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Abstract

We consider the problem of collectively delivering a package from a specified
source to a designated target location in a graph, using multiple mobile agents.
Each agent starts from some vertex of the graph; it can move along the edges of
the graph and can can pick up the package from a vertex and drop it in another
vertex during the course of its movement. However, each agent has limited
energy budget allowing it to traverse a path of bounded length B; thus, multiple
agents need to collaborate to move the package to its destination. Given the
positions of the agents in the graph and their energy budgets, the problem of
finding a feasible movement schedule is called the Collaborative Delivery problem
and has been studied before.

One of the open questions from previous results is what happens when
the delivery must follow a fixed path given in advance. Although this special
constraint reduces the search space for feasible solutions, we show that the
problem of finding a feasible schedule remains NP hard (as the original problem).
We consider the optimization version of the problem that asks for the optimal
energy budget B per agent which allows for a feasible delivery schedule, given the
initial positions of the agents. We show the existence of better approximations
for the fixed-path version of the problem (at least for the restricted case of a
single pickup per agent), compared to the known results for the general version
of the problem.

We provide polynomial time approximation algorithms for both directed and
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undirected graphs, and establish hardness of approximation for the directed case.
Note that the fixed path version of collaborative delivery requires completely
different techniques since a single agent may be used multiple times, unlike
the general version of collaborative delivery studied before. We show that
restricting each agent to a single pickup allows better approximations for fixed
path collaborative delivery compared to the original problem. Finally, we provide
a polynomial time algorithm for determining a feasible delivery strategy, if any
exists, for a given budget B when the number of available agents is bounded by
a constant.

Keywords: Collaborative delivery; mobile agents; energy constrained robots;
directed graphs; fixed path; approximation algorithms

1. Introduction

We consider a team of mobile agents which need to collaboratively deliver a
package from a source location to a destination. The difficulty of collaboration
can be due to several limitations of the agents, such as limited communication,
restricted vision or the lack of persistent memory, and this has been the subject of
extensive research (see e.g. [1] for a recent survey of this area of research). When
considering agents that move physically (such as mobile robots or automated
vehicles), a major limitation of the agents are their energy resources, which
restricts the distance that the robot can travel. This is particularly true for
small battery operated robots or drones, for which the energy limitation is the
real bottleneck. We consider a set of mobile agents where each agent i has a
budget Bi on the distance it can move, as in [2, 3, 4, 5, 6, 7]. We model the
environment as a directed or undirected edge-weighted graph G, with each agent
starting on some vertex of G and traveling along edges of G, until it runs out of
energy and stops forever. In this model, the agents are obliged to collaborate as
no single agent can usually perform the required task on its own.

Given a graph G with designated source and target vertices, and k agents
with given starting locations and energy budgets, the decision problem of whether
the agents can collectively deliver a single package from the source to the target
node in G is called CollaborativeDelivery. Chalopin et al. [4, 5] showed that
CollaborativeDelivery is weakly NP-hard on paths and strongly NP-hard
on general graphs. When the agents are homogenous, each agent has the same
uniform budget initially. The optimization version of this problem asks for
the minimum energy budget B per agent, that allows a feasible schedule for
delivering the package. Throughout this paper we consider agents with uniform
budgets. There exist constant factor approximations [3, 4] for the optimal budget
needed for solving CollaborativeDelivery.

Unlike previous papers, this paper considers a version of the problem where
the package must be transported through a designated path that is provided as
input to the algorithm. This is a natural assumption, e.g. for delivery of valuable
packages which must go on a “safe” route, allowing them to be tracked. We call
this variant FixedPath CollaborativeDelivery. Even with this additional
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constraint, the problem remains NP-hard for general graphs due to the result in
[4]. Note that on trees, the two problems are equivalent and both problems are
known to be weakly NP-hard. However, for arbitrary graphs, the two problems
are quite different. In particular, in the FixedPath CollaborativeDelivery,
each agent may be used multiple times, while in the original version each agent
participates at most once in any optimal delivery schedule (see [4]). In this
paper, we attempt to find the difference between the two problems in terms of
approximability.

Our Model.
We consider finite, connected (or strongly connected), edge-weighted graphs

G = (V,E) with n = |V | vertices. For undirected graphs, the weight w(e) of
an edge e ∈ E defines the energy required to cross the edge in either direction.
For directed graphs, there may be up to two directed arcs between any pair of
vertices and the weight of each arc is the energy required to traverse the arc
from its tail to its head. We have k mobile agents which are initially placed
on arbitrary nodes p1, . . . , pk of G, called the starting positions. In this paper,
we consider the agents to have uniform budget B. Each agent has an initially
assigned energy budget B > 0 which allows each agent to move along the edges
of the graph for a total distance of at most B (if an agent travels only on a
part of an edge, its travelled distance is downscaled proportionally to the part
travelled). The agents are required to move a package from a given source node
s to a target node t. An agent can pick up the package when it is at the same
location as the package; we say that the agent is carrying the package. An agent
carrying the package can drop it at any location that it visits, i.e., either at a
node or even at a point inside an edge/arc. The agents do not need to return to
their starting locations, after completing their task. We assume that the graph
and the starting locations are initially known and the objective is to compute a
strategy for movements of the agents which allows the delivery of the package
from s to t (along a given (s, t) path P ). We denote by d(x, y) = dG(x, y) the
distance between two nodes x, y in G (i.e. the sum of the weights on the shortest
path from x to y in G). The length of path P is the sum of the weights on the
path, denoted by w(P ) = dP (s, t). We denote an interval on this path as (x, y] if
it includes all points on P between x and y, excluding point x, but including y.

Definitions. Given a graph G with edge-weights w, vertices s 6= t ∈ V (G),
starting nodes p1, . . . , pk for the k agents, and an energy budget B, we define
CollaborativeDelivery as the decision problem of whether the agents can
collectively deliver the package. A solution to CollaborativeDelivery is
given in the form of a delivery schedule which prescribes for each agent whether
it moves and if so, the locations in which it has to pick up and drop off the
package. A delivery schedule is feasible if the package can be delivered from s to
t and each agent moves at most distance B.

The optimization version of CollaborativeDelivery is to compute the
minimum value of B for which there exists a feasible delivery schedule. The
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problem of FixedPath CollaborativeDelivery provides an additional pa-
rameter: an (s, t) path P in G, and the feasible delivery schedules are restricted
to those where the package travels on the given path P . Thus an instance of
FixedPath CollaborativeDelivery is given as (G,w, P, p1, . . . , pk) where
P is a path in G, starting at node s and ending at node t.

Related Work.
The model of energy-constrained robot was introduced by Betke et al. [8] for

single agent exploration of grid graphs. Later Awerbuch et al. [9] studied the
same problem for general graphs. In both these papers, the agent is allowed to
return to its starting node to refuel, and between two visits to the starting node
the agent can traverse at most B edges. Duncan et al. [10] studied a similar
model where the agent is tied with a rope of length B to the starting location
and they optimized the exploration time, giving an O(m) time algorithm. A
more recent paper [11] provides a constant competitive algorithm for the same
exploration problem when the value of energy budget B may be as small as the
length of the smallest path that visits the farthest node.

For energy-constrained agents without the option of refuelling, multiple agents
may be needed to explore even graphs of restricted diameter. Given a graph G
and k agents starting from the same location, each having an energy constraint of
B, deciding whether G can be explored by the agents is NP-hard, even if graph G
is a tree [12]. Dynia et al. studied the online version of the problem [7, 13]. They
presented algorithms for exploration of trees by k agents when the energy of each
agent is augmented by a constant factor over the minimum energy B required
per agent in the offline solution. Das et al. [6] presented online algorithms that
optimize the number of agents used for tree exploration when each agent has
a fixed energy bound B. On the other hand, Dereniowski et al. [14] gave an
optimal time algorithm for exploring general graphs using a large number of
agents. When both k and B are fixed, Bampas et al. [15] studied the problem
of maximizing the number of nodes explored by the agents, called the maximal
exploration problem. For more details on tree exploration with energy constraint,
see the recent thesis [16].

When multiple agents start from arbitrary locations in a graph, optimizing
the total energy consumption of the agents is computationally hard for several
formation problems which require the agents to place themselves in desired
configurations (e.g. connected or independent configurations) in a graph [17, 18].
Anaya et al. [2] studied centralized and distributed algorithms for the information
exchange by energy-constrained agents, in particular the problem of transferring
information from one agent to all others (Broadcast) and from all agents to one
agent (Convergecast). For both problems, they provided hardness results for
trees and approximation algorithms for arbitrary graphs. Czyzowicz et al. [19]
recently showed that the problems of collaborative delivery, broadcast and
convergecast remain NP-hard for general graphs even if the agents are allowed
to exchange energy when they meet. Further results on collective delivery with
energy exchange showed that the problem remains hard even when B is a small
constant [20].
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As mentioned before, the collaborative delivery problem was first studied
by Chalopin et al. [4] in arbitrary undirected graphs for both uniform or non-
uniform budgets. When the agents have non-uniform budgets, they provided
the so-called resource-augmented algorithms where the budgets of the agents
are augmented by a small constant factor to allow polynomial time solutions
for all feasible instances of the original problem. The surprising result that
collaborative delivery non-uniform budgets is weakly NP-hard even for a line
was proved in [5] where a quasi-pseudo-polynomial time algorithm was provided.

Bärtschi et al. [3] considered the returning version of the problem, where
each agent needs to return to its starting location. They showed that, in this
case, the problem can be solved in polynomial time for trees, but the problem is
still NP-hard for arbitrary planar graphs. They provided 2-resource-augmented
algorithm for general graphs in this setting and showed that it is the best
possible solution that can be computed in polynomial time. Other variants of
collaborative delivery that have been considered are when agents have distinct
rate of energy consumption [21] or when the agents have distinct speeds [22]. In
these cases the optimization criteria is to minimize the total energy consumption
and/or the total time taken for delivery. Another related work [23] studied the
collective delivery problem for selfish agents that try to optimize their personal
gain. See also [24] for a survey of recent results on collaborative delivery by
agents with energy limitations.

Our Contributions.
We show that the best possible approximation of the optimal budget B for

FixedPath CollaborativeDelivery is between 2 and 3 for directed graphs
and at most 2.5 for undirected graphs. In contrast, the best known approximation
ratio for the general version of CollaborativeDelivery is 2 for undirected
graphs [4], and there is no known lower bound on approximability.

In the fixed path version of the problem agents may be used multiple times
in a feasible delivery schedule, i.e., the same agent may move the package along
several disjoint segments of the path. Thus, it is not surprising that our solution
for FixedPath CollaborativeDelivery has a higher approximation ratio
than the general version of the problem where each agent is used at most once.

For better comparison, we can make the FixedPath CollaborativeDe-
livery problem easier by restricting each agent to a single pickup of the package.
This easier version of the problem was considered recently in [25] which provided
a 3-approximation algorithm. In this paper we improve upon this and provide a
2-approximation algorithm for directed graphs and a (2−1/2k)-approximation al-
gorithm for undirected graphs. We also show that there exists no polynomial-time
approximation algorithm with better approximation ratio than 3

2 for directed
graphs.

Finally, for the case where the number of agents k is a constant, we show that
the decision version of FixedPath CollaborativeDelivery can be solved in
pseudo-polynomial time. For this setting, we also provide a fully polynomial-time
approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal
budget, for any ε > 0.
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2. Lower bound on approximation

In this section we prove a lower bound on the approximation factor for
any polynomial time algorithm that solves collaborative delivery with uniform
budgets on a fixed path.

We give a reduction from an NP-hard variant of Sat [26]. Note the difference
from the polynomially solvable (3, 3)-Sat, where each variable appears in exactly
three clauses [27].

(≤ 3, 3)-Sat
Input: A formula with a set of clauses C of size three over a set of
variables X, where each variable appears in at most three clauses.
Problem: Is there a truth assignment of X satisfying C?

Observe that we may assume that each variable appears at most twice in
positive literals and exactly once in a negative literal, otherwise we can either
eliminate or negate the variable.

Theorem 1. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 2 in polynomial time, unless P = NP.

Proof We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently
small ε > 0 and every instance of (≤ 3, 3)-Sat, an instance of FixedPath
CollaborativeDelivery that has a solution with budget B ≤ 2 − ε if and
only if the (≤ 3, 3)-Sat instance has a satisfying assignment. In this case, our
instance always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat is
NP-hard, this then implies that no (2− ε)-approximation algorithm can exist,
unless P = NP.

In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat
with variables x1, . . . , xt and clauses C1, . . . , Cm. We construct a (directed)
instance of FixedPath CollaborativeDelivery with k = (3 + q)t agents,
where q := d3/εe, starting at vertices p1, . . . , pk. The agents 3i− 2, 3i− 1, 3i
for i ∈ {1, . . . , t} are associated with the (at most) two positive literals and the
single negative literal of variable xi, in this order, that appear in the clauses. In
case variable xi only appears in a single positive literal, the agent 3i− 1 does not
represent any literal. The other q ·t agents are the so-called blockers, defined later.
We incrementally construct the fixed (s, t)-path P = (s = v0, v1, . . . , vm+2(q+1)t)
that the package has to be transported along.

The first m arcs of P correspond to the clauses C1, . . . , Cm. Each arc e =
(vj−1, vj) with j ∈ {1, . . . ,m} has weight w(e) = 1 and is associated with
clause Cj . For every literal of a variable xi that appears in Cj , we let pij denote
the starting position of the (unique) agent associated with this literal, and we
introduce an arc eij = (pij , vj−1) of weight w(eij) = 0.

Now we add the variable gadgets to the path P . Let qi := m+ 2(q+ 1)(i− 1).
The gadget associated with each variable xi (cf. Figure 1) is the subpath Pi =
(vqi , . . . , vqi+1

) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3
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Figure 1: Illustration of the variable gadget. The horizontal arcs are part of the fixed path of
the package. Colors indicate responsibilities: blue nodes are for blockers and green/red nodes
contain agents associated with positive/negative literals.

each, the central two arcs ei = (vqi+q, vqi+q+1) and e′i = (vqi+q+1, vqi+q+2) have
weights w(ei) = ε/3 and w(e′i) = 1−ε/3, and the final q arcs have weight 1−ε/3
each. For ` ∈ {1, . . . , q}, we connect the starting position of the ((i− 1)q + `)-th
blocker to vqi+`−1 with an arc of weight 0, and we add a shortcut arc (that cannot
be taken by the package) (vqi+`, vqi+1−`) of weight 0. Finally, we connect the
three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q)
of weight 1− ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q)
of weight 0.

We first claim that in every solution with B ≤ 2 − ε we can assume that,
without loss of generality, for every i ∈ {1, . . . , t} and every ` ∈ {1, . . . , q}, the
((i−1)q+`)-th blocker transports the package across the arc (vqi+`−1, vqi+`), then
takes the shortcut arc (vqi+`, vqi+1−`), and finally transports the package across
the arc (vqi+1−`, vqi+1−`+1). To see this, consider the last arc (vqi+1−1, vqi+1)
of P ′i . Since the arcs preceding the vertices vqi and vqi+1−1 along P both have
length at least 1− ε/3, no agent other than the two blockers connected to vqi
and vqi+1 can reach vqi+1−1 with more than B − (1 − ε/3) ≤ 1 − 2ε/3 budget
remaining, which is insufficient to cross the last arc of P ′i . Since there is no
disadvantage in using the ((i−1)q+1)-st blocker rather than the ((i−1)q+2)-nd,
we may assume that the ((i−1)q+1)-st blocker transports the package as claimed.
By repeating this argument (slightly adapted for the iq-th blocker), we can fix
all subsequent blockers, too. Note that each blocker requires only B = 1.

After fixing all blockers, we can observe that any other agent, having a budget
B ≤ 2 − ε can transport the package either inside a single clause gadget or
inside a single variable gadget, but not both. This is because transporting the
package inside a clause gadget requires one unit of budget, and entering/leaving
a variable gadget before or after transporting the package across one of its two
central arcs also takes at least one unit of budget (all other arcs of a variable
gadget are handled by blockers).

Finally, and crucially, observe that, in order to transport the package across
the two central edges of the variable gadget for xi, either the two agents 3i− 2
and 3i− 1 associated with the positive literals of xi, or the agent 3i associated
with the negative literal are needed, since blockers cannot help (see above). We
interpret the former situation as xi being set to false, and the latter situation as xi

7



being set to true. Note that either assignment can be accomplished with B = 1.
If a variable is set to true, the two agents corresponding to positive literals

are free to transport the package across the single (!) clause gadget each of them
can reach. Otherwise, the agent corresponding to the negative literal is free
to do this. In both cases, we interpret this as the clause being satisfied by the
corresponding variable. Note that satisfying a clause again requires only B = 1.

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible
solution of FixedPath CollaborativeDelivery with B = 1. Conversely,
every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2−ε
corresponds to a satisfying assignment for (≤ 3, 3)-Sat. Note that q is constant
for fixed ε, hence our construction can be done in polynomial time. �

3. Approximation algorithms for fixed path delivery

In this section, we give approximation algorithms solving FixedPath Col-
laborativeDelivery for both directed and undirected graphs. Note that for
solution to the problem the total distance travelled by the agents must be at
least the length of the path P plus the distance to s from the closest agent
(which denote this by D). This gives the following bound on the optimal budget
per agent.

Observation 2. The optimal budget B for FixedPath CollaborativeDe-
livery must be in the range [D/k,D], where D = mini dG(pi, s) + w(P ).

In the following, we assume that we are given the optimal value of B for
a given instance of the problem and we provide a polynomial time algorithm
to compute a delivery strategy that uses an energy budget of at most α · B
for some constant α > 1. When B is not known, we can guess the optimal
value of B by using a binary search in the interval [D/k,D] due to the above
observation. The binary search terminates when we find the smallest B for
which our algorithm provides a valid strategy for a budget of α ·B. Clearly this
provides an α-approximation algorithm for the optimization problem.

Consider an optimal solution to the problem which moves the package on
path P using a budget of B per agent. If P is of length at least l ·B then at least
l agents were used. Consider a partition of the path P into intervals of length B
exactly (assuming that w(P ) is a multiple of B). Then, for any x ≤ l intervals,
there must be at least x agents that pushed the package along those intervals in
any optimal solution. This means that it is possible to assign agents to intervals
in such a way that: (i) The agent assigned to the interval participated in moving
the package on that interval, i.e. the agent is able to reach some point on the
interval using at most budget B. (ii) Each agent is assigned a distinct interval.

The solution strategies that we use for the approximation algorithm would
use the above idea. In particular we would try to find a matching between a
subset of the agents and the intervals of the path P as described below.
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Lemma 1. Given an instance (G,w, P, p1, . . . , pk) of the problem for which the
optimal budget is B and B < w(P ), let, for some l ≥ 2, m0,m1, . . . ,ml−1 be
distinct points (not necessarily vertices) on the path P , such that 0 ≤ dP (s,m0) <
B, dP (mi−1,mi) = B, for 0 < i < l, and dP (ml−1, t) > 0. We consider the path
P as an Euclidean line and on this line, we define I0 to be the interval [s,s] and
Ii to be the interval (mi−1,mi], for 0 < i < l. Then there exists distinct agents
a0, a1, . . . , al−1 which can be matched to interval I0, I1, . . . Il−1, such that each
agent ai can reach some point in interval Ii using an energy budget of at most
B.

Proof Note that for moving the package across x segments of length B
each, we need at least x agents. Consider any optimal solution for the instance
and let a0 be the agent that picks up the package at source s, which implies
agent a0 was able to reach s. If dP (s,m0) > 0, and agent a0 moves the package
over some non-zero distance in this interval, it would have depleted some of its
energy; thus agent a0 would not have enough energy to move the package over
the complete interval I1, which is of length B. Thus, at least one other agent
must participate in moving the package over interval I1, let this be agent a1.
On the other hand, if dP (s,m0) = 0, i.e. s = m0, then agent a0 can potentially
move the package on the complete interval I1; in that case it would completely
exhaust its budget and there must be some other agent a1 that picks up the
package at m1. This implies agent a1 was able to reach point m1 ∈ I1. So, in
both cases there is an agent a1 that can reach I1. Thus, the lemma holds for
the base case of l = 2 and we can extend this argument. Suppose the lemma
holds for l = j and agents a0, . . . aj−1 be the corresponding agents. We prove
the lemma for l = j + 1 i.e. for j intervals I1 to Ij .

Case(i): Only the j agents a0, . . . aj−1 move the package over intervals I0
to Ij in the optimal solution. This is only possible if s = m0 and each agent
starts at the beginning of an interval. In this case the j agents would completely
exhaust their total budget in moving the package and thus, a new agent aj
must pick up the package at mj (Note that that target t is further than point
mj according to the lemma). Thus, we have agents a0, . . . aj that satisfy the
conditions of the lemma.

Case(ii): There are x ≥ j + 1 agents a0, . . . ax that participate in the optimal
solution, with agents a0 to aj−1 already matched to the intervals I0 to Ij−1,
according to the induction hypothesis. Consider the last interval Ij and let
A∗ be the subset of i > 0 agents that participated in moving the package on
this particular interval. If one of these agents is unmatched, it can matched
to interval Ij and we are done. Otherwise the agents in A∗ are matched to
i intervals, possibly including the interval [s, s], so the total length of these
intervals is at most (i − 1) ∗ B. If we include the interval Ij of length B and
consider the fact that some of the agents have to move between non-consecutive
intervals incurring additional energy consumption, this implies that the total
movement by all the agents that participated in these (i+ 1) intervals is strictly
more than i ∗B. Hence, at least one other agent ar /∈ A∗ participated in at least
one of these intervals say, Iq, where q < j. If we match this agent to interval Iq,
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then the agent aq that was originally matched to Iq, can be matched to interval
Ij . By definition aq ∈ A∗ and thus participated in the last interval Ij , so it can
reach Ij . This concludes the proof. �

The solution strategies that we use for the approximation algorithm would
use the above fact. We first show that it is possible to compute in polynomial
time, one such matching between a subset of agents and the segments of the
path P as defined in the Lemma 1.

Lemma 2. Consider an instance (G,w, P, p1, . . . , pk) of the problem for which
the optimal budget is B, then given any set I = I0, I1, . . . Il of segments of
P satisfying the conditions of Lemma 1, there is a O(n3) algorithm to find a
matching g between the a subset of agents and the segments, satisfying Lemma 1.

Proof One can find such a matching g using the following algorithm :

1. Construct a weighted bipartite graph H = (A ∪ I, E,wH) with A = [0, k],
M = [0, `], E = M × A and for all i ∈ M, j ∈ A, wH(ij) is the smallest
distance from pj (the starting position of agent j) to some vertex in Ii (or
one of the endpoints of Ii in case no vertex is located in that segment).
This can be done in O(k(m + n log n)) using a Dijkstra’s algorithm [28]
starting from each starting position of an agent. Observe that graph H
has O(n+ k) vertices and O(k(n+ k)) edges.

2. Compute a maximal matching in H that minimizes the maximum weight.
For each weight ω, one can compute in time O((n+ k)2 log(n+ k) + k(n+
k) min(n, k)) a maximal matching [28] in the graph H without edges of
weight greater than ω. Hence, one can decide if there is a maximal matching
in H with maximum weight ω and by using binary search, one can compute
a maximal matching in H which minimizes the maximum weight, in time
O(log k((n+ k)2 log(n+ k) + k(n+ k) min(n, k))).

Assuming k = O(n), the algorithm above has a complexity of O(n3). When the
number of agents k is considerably smaller than n, the algorithm would only be
faster. �

We now present the approximation algorithms for FixedPath Collab-
orativeDelivery in directed and undirected graphs, based on the above
observations.

3.1. Directed graphs: 3-approximation
Theorem 3. There is a 3-approximation algorithm for FixedPath Collabo-
rativeDelivery on directed graphs.

Proof Consider an instance (G,w, P, p1, . . . , pk) of FixedPath Collabo-
rativeDelivery on directed graphs and let S be an optimal solution of this
instance with uniform budget B. Let l = dw(P )/Be.

Case(i): If B ≥ w(P ), then any agent that can reach s can transport the
package to t using an additional budget of B. Since there must exist such an
agent and it is possible to find such an agent in O(k) time by a linear search
over all agents, this give us the required approximation algorithm.
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Case(ii): If B < w(P ) then l = dw(P )/Be ≥ 2. Thus we can apply the
Lemma 1 using points m0 = s, and mi = s+ i ·B, 0 < i < l on the path P . Note
that the last point satisfies the property 0 < dP (ml−1, t) ≤ B. Let a0, . . . al−1
be the matching agents according to Lemma 1 (which can be computed using
the algorithm from Lemma 2). Since agent a0 can reach the source s = m0 using
budget B, it can transport the package to point m1 using a budget of at most
2B in total. For 0 < i < l − 1, agent ai can reach the point mi using a budget
of at most 2B and thus it can transport the package from mi to mi+1 using
a budget of at most 3B in total. Similarly, the agent al−1 can transport the
package from ml−1 to the target t. This gives the required 3-approximation. �

3.2. Undirected graphs: 2.5-approximation
Theorem 4. There is a 2.5-approximation algorithm for FixedPath Collab-
orativeDelivery on undirected graphs.

Proof Consider an instance (G,w, P, p1, . . . , pk) of FixedPath Collab-
orativeDelivery on undirected graphs and let S be an optimal solution of
this instance with uniform budget B. If w(P ) ≤ 3B/2, then any agent that
reaches the vertex s can carry the package to t, using an additional budget of
3B/2, and this immediately gives a 2.5-approximation. Thus, let us assume that
w(P ) > 3B/2 and consider l = dw(P )/B − 1/2e ≥ 2.

We define the points m′1, . . .m′l on P such that m′i + (l − i) ∗ B = t, for
1 ≤ i ≤ l (thus m′l = t). Note that the distance from s to m′1 is at most 3B/2.
Now let mi be the point on path P defined as mi = m′i+1 −B/2 for 0 ≤ i < l.
Thus the point mi is the midpoint between m′i−1 and m′i for 1 < i ≤ l and the
point m0 is at a distance at most B from s. Now we can apply Lemma 1 using
points s,m0, . . .ml−1 to obtain matching agents a0 to al−1. Agent a0 can reach
the source s and thus it can transport the package to m′1 using an additional
budget of 3B/2. Agent ai, 0 < i < l can reach the interval (mi−1,mi), and thus
using an additional budget B/2, the agent can reach the mid-point m′i (this may
involve going back on the path). Thus agent ai can transport the package from
m′i to m′i+1 using a total budget of at most 2.5 ∗ B which gives the required
approximation algorithm. �

4. Special case: Single pickup per agent

In this section, we consider a slightly easier version of the problem when each
agent can pickup the package at most once. This means that each agent that
participates in the solution, moves the package over a single continuous segment
of the path. In this case, we can obtain better approximations for the problem.
We first present a lower bound of 3

2 on the approximation ratio of optimizing
FixedPath CollaborativeDelivery using the same idea as in Section 2.
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p3i−2 p3i p3i−1

1/2 1/2

1/2 0 1/2

Figure 2: Illustration of the variable gadget for the case where agents cannot pickup the
package more than once.

4.1. Lower bound
Theorem 5. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 1.5 in polynomial time, unless P = NP, even when each agent
may pickup the package at most once.

Proof We use the same construction as in the proof of Theorem 1, but we
set ε = 3/2 and q = 0 (cf. Fig. 2). All claims in the proof of Theorem 1 remain
valid for any B < 3/2. Note that, since we eliminated all blockers, no agent has
to pickup the package more than once in the optimum solution. �

4.2. Approximation algorithm for single pickup per agent
We now present approximation algorithms for FixedPath Collabora-

tiveDelivery with the restriction of a single pickup per agent. This means
that for agents with uniform budget B, any two points on the fixed path P that
are separated by a distance of at least B must be served by distinct agents. This
observation allows us to match the agents to specific points on the path P (as
opposed to intervals on the path in the general case considered in the previous
section). The rest of the algorithm is based on similar ideas as in the previous
section.

Lemma 3. Given any instance of FixedPath CollaborativeDelivery that
admits a solution using optimal uniform budget B, under the restriction that
each agent can pickup the package at most once; then given the value of B, we
can compute in polynomial time a 2-approximate delivery strategy with a single
pickup per agent. When the graph is undirected, we can compute a (2− 1/2k)-
approximation for the same problem in polynomial time.

Proof Suppose there exists a feasible solution S for the problem using
uniform budget B and a single pickup per agent. Consider the fixed (s, t) path
P and partition it into segments using the points X = (m1,m2 . . .ml = t) on
P , such that l = dw(P )/Be and, the length of the first segment dP (s,m1) ≤ B,
the length of segment (mi,mi+1) is B, ∀1 ≤ i < l. We have the following
observations for strategy S: (1) Any agent that moves the package over point
mi ∈ X in strategy S must have enough energy to reach point mi, and (2) Any
single agent cannot transport the package over two distinct points in X since
the distance between these two points is at least B.
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Case (i): In strategy S, the agent that picks up the package at s is not the same
agent that moves the package over m1. In this case, there exists a matching
between the agents and the points X+ = (s = m0,m1,m2, . . .ml) such that each
agent can reach the point that it is mapped to. We call any such matching a
type M0 matching.
Case (ii): In strategy S, a single agent delivers the package from s to m1 with
its original energy budget B. In this case, there exists a matching between the
agents and the points in X (w.l.o.g. agent ai is mapped to point mi), such that,
agent a1 has enough energy to move the package from s to m1 and ∀1 < i < l,
agent ai can reach mi, using budget B. We call any such matching a type M1

matching.
Note that if S is a feasible solution to the problem using a single pickup

per agent and uniform budget B, then there exists a matching of type M0 or
M1. If we can find such a matching, then, using budget B per agent, we can
move the package to point m1 and move each agent ai to the respective point
mi in path P . If the budget of each agent is augmented by factor 2, then using
the additional budget B, the agent ai that is mapped to point mi can actually
deliver the package to the next point mi+1. This gives a 2-approximate solution
to the problem (for directed and undirected graphs).

For undirected graphs, we will now construct a delivery strategy where each
agent has a budget 2B −B/2k. We consider the same two cases as before.
Case (i): The delivery strategy S uses at least l + 1 agents and there is a a type
M0 matching between the agents and l + 1 points s = m0,m1,m2, . . .ml = t.
Consider the points m′i = mi + B − (2i − 1)B/2l+1, 0 ≤ i ≤ l − 1. The
agent a0 can the package from point s = m0 to m′0 using additional budget of
B(1− 1/2l+1). For 0 < i < l, each agent ai located at point mi returns to m′i−1
to pick up the package and then moves the package to point m′i. This requires
an additional budget of B − (2i − 1)B/2l+1 + 2 × 2iB/2l+1 = B(1 − 1/2l+1),
for each of these agents. Finally, note that the distance between point m′l−1
and the target t = ml is at most B/2−B/2l+1, and so the agent al can move
from ml to m′l−1 to pick up the package and deliver it to the target, using
2× (B/2−B/2l+1) < B(1− 1/2l+1) ≤ B(1− 1/2k) additional energy.
Case (ii): The delivery strategy S uses l agents and there is a a typeM1 matching
between the agents and l points s = m1,m2, . . .ml = t. Consider the points
m′i = mi +B − (2i − 1)B/2l, 1 ≤ i ≤ l − 1. The agent a1 delivers the package
from point m1 to m′1. For 1 < i < l, each agent ai located at point mi returns
to m′i−1 to pick up the package and then moves the package to point m′i. This
requires an additional budget of B − (2i − 1)B/2l + 2× 2iB/2l = B(1− 1/2l),
for each of these agents. Finally, note that the distance between point m′l−1
and the target t = ml is at most B/2 − B/2l, and so the agent al can move
from ml to m′l−1 to pick up the package and deliver it to the target, using
2× (B/2−B/2l) < B(1− 1/2l) ≤ B(1− 1/2k) additional energy.

The computation of the schedule requires constructing a bipartite graph
between k agents and at most k points, and then solving maximum matching in
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this bipartite graph. Similar to the proof of Lemma 2, these computations can
be performed in O(n3) time. �

As in the previous section, we use a binary search to find the smallest B for
which there exists a matching of type M0 or M1 from the above lemma. This
gives us a (2− 1/2k)-approximate (respectively 2-approximate) solution to the
optimization problem for undirected (resp. directed) graphs. Hence we can state
the following theorem:

Theorem 6. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery with a single pickup per agent on directed (and undirected)
graphs can be approximated to a factor 2 (respectively (2− 1/2k)), in polynomial
time.

5. Fixed Path Delivery with O(1) agents

In this section we consider the FixedPath CollaborativeDelivery prob-
lem with only a few agents, i.e., when k is a small constant. Further we will
assume in this section that the agents are allowed to exchange the package at
vertices only. Recall that if there is a single agent (k = 1) then the problem can
be solved trivially (by simply computing the shortest path from the agent to the
source). However for k > 1 agents, the problem is weakly NP-hard.

Theorem 7. FixedPath CollaborativeDelivery is (weakly) NP-hard for
k = 2 agents even if the agents are restricted to pickup the package only at
vertices of G.

Proof Consider a complete graph on n vertices where the fixed path P is
(s = v1, v2, v3 . . . vn = t), k = 2 and both the agents are initially located at the
source. We show a reduction from the NP-complete problem Subset-Sum: Given
a set X of n integers a1, a2, . . . an whose sum is 2S, does there exist a subset of
X whose sum is exactly S?

We construct the instance of FixedPath CollaborativeDelivery by
assigning weights a1, a2, . . . , an to the edges (v1, v2), (v2, v3), . . . (vn−1, vn) of the
path P and we assign weight zero to all other edges of the complete graph.
Finally we assign a budget of B = S to each agent. It is easy to see that there
is a feasible delivery schedule by the two agents if and only if each agent can
move on a subset of edges whose sum of weights equals S, which is equivalent to
finding a subset of sum S for the instance of subset sum. �

Given an instance of the decision problem for a specific B, we can design a
dynamic programming algorithm that computes whether there exists a feasible
schedule with uniform budget B, and has a running time that is exponential in
k and pseudo-polynomial in n (the run-time will depend on B).

Theorem 8. There is an algorithm that decides whether there exists a feasible
schedule restricted to pickup at vertices, for FixedPath CollaborativeDe-
livery with uniform budget B in undirected or directed graphs. The algorithm
runs in O(k · nk+2 ·Bk) time.
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Proof The algorithm works as follows. We keep a boolean table whose
entries are of the form Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] denoting whether there exists
a feasible schedule that delivers the package from s to vertex v on the path P
such that

1. the last agent that delivers the package to vertex v is agent aj ,
2. the positions of the k agents, when the package arrives at v, are pv1, . . . , pvk,

and
3. the remaining budgets of the agents are Bv1 , . . . , Bvk .

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE
for all other values of j and psi and Bsi , i = 1, . . . , k. Here, j = 0 denotes that
no agent has been used yet. We also abuse the notation and use p0 to denote
s. Clearly, Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if pvj = v, and there
exists a vertex u on the path P before vertex v and an agent’s index j′ 6= j such
that there is a feasible schedule where agent aj walks from position puj to pick-up
the package at vertex u from agent aj′ and carries it from vertex u to vertex v.
I.e., we have Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if there exists u and
j′ and an entry in the table T such that Tu[j′|pu1 , . . . , puk |Bu1 , . . . , Buk ] = TRUE and
pvj = v, pvj′ = puj′ = u, pvi = pui for every i 6= j, j′, Bvj = Buj − d(puj , u)− dP (u, v),
and Bvi = Bui for every i 6= j. Recall that dP (u, v) denotes the distance from u
to v on the path P .

At the end, when the whole table is computed, we check whether there is
an entry at target vertex t such that Tt[. . .] = TRUE, in which case there is a
feasible schedule for the uniform budget B, and there is no feasible schedule
otherwise. To compute the feasible schedule, standard bookkeeping techniques
can be applied. There are n · nk ·Bk entries in T that need to be computed. To
compute one entry Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ], we need to check the existence
of j′ and u with the above mentioned properties, which can be done in time
O(k · n). Hence, the total run-time of the alorithm is O(k · nk+2 ·Bk). �

By using the data rounding technique, we turn the developed algorithm into
a fully polynomial-time approximation scheme (FPTAS).

Theorem 9. For any ε > 0, there is an algorithm that computes a feasible
uniform budget B that is at most (1 + ε)B∗, where B∗ is the optimum uniform
budget, and runs in O

(
k · nk+2 · ( 2m2k

ε )k log
(

2m2k
ε

))
time.

Proof We define an alternative weight unit µ := εw(P )/k+X
m2 , where w(P ) is

the weight of the fixed path P , X is the minimum distance of any agent to the
path P , and m is the number of edges of the graph G. We measure the weights
w(e) in the integer multiples of µ, rounded-up, i.e., we define w̄(e) := dw(e)/µe.

We solve the problem in the new edge weights w̄(e) using the dynamic
programming approach, where we also measure budget in multiples of µ. Let B̄
be the computed optimum uniform budget for the modified edge-weights. Our
algorithm returns BA = B̄ · µ as the solution for the original edge-weights. Let
P̄1, . . . , P̄k be the walks that the k agents walk in the optimum solution for the
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modified edge-weights. Hence, B̄ = maxi{w̄(P̄i)}, and thus B̄ ·µ = maxi{w̄(P̄i) ·
µ}. Observe also that BA is a feasible budget, since every path P̄i can be walked
with budget BA, since the original length of P̄i is w(P̄i) ≤ µ · w̄(P̄i) ≤ µB̄.

LetB∗ be the optimum budget for the original edge-weights, and let P ∗1 , . . . , P ∗k
be the walks of the k agents in some optimum solution. Hence, B∗ = maxi{w(Pi)}.
We now argue that BA is not much larger than B∗. We have BA = µ · B̄ =

µ·maxi{w̄(P̄i)}
(1)

≤ µ·maxi{w̄(P ∗i )} = maxi{µ·w̄(P ∗i )}
(2)

≤ maxi{w(P ∗i )+m2µ} =

m2µ + maxi{w(P ∗i )} = m2µ + B∗ = m2
(
εw(P )/k+X

m2

)
+ B∗

(3)

≤ ε · B∗ + B∗ =

(1+ε)B∗. Here, inequality (1) is because maxi P̄i is the optimum feasible solution
in weights w̄; inequality (2) follows because any walk appears at most m times
on the path P , and between any two appearances, the walk contains at most m
edges (this part of the walk is a simple path), inequality (3) follows because B∗
needs to be at least w(P )/k +X (the average traveled distance per agent on P
plus the distance to get from the initial position to the path P ).

We now analyze the run-time of the algorithm. Observe first that B∗ ≤
mini d(pi, s) +w(P ) ≤ (X+w(P )) +w(P ) ≤ 2(X+w(P )). Therefore, measured
in the units µ, we search for B̄ in the range between 1 and 2(X+w(P ))/µ ≤ 2m2k

ε .
Hence, one run of the dynamic programming on the modified weights takes time
O(k ·nk+2 · ( 2m

2k
ε )k). Using the binary search to find the minimum such B̄ adds

a multiplicative logarithmic factor of log
(

2m2k
ε

)
. This proves the theorem. �

Thus, we have shown the following.

Corollary 1. There exists an FPTAS for FixedPath CollaborativeDeliv-
ery restricted to pickup at vertices, when the number of agents is constant.

6. Conclusions

The problem of collectively delivering a package by mobile agents is a difficult
problem even when the path for moving the package is given in advance. We
presented approximation algorithms and lower bounds of approximation for
the fixed path version of the problem. These results leave some gaps and we
would like to reduce the gap between the upper and lower bounds for the
various versions of the problem. We also considered the special case of fixed
path delivery with a single pickup per agent, and we were able to find better
approximation algorithms for this case compared to the best known algorithm
for collaborative delivery without fixed path. This seems to suggest that the
fixed path version admits better approximation than the general version, when
each agent is restricted to a single pickup. However to prove this we need to find
lower bounds on the approximation factor of collaborative delivery. Another
possible extension to this work is to consider agents with non-uniform budgets
and find resource-augmented algorithms for fixed path delivery. Finally, we
would like to analyse more precisely the effect of restricting package handovers
to nodes only and not anywhere inside the edges.
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