleteNodes(v,M, l) ∩ Nodes(T);
6 MoveTo(M, u);
7 Prune(l);
8 bound := Explore(l, bound);
9 Remove from T every tree for which all the nodes are complete in M;

10 while there are two trees T and T ′ in T having a common node do
11 T ′′ := the spanning tree produced by the BFS traversal of T t T ′ from the node

having the smallest label in T t T ′;
12 T := (T \ {T, T ′}) ∪ {T ′′};
13 Execute in the reverse order all the edge traversals that have been made since the

beginning of the current iteration of the while loop;

14 return bound;

Let us examine what happens during iteration I. At the beginning of I, the agent follows a path

of length at most l from node L[i] to a node u that is incomplete inM (cf. line 5 of Algorithm 6).

By the first and third properties and the condition at line 4 of Algorithm 6, node u belongs to a

unique tree Tu ⊆ G of T . Once the agent occupies node u, the tree Tu is pruned via the procedure

Prune(l) at line 7 of Algorithm 6. The pseudocode of procedure Prune is detailed in Algorithm 7.

Algorithm 7: Prune(l)

1 v := the current node;
2 Tv := the tree of T containing node v;
3 T := T \ {Tv};
4 Root Tv at node v;

5 foreach node u of Tv such that dTv(u, v) = max{1, b l4c} do
6 Tu := the subtree of Tv rooted at u;

7 if εTu(u) ≥ b l4c − 1 then
8 T := T ∪ {Tu};
9 Remove from Tv all nodes that belong to Tu and all edges that are incident to a

node of Tu;

10 T := T ∪ {Tv};

In the context of iteration I, the pruning operation will transform Tu into a tree T ′u such that

εT ′u(u) ≤ b l2c − 1, while preserving the three properties listed above: this offers two important

advantages to which we will return at the end of this section. Once the pruning is done, the agent

applies function Explore(l, bound), whose pseudocode is given in Algorithm 8.

15

Algorithm 8: Explore(l, b)

1 bound := b; i := 1; v := the current node;
2 T := the tree of T containing node v;
3 V := array containing all the nodes of T sorted in the order of the first visit through the

DFS traversal of T from node v;
4 while i ≤ |V | and bound ≥ 0 do
5 MoveTo(T, V [i]);
6 if node V [i] is incomplete in M then

7 (bound, T ′) := CDFS(b l2c, bound);
8 T := T ∪ {T ′};

9 return bound;

In the pseudocodes of LocalExpansion and of Explore, variable bound corresponds at any stage

to the number of remaining edges the agent is authorized to traverse outside of Bf (G, s). In the

context of iteration I, function Explore(l, bound) permits the agent to explore tree T ′u and to

execute function CDFS(b l2c, bound) from the nodes of T ′u that are incomplete in M, as long as

variable bound remains non-negative. These executions of CDFS occuring during the exploration of

T ′u create in turn trees that are added to T (cf. line 8 of Algorithm 8) and that contain the new

incomplete nodes of M. If the return value of function Explore(l, bound) is non-negative, we will

show in Section 5 that all the nodes of T ′u have become complete inM. Under the same condition,

we will also guarantee that each tree Tr, which has been added to T during the execution of function

Explore, contains an incomplete node only if |Tr| ≥ b l8c. Both these guarantees combined with

lines 9 to 12 of Algorithm 6 will allow us to show that our three properties will be satisfied for the

next iteration I ′, if any, even if it occurs in another call to LocalExpansion (in the same execution

of GlobalExpansion(l,m)). In particular, this is made possible by the fact that T is never reset

between the calls to LocalExpansion during the execution of the while loop of Algorithm 4.

To fully appreciate the process accomplished during I, we need to come back to the two aforemen-

tioned advantages that are brought by the pruning operation. The first advantage concerns the

height of T ′u. The fact that εT ′u(u) ≤ b l2c − 1 is a key element to control the maximal distance

between the agent and node s. Without this, the agent could go too far from node s and we would

not be able to guarantee that the agent explores only edges of Bf+2l−1(G, s) during the execution

of GlobalExpansion(l,m) (which is a crucial property as pointed out in Section 3). The second

advantage concerns the size of T ′u. The pruning operation preserves the second property, and thus

(1) T ′u corresponds to a tree containing only node L[i] or (2) |T ′u| ≥ b l8c. This implies that the

cost resulting from the moves of line 6 of Algorithm 6 and line 5 of Algorithm 8 is linear in the

size of T ′u. Besides, if bound is still non-negative at the end of Explore(l, bound), all the nodes of

T ′u have become complete (it is in particular the case for node u) and the tree is removed from T
through line 9 of Algorithm 6. After this removal, no edge of T ′u will be an edge of another tree

of T till the end of the execution of GlobalExpansion(l,m). As a result, if the return value of

Explore(l, bound) is non-negative in I, we can associate the moves of line 6 of Algorithm 6 and

line 5 of Algorithm 8 to at least one node that becomes complete during I and to at least b l8c edges

that will no longer be edges of any tree of T till the end of the execution of GlobalExpansion(l,m).

16

In our analysis, this association will enable us to amortize efficiently the number of times the agent

retraverses the edges that have been already explored during any previous iteration of the consid-

ered while loop. This will be a decisive argument to show the cost of O(e(f)+m) for the execution

of GlobalExpansion(l,m) in the case where l ≥ 2 and m 6=⊥.

5 Correctness and complexity analysis

This section is dedicated to the proof of correctness and of complexity of Algorithm TreasureHunt(x)

in the unrestricted model. TreasureHunt(x) is an exploration algorithm that can be executed also

if there is no treasure in G. We first establish several exploration properties of our algorithm or of

its components assuming that there is no treasure in G. In fact, this assumption concerns all the

lemmas (and only them) of this section and it will not be repeated in their statements in order to

lighten the presentation. After the series of lemmas, we show the main result of this section, namely

Theorem 5.1, which specifies that our algorithm allows to find the treasure at a cost quasi-linear

in e(d).

Throughout the proof of correctness, we will often have to consider the value of the global variable

M before or after some executions. To this end, we introduce the following convention: given an

execution E of Algorithm TreasureHunt(x) or some part of it, we denote by M1(E) the value ofM
at the beginning of E and by M2(E) the value of M at the end of E .

We start by giving two lemmas concerning the function CDFS(l, b). They list some properties that

will be useful in the sequel. They are direct consequences of Algorithm 5 and can be easily proved

by induction on l.

Lemma 5.1 Consider an execution E of function CDFS(l, b) from a node u of G where l ≥ 1 and

b ≥ 0 are integers. Assume that M1(E) ⊆ G. Execution E terminates at node u, and the agent

always knows a path of length at most l from node u to its current node during E.

Lemma 5.2 Consider an execution E of function CDFS(l, b) from a node u of G where l ≥ 1 and

b ≥ 0 are integers. Assume that M1(E) ⊆ G. Function CDFS(l, b) returns a couple (i, T r) such that

the following properties are satisfied.

• Let G be the subgraph of G that has been explored during E. G ⊆ Bl(G, u), |M1(E) uG| = 0,

M1(E) tG = M2(E), Tr is a spanning tree of G and i = b− |G| ≥ −1.

• The cost of E is 2|G| and εTr(u) ≤ l.

• If i ≥ 0 then for every node v of Tr such that dTr(u, v) < l, v is complete in M2(E). If

i = −1, then there exists a node v of Tr such that dTr(u, v) ≤ l − 1 and v is incomplete in

M2(E).

The following lemma establishes the properties of function GlobalExpansion(l,m) that will be

used to prove Lemma 5.4 that concerns procedure Search(x).

17

Lemma 5.3 Consider an execution E of function GlobalExpansion(l,m) from the source node s,

where l is a positive integer and m is either a positive integer or ⊥. Assume that M1(E) = Bf (G, s)
for some integer f ≥ 0.

• if m 6=⊥, or m =⊥ and l = 1, then E terminates at node s and during E the agent always

knows a path in G of length at most f + 2l − 1 from node s to its current node.

• If m =⊥ and l = 1 then the cost of E is O(e(f + 1)) and Bf+1(G, s) = M2(E).

• If m 6=⊥ and function GlobalExpansion(l,m) returns true (resp. false) then Bf+l(G, s) ⊆
M2(E) (resp. Bf (G, s) ⊆M2(E) and e(f+2l−1) > e(f)+m) and the cost of E is O(e(f)+m).

Proof. First observe that the global variable M is always a subgraph of G during E . This comes

from the fact that M1(E) = Bf (G, s), and from lines 5 to 13 of Algorithm 5 that are the only

places where M may be modified during E . By line 2 of Algorithm 4, L is an array containing all

the nodes of the boundary of Bf (G, s). By definition, the nodes of Bf (G, s) that are not in L are

necessarily complete in M1(E).

According to Algorithm 4, the edge traversals made during E can be divided into three distinct

types. The first type corresponds to those that aim to position the agent at each node of L (cf. line 6

of Algorithm 4). The second type consists of edge traversals that aim to expand M (cf. lines 9,

11 and 13 of Algorithm 4). The third type consists of edge traversals that permit to relocate the

agent at node s at the end of E (cf. line 15 of Algorithm 4). The total number of edge traversals

made by the agent will be analysed below and will vary according to different cases. However, with

a few arguments, we can already give some properties of the first and third types, in particular

concerning their order of magnitude.

Note that an execution of CDFS(1, deg(L[i])) (resp. CDFS(1, b)) in Algorithm 4 from a node L[i] starts

and ends at L[i] according to Lemma 5.1. Also note that if an execution of LocalExpansion from

L[i] terminates (this will be shown below), the agent is back at L[i] at the end of this execution in

view of line 13 of Algorithm 6. From the above explanations, it follows that for all 2 ≤ i ≤ |L|, the

agent is at node L[i− 1] when it starts executing the ith iteration of the while loop of Algorithm 4.

It also follows that the agent is at node L[|L|] when it starts executing line 15 of Algorithm 4. As

a result, we have the following claim owing to the fact that the nodes of L are sorted in the order

of the first visit through the DFS traversal of Bf (G, s) from node s, and the fact that the agent

always takes the shortest path in the tree produced by this traversal when it executes the move

instructions of lines 6 and 15 of Algorithm 4.

Claim 5.1 The total cost induced by the edge traversals belonging to the first or third type in E is

O(e(f)). Moreover, at the beginning and at the end of each edge traversal of the first or third type

in E, the agent knows a path of length at most f from node s to its current node. Finally, if l = 1

or if each execution of LocalExpansion in E terminates, then E terminates at node s.

We first prove the lemma in the easiest case where l = 1. The nodes of L are all at distance at most

f from node s in Bf (G, s). If m =⊥, the agent executes function CDFS(1, deg(L[i])) from each node

18

L[i]. If m 6=⊥, the agent executes CDFS(1, b) also from the nodes of L, but not necessarily all of

them if b becomes negative. Let G be the subgraph of G that is explored during the executions of

function CDFS, whether m is ⊥ or not. Using Lemma 5.2, it follows by induction on the number of

calls to CDFS that M2(E) = M1(E)tG ⊆ Bf+1(G, s), |Bf (G, ∫)uG| = 0 and the total cost induced

by these calls is 2|G|: in particular, if m 6=⊥, variable b is equal to m − |G| ≥ −1 at the end of

E . Using the same lemma, it follows that all the nodes of L are complete in M2(E) if m =⊥, or

if m 6=⊥ and b ≥ 0 at the end of E . Finally, at the beginning and at the end of each move made

during each execution of CDFS from a node L[i], the agent knows a path of length at most 1 from

L[i].

From Claim 5.1 and the above explanations, it follows that E terminates at node s and during

E the agent always knows a path in G of length at most f + 1 from node s to its current node.

It also follows that if m =⊥ (resp. m 6=⊥) the cost of E is O(e(f + 1)) (resp. O(e(f) + m) as

|G| ≤ m+ 1). Besides, if m =⊥, or m 6=⊥ and b ≥ 0 at the end of E , then Bf+1(G, s) = M2(E) and

the return value of GlobalExpansion(l,m) is true according to line 16 of Algorithm 4. Otherwise,

Bf (G, s) ⊆ M2(E), the return value of GlobalExpansion(l,m) is false, and e(f + 1) > e(f) + m

(since the last value of b is −1 and |Bf (G, s) uG| = 0, we have |M1(E) tG| = e(f) +m+ 1). This

proves the lemma in the case where l = 1.

Let us now turn our attention to the main case where m 6=⊥ and l ≥ 2. The analysis of this case

will involve the global variable T . Strictly speaking, the value of this variable will be always a set

of trees. However, if a node (resp. edge) belongs to a tree of T , we will sometimes say by abuse of

language that it is a node (resp. an edge) of T . Still by abuse of language, we will sometimes say

that a node (resp. an edge) has been removed from T , if at some point this node (or this edge) no

longer belongs to any tree of T . The first while loop of Algorithm 6 will be called W1, and when we

speak of variable bound, it will be always implied it is the variable of Algorithm 6 unless explicitly

mentioned otherwise. The ith execution of function LocalExpansion(l, b), if any, made within E
will be denoted by LEi. The starting node of LEi is node L[i] according to line 6 of Algorithm 4

and line 13 of Algorithm 6.

We start with two claims.

Claim 5.2 For every 1 ≤ i ≤ |L|, execution LEi terminates, and during it the agent always knows

a path of length at most 2l − 1 from node L[i] to its current node. Moreover, at the beginning and

at the end of each iteration of W1 made during LEi, we have the following three properties.

• The agent is at node L[i].

• Variable T is a set of node disjoint trees that are all subgraphs of M.

• Every incomplete node in M is a node of T or one of the last |L| − i nodes of L.

Proof of the claim. Consider an integer 1 ≤ i ≤ |L| and suppose that the agent ends up executing

LEi. Let us first analyse what happens during a given iteration I of W1 made during LEi, assuming

19

that at the beginning of the considered iteration the three properties of the claim are satisfied. The

existence of I implies that bound is non-negative at the start of I.

Once the execution of the move instruction of line 6 of Algorithm 6 has been made, the agent

occupies a node u of M1(I). In view of line 5, node u is incomplete in M1(I) and the agent has

reached it by following a path of length at most l from L[i]. By assumption, node u belongs to

a unique tree Tu of T and Tu ⊆ M1(I). By Algorithm 7, we know that after the execution of

function Prune(l) at line 7 of Algorithm 6, T is unchanged, or Tu has been replaced in T by smaller

node disjoint trees that are all subgraphs of Tu and whose union spans Tu. In particular, we have

εT ′u(u) ≤ b l2c − 1, where T ′u is the tree of T containing node u after the pruning operation. After

that, the agent executes function Explore(l, bound) from node u. By Algorithm 8, this execution

consists of a traversal of T ′u interlaced with executions of CDFS from the incomplete nodes of T ′u
(from each of these nodes, the distance in M1(I) to node L[i] and to node s are respectively at

most l + b l2c − 1 and at most f + l + b l2c − 1). The first parameter of these executions of CDFS

is b l2c. Hence, in view of Lemma 5.2, we know that after the execution of function Explore in

line 8 of Algorithm 6, variable bound ≥ −1 and variable M has been extended by the subgraph

K of G that has been explored in the calls to CDFS made during Explore(l, bound). In view of the

same arguments, we know that the trees added to T during the execution of function Explore are

all subgraphs of M at the end of this execution: precisely, the union of these added trees forms

a spanning subgraph of K, and thus the third property of the claim is still satisfied. In addition,

during the execution of Explore(l, bound), the agent always knows a path of length at most l − 1

from node u to its current node, due to Lemma 5.1 and to the fact that εT ′u(u) ≤ b l2c−1. Note that

once the process of line 8 of Algorithm 6 is over, T is indeed still a set of trees that are all subgraphs

of M, but some trees of T may be not node disjoint. This is resolved through the executions of

lines 9 to 12 of Algorithm 6, that will permit to guarantee the second property of the claim while

preserving the third property.

Finally, taking into account line 13 of Algorithm 4 that consists of an execution in the reverse

order of all the edge traversals that have been previously made in I, it follows from the above

explanations that I terminates and the agent always knows a path of length at most 2l − 1 from

L[i] to its current node during I. It also follows that the conditions that are supposed to be satisfied

at the beginning of I, are still satisfied at the end of I. If variable bound is negative at the end of

I, there will be no more iterations of W1 thereafter in LEi and even in E .

Note that, outside of W1, the position of the agent does not change within LEi. It is also the

case for variable T , except just before W1 where the node L[i] is added into T if and only if L[i]

is incomplete in M and L[i] belongs to no tree of T . Also note that at the beginning of the first

call to function LocalExpansion(l, b), we have b = m, T = ∅ and the agent occupies node L[1]. In

particular, this implies that the initial assumptions made for the analysis of iteration I are satisfied

just before the execution of W1 in the first call to function LocalExpansion. Hence, it follows by

induction on i, that all the statements of the claim hold, except the statement that LEi terminates

if bound is never negative. More specifically, it can be shown that each iteration of W1 in LEi
terminates, but at this point of the proof, we are not yet sure that the number of these iterations

is finite if bound is never negative.

20

So, to conclude the proof of this claim, it remains to show that the number of iterations of W1

in LEi is finite assuming that variable bound is never negative in LEi. During an iteration I of

LEi, the node u to which the agent moves when executing line 6 of Algorithm 6 is necessarily

incomplete in M1(I) and such that dM1(I)(L[i], u) ≤ l. Using Lemma 5.2, we can prove that node u

becomes complete inM after the first call to CDFS made within the execution of Explore(l, bound)

in I because the return value of this execution, which becomes by then the value of bound, is

necessarily at least 0 (otherwise we get a contradiction with the assumption that variable bound is

never negative in LEi). Since the number of nodes u such that dG(l[i], u) ≤ l is finite, it follows

that the number of iterations in LEi is finite even if variable bound is never negative in LEi. This

concludes the proof of the claim. ?

In view of Claims 5.1 and 5.2, we are guaranteed that E terminates (at node s) and the number

of calls to CDFS made during E is finite. As pinpointed in the proof of Claim 5.2, these calls are

triggered only through the executions of function Explore from nodes that necessarily belong to

Bf+l+b l
2
c−1(G, s). Hence, using Lemma 5.2, the next claim can be shown by induction on the

number of calls to CDFS made during E . In this claim and in the rest of this proof, H denotes the

subgraph of G consisting of all the edges and nodes that have been visited by the agent during the

calls to CDFS within E .

Claim 5.3 The total cost of the executions of CDFS in E is 2|H|, M2(E) = M1(E)tH ⊆ Bf+2l−1(G, s)
and |M1(E) u H| = 0. Moreover, at the end of E, the value of variable b in Algorithm 4 is

m− |H| ≥ −1.

Note that in view of Claims 5.1 and 5.2, the agent always knows a path of length at most f + 2l−1

from node s to its current node during E . Suppose that m − |H| = −1. In this case, function

GlobalExpansion(l,m) returns false, and Bf (G, s) ⊆M2(E) as M2(E) = Bf (G, s)tH by Claim 5.3.

Moreover, M1(E) tH ⊆ Bf+2l−1(G, s) and |Bf (G, s) uH| = 0 by Claim 5.3, and |H| > m, which

implies that e(f + 2l − 1) > e(f) +m.

Now, suppose that that m − |H| ≥ 0. In this case, variable bound is never negative and function

GlobalExpansion(l,m) returns true. Moreover, we have the following claim.

Claim 5.4 Bf+l(G, s) ⊆M2(E).

Proof of the claim. Assume by contradiction that the claim does not hold. Since M2(E) =

Bf (G, s)tH, it follows that there exist an integer k and a node u ofM2(E) such that dM2(E)(L[k], u) ≤
l and u is incomplete in M2(E). Without loss of generality, suppose that in M2(E), L[k] is the node

of L that is the closest (or one the closest) from node u. This implies that, at the end of each

iteration of W1 made during LEk, there is a node v that does not belong to the last |L| − k nodes

of L, that is incomplete in M and that is such that dM(L[k], v) ≤ l. Hence, the execution LEk
never terminates, as the condition of W1 (cf. line 4 of Algorithm 6) always evaluates to true during

LEk in view of Claim 5.2 and of the fact that variable bound is never negative. We then get a

contradiction with the fact that E terminates, which concludes the proof of the claim. ?

21

Consequently, to end the analysis of the current case (and thus the proof of this lemma), it remains

to prove that the cost that has been paid during E is O(e(f) + m). More precisely, in view of

Claim 5.1, it is enough to show that the number of moves of the second type (which correspond

here to the moves made during the executions of function LocalExpansion) belongs to O(m).

Actually, a first step has been made via Claim 5.3 that implies that the number of moves of the

second type made during the executions of CDFS is at most 2(m+ 1). Hence, we just have to prove

that the number of moves of the second type made outside of the executions of CDFS and outside

of the executions of line 13 of Algorithm 6 is O(m). These remaining moves are of two kinds.

The first kind concerns those that are made during the execution of line 5 of Algorithm 8 in order

to make the DFS traversal of a tree of T : they will be called the blue moves. The second kind

concerns those that are made during the execution of line 6 of Algorithm 6: they will be called the

red moves. To conduct the discussions, we need two more claims.

Claim 5.5 Suppose that at some time t during E, a tree is removed from T via the execution of

line 9 of Algorithm 6. For every edge e of the removed tree, e will not be in T from time t to the

end of E.

Proof of the claim. The edges of T always originally come from the trees returned by the calls

to function CDFS. According to Lemma 5.2, for any of these calls F , the returned tree Tr has no

common edge with M1(F) and M1(F) t Tr ⊆M2(F). This implies that at any point of execution

E , every edge e of G belongs to at most one tree of T (the operation of pruning and merging of

lines 7 and 12 of Algorithm 6 can never change this fact). This also implies that for every edge e

of G, there is at most one call to function CDFS in E that returns a tree containing edge e. Hence,

when a tree is removed from T , none of its edges will ever appear again in T from the time of the

removal to the end of E . This proves the claim. ?

Claim 5.6 At the beginning of each execution of function Explore(l, bound) in LEi, we have the

following property P (i): for each tree Tr of T , |Tr| ≥ b l8c if Tr contains a node different from L[i].

Proof of the claim. Suppose by contradiction that the claim does not hold and suppose that i

is the smallest integer for which the claim is not verified. Let I be the first iteration in LEi such

that P (i) is not satisfied at the beginning of the execution of function Explore(l, bound) in I. Let

u (resp. Tu) be the node (resp. the tree of T) in which the agent is located at the end of the

execution of line 6 of Algorithm 6.

If no iteration of W1 has been made before I in E , then at the beginning of I, T is either empty

or contains only node L[i] in view of lines 2 to 4 of Algorithm 6. This is still true after the pruning

operation in I and thus at the beginning of the execution of function Explore(l, bound) in I. This

is a contradiction. Hence, at least one iteration of W1 has been made before I in E . Denote by

I ′ the iteration preceding I. If I ′ occurs during LEi, we know that property P (i) is satisfied at

the beginning of the execution of function Explore(l, bound) in I ′. At the end of this execution,

variable bound is necessarily non-negative or otherwise we get a contradiction with the existence

22

of I. By Lemma 5.2 and Algorithm 8, this implies that for each tree Tr added into T during this

execution of function Explore, |Tr| < b l2c only if all the nodes of Tr are complete inM at the end

of the execution of function Explore. Hence, in view of lines 9 to 12 of Algorithm 6, property P (i)

is still true at the beginning of I. This implies that property P (i) is also true at the beginning of

the execution of function Explore(l, bound) in I in view of Algorithm 7. Indeed, via the pruning

operation Prune(l) occuring in I, Tu remains unchanged if εTu(u) < b l4c, and it cannot be split

into trees of size less than b l8c otherwise. This is again a contradiction. Consequently, I ′ is the last

iteration of W1 in LEk for some 1 ≤ k < i and I is the first iteration of W1 in LEi. By assumption,

property P (k) is satisfied at the beginning of the execution of function Explore(l, bound) in I ′ and,

using the same arguments as above, we know that property P (k) is still true at the end of I ′. Note

that at the end of I ′, node L[k] is necessarily complete. Indeed, otherwise we get a contradiction

with the fact that I ′ is the last iteration of W1 in LEk in view of Claim 5.2 and line 4 of Algorithm 6.

We can state that node L[k] belongs to a tree containing a node different from L[k] at the the end

of I ′, because otherwise it could not be in T at this time in view of line 9 of Algorithm 6. As a

result, the size of every tree of T is at least b l8c at the end of I ′. Moreover, from the end of I ′ to the

beginning of I, T is subject to no change except the possible insertion of the one-node tree L[i], in

view of lines 2 to 4 of Algorithm 6. Consequently, property P (i) is satisfied at the beginning of I.

As explained above, this implies that property P (i) is also true at the beginning of the execution

of function Explore(l, bound) in I, which is again a contradiction and proves the claim. ?

Now, consider an iteration I of W1 in LEi during which at least one blue or red move is made. At

the beginning of function Explore(l, bound) in I, we know that the agent occupies an incomplete

node u belonging to a tree Tr of T . Moreover, the size of Tr is at least b l8c. Indeed, if it is not

the case, Tr is then the one-node tree L[i] in view of Claim 5.6: thus the agent does not make

at least one blue or red move during I, which is a contradiction with the definition of I. The

number of blue moves (resp. red moves) in I is at most 2|Tr| (resp. at most l), which gives a total

cost of at most 10(|Tr| + 1) for these two kinds of moves in I. The edges of Tr originally come

from trees returned during some previous calls to CDFS and thus they all belong to H in view of

Lemma 5.2 and the definition of H. First suppose that the execution of Explore(l, bound) returns

a non-negative integer. In view of Lemma 5.2 and Algorithm 8, we know that all the nodes of Tr

(including node u) are complete in M at the end of it. If |Tr| > 0, the number of blue or red

moves in I is at most 20|Tr| and they can be associated to |Tr| edges of H that will be removed

from T via the execution of line 9 of Algorithm 6 in I: after that, these removed edges will never

appear anymore in T during E by Claim 5.5. If |Tr| = 0, the number of blue or red moves in I is

at most 10. These moves can be associated to node u of Tr that becomes complete in M during

a call to CDFS made in the execution of Explore, and that remains so till the end of E . Since u

is visited during a call to CDFS, it necessarily belongs to H. Now, suppose that the execution of

Explore(l, bound) returns a negative integer in I. This means that I is the last execution of W1 in

E and the number of blue or red moves during this last execution of W1 is at most 10(|H|+ 1) as

|Tr| ≤ |H|. From the above arguments, it follows that the number of blue or red moves in E is at

most 30|H|+ 10z+ 10 where z is the number of nodes in H. Since H is not necessarily a connected

graph, it is not straightforward that z can be upper bounded by a linear function in |H|. Hence,

we need this last claim.

23

Claim 5.7 z is at most 2|H|+ 1.

Proof of the claim. Suppose by contradiction that z ≥ 2|H| + 2. This means that there exist

two nodes u and u′ of H that have no incident edge in H. Recall that H is the graph consisting

of the nodes and edges that have been explored during the executions of CDFS that are triggered

throughout the calls to function Explore(l, bound). Hence, node u (resp. u′) can belong to H only

if one of these executions of CDFS has been launched from node u (resp. u′). Denote by X (resp.

X ′) this execution of CDFS and suppose without loss of generality that X occurs before X ′. By

Algorithm 8, at the beginning of X node u is incomplete in M. If at the end of X, node u is still

incomplete in M, then, by Lemma 5.2, the value of variable bound of Algorithm 6 is −1 at the

end of X. Hence X ′ cannot exist, which is a contradiction. As a result, node u becomes complete

in M during X. This means that at least one edge e incident to u is visited during X and thus e

belongs to H. This contradicts the definition of node u and proves the claim. ?

In view of the above claim, the number of blue or red moves in E is at most 50|H| + 20, which is

O(m) by Claim 5.3. This closes the analysis of the case where l ≥ 2 and m 6=⊥, and thus completes

the proof of the lemma. �

Below is the lemma establishing the properties of procedure Search(x) that will be used to show

the main theorem of this section. The proof of this lemma relies on Lemma 5.3.

Lemma 5.4 Consider an execution E of procedure Search(x) from the source node s, for any real

constant x > 0. Assume that M1(E) = Bf (G, s) for some integer f ≥ 0.

• The execution terminates at node s and during the execution the agent always knows a path

in G of length at most max{f + 1, b(1 + x)fc} from node s to its current node.

• There exists an integer f ′ > f such that M2(E) = Bf ′(G, s) and at least one of the following

properties holds:

1. The cost of E is O(e(f + 1)) and xf < 3.

2. The cost of E is O(e(f)) and f ′ > (1 + x
3)f .

3. The cost of E is O(e(f) log(f + 2)) and e(f ′ + 1) ≥ 2e(f).

4. The cost of E is O(e(f + 1)) and e(f + 1) ≥ 2e(f).

Proof. The execution of procedure Search(x) from node s can be viewed as a sequence S of

consecutive executions E0, E1, E2, . . . in which Ei corresponds to the ith execution of the while loop

of Algorithm 3 if i ≥ 1, and to the instructions before the while loop of Algorithm 3 otherwise. The

length of S, i.e., the number of executions Ei in S, will be denoted by |S| (we show below that |S| is
finite). We will often discuss the values of three specific variables of Algorithm 3 that are l, floor

and ceil: in the sequel, the values of l, floor and ceil at the end of Ek will be respectively denoted

by lk, floork and ceilk. Observe that the existence of Ei+1 implies that li ≥ 1 according to the

24

while loop of Algorithm 3. Also observe that the value of variable floor is always a non-negative

integer that never decreases, and the second parameter of each call to function GlobalExpansion

is always a positive integer (cf. condition of the while loop of Algorithm 3) except for the first call

in which it is ⊥. These observations, which condition the validity of several subsequent arguments,

must be kept in mind when reading the proof as they will not always be repeated in order to lighten

the text.

We start by showing two claims.

Claim 5.8 For every 0 ≤ k ≤ |S| − 1, Ek starts and ends at node s, M2(Ek) = Bfloork(G, s) and

floork + 2lk − 1 ≤ ceilk ≤ b(1 + x)fc.

Proof of the claim. We prove the claim by induction on k and we begin with the base case

k = 0. Execution E0 essentially consists of a call to GlobalExpansion(1,⊥) from node s. By

assumption we have M1(E0) = Bf (G, s). Hence, according to Lemma 5.3, E0 terminates at node s

and M2(E0) = Bfloor0(G, s). Moreover, in view of lines 2 and 4 of Algorithm 3, we have floor0 =

f + 1 and floor0 + 2l0 − 1 ≤ ceil0 ≤ b(1 + x)fc, which concludes the base case k = 0.

Now, assume that there is an integer 0 ≤ k ≤ |S| − 2 such that Ek terminates at node s, M2(Ek) =

Bfloork(G, s) and floork + 2lk − 1 ≤ ceilk ≤ b(1 + x)fc. We prove below that these properties also

hold for k + 1.

Execution Ek+1 essentially consists of a call to GlobalExpansion(lk,m). By the inductive hypoth-

esis, Ek+1 starts at node s and M1(Ek+1) = Bfloork(G, s). It then follows from Lemma 5.3 that

Ek+1 terminates at node s, and Bfloork+lk(G, s) ⊆ M2(Ek+1) if GlobalExpansion(lk,m) returns

true, Bfloork(G, s) ⊆ M2(Ek+1) otherwise. Note that according to lines 7 to 10 of Algorithm 3,

floork+1 = floork + lk if GlobalExpansion(lk,m) returns true, floork+1 = floork otherwise.

Thus, in view of line 11 of Algorithm 3, we have M2(Ek+1) = Bfloork+1
(G, s). Finally, it remains

to prove that floork+1 + 2lk+1 − 1 ≤ ceilk+1 ≤ b(1 + x)fc. If GlobalExpansion(lk,m) returns

true, then ceilk+1 = ceilk and lk+1 = b ceilk+1−floork+1

2 c (cf. line 8 of Algorithm 3), which im-

plies, in view of the inductive hypothesis, that floork+1 + 2lk+1 − 1 ≤ ceilk+1 ≤ b(1 + x)fc. If

GlobalExpansion(lk,m) returns false, then ceilk+1 = floork + 2lk − 1, floork+1 = floork (cf.

line 10 of Algorithm 3) and lk+1 = b lk2 c which also implies, in view of the inductive hypothesis,

that floork+1 + 2lk+1 − 1 ≤ ceilk+1 ≤ b(1 + x)fc. This concludes the inductive proof of the claim.

?

Claim 5.9 |S| is in O(log(f + 2)).

Proof of the claim. If |S| = 1, the claim trivially holds. Hence, suppose that |S| ≥ 2 and fix

any integer 1 ≤ i ≤ |S| − 1. We show below that there is an integer c ≤ 3 such that li+c ≤ 7li
8

or i ≥ |S| − 6. This is enough to prove the claim. Indeed, the above property implies that |S| is

O(log(f + 2)) because l1 is at most linear in f by Claim 5.8 and because we exit the while loop

when the value of variable l becomes less than 1. We consider two cases.

25

• Case 1: the execution of GlobalExpansion(li−1,m) returns true in Ei and i ≤ |S| − 3. (Note

that executions Ei+1 and Ei+2 exist as i ≤ |S| − 3). By line 8 of Algorithm 3, we get

li = b ceili−floori2 c. Let i ≤ j ≤ i + 2 be the largest integer such that the return value of

GlobalExpansion is true from the execution Ei to Ej included. In view of line 8 of Algorithm 3

and the fact that li = b ceili−floori2 c, if j = i+ 2 then li+2 cannot be more than li
2 . Still from

the same arguments, we know that variable l never increases from the end of Ei to the end

of Ej , and thus lj ≤ li. Hence, if j < i + 2, the return value of GlobalExpansion is false in

Ej+1, which implies, according to line 10 of Algorithm 3, that lj+1 ≤ lj
2 ≤

li
2 . Consequently,

in the first case, li+1 or li+2 is at most li
2 .

• Case 2: the execution of GlobalExpansion(li−1,m) returns false in Ei and i ≤ |S| − 4. (Note

that executions Ei+1 to Ei+3 exist as i ≤ |S|−4). By line 10 of Algorithm 3, we get li = b li−1

2 c
and ceili− floori = 2li−1−1. If the execution of GlobalExpansion returns also false in Ei+1,

then we have li+1 ≤ li
2 . So, suppose that the execution of GlobalExpansion returns true in

Ei+1. We then have li+1 = b ceili+1−floori+1

2 c = b ceili−floori−li2 c = b2li−1−1−li
2 c. Furthermore,

i + 1 ≤ |S| − 3. Thus, using the same reasoning as in Case 1 (but replacing i by i + 1), we

have li+2 ≤ li+1

2 or li+3 ≤ li+1

2 . We consider three subcases.

– Subcase 2.1: li−1 is even. We have li+1 = b2li−1−1−li
2 c = b3li−1

2 c ≤ b
3li
2 c. Thus, li+2 or

li+3 is at most 3li
4 .

– Subcase 2.2: li−1 is odd and li ≥ 2. We have li+1 = b2li−1−1−li
2 c = b3li+1

2 c ≤ b
7li
4 c. Thus,

li+2 or li+3 is at most 7li
8 .

– Subcase 2.3: li−1 is odd, li = 1 and i ≤ |S|−7. We have li+1 = b2li−1−1−li
2 c = b3li+1

2 c = 2.

Note that i + 2 ≤ |S| − 5 and li+1 is even. Hence, using the same reasoning as from

Case 1 to Subcase 2.1 (but replacing i by i + 2), we know that li+3, li+4 or li+5 is

at most 3li+2

4 . Also note that li−1 = 3 as li = b li−1

2 c. Thus, ceili = floori + 5 since

ceili − floori = 2li−1 − 1. This implies that ceili+1 = floori+1 + 4 in view of line 8

of Algorithm 3. Consequently, if the execution of GlobalExpansion returns true in

Ei+2, we have ceili+2 − floori+2 = ceili+1 − floori+1 − li+1 = 2, and thus li+2 = 1.

Besides, if the execution of GlobalExpansion returns false in Ei+2, we immediately have

li+2 = b li+1

2 c = 1. As a result, li+3, li+4 or li+5 is less than 1, which means that i ≥ |S|−6

and contradicts the assumption that i ≤ |S| − 7.

To summarize, we have shown that i ≥ |S| − 6 or there is an integer c ≤ 3 such that li+c ≤ 7li
8 .

This concludes the proof of the claim. ?

According to Claims 5.8 and 5.9, S terminates after O(log(f + 2)) iterations of the while loop, and

M2(E) = M2(E|S|−1) = Bfloor|S|−1
(G, s) with floor|S|−1 ≥ floor0 > f . By assumption, E0 starts

at node s and M1(E0) = Bf (G, s). It then follows from Lemma 5.3 that the agent always knows

during E0 a path in G of length at most f + 1 from s to its current node. By Claim 5.8, for every

1 ≤ k ≤ |S| − 1, Ek starts at node s and M1(Ek) = Bfloork(G, s). Hence, from Lemma 5.3 and

Claim 5.8, it follows that for every 1 ≤ k ≤ |S| − 1, the agent always knows during Ek a path in

26

G of length at most floork−1 + 2lk−1 − 1 ≤ ceilk−1 ≤ b(1 + x)fc from s to its current node. This

completes the proof of the first part of the lemma.

Now, we prove the second part. To do so, it is enough to show that one of the four properties of

the second part is satisfied with f ′ = floor|S|−1 as M2(E) = Bfloor|S|−1
(G, s) and floor|S|−1 > f .

Since E0 starts at node s and M1(E0) = Bf (G, s), it follows from Lemma 5.3 that the cost of E0 is

O(e(f + 1)). After E0, the condition of the while loop in Algorithm 3 evaluates to false (and thus

|S| = 1) if and only if l0 < 1 or |M2(E0)| ≥ 2e(f) i.e., if and only if xf < 3 or e(floor0) ≥ 2e(f).

As a result, if |S| = 1, f ′ = floor|S|−1 = floor0 = f + 1 and the first or the fourth property are

satisfied.

So, assume that |S| ≥ 2. From the above explanations we have xf ≥ 3.

In E1, the agent executes GlobalExpansion(l0,m) where m is e(f) in view of line 1 of Algo-

rithm 3. We stated earlier that E0 is in O(e(f + 1)). Besides, M2(E0) = Bf+1(G, s) by Claim 5.8.

Consequently, the existence of E1 and the condition of the while loop of Algorithm 3 imply that

|M2(E0)| = e(f + 1) < 2m = 2e(f), and we get the following claim.

Claim 5.10 If |S| ≥ 2, the cost of E0 is O(e(f)).

By Lemma 5.3 and Claim 5.8, E1 terminates and its cost is O(m), which is O(e(f)) as m = e(f),

M1(E) = Bf+1(G, s) and e(f + 1) < 2m. If GlobalExpansion(l0,m) returns true in E1, we know

that |S| = 2 in view of the condition of the while loop of Algorithm 3. Since the cost of E0 is O(e(f))

(cf. Claim 5.10), the total cost of S (and thus of E) is O(e(f)). Moreover, floor1 = floor0 + l0 =

f+1+b bxfc−1
2 c which is more than (1+ x

3)f , as xf ≥ 3. Hence, at the end of S the second property

is satisfied with f ′ = floor|S|−1 = floor1.

Now, consider the case where GlobalExpansion(l0,m) returns false in E1. To deal with this case,

we need to prove the following claim.

Claim 5.11 For every 1 ≤ k ≤ |S| − 1, e(ceilk) > 2e(f).

Proof of the claim. We prove the claim by induction on k and we start with the base case

k = 1. By Claim 5.8, M1(E1) = Bfloor0(G, s) and E1 starts at node s. From this, Lemma 5.3 and

the fact that GlobalExpansion(l0,m) returns false, we have e(floor0 + 2l0 − 1) > e(floor0) + m.

Since m = e(f), ceil1 = floor0 + 2l0 − 1 (cf. line 10 of Algorithm 3) and e(floor0) ≥ e(f) as

floor0 = f + 1, we get e(ceil1) > 2e(f), which concludes the base case k = 1.

Now, assume that there is an integer 1 ≤ k ≤ |S| − 2 such that e(ceilk) > 2e(f). We prove that

e(ceilk+1) > 2e(f).

By Claim 5.8, Ek+1 terminates. If GlobalExpansion(lk,m) returns true then ceilk+1 = ceilk,

which implies that e(ceilk+1) > 2e(f) as e(ceilk) > 2e(f) by the inductive hypothesis. Otherwise,

GlobalExpansion(lk,m) returns false: in view of Lemma 5.3 and Claim 5.8, we then have e(floork+

27

2lk− 1) > e(floork) +m, which implies e(ceilk+1) > 2e(f) as ceilk+1 = floork + 2lk− 1 (cf. line 10

of Algorithm 3) and floork ≥ f + 1. This completes the inductive proof of the claim. ?

With the above claim, we are ready to conclude the case where GlobalExpansion(l0,m) returns

false in E1. For every 1 ≤ k ≤ |S| − 1, the cost of Ek is equal to the cost of the execution of

GlobalExpansion(lk−1,m), which is O(e(floork−1) + m) by Lemma 5.3 and Claim 5.8. Besides,

m = e(f) and e(floork−1) < 2m for every 1 ≤ k ≤ |S| − 1 (by the condition of the while loop

of Algorithm 3). Thus, from Claims 5.9 and 5.10, the cost of S is O(e(f) log(f + 2)). Since

E|S|−1 corresponds to the last iteration of the while loop, we get l|S|−1 < 1 or e(floor|S|−1) ≥ 2m

(M2(E|S|−1) = Bfloor|S|−1
(G, s) by Claim 5.8). Note that from lines 7 to 10, it follows that ceil|S|−1−

floor|S|−1 = 2l|S|−2−1 and l|S|−1 = b lS−2

2 c, or ceil|S|−1−floor|S|−1 ≤ 2lS−1+1. Hence, if l|S|−1 < 1,

we have ceil|S|−1 ≤ floor|S|−1 + 1, which implies that e(floor|S|−1 + 1) > 2e(f) by Claim 5.11.

Furthermore, if l|S|−1 ≥ 1 then e(floor|S|−1) ≥ 2m and we have e(floor|S|−1 + 1) ≥ 2e(f) because

m = e(f). As a result, the third property of the lemma is satisfied with f ′ = floor|S|−1. This

completes the analysis of the case where GlobalExpansion(l0,m) returns false in E1, and thus

concludes the proof of this lemma. �

If we put aside the initial assignments of lines 1 and 2 in Algorithm 2, the execution of procedure

TreasureHunt(x) from the source node s in G can be viewed as a sequence of consecutive executions

of procedure Search(x): the ith execution of Search(x) in this sequence will be denoted by Si.

The following lemma is a small technical observation concerning the execution of TreasureHunt(x)

from the source node s. Since, at the beginning of this execution, variable M is equal to B0(G, s),
the lemma can be easily proved by induction on i using Lemma 5.4.

Lemma 5.5 Consider an execution of procedure TreasureHunt(x) from the source node s, for any

real constant x > 0. For every integer i ≥ 1, Si starts and ends at node s, and there are two

integers fi+1 > fi ≥ i− 1 such that M1(Si) = Bfi(G, s) and M2(Si) = Bfi+1
(G, s).

We are now ready to prove the main result of this section that is stated in the following theorem.

Theorem 5.1 Consider a graph G of unknown radius r in which a treasure is located at an unknown

distance at most 1 < d ≤ r from the starting node s of an agent. For any real constant x > 0,

procedure TreasureHunt(x) allows the agent to find the treasure at cost O(e(d) log d).

Proof. Let S = (S1, S2, S3, . . .) be the sequence of consecutive executions of Search(x) resulting

from the execution of procedure TreasureHunt(x) from node s. The length of S, i.e., the number

of executions of Search(x) in S, will be denoted by |S| (we show below that |S| is upper bounded

by d). According to the procedure, the sequence S is interrupted as soon as the treasure is found

during some execution Si, which means that Si is interrupted before its “natural end”. Nonetheless,

to simplify the subsequent discussions, we will suppose in this proof that, instead of stopping as

soon as the treasure is found, the agent stops at the end of the first execution of Search(x) during

which it has found the treasure. Hence, all the executions of Search(x) in S are complete.

28

Variable M can be modified only through the instructions of line 2 of Algorithm 2, line 11 of

Algorithm 3 and lines 5 to 13 of Algorithm 5. In view of these instructions, the value of M is

always a subgraph of G whose nodes and edges have been explored by the agent. Thus, we know

that for every integer 1 ≤ i ≤ |S|, Bd(G, s) * M1(Si). Indeed, if it was not the case for some

i, we would get a contradiction with the existence of Si, as this would mean that the treasure

has been found before the start of Si. Note that |S| ≤ d because if Sd+1 existed, we would have

Bd(G, s) ⊆M1(Sd+1) in view of Lemma 5.5.

For every 1 ≤ i ≤ |S|, we denote by fi the integer such that M1(Si) = Bfi(G, s). The existence

and the unicity of each of these integers are guaranteed by Lemma 5.5 and the fact that Bd(G, s) *
M1(Si). Still by Lemma 5.5, we know that for every 1 ≤ i < |S|, 0 ≤ fi < fi+1.

From all the above explanations, we get the following claim.

Claim 5.12 |S| ≤ d, the treasure is found by the end of S, and for every 1 ≤ i < |S|, 0 ≤ fi <

fi+1 < d.

Since the agent ends up finding the treasure, it remains to discuss the incurred cost.

Note that in view of Lemma 5.5, there is an integer f|S|+1 such that M2(S|S|) = Bf|S|+1
(G, s).

However, we may have several candidates for f|S|+1 because M2(S|S|) may be G. In the rest of this

proof, f|S|+1 is choosen as the smallest integer that satisfies one of the four properties of the second

part of Lemma 5.4 (with f ′ = f|S|+1, and f = f|S| since M1(S|S|) = Bf|S|(G, s)).

In view of Lemma 5.4, we know that for each execution Si in S, at least one of the four properties

of the second part of Lemma 5.4 is satisfied with f = fi and f ′ = fi+1: the execution is then

said to be of type 1 ≤ j ≤ 4 if it satisfies the jth property. The cost of S is upper bounded by

C1 + C2 + C3 + C4 where Cj is the total cost of the executions of type j in S. So, to prove the

theorem, it is enough to prove that C1, C2, C3 and C4 all belong to O(e(d) log d). This is the

purpose of the rest of this proof.

First, consider the case of C1. We know from Lemma 5.5 that if i ≥ d 3
xe+ 1, then fi ≥ d 3

xe, which

means that fix ≥ 3 and Si cannot be of type 1 according to Lemma 5.4. Thus, the number of

executions of type 1 in S is at most d 3
xe. Moreover, if Si is of type 1, its cost is O(e(fi + 1)) and

fi < d in view of Lemma 5.4 and Claim 5.12. Hence, C1 is in O(e(d)), which is O(e(d) log d).

Now, consider the case of C2. If Si is of type 2, it follows from Lemma 5.4 that the cost of Si is

O(e(fi)) and fi+1 > (1 + x
3)fi. From Claim 5.12, we must have fi < d. Moreover, f1 = 0 and by

Lemma 5.5 fi > fi−1 for every 2 ≤ i ≤ |S|. Hence, the number of executions of type 2 in S is

O(log d) and the cost of each of them is O(e(d)). This implies that C2 is in O(e(d) log d).

Let us turn attention to the case of C3. From Lemma 5.4, there is a constant c > 0 such that for

every 1 ≤ i ≤ |S|, we have the following: if Si is of type 3, then e(fi+1 + 1) ≥ 2e(fi) and the cost

of Si is at most c · e(fi) log(2 + fi) = h(fi). Let h(fi) = c · e(fi) log(2 + fi). Let i∗ be the smallest

integer, if any, such that Si∗ is of type 3 and i∗ = i + 2k for some integer k ≥ 1. From the above

explanations and from Claim 5.12, it follows that, if Si is of type 3, then fi∗ ≥ fi+2 ≥ fi+1 + 1 > fi

29

and e(fi∗) ≥ e(fi+1 + 1) ≥ 2e(fi), which means that h(fi∗) ≥ 2h(fi). Let k (resp. k′) be the largest

even (resp. odd) integer, if any, such that Sk (resp. Sk′) is of type 3. By the telescopic effect, the

sum of the costs of the executions Si of type 3 such that i is even (resp. odd) is at most 2h(fk)

(resp. 2h(fk′)). Since by Claim 5.12, fi < d for every 1 ≤ i ≤ |S|, we know that 2h(fk) as well as

2h(fk′) is at most 2c · e(d) log(1 + d). Hence, C3 is in O(e(d) log d).

Using, as above, arguments based on the telescopic effect, we can show that C4 is in O(e(fk + 1))

where k is the largest integer, if any, such that Sk is of type 4. Since fk < d, C4 is in O(e(d)),

which is O(e(d) log d). This concludes the proof of the theorem. �

6 Treasure hunt with restrictions

Theorem 5.1 holds for the task of treasure hunt without any restrictions on the moves of the agent,

for all locally finite graphs, both finite and infinite. In this section we show how to modify our

treasure hunt algorithm to make it work under the fuel-restricted and the rope-restricted models

for finite graphs.

Strictly speaking, the fuel-restricted model was defined in [3] assuming that both the constant

α > 0 and the radius r were known to the agent. On the other hand, the rope-restricted model

was defined in [11] for any known constant α > 0 and for unknown radius r. We will show that,

for each of these restrictive models and for any known constant α > 0, we can design a treasure

hunt algorithm with the promised efficiency even when r is unknown. To this end, we need to

modify the restriction of the fuel-restricted model from [3], avoiding to reveal r to the agent by

showing it the size of the tank. We fix a positive constant α, known to the agent, and we proceed

as follows. For the restricted tank case from [3], we assume that at any visit of s the agent can put

as much fuel in the tank as it wants, but we show that if the (unknown) radius of the graph is r

then the tank is never filled to more than B = 2(1 + α)r. The formalization of the rope-restricted

model corresponds to its definition in [11]. Recall that the agent is attached at s by an infinitely

extendible rope that it unwinds by a length 1 with every forward edge traversal and rewinds by

a length of 1 with every backward edge traversal. Whenever the agent completely backtracks to

s, the unwinded segment of the rope is of length 0. We show that if the (unknown) radius of the

graph is r then the initial segment of the rope unwinded by the agent executing our algorithm will

never be longer than L = (1 + α)r.

The following theorem states that procedure TreasureHunt can be transformed into a procedure

allowing the agent to find the treasure in the aforementioned restrictive models, without changing

the asymptotic complexity.

Theorem 6.1 Consider a graph G of unknown radius r in which a treasure is located at an unknown

distance at most 1 < d ≤ r from the starting node s of the agent. For any positive constant α,

procedure TreasureHunt(α2) can be transformed into a procedure allowing the agent to find the

treasure at cost O(e(d) log d) in the rope-restricted model (resp. fuel-restricted model) without ever

30

using a segment of the rope longer than (1+α)r (resp. without filling the tank to more than 2(1+α)r

at any visit of s).

Proof. The execution of procedure TreasureHunt(α2) from node s corresponds to a sequence

S = (S1, S2, . . . , S|S|) of executions of Search(α2), in which the |S|th execution of Search(α2) is

interrupted prematurely because of the discovery of the treasure.

We denote by G0 the graph consisting only of node s, and for every 1 ≤ i ≤ |S|, we denote by Gi
the subgraph of G that has been explored from the beginning of S1 to the end of Si. For every

1 ≤ i ≤ |S|, the cost of Si will be denoted by ci.

According to Lemma 5.5, for every 1 ≤ i ≤ |S|, Si starts and ends at node s (except S|S| that ends

at the node containing the treasure), there is an integer fi ≥ 0 such that M1(Si) = Bfi(G, s) and if

i < |S|, M2(Si) = M1(Si+1). Moreover, the value ofM is always a subgraph of G whose nodes and

edges have been all explored by the agent, and thus, for every 1 ≤ i ≤ |S|, Bfi(G, s) is a subgraph

of Gi−1, fi is unique and fi < d (or otherwise the treasure would have been found before the start

of Si which leads to a contradiction with the existence of this execution). Hence, from the fact that

d ≤ r, we get the following claim.

Claim 6.1 For every 1 ≤ i ≤ |S|, max{fi + 1, b(1 + α)fic} ≤ (1 + α)r

First, we describe a new algorithm A that permits to find the treasure, in the model without

constraints, with asymptotically the same cost as that of TreasureHunt(α2). This new algorithm

consists in executing TreasureHunt(α2) with some changes in order to guarantee an extra property

that will be important for our purpose. More precisely, an execution of A from node s is a sequence

of executions (S′1, S
′
2, . . . , S

′
|S|) in which each S′i has cost O(ci) and corresponds to an emulation of

execution Si. In particular, for every 1 ≤ i ≤ |S|, S′i starts and ends at node s (except S′|S| that

ends at the node containing the treasure), M1(S′i) = M1(Si) = Bfi(G, s), and at the end of S′i, Gi
has been entirely explored. Obviously, all of this would not be interesting without the additional

crucial property brought by S′i that will be called the frequent return property and that is the

following. Let Sk be the stack initially empty in which we push (resp. pop) the last traversed edge

if it corresponds to a forward (resp. backward) edge traversal. During S′i, the size of Sk is 0 at

least once during any block of 2 max{fi + 1, b(1 + α)fic} consecutive edge traversals, and is never

greater than max{fi + 1, b(1 + α)fic}. Moreover, at the beginning of S′i, the size of Sk is 0, and if

i < |S|, it is also 0 at the end of S′i.

Note that Algorithm A is a solution with the desired cost in the rope-restricted model, that will

never use a segment of the rope longer than (1 + α)r, as for all 1 ≤ i ≤ |S|, we have max{fi +

1, b(1 +α)fic} ≤ (1 +α)r according to Claim 6.1. By requiring the agent, each time the size of Sk

is 0 in S′i, to refuel its tank up to the limit of 2 ·max{fi + 1, b(1 +α)fic} (when the size of Sk is 0,

the agent is at node s), we also get our objective with algorithm A in the fuel-restricted model, as

the agent never runs out of fuel and 2 ·max{fi + 1, b(1 + α)fic} ≤ 2(1 + α)r.

Let us describe how we can construct our emulations while ensuring the features mentioned above.

Consider the emulation S′i of Si. Assume that at the beginning of S′i, Gi−1 has been entirely

31

explored, the size of Sk is 0 and M1(S′i) = M1(Si) = Bfi(G, s). These assumptions are trivially

satisfied if i = 1. We will show below that, at the end of S′i, Gi is entirely explored and if i < |S|
the size of Sk is 0. We will also show that if i < |S| then M1(S′i+1) = Bfi+1

(G, s). We consider two

cases.

The first case is when αfi ≥ 2. We assume for simplicity that the number of edge traversals in Si
is a positive multiple of bαfi2 c. As we will explain in detail, in this case the agent executes Si but

interrupts it after each block of bαfi2 c edge traversals, except the last one, to make a “return trip”

to node s before resuming Si from where it was interrupted. The goal of these return trips is to

satisfy the frequent return property. Once the agent has executed all instructions of Si, it is either

at the node containing the treasure or at node s. In the first case, we know that i = |S| and S′i is

simply over. In the second case i < |S|, but we do not have the guarantee that the size of Sk is

0. Hence, if the agent occupies node s once it has executed all instructions of Si, it then finishes

S′i with what we call a close period in which it executes in the reverse order some of the last edge

traversals so that the size of Sk becomes 0 at the end of S′i.

Denote by vk the node in which the kth interruption occurs, and by Pk the path of length at most

b(1 + α
2)fic from node s to vk that is known by the agent when the interruption occurs. Note that

Pk necessarily exists in view of Lemma 5.4, of the initial assumptions concerning S′i and of the

fact that no edge traversal of Si has been skipped before the kth interruption. Also note that if

there are several paths that can play the role of Pk, we simply choose the lexicographically smallest

shortest path among them.

Each interruption is composed of two parts. In the first interruption, the first part consists in

backtracking to node s by executing in the reverse order the last bαfi2 c edge traversals. The second

part consists in going back to node v1 using path P1 to resume Si. For the kth interruption with

k > 1, the first part consists in backtracking to node s by executing in the reverse order the last

|Pk−1| + bαfi2 c edge traversals, and the second part consists in going back to node vk using path

Pk to resume Si. Finally, the close period simply consists in backtracking to node s by executing

in the reverse order the last bαfi2 c edge traversals if Si is made of only one block of bαfi2 c edge

traversals. Otherwise, it consists in backtracking to node s by executing in the reverse order the

last |Pk∗−1|+bαfi2 c edge traversals where k∗ = ci
bαfi

2
c

is the number of blocks of bαfi2 c edge traversals

in Si.

It follows by induction on the number of interruptions that the size of Sk is 0 at the end of the

first part of each interruption. Using this, the fact that Sk is empty at the beginning of S′i and the

fact that for every 1 < k ≤ ci
bαfi

2
c
, |Pk−1|+ bαfi2 c ≤ b(1 + α)fic, it follows that the frequent return

property is satisfied during S′i.

Moreover, it follows from the above explanation that at the end of S′i, Gi is entirely explored and

the agent is at the node containing the treasure, if i = |S|. If i < |S|, it also follows that the size

of Sk is 0 at the beginning of the next emulation S′i+1, and M1(S′i+1) = M1(Si+1) = Bfi+1
(G, s)

because M2(S′i) = M2(Si) = M1(Si+1). Finally, concerning the cost of S′i observe that the number

of interruptions is ci
bαfi

2
c
− 1 and during each interruption as well as during the close period the

32

agent makes at most 2b(1 + α)fic edge traversals. The cost of S′i is then upper bounded by

ci + ci
bαfi

2
c
2b(1 + α)fic ≤ (1 + 2(1+α)fi

bαfi
2
c

)ci. If 2 ≤ αfi < 4, then 2
α ≤ fi <

4
α , which implies that

the cost is at most (1 + 8(1+α)
α)ci. Otherwise, αfi ≥ 4 and the cost is then upper bounded by

(1 + 2(1+α)fi
αfi
2
−1

)ci ≤ (1 + 2(1+α)
α
2
− 1
fi

)ci which is also at most (1 + 8(1+α)
α)ci, as 1

fi
≤ α

4 . Hence, the cost of

S′i is O(ci) as α is a constant, which concludes the first case.

The second case is when αfi < 2. Here, we could not apply the same strategy as that of the first

case because we have bαfi2 c = 0. Consequently, we adopt a slightly different strategy in which the

agent executes Si but interrupts it before each of its edge traversals. As explained in detail below,

the kth interruption either consists of a return trip to node s before resuming Si and making the

kth edge traversal of Si, or it consists in going to the node the agent should occupy at the end of

the kth edge traversal of Si but without taking the corresponding edge: the agent then resumes Si
as if it had just performed the kth edge traversal of Si (essentially it just makes some computations

before interrupting again Si for the next edge traversal, if any). We will show that the latter

situation will occur only when the “skipped edge” has already been traversed before by the agent.

Once Si has been entirely processed, S′i is simply over if the agent is located at the node containing

the treasure. Otherwise, the agent is at node s and i < |S|. In this case, it executes (similarly as

in the previous case) a close period in order to guarantee that the size of Sk is 0 at the end of S′i.

Let us first focus on the interruptions. We denote by (u1, u2, u3, . . . , uci+1) the sequence (with repe-

titions), in the chronological order, of the nodes that are visited during Si, and by (e1, e2, e3, . . . , eci)

the sequence (with repetitions), in the chronological order, of the edges that are traversed during

Si. Consider the kth interruption occuring at node uk just before the kth edge traversal of Si and

assume that at the beginning of this interruption, the property H(k), consisting of the following

three conditions, is satisfied:

• The agent has made Dk ≤ fi + 1 edge traversals since the last time when Sk was empty (this

could be the current time).

• The sequence of edges (e1, e2, . . . , ek−1) has been previously explored by the agent.

• The size of Sk has been 0 at least once during any previous block of 2(fi + 1) consecutive

edge traversals and has never been greater than fi + 1.

Note that at the beginning of the first interruption, property H(1) immediately holds. We will

show below that property H(k+1) is satisfied at the beginning of the (k+1)th interruption, if any.

In the kth interruption, the agent first checks whether it knows a path of length at most fi from

node s to node uk. If this is the case, the agent executes in the reverse order the last Dk edge

traversals, at the end of which it is at node s and Sk is empty. Then, the agent comes back to uk
using the known path of length at most fi from node s to node uk (as when αfi ≥ 2, if there are

several such paths, the agent chooses the lexicographically smallest shortest among them). Once

this is done, the interruption is over: the agent resumes Si and makes the kth edge traversal to reach

node uk+1. We can easily show that at the end of this edge traversal, and thus at the beginning of

the next interruption if any, property H(k + 1) is satisfied.

33

So, assume that at the beginning of the kth interruption, the agent does not know a path of length

at most fi from node s to node uk. In view of the fact that Dk ≤ fi + 1, the shortest path from

node s to node uk that is known by the agent has actually length exactly fi + 1. Before explaining

what the agent does, let us give some properties that necessarily hold in this situation. We have

the following claim.

Claim 6.2 ek belongs to Gi−1 or to the sequence (e1, e2, . . . , ek−1).

Proof of the claim. Suppose by contradiction that the claim does not hold. Let G∗ be the

graph G with a midpoint z added on edge ek and denote by S∗i the ith call to Search(α2) made

during an execution of TreasureHunt(α2) from node s in G∗. Note that, in view of the execution of

TreasureHunt(α2) in G, the definition of G∗ and the assumption that the claim does not hold, S∗i
indeed exists and at the beginning of S∗i variable M is Bfi(G∗, s) = Bfi(G, s). We know that just

before making its kth edge traversal during Si, the agent is at node uk and the shortest path that

is known by the agent from node s to node uk in G has length exactly fi + 1. Hence, the definition

of G∗ and the fact that ek does not belong to Gi−1 or to the sequence (e1, e2, . . . , ek−1), implies

that during S∗i , there is a time t when the agent is at z and the shortest path that is known by

the agent from node s to z in G∗ has length exactly fi + 2. However, by Lemma 5.4, the length of

the shortest path that is known by the agent from node s to z in G∗ at time t must have length at

most max{fi + 1, b(1 + α
2)fic}, which is at most fi + 1 because αfi

2 < 1. This is a contradiction,

which proves the claim. ?

From the above claim, it follows that at the beginning of the kth interruption the agent has already

traversed edge ek before, and already knows which edge of Gi−1 or of (e1, e2, . . . , ek−1) corresponds

to it. Thus, at the beginning of the kth interruption, the agent can already determine a path of

length at most fi + 1 from node s to node uk+1 because in view of Lemma 5.4 it must know such

a path when reaching node uk+1 and because the traversal of ek does not bring extra topological

information on G.

Now we are are able to formulate what the agent does, when it has noticed that it does not know a

path of length at most fi from node s to node uk. It executes in the reverse order the last Dk edge

traversals, at the end of which it is at node s and Sk is empty. Then, instead of coming back to uk,

it goes directly to node uk+1 using the known path (highlighted in the previous paragraph) of length

at most fi + 1 from node s to node uk+1. Once this is done, the interruption is over: the agent

resumes Si and acts as if it had just traversed edge ek (as previously mentioned, it just performs

some computations before interrupting again Si for the next edge traversal, if any). It follows that

at the end of the interruption, and thus at the beginning of the following one if any, H(k + 1) is

satisfied. We have shown by induction on k that, at the beginning of the kth interruption, for any

k ≥ 1, the property H(k) is satisfied. This closes the description of the interruptions.

It remains to deal with the close period. At the beginning of it, property H(ci + 1) is satisfied,

which implies that the agent has performed Dci+1 ≤ fi + 1 edge traversals since the last time when

Sk was empty. Hence, during the close period, the agent simply executes in the reverse order the

last Dci+1 edge traversals, at the end of which Sk is empty. In view of this, of the fact that Sk is

empty at the beginning of S′i, and of property H(ci + 1), the frequent return property is satisfied

34

during S′i.

It follows from the above explanation that at the end of S′i, Gi is entirely explored and the agent

is at the node containing the treasure if i = |S|. If i < |S|, it also follows that the size of Sk is

0 at the beginning of the next emulation S′i+1, and M1(S′i+1) = M1(Si+1) = Bfi+1
(G, s) because

M2(S′i) = M2(Si) = M1(Si+1). Finally, concerning the cost of S′i, observe that the number of

interruptions is ci and during the close period as well as during each interruption the agent makes

at most 2(fi + 1) edge traversals. The cost of S′i is then upper bounded by 2(fi + 1)ci + 2fi + 2

which is at most 2(2
α + 1)ci + 4

α + 2, as fi <
2
α in the currently analysed case. Hence, the cost of

S′i is O(ci). This concludes the second case and thus concludes the proof of the theorem. �

7 Conclusion

We presented treasure hunt algorithms working at cost O(e(d) log d) for the unrestricted, fuel-

restricted and rope-restricted models. Hence our algorithms are nearly linear in e(d) (thus refuting

the conjecture from [3]) and at the same time almost optimal, as cost Θ(e(d)) cannot be beaten in

general. The natural open problem is whether it is possible to get rid of the factor O(log d) that

separates us from optimal complexity of treasure hunt.

References

[1] S.Alpern, S.Gal, The Theory of Search Games and Rendezvous, Kluwer Academic Publica-

tions, 2003.

[2] S. Angelopoulos, D. Arsenio, C. Durr, Infinite linear programming and online searching with

turn cost, Theoretical Computer Science 670 (2017), 11-22.

[3] B. Awerbuch, M. Betke, R.L. Rivest, M. Singh, Piecemeal graph exploration by a mobile robot,

Information and Computation 152 (1999), 155-172.

[4] R. Baeza-Yates, J. Culberson, J. Rawlins, Searching the plane, Information and Computation

106 (1993), 234-252.

[5] A. Beck, On the linear search problem, Israel Journal of Mathematics, 2 (1964), 221-228.

[6] A. Beck, D.J. Newman, Yet more on the linear search problem, Israel Journal of Mathematics,

8 (1970), 419-429.

[7] R. Bellman, An optimal search problem, SIAM Review 5 (1963), 274.

[8] P. Dasgupta, P.P. Chakrabarti, S.C. DeSarkar, Agent searching in a tree and the optimality

of iterative deepening, Artificial Intelligence 71 (1994), 195-208.

[9] P. Dasgupta, P.P. Chakrabarti, S.C. DeSarkar, A Correction to “Agent Searching in a Tree

and the Optimality of Iterative Deepening”, Artificial Intelligence 77 (1995), 173-176.

35

[10] E.D. Demaine, S.P. Fekete, S. Gal, Online searching with turn cost, Theoretical Computer

Science 361 (2006), 342-355.

[11] C.A. Duncan, S.G. Kobourov, V.S.A. Kumar, Optimal constrained graph exploration, ACM

Trans. Algorithms 2 (2006), 380-402.

[12] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, G. Trippen, Competitive Online Approx-

imation of the Optimal Search Ratio, SIAM J. Comput. 38 (2008), 881-898.

[13] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, M.E. Moses, A Distributed Deterministic

Spiral Search Algorithm for Swarms, Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2016), 4430-4436.

[14] S. Gal, Search Games: A Review, Search Theory: A Game Theoretic Perspective (2013), 3-15.

[15] S.K. Ghosh, R. Klein, Online algorithms for searching and exploration in the plane, Computer

Science Review 4 (2010), 189-201.

[16] A. Jez, J. Lopuszanski, On the two-dimensional cow search problem, Information Processing

Letters 109 (2009), 543 - 547.

[17] M.Y.Kao, J.H. Reiff, S.R. Tate, Searching in an unknown environment: an optimal randomized

algorithm for the cow-path problem, Information and Computation 131 (1997), 63-80.

[18] D.G. Kirkpatrick, S. Zilles, Competitive search in symmetric trees, Proc. 12th International

Symposium on Algorithms and Data Structures (WADS 2011), 560-570.

[19] D. Komm, R. Kralovic, R. Kralovic, J. Smula, Treasure hunt with advice, Proc. 22nd Inter-

national Colloquium on Structural Information and Communication Complexity (SIROCCO

2015), 328-341.

[20] E. Langetepe, On the Optimality of Spiral Search, Proc. 21st Ann. ACM-SIAM Symp. Disc.

Algor. (SODA 2010), 1-12.

[21] E. Langetepe, Searching for an axis-parallel shoreline, Theoretical Computer Science 447

(2012), 85-99.

[22] A. Lopez-Ortiz, S. Schuierer, The ultimate strategy to search on m rays?, Theoretical Com-

puter Science 261 (2001), 267-295.

[23] A. Miller, A. Pelc, Tradeoffs between cost and information for rendezvous and treasure hunt,

Journal of Parallel and Distributed Computing 83 (2015), 159-167.

[24] A. Pelc, Reaching a target in the plane with no information, Information Processing Letters

140 (2018), 13-17.

[25] S. Schuierer, Lower bounds in on-line geometric searching, Computational Geometry 18 (2001),

37-53.

36

[26] A. Ta-Shma, U. Zwick, Deterministic rendezvous, treasure hunts and strongly universal explo-

ration sequences. ACM Transactions on Algorithms 10 (2014), 12:1-12:15.

37

