In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy - Archive ouverte HAL Access content directly
Journal Articles Communications Materials Year : 2021

In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy

Aubin C Normand
  • Function : Author
Philip Schaefer
  • Function : Author
Aude L. L. Lereu

Abstract

Plant cells are elaborate three-dimensional polymer nano-constructs with complex chemistry. The bulk response of plants to light, in the far-field, is ultimately encoded by optical scattering from these nano-constructs. Their chemical and physical properties may be acquired through their interaction with a modulated nano-tip using scattering scanning near-field optical microscopy. Here, using this technique, we present 20 nm spatial resolution mechanical, spectral and optical mappings of plant cell walls. We first address the problem of plant polymers tracking through pretreatment and processing. Specifically, cellulose and lignin footprints are traced within a set of delignified specimen, establishing the factors hindering complete removal of lignin, an important industrial polymer. Furthermore, we determine the frequency dependent dielectric function ϵðωÞ ¼ ðn þ ikÞ 2 of plant material in the range 28 ≤ ω ≤ 58 THz, and show how the environmental chemical variation is imprinted in the nanoscale variability of n and k. This nanometrology is a promise for further progress in the development of plant-based (meta-)materials.
Fichier principal
Vignette du fichier
2021CommunMater.pdf (2.29 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03287592 , version 1 (15-07-2021)

Identifiers

Cite

Anne Charrier, Aubin C Normand, Ali Passian, Philip Schaefer, Aude L. L. Lereu. In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy. Communications Materials, 2021, 2, pp.59. ⟨10.1038/s43246-021-00166-7⟩. ⟨hal-03287592⟩

Relations

65 View
31 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More