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Abstract We present two-dimensional numerical simulations of tilted lamellar growth pat-
terns during directional solidification of nonfaceted binary eutectic alloys in the presence
of an anisotropy of the free energy γ of the interphase boundaries in the solid. We used a
dynamic boundary-integral (BI) method. The physical parameters were those of the trans-
parent eutectic CBr4-C2Cl6 alloy. As in Ghosh et al. [Phys. Rev. E 91, 022407 (2015)], the
anisotropy of γ was described by a model function with tunable parameters. The lamellar-
locking effect in the vicinity of a deep minimum of the interfacial energy was reproduced.
For a weak anisotropy, the lamellar tilt angle θt was shown to depend on the growth con-
ditions. We systematically studied the influence of usual control parameters (pulling ve-
locity, temperature gradient, lamellar spacing, alloy concentration) on the tilted-lamellar
pattern. We identified experimentally accessible conditions under which θt falls close to the
theoretical prediction based on the so-called symmetric-pattern approximation. We finally
simulated locked and weakly locked lamellar patterns and found empirically a good mor-
phological matching with experimental observations during directional solidification of thin
CBr4-C2Cl6 samples.

Keywords Solidification ¨ Eutectics ¨ Numerical simulations

1 Introduction

Directionally solidified eutectics are self-organized composite materials of great prospective
interest for advanced engineering [1–5]. In practice, however, good control of their multi-
phased microstructures comes up against complex pattern formation phenomena that are
still incompletely understood [6]. Among them, the dependence of eutectic solidification
microstructures on the orientation of the growing crystals is of primary importance [7–9].
We consider coupled-growth patterns during the solidification of a nonfaceted binary eu-
tectic alloy at an imposed velocity V in a fixed temperature gradient G. The two-phased

*Corresponding author.

S. Akamatsu and S. Bottin-Rousseau
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solidification dynamics is primarily controlled by solute diffusion in the liquid, and capil-
lary effects at the involved interfaces. The shape of the interphase boundaries in the solid,
and thus the two-phase growth microstructure imprinted in the bulk alloy, are a frozen trace
of the trajectories of the triple lines (trijunctions) at which the two solids and the liquid are
in contact. In a lamellar eutectic, the solid presents a spatial alternation of platelet-like crys-
tals, or lamellae, of the two eutectic solid phases. This results from the formation of banded
patterns at the growth front. For a given V value, the (interlamellar) spacing λ usually falls
close to a scaling length, the so-called minimum-undercooling spacing λm, which is propor-
tional to V´1{2. This delineates the bases of the Jackson-Hunt (JH) theory of steady periodic
eutectic patterns in regular eutectics [10].

One of the major hypotheses in the JH calculation is that the involved interfaces are
fully isotropic. This essentially holds true for the solid-liquid interfaces in a nonfaceted sys-
tem. In contrast, the free energy γ of the interphase boundaries in the solid can be markedly
anisotropic, in particular in eutectic alloys that present special crystal orientation relation-
ships (ORs). The question arises then of how the anisotropy of the interphase boundary
enters into play in the diffusion controlled growth dynamics of eutectic solidification pat-
terns. Recently, new light has been cast on that issue by focusing on the so-called locked
lamellar eutectic patterns [11–15]. Experimentally, eutectic lamellae are often observed to
grow tilted with respect to the solidification axis, and keep a fixed inclination that is insensi-
tive to changes of the ordinary control parameters. This inclination commonly corresponds,
or nearly so, to that of a low-energy, coincidence plane that characterizes an OR. A theory of
this effect has been proposed on the basis of a semi-empirical conjecture, called symmetric-
pattern (sp) approximation, which states that, in the presence of an anisotropy of the inter-
phase boundaries, the steady-state shape of the solid-liquid interfaces in tilted-lamellar pat-
terns keeps the same mirror-symmetry as for an isotropic system [12]. The sp-approximation
was inspired by in situ directional solidification experiments of a model transparent alloy,
namely, the CBr4-C2Cl6 eutectic, in thin samples [12]. Its relevance has been essentially
confirmed by numerical simulations by Ghosh et al [14]. In the latter study, for general-
demonstration purposes, a virtual symmetric eutectic alloy with identical thermodynamical
properties of the two eutectic phases was considered. In a recent phase-field simulation study
using more realistic alloy parameters, a substantial departure from the sp-approximation was
found in certain conditions [16]. However, a quantitative study aiming at a direct comparison
of numerical results with experimental observations was still lacking.

In this paper, we present a numerical study of locked-lamellar eutectic growth patterns
in the CBr4-C2Cl6 system. We used a dynamic boundary-integral (BI) code with model
interfacial-anisotropy functions, as in Ref. [14]. The parameters of the CBr4-C2Cl6 alloy
were taken from Karma and Sarkissian [17] (also see [18,19]). The sp-approximation was
again found to be qualitatively relevant, and a strong locking effect close to a deep γ mini-
mum was reproduced. For a deeper insight, we carried out a systematic investigation of the
dependence of the tilt angle θt of the lamellar patterns on the main control parameters. We
found that the departure δ “ θsp´θt from the tilt angle θsp predicted by the sp-approximation
depends substantially on two prevailing factors of influence, namely, the G{V ratio, and the
volume phase fraction in the solid η (thus, the average concentration of the alloy). The ef-
fect of the latter is all the stronger as the two phases have different capillary lengths –which
is actually the case for the CBr4-C2Cl6 alloy. The value of the pinning angle between the
interfaces at the trijunction also enters into play, at least for a weak anisotropy. We finally
reproduced numerically some experimental observations of locked-lamellar patterns in the
CBr4-C2Cl6 alloy by adjusting the parameters of the model interfacial-anisotropy function
by following an empirical, iterative approach.
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The scientific context of the study is presented in Section 2. The BI method for the nu-
merical simulation of 2D eutectic patterns is summarized in Section 3. Detailed information
on the thin-sample directional solidification method has been abundantly provided in previ-
ous papers (see, e.g., [19,20]), and is not repeated here. The results are presented in Section
4, and a short discussion is proposed in Section 5, along with the main conclusions. Symbols
used in this paper are listed in Appendix A, with definitions and units.

2 Background

2.1 Eutectic growth: isotropic system

During directional solidification of a nonfaceted binary eutectic alloy in a thin sample,
the dynamics is assumed to occur in a 2D geometry. The temperature gradient G (frozen-
temperature approximation) is directed along the z axis. The sample is pulled at a velocity
V towards negative z values. We note x the (longitudinal) axis perpendicular to z. In the
reference frame of the laboratory (which moves at velocity V along z as compared to the
reference frame of the solid), the temperature field T pz, tq reads:

T pz, tq “ TE `Gz . (1)

We shall note α and β the two eutectic solid phases. The dimensionless concentration
field u in the liquid is defined by:

upr, tq “
Cpr, tq ´CE

Cβ ´Cα
, (2)

where r is the position vector in the px, zq plane, Cpr, tq the solute concentration in the liquid
(L), and Cα, Cβ, and CE are the equilibrium compositions of the coexisting α, β, and liquid
phases, respectively, at T “ TE . We assume a one-sided solidification problem (no diffusion
in the solid). The diffusion field in the liquid obeys:

Btu “ D∇2u` VBzu , (3)

where D is the solute diffusion coefficient in the liquid. The diffusion length ld is defined as
ld “ D{V .

At the α- and β-liquid interfaces, the conservation of solute imposes:

Vnuν “ ´Dn̂ν ¨ ∇u|ν , (4)

where Vn is the normal growth velocity of the solid-liquid interface, n̂ν the unit normal vector
to the ν-liquid interface pointing into the liquid (ν “ α, β), ∇u|ν the concentration gradient
at the interface, and uν “ pCν ´CEq{pCα ´Cβq. The liquidus and solidus lines are assumed
to be parallel with each other.

Let us note ζpxq the shape of the (isotropic) solid-liquid interface. We define the thermal
length lνt and the capillary length dν0 of phase ν by:

lνt “
|mν|pCβ ´Cαq

G
, (5)

and
dν0 “

γνTE

Lν|mν|pCβ ´Cαq
, (6)
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where mν is the liquidus slope at TE , Lν the latent heat of melting per unit volume of phase ν,
and γν the surface free energy of the ν-L interface. The local equilibrium can then be written
as:

uint “

#

´ζpxq{lαt ´ dα0 κ , α-L interface
ζpxq{lβt ` dβ0κ , β-L interface ,

(7)

where uint is the value of the field u at the interfaces, and κ the interface curvature, counted
positive for a solid bulging into the liquid.

For a fully isotropic system, the local equilibrium at the trijunction reads (Young’s law):

γα t̂α ` γβ t̂β ` γt̂ “ 0, (8)

where γ is the surface free energy of the α-β interphase boundary, and the unit vectors
tangent to the ν-liquid interfaces and the interphase boundary (pointing away from the tri-
junction) are noted t̂ν and t̂, respectively. A pair of α and β lamellae in a steady periodic
eutectic growth pattern is schematically represented in Fig. 1a.

Fig. 1 Schematic representation of steady-state lamellar eutectic patterns. a) Regular pattern (isotropic sys-
tem). b) Steady-state tilted-lamellar pattern with anisotropic interphase boundaries. c) Tilted-lamellar pattern
in the symmetric-pattern configuration (anisotropic system). Symbols: see text.
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Equations 1 to 8 form the regular-eutectic growth problem as it has been considered
a long time ago by Jackson and Hunt (JH) [10]. The main conclusions of the JH work
were, in brief, that for usual values of the temperature gradient G (typically on the order
of 100 Kcm´1) [21], and values of the Péclet number Pe “ λ{ld much smaller than 1,
the eutectic growth dynamics is poorly sensitive to G, and depends on a single parameter,
namely the dimensionless spacing Λ “ λ{λm, which is proportional to λV1{2. The scaling
length λm varies proportionally to pd0ldq1{2, where d0 “ 2rηdα0 sinφα`p1´ ηqd

β
0sinφβs, with

φν the pinning angle of the ν-liquid interface at a trijunction (Fig. 1a), and η the volume
fraction of the β phase in the solid. The latter quantity is essentially determined by the
average concentration of the alloy C0, and, assuming that the molar volume of the two solid
phases are equal (which is approximately the case for CBr4-C2Cl6), one can write:

η “
C0 ´Cα

Cβ ´Cα
. (9)

2.2 Anisotropic interphase boundaries

In this section, along with the following one, we summarize a theoretical work that has been
previously developed in Refs [12] and [14]. The goal was to find how to predict the effect
of anisotropic interphase boundaries in an αβ eutectic grain of uniform crystal orientation
during eutectic solidification (Fig. 1b). For the sake of simplicity, we will note n̂ and t̂ the
normal and tangent unit vectors of the interphase boundary, respectively. We note θ the
inclination angle of the interphase boundary in an arbitrary configuration, which we define
as the angle between n̂ and the x axis (nx “ cos θ and nz “ sin θ are the x and z components
of n̂, respectively). The lamellar tilt angle θt designates the value of θ in a steady-state pattern
(Fig. 1b). One has: t̂ “ ´dn̂{dθ. The angle between the interface and the z axis is also equal
to θ. The anisotropic interphase boundary energy can be written as:

γpθq “ γ0r1´ acpθqs, (10)

where γ0 is a constant and acpθq is a dimensionless function. In two dimensions, the Hoffman-
Cahn ξ and σ vectors [22] are defined by

ξ “ γn̂´ γ1 t̂ (11)

and
σ “ γt̂ ` γ1n̂, (12)

where γ1 “ dγpθq{dθ.
The γ-plot is defined by ρpθq “ γpθqn̂ in a polar representation. The minimum-energy

shape (Wulff shape) of a β crystal in an α matrix –in a uniform temperature field– is given
by the vector ξpθq (ξ-plot). It is useful to define the surface stiffness τpθq “ γpθq ` γ2pθq.
A “weak”, or “smooth” anisotropy satisfies τpθq ą 0 for all orientations. In contrast, with a
“large” anisotropy such that the quantity τ is negative for a range of θ [23], the ξ-plot has
self-intersections. The segments with τ ă 0 in the ξ-plot correspond to Herring-unstable
inclinations of the interface.

The local-equilibrium condition at the trijunction (Young-Herring equation) now be-
comes

γα t̂α ` γβ t̂β ` σ “ 0, (13)



6 Silvère Akamatsu*, Sabine Bottin-Rousseau

with σ given by Eq. (12). That equation replaces eq. 8 in the anisotropic coupled-growth
problem. As it is written, it (reasonably) assumes that the solid-liquid interfaces are isotropic.
Generally speaking, the σ vector is not parallel to the interphase boundary.

In directional solidification, the orientation of a given eutectic grain with respect to the
reference frame of the axial temperature field must be specified. In two dimensions, it is
practical to define a rotation angle θR, measured from a reference configuration, so that one
can write:

γpθq “ γ0r1´ acpθ ´ θRqs . (14)

We shall set θR “ 0 in such a way that a γ minimum of interest is located for n̂ perpendicular
to z. For θR “ 0, one expect the interphase boundary to align with z (θt “ 0), for symmetry
reasons, during steady-state growth. A lamellar-locking effect then corresponds to θt « θR

for a finite range of θR about θR “ 0. This occurs when the γ minimum in question is sharp
enough. The angle θR was called rotation angle in reference to the experimental rotating
directional solidification method [13].

As in Ref. [14], we will use anisotropy functions acpθq of the form

acpθq “ εg exp
“

´pθ{wgq
2‰
´ ε2 cos 2θ ´ ε4 cos 4θ , (15)

where εm (m “ 2, 4) is the m-fold anisotropy coefficient, and εg is the amplitude, and wg

the width of a Gaussian that is used to model a localized minimum of γpθq. By this way, we
“regularized” the system and avoided numerical issues associated to a singular minimum.

2.3 The symmetric-pattern approximation

A steady periodic lamellar pattern with a finite tilt angle θt induced by an anisotropy of the
interphase boundary is represented schematically in Fig. 1b. For the sake of realism, the
solid-liquid interfaces are represented with a broken mirror symmetry, two neighboring tri-
junctions with slightly different z positions (or, equivalently, slightly different temperatures),
and the σ vector making a finite angle δ with the z axis. We recall that tilted interphase
boundaries in the solid result from a lateral drifting motion of the coupled-growth pattern
along the x axis. If one notes vd the lateral-drift velocity, one has tanθt “ vd{V . Such a drift-
ing motion obviously breaks the parity (x Ø ´x symmetry) of the system. In general, this
entails a breaking of the mirror symmetry of the solid-liquid interfaces with respect to the
middle planes between two neighboring trijunctions. The diffusion field in the liquid also
presents an asymmetric, drifting component.

Based on experimental observations during thin-sample directional solidification of the
CBr4-C2Cl6 alloy (see Ref. [12], and section 4.5 below), a semi-empirical conjecture, the
so-called sp-approximation (Fig. 1c), has been emitted, which assumes that the α-liquid
and the β-liquid interfaces keep a mirror-symmetric shape with respect to the mid-plane of
the lamellae [12]. In this configuration, the contact angles of the solid-liquid interfaces at
the trijunctions are the same on both sides of a lamella –and the trijunctions at the same
temperature. The Young-Herring condition [Eq. (13)] imposes then that the surface tension
vector σ is strictly aligned with z. This yields:

γpθ ´ θRq sin θ ` γ1pθ ´ θRq cos θ “ 0 . (16)

This equation has a unique solution if the stiffness τ is positive for all angles. If τ becomes
negative, there are intervals of θR for which Eq. (16) admits three solutions: one of them
belongs to the convex Wulff shape, another one to the unstable segment, and the third one
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to a metastable segment with τ ą 0. As mentioned above, we note θsp the solution(s) of
Eq. (16), and θt the computed (or measured) lamellar tilt angle.

The semi-quantitative relevance of the sp-approximation has been demonstrated for a
symmetric eutectic alloy with the help of numerical simulations (both with the BI code and
with a phase-field method) [14]. The lamellar-locking effect could be reproduced in the
presence of a strong anisotropy with a sharp γ minimum. However, in the simulations (and
in the experiments), the solid-liquid interfaces of tilted lamellar patterns are obviously not
strictly mirror-symmetric, as schematically represented in Fig. 1b. A measure of the actual
asymmetry is given by the angle δ, knowing that δ “ θt ´ θsp. The sp-approximation is
equivalent to δ “ 0. In the symmetric alloy [14], the angles δ and θt were systematically of
opposite signs –the diffusion field opposes a resistance to the crystallographic effect, and θt

is lower than θsp (in absolute values)– but δ was found to be relatively small. In the phase-
field study of Ref. [16], it was shown that, for a eutectic alloy with dissimilar characteristics
of the two eutectic solid phases, the departure angle δ could be rather large. The present
study aims at casting clearer light to this issue.

3 Methods

The BI method assumes that the term Btu can be neglected in the diffusion equation, Eq. (3)
(quasistationary approximation) [17]. In brief, it uses Green’s function techniques that trans-
form the diffusion equation along with the boundary conditions at the interface [Eqs. (4) and
(7)] into a single integro-differential equation at the solid-liquid boundary. The calculation
starts with a suitable guess of the (discretized) ζpxq shape of a pair of α and β lamellae.
The boundary-integral equation is used to calculate the concentration gradient at the solid-
interface, and the interface velocity is obtained from Eq. (4) for each interface point, but
the trijunctions. The interface points are moved accordingly (given a predefined time step).
The position of each trijunction is found by solving Eq. (13) with the help of a relaxation
scheme. The interfacial anisotropy intervenes at that stage only. More details can be found
in Refs. [14] and [17] (also see [24]).

The BI code uses dimensionless variables and parameters. The reference scale for the
space variables is the width of the simulation box (here, λ) –and λ{V for the time. Dimen-
sionless parameters are defined as follows.The eutectic concentration is uE “ 0. The edge
of the eutectic plateau on the α (β) side is noted uα (uβ), and uβ ´ uα “ 1. The average con-
centration of the alloy (that is, the concentration of the liquid for z Ñ 8) is noted u0. The
β-phase volume fraction η is equal to the width of the β lamella divided by λ in a steady-state
pattern, and is given by η “ u0 ´ uα. Two dimensionless parameters are introduced for each
phase ν, namely, Pν

c “ dν0{ld (capillary Péclet number), and µν “ ld{lνt , which is proportional
to G{V (we recall ld “ D{V). The lamellar spacing λ appears in the (spacing) Péclet number
Pe “ λ{ld. Coupled-growth patterns are commonly such that Pe ăă 1. The pinning angles
are set by the values of the ratios γα{γ and γβ{γ.

The relevant physical constants of the CBr4-C2Cl6 eutectic, extracted from Ref. [17], are
given in Table 1. Here, for efficiency, we simply took φα “ φβ “ φ “ 61o, while the pinning
angles at the trijunction have been previously estimated to φα “ 70˘ 4o, and φβ “ 67˘ 5o

[18]. Considering the experimental error, taking φα “ φβ was justified. In addition, slightly
decreasing the φ value made the simulations faster, and the convergence less sensitive to the
departure of the initial guess from the steady-state regime at large tilt angles. The thus en-
tailed inaccuracy margin was imperceptible as compared to experimental errors. Moreover,
as reported in section 4.5 below, we mostly compared simulated and experimental shapes
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with a large anisotropy. Then the value of |σ| that enters into play at the trijunctions substan-
tially departed from γ, and the equilibrium angles at the trijunctions varied according to the
actual configuration. In the eutectic-growth problem, the capillary effects at the solid-liquid
interfaces are included in the Gibbs-Thomson equation via the capillary lengths dα0 and dβ0
(given in Table 1). As concerns the equilibrium at the trijunctions, one only needs to know
the two ratios γα{γ and γβ{γ, which presently were both set to 0.5717 (isotropic system)
according to the chosen φ value. Those quantities are sufficient for running the present sim-
ulations, and for both the Wulff construction and the comparison with the sp approximation.
In Ref. [18], the values of the α-liquid and β-liquid surface energies were calculated from
the estimates of the capillary lengths (for completion, we shall mention the values of the
latent heats, namely, Lα « 28 Jcm´3 and Lβ « 26 Jcm´3). Incidentally, in the phase-field
study of Ref. [16], the authors, while explicitly mentioning the CBr4-C2Cl6 system, have
been using a set of alloy parameters that differed markedly from those listed in Table 1.

Cα Cβ CE mα mβ

rmol%s rmol%s rmol%s rKmol´1s rKmol´1s

8.8 18.5 11.6 81 165

dα0 dβ0 φα φβ D
rÅs rÅs rdegs rdegs rµm2s´1s

105 35 61 61 500

Table 1 Useful physical constants of the CBr4-C2Cl6 alloy. See text.

We will also present some results obtained with a symmetric alloy, for comparison. By
definition, one has then uα “ ´uβ “ ´0.5. We set the pinning angle to φα “ φβ “ π{6
(γα “ γβ “ γ), except otherwise stated, which is substantially smaller than that in the CBr4-
C2Cl6 –and in most of the few other eutectic alloys where φ was estimated, to the best of our
knowledge (see, e.g., Ref. [25] for Al-Al2Cu). In Section 4.4, some of the above parameters
of the symmetric alloy will be varied for the sake of comparison with the CBr4-C2Cl6 alloy,
while respecting the symmetry between the two solid phases.

A thorough description of the preparation of thin CBr4-C2Cl6 samples, and the direc-
tional solidification method can be found in previous papers [19,20].

In the following, the symmetric eutectic alloy will be conveniently renamed into “SE
alloy”, and the CBr4-C2Cl6 alloy into the “CB alloy”.

4 Results

4.1 Isotropic system

We first simulated a steady-state lamellar pattern with the experimental V , G, η, and λ values
corresponding to the snapshot of Fig. 2 –and with isotropic interfaces. The CB alloy was
hypoeutectic (C0 ă CE). In this case, as in the rest of the paper, we computed a single
pair of lamellae, with periodic lateral boundary conditions. The experimental and numerical
shapes superimposed well on each other, which provided an additional piece of confidence
in the accuracy of the physical constants of Table 1.
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Fig. 2 Steady periodic lamellar eutectic growth pattern observed in situ during thin-sample directional solid-
ification (V “ 0.5 µms´1, G “ 110 Kcm´1, λ “ 29 µm) of a hypoeutectic CBr4-C2Cl6 alloy (η “ 0.26,
C0 “ 0.114 mol%). Isotropic eutectic grain. Bar: 20 µm. Inset: numerical simulation with the BI code
(Pe “ 0.029, Pαc “ 1.050 ˆ 10´5, µα “ 1.40, Pβc “ 0.350 ˆ 10´5, µβ “ 0.68729, u0 “ ´0.028)
superimposed to the framed detail of the pattern.

4.2 Weak interfacial anisotropy

We considered first a smooth anisotropy function of the form acpθq “ 1 ´ ε2 cos 2pθ ´ θRq,
with ε2 “ 0.05. We varied θR between 0 and π{2 (the rest of the diagram can be obtained by
symmetry). The output values of the lamellar tilt angle θt are reported in Fig. 3a as a func-
tion of θR. Representative patterns are also shown in Fig. 3b. We used two sets of parame-
ters for the CB alloy. The first one (filled squares in Fig. 3a) corresponds to a thin-sample
directional solidification experiment in a hypereutectic alloy with equal phase volume frac-
tions in the solid (η “ 0.5), ordinary values of the control parameters (G “ 110 Kcm´1,
V “ 0.5 µms´1), and λ “ λm (Λ “ 1). In those conditions, the tilt angle was markedly
lower than θsp, and that obtained for the SE alloy (same BI data as in Fig. 8 of Ref. [14]) as
well.

However, with a different set of parameters (filled disks in Fig. 3a) that would corre-
spond to a hypoeutectic CB alloy (η “ 0.261), a lower pulling velocity (V “ 0.1 µms´1),
and a smaller spacing (Λ “ 0.766), the lamellar tilt angle was significantly larger –thus (for-
tuitously) coinciding with the θtpθRq data for the SE0 alloy. The data points corresponding
to the SE alloy with a pinning angle of φ “ 60o in Fig. 3a will be commented later on in
section 4.4.

4.3 Large interfacial anisotropy

We tested a large anisotropy of the form of Eq. 15 with εg “ 0.2, wg “ 0.1, ε2 “ 0.0854, and
ε4 “ 0.0221 (same as in Fig. 10 of Ref. [14]). The γ-plot and the ξ-plot are both shown as an
inset in Fig. 4a. The Gaussian term in acpθq creates a deep and sharp minimum, associated
with a large (quasi) facet, and a large range of forbidden inclinations. As explained above,
this entails a large interval of θR values within which the θsppθRq curve presents three solu-
tions, including an unstable one (Fig. 4a). We implemented the same two sets of parameters
for the CB alloy as in the previous section. For the sake of completeness, we displayed the
weak-locking part of the curve (large values of θR). In this region, the behavior was again
typical of a smooth anisotropy, and, disregarding the details of the anisotropy function, qual-
itatively similar to that illustrated in Fig. 3a.
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Fig. 3 a) Lamellar tilt angle θt (BI simulations), and sp-approximation angle θsp (thick continuous line)
as a function of the rotation angle θR for a weak, twofold anisotropy of the interphase boundary [acpθq “

0.05 cos 2pθ ´ θRq]. Symmetric eutectic alloy: (©) Pe “ 0.03129, Pαc “ Pβc “ 1.9531ˆ 10´5, µα “ µβ “
0.25, φ “ 30o (Λ “ 1); (l) same parameters, but φ “ 60o. CBr4-C2Cl6 eutectic alloy: (�) Pe “ 0.018609,
Pαc “ 1.05ˆ 10´5, µα “ 1.40003, Pβc “ 0.35ˆ 10´5, µβ “ 0.68729, u0 “ 0.2 (η “ 0.5, G “ 110 Kcm´1,
V “ 0.5 µms´1, Λ “ 1); (�) Pe “ 0.007, Pαc “ 2.10ˆ10´5, µα “ 7.0001, Pβc “ 0.7ˆ10´6, µβ “ 3.4364,
u0 “ ´0.028 (η “ 0.261, G “ 110 Kcm´1, V “ 0.1 µms´1, Λ “ 0.766). b) Four simulated patterns
corresponding to data points labelled 1, 2, 3 and 4 in the graph, respectively –in this figure, and all the figures
below, the α (β) lamella is on the left (right).

More interestingly, the locking effect (θt « θR) along the facet was well reproduced by
the BI simulations (Fig. 4a). Lamellar tilt angles as large as 40o could be reached with the
hypoeutectic alloy (circles), but the simulations did not converge toward a steady-state for
θR larger than about 27o in the hypereutectic alloy. The simulated patterns shown in Fig.
4b make it clear that, with the present anisotropy parameters, a strong locking still goes
along with a substantial asymmetry of the shape of the β-liquid interface –and, to a much
lesser extent, of the α-liquid interface. The deformation of the solid-liquid interface is, as
expected, larger for the solid phase that presents the lesser capillary length, namely, the β
phase (pattern label 1 in Fig. 4b). The asymmetry of the shape of both the α- and β-liquid
interfaces became however hardly perceptible in the simulated hypoeutectic alloy (pattern
label 2 in Fig. 4b). The next section aims at clarifying the quantitative influence of the alloy
and control parameters on the tilted-lamellar dynamics.

4.4 Influence of individual parameters

We studied first the variation of the tilt angle θt as a function of the Pe number (Fig. 5) within
a range that actually corresponds to a variation of Λ between 0.8635 and 1.4266 for the CB
alloy –these are accessible values in usual thin-sample directional solidification experiments.
As in the SE alloy, the crystallographic effect is stronger for Λ values well below 1, that is,
when capillary effects dominate. The tilt angle θt decreases as a function of Pe for low Pe
values, presents a minimum, and re-increases for Pe larger than about 0.035. Above this
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Fig. 4 a) Lamellar tilt angle θt (BI simulations) as a function of the rotation angle θR. Strong lamellar locking
(anisotropy function: see text). Thick line: θsp (blue, dotted and green parts: quasi facet, unstable inclina-
tions, and unlocked branch, respectively). CBr4-C2Cl6 alloy. � and � : see Fig. 3 for the respective param-
eters. Inset: γ-plot (blue line) and ξ-plot (red line; dotted-line branches: τ ă 0). b) Two simulated patterns
corresponding to the data points labelled 1 and 2 on the graph, respectively. Color online.

Pe value, the system closely approaches the threshold of a spontaneous tilt bifurcation [26]
–this is beyond the scope of the present paper.

We then checked the influence of the pulling velocity V and the temperature gradient G,
that is, more specifically, the G{V ratio. The calculations were performed by keeping Λ “ 1.
The results are shown in Fig. 6 in the form of a graph that gives θt as a function of the
average quantity µ “ pµα` µβq{2, which is proportional to G{V . This permits a comparison
with the SE alloy. It can be seen that, in the SE alloy, θt is close to θR over the whole range
of explored µ values, and poorly sensitive to the G{V ratio. In contrast, in the CB alloy,
the lamellar tilt angle increases substantially, and gets closer to θsp when µ increases. By
observing the tilted-lamellar patterns corresponding to the two extreme data points of the
graph (insets in Fig. 6), one can see that the solid-liquid interfaces are quite rounded at low
µ values, but considerably flatten at higher µ values. This goes along with a lesser opposing
effect of the diffusion field. For the sake of realism, we identified three groups of data points
(with different symbols in Fig. 6) that can be associated to three values of V , namely, 11.95,
1.0, and 0.1 µms´1, respectively, and G values varying, for each of them, within a 40 ´
200 Kcm´1 range. In thin-sample experiments, the values of the pulling velocity and the
temperature gradient most usually remain on the order of, say, V “ 0.1 ´ 1 µms´1, and
G “ 50´ 12 Kcm´1, respectively, which corresponds to µ ranging from 0.2 to 4, typically.
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Fig. 5 Lamellar tilt angle θt as a function of Pe=λ{ld . CBr4-C2Cl6 alloy with Pαc “ 2.1ˆ10´5, µα “ 0.070,
Pβc “ 0.350ˆ10´5, µβ “ 0.68729, u0 “ 0.2 (η “ 0.5, G “ 110 Kcm´1, V “ 1.0 µms´1). Same anisotropy
function as in Fig. 3, with θR “ 30o (θsp “ 4.58o).

The parameters used in the KS study [17], namely, V “ 11.95 µms´1, and G “ 188 Kcm´1

(µ “ 0.074596), were thus unusually large.

Fig. 6 Lamellar tilt angle θt as a function of the parameter µ „ G{V . Anisotropy function: acpθq “
0.05cos2pθ ´ π{6q. Circles: symmetric alloy. Light-grey, dark-grey, and black squares: CBr4-C2Cl6 alloy
with η “ 0.5, and Λ “ 1 (V “ 11.95, 1.0 and 0.1 µms´1; Pe “ 0.0923, 0.0267 and 0.008424, respectively).
Dotted horizontal line: θsp “ 4.60o. Insets: simulated patterns for µ “ 0.0160 (on the left) and 5.220 (on the
right).

We measured the influence of the pinning angle φ at the trijunction by simulating tilted-
lamellar patterns in the SE alloy (thus smoothing out the influence of other specific parame-
ters) with various values of φ within a 10´ 60o range. The θtpφq data are shown in Fig. 7. In
Fig. 7, we considered a weak anisotropy. This allowed us to report the θt data as a function
of the value of φ calculated with γ “ γ0. For small values of φ, θt was found to be very close
to θsp: the solid-liquid interfaces are quasi planar. In contrast, when φ increases, θt decreases
much. Interestingly enough, when φ was set close to 60o, the lamellar tilt angle (in the SE
alloy) reached down the value of θt found in the CB alloy with ordinary control parameters.
This trend is made clearer in the graph of Fig. 3a: the θt data calculated for the SE alloy with
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φ « 60o (instead of 30o) as a function of θR nearly superimpose with the data obtained with
the hypereutectic (η “ 0.5) CB alloy. In other words, and rather intuitively, the larger the
amplitude of the deviation of the solid-liquid interface from a planar shape, the stronger the
coupling with the diffusion field.

Fig. 7 Lamellar tilt angle θt as a function of the pinning angle φ of the solid-liquid interfaces at the trijunction.
Symmetric eutectic (SE) alloy. Anisotropy function: acpθq “ 0.05cos2pθ ´ 9π{48q. Horizontal dotted line:
θsp “ 5.53o.

In Figs. 3 and 4, the impact of the asymmetry of the CB alloy phase diagram was in-
directly demonstrated. Further evidenced is given in Fig. 8. We varied u0 within an interval
that corresponds to η between 0.2 and 0.7 –those values are accessible experimentally by
using CB alloys of different concentrations about the eutectic point. It can be seen that θt

decreases when η increases. It is larger for hypoeutectic (η ă 0.3) than for hypereutectic al-
loys. In other words, the angle δ nearly vanishes when the β lamella becomes narrower. This
is certainly related to the dissemblance between the capillary lengths of the two solid phases
(dα0 ą dβ0): the β-liquid interface deforms easier than the α-liquid interface, and can present
concave shapes under the effect of the diffusion field. This is evidenced by comparing the
shapes of the lamellar patterns for markedly hypo- versus hyper-eutectic alloys, respectively
(insets of Fig. 8).

4.5 Locked lamellar patterns, and experimental observations

The quantitative agreement between the experimental observations of steady periodic lamel-
lar patterns during thin-sample directional solidification of CB alloys and the BI simulations
with the relevant physical parameters has been illustrated in Fig. 2 –in that case, a fully
isotropic situation was considered. In the following, we report on our attempts to repro-
duce, with the BI code, the shape of locked, or nearly locked lamellar patterns observed
experimentally in two different anisotropic eutectic grains. We selected experiments that
provided large-magnification images with a good optical quality, showing steady periodic
(or smoothly modulated) lamellar patterns in large eutectic grains that presented a bistable
behavior. Again, we used the parameters of Table 1 without further adjustment in the sim-
ulations. The phase fraction η was estimated in situ during the experiments, and u0 set ac-
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Fig. 8 Lamellar tilt angle θt as a function of the β phase volume fraction η. CBr4-C2Cl6 alloy (V “

1.0 µms´1, G “ 110 Kcm´1, Λ « 0.8). Anisotropy function: acpθq “ 0.05cos2pθ ´ π{6). Insets: simu-
lated patterns (arrows: corresponding points in the graph).

cordingly. As concerns the interfacial anisotropy, we used anisotropy functions of the same
type as that of Eq. 15 –taking, in practice, the acpθq function of Fig. 4 as a first guess–, and
tuned the anisotropy coefficients with an iterative approach in order to simulate a shape that
reasonably matches with the experimental one. The value of the orientation angle θR of the
eutectic grain was set to the inclination of the locked lamellae in the eutectic grain.

Let us consider the eutectic growth pattern of Fig. 9a. It was observed in a single eutectic
grain (see the continuity of the lamellae in the solid), in a slightly hypereutectic CBr4-C2Cl6
alloy (u0 “ 0.085). On the righthand side, the growth behavior was typically that of a weakly
locked tilted-lamellar pattern, and the lamellar tilt angle, while remaining close to about 10o,
slightly varied and followed a floating-like spatiotemporal dynamics. The interphase bound-
aries also smoothly oscillated under the effect of an external (here, accidental) perturbation.
On the lefthand side of the pattern, the growth dynamics was markedly unsteady, but straight
facets with an inclination of about 51o could be easily identified.

A detail of the weakly locked region of the same lamellar pattern as in Fig. 9a, but ob-
served a few minutes later at a larger magnification, is shown in Fig. 9b. It provides a clear
example of a lamellar pattern with a relatively large tilt angle (θt « 10.5o) and an essentially
symmetric shape of the solid-liquid interfaces. In the BI simulation, we implemented an
anisotropy function of the form of Eq. 15 (also see Fig. B1 in Appendix B). The anisotropy
parameters (slightly different from those of Fig. 4) were selected in such a way that, by
setting θR “ 51o, two metastable solutions were predicted by the sp-approximation. Good
agreement was found between the numerical and experimental profiles in the weakly-locked
region (inset of Fig. 9b). The value of θsp (« 14o) was substantially larger than θt, as ex-
pected for a hypereutectic alloy (see Fig. 8). Nevertheless, a nearly symmetric shape of the
solid-liquid interfaces was favored by a low value of Pe (Fig. 5), and a large value of the
ld{lt ratio (Fig. 6). By construction, the sp-approximation predicts another solution that cor-
responds to a locked-lamellar pattern aligning with the facets (θt « θR “ 51o) in the region
on the left of Fig. 9a. The BI simulations however did not converge toward a steady-state,
which was more or less expected for a θR value larger than 40o. This is also in agreement
with the unsteadiness of the left-hand side of the pattern of Fig. 9a.
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Fig. 9 a) Lamellar eutectic growth pattern during directional solidification of a slightly hypereutectic CBr4-
C2Cl6 alloy in a thin sample. V “ 0.25 µms´1, G “ 110 Kcm´1. Dotted line: accidental variation of
the pulling velocity. Bar: 100 µm. b) Detail of the weakly locked lamellar pattern, on the righthand side
of the image in a), observed at a larger magnification. λ “ 18.8 µm. η « 0.37. Bar: 20 µm. Inset: detail
of the same pattern and BI simulation (blue profile) with Pe “ 0.0094, Pαc “ 5.25 ˆ 10´6, µα “ 2.80,
Pβc “ 0.175ˆ10´5, and µβ “ 1.37457. Coefficients in the anisotropy function (Eq. 15): εg “ 0.2, wg “ 0.1,
ε2 “ 0.104, ε4 “ 0.02208 (θR “ 51o). Color online.

The three snapshots of Fig. 10 were observed in the same sample as in Fig. 2, but in
another eutectic grain. The images of Figs. 10a and 10b were recorded at two different
locations, distant by a few 100 µm form each other, in a large region of the eutectic grain
that exhibited a weakly locked behavior. In that region, the lamellar spacing was smoothly
varying along the x axis. We measured, on average, λ “ 20.1 µm and 27.0 µm, and θt “

18.0 ˘ 0.3o and 19.5 ˘ 0.5o in the two images, respectively. The large-λ lamellar pattern
in Fig. 10b was slightly oscillatory. The locked-lamellar pattern of Fig. 10c was observed
in the same eutectic grain (at a different V , which is of marginal importance as concerns a
locked lamellar pattern). As in the precedent case, we used an anisotropy function of the
form of Eq. 15, and set θR “ 35.0o (“ θt in Fig. 10c) in the BI code (also see Fig. B2 in
Appendix B). By this way, the weakly locked patterns of Figs. 10a and 10b were reproduced
–including the slightly different average tilt angles for the two different lamellar spacings in
Figs. 10a and 10b, and the oscillations in Fig. 10b. The locked-lamellar pattern of Fig. 10c
was also reproduced numerically for the very same set of parameters by using a convenient
initial guess.
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Fig. 10 Tilted-lamellar growth patterns observed during thin-sample directional solidification. The CBr4-
C2Cl6 sample is the same as in Fig. 2 (G “ 110 Kcm´1), but the eutectic grain is different. a) V “ 1.2 µms´1,
λ “ 20.1 µm, θt « 18.0o (Pe “ 0.04824, Pcα “ 2.52 ˆ 10´5, µα “ 0.583, Pcβ “ 8.40 ˆ 10´6, µα “
0.2864). b) Same parameters as in a) but λ “ 27.0 µm, θt « 19.5o (Pe “ 0.0648). c) V “ 0.5 µms´1, λ “
26.75 µm, θt « 35.0o (Pe “ 0.02675, Pcα “ 1.05ˆ 10´5, µα “ 1.40, Pcβ “ 3.5ˆ 10´6, µα “ 0.68729).
Bar: 20 µm. Insets: simulated profiles (blue lines) superimposed to details of the patterns. Coefficients in the
anisotropy function (Eq. 15): εg “ 0.2, wg “ 0.005, ε2 “ 0.2, ε4 “ 0.06 (θR “ 35.0o). Color online.

5 Discussion and conclusion

We performed quantitative numerical simulations of steady-state lamellar-eutectic patterns
with anisotropic interphase boundaries, by using a dynamic boundary-integral code. We
compared the simulations with experimental observations of locked and weakly locked
lamellar patterns during thin-sample directional solidification of a nonfaceted transparent
alloy, namely, the CBr4-C2Cl6 eutectic. We investigated the relevance of an approximate
theory based on the symmetric-pattern (sp) approximation for a real alloy, upon varying the
value of the main control parameters within experimentally accessible intervals. We brought
clear evidence that the sp-approximation is quite accurate for a low solidification rate, a large
temperature gradient, and a small lamellar spacing. Otherwise, the actual lamellar tilt angle
can depart substantially from the one predicted by the sp-approximation, and the shape of
the solid-liquid interface becomes then clearly asymmetric. Due to the difference in the cap-
illary lengths associated with the interfaces between the liquid and the two kinds of eutectic



Numerical simulations of locked lamellar eutectic growth patterns. 17

solids –which is obviously absent in a symmetric eutectic–, the lamellar tilt also depends
on the phase volume fraction in the solid, thus the average concentration of the alloy. In
addition to the above conclusions, we succeeded in a direct comparison of the simulations
with experimental observations in the CBr4-C2Cl6 system. For this purpose, as a proof-of-
concept exercise, we considered two eutectic grains, in which two dynamically metastable
tilted-lamellar patterns, one locked, and the other weakly locked, were observed experimen-
tally. By this way, locked and weakly locked patterns could be reproduced in BI simulations
by adjusting the parameters of the model anisotropy function of the interphase boundary.
Those results also bring further support to the assumption that the lamellar-locking phe-
nomenon in nonfaceted eutectic alloys is largely dominated by the effect of an anisotropy of
the interphase boundaries in the solid, and that the solid-liquid anisotropy can be neglected.

Several remarks are in order:
1-We considered the CBr4-C2Cl6 eutectic for two main reasons: (i) the relevant physical
constants are known with accuracy, and (ii) the shape of the solid-liquid interfaces can be
observed in real time. This was crucial for a quantitative demonstration. Reproducing a sim-
ilar study for a metallic eutectic alloy of (near-)industrial interest would be desirable. In
particular, the Al-Al2Cu eutectic alloy could be considered. The relevant physical parame-
ters of this alloy are known (see [25], [27], and refs. therein). Moreover, an estimate of the
γ-plot has been obtained by molecular-dynamics calculations for two prevailing ORs of the
Al-Al2Cu system [28]. A direct comparison of the shape of the solid-liquid interfaces could
be made with optical micrographs of longitudinal cross-sections in quenched ingots.
2-The BI code presents the great advantage of being quantitatively reliable, and can be used
with real values of key parameters such as the capillary lengths. However, the BI method still
remains limited to two-dimensional simulations, and cannot be used for bulk solidification.
For that, phase-field models are needed [29,30] –and for ternary eutectics as well [31,32].
3-It would be interesting to extend the present study to transient regimes in systems of a
larger spatial extension, and investigate, in particular, the so-called spacing diffusion process
in the presence of an interfacial anisotropy [33].
4-The present numerical study could also motivate new thin-sample directional solidifica-
tion experiments at low V , large G, and small λ, in hypoeutectic CBr4-C2Cl6 samples, thus
targeting conditions that would bring a better agreement with the sp-approximation. This
may also be important for optimizing rotating directional solidification experiments aiming
at measuring the interfacial anisotropy of the interphase boundaries [13].
5-In a recent analytical study [34], the authors used a simplified description of the solid-
liquid interfaces with a sawtooth shape with linear segments, thus extending a previous
work by Valance et al [35] to large, anisotropy induced tilt angles of the lamellae (symmetric
eutectic alloy). Interestingly, this analysis succeeded in capturing an interplay between the
diffusion field and the drifting motion of the lamellar pattern, and predicted not only the
lamellar-locking effect for a strong anisotropy, but also the departure of the actual lamellar
tilt angle from the sp-approximation. This model represents an interesting step beyond a
Jackson-Hunt, planar-front calculation (see, e.g., Ref. [33]). It is, however, limited to convex
shapes of the solid-liquid interfaces, and becomes inaccurate for large values of the lamellar
spacing.

Finally, it could be interesting to explore symmetry breaking instabilities with anisotropic
interphase boundaries. The question is, in other words, to determine to what extent the mor-
phology diagram of lamellar eutectics [17,19] is modified by the interfacial anisotropy.
Some attempts have been presented in Ref. [16]: oscillatory tilted-lamellar patterns were
simulated in anisotropic grains with a phase-field model. In the case of the so-called tilt
bifurcation, which was observed to occur spontaneously in isotropic eutectic grains in the
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CBr4-C2Cl6, the mirror symmetry of the lamellar pattern is broken, and the lateral trav-
eling motion of the growth pattern strongly coupled with the diffusion field [26]. The sp-
approximation is then no longer appropriate, and a numerical-simulation study would be of
deep interest [36].
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Appendix A

In this Appendix, we propose a list of the symbols used in the text. In Table A1, physical parameters are
listed. Table A2 provides a list of dimensionless variables and symbols.

Symbol Definition Unit
C Concentration in the liquid mol%
C0 Average concentration in the alloy mol%
Cν Concentration in the solid ν phase mol%
CE Eutectic concentration mol%
dν0 Capillary length of phase ν µm
D Solute diffusion coefficient in the liquid µm2s´1

G Temperature gradient Kcm´1

lνt Thermal length of phase ν µm
Lν Latent heat per unit volume (ν-liquid transi-

tion)
kJcm´3

mν Liquidus slope of phase ν Kmol´1

t Time s
T Temperature K (or oCq
TE Eutectic temperature K (or oCq
V Pulling velocity µms´1

Vn Local normal velocity of the solid-liquid in-
terface

µms´1

x, z Space variables µm
δ Departure angle from sp approximation deg (or rad)
γ Surface free energy of the interphase

boundary
Jm´2

γν Surface free energy of the ν-liquid interface Jm´2

κ Curvature of the solid-liquid interface µm´1

λ Lamellar spacing µm
λm Minimum-undercooling spacing µm
φν “ φ Pinning angle of the ν-liquid interface at a

trijunction
deg (or rad)

τ Surface stiffness of the interphase boundary Jm´2

θ Inclination angle of the interphase boundary deg (or rad)
θt Steady-state tilt angle of the lamellae deg (or rad)
θsp Lamellar tilt angle (sp approximation) deg (or rad)
θR Orientation angle of the eutectic grain deg (or rad)
ξ; σ Hoffman-Cahn surface tension vectors Jm´2

ζ Shape of the solid-liquid interface µm

Table A1 Physical variables and parameters



Numerical simulations of locked lamellar eutectic growth patterns. 21

Symbol Definition
n̂ Unit normal vector to the interphase boundary
n̂ν Unit normal vector to the ν-liquid interface
t̂ Unit tangent vector to the interphase boundary
t̂ν Unit tangent vector to the ν-liquid interface
nx; nz x and z components of n̂
acpθq Anisotropy function
εg; wg; ε2; ε4 Anisotropy parameters
η Volume fraction of β phase in the solid
Λ Dimensionless lamellar spacing
µν Dimensionless parameter (ld{lνt „ G{V)
Pe Péclet number
Pνc Capillary Péclet number (dν0{ld)
u Dimensionless concentration field in the liquid
u0 Dimensionless average concentration in the alloy
uE ; uν Dimensionless eutectic concentrations in the liquid

and the ν phases
uint Dimensionless concentration in the liquid at the

solid-liquid interface
L Liquid phase
ν “ α, β Eutectic solid phases

Table A2 Dimensionless variables, parameters and symbols.

Appendix B

In this Appendix, we were aiming to show useful details related to the anisotropy effect that was simulated
in Fig. 9 (Fig. B1) and Fig. 10 (Fig. B2) in section 4.5. We recall that the anisotropic surface energy of
the interphase boundary is written in the form of γpθq “ γ0r1 ´ acpθ ´ θRqs, with θR setting the angular
orientation of the eutectic grain (see eq. 14). The model anisotropy function ac is taken in the form acpθq “
εg exp

“

´pθ{wgq
2
‰

´ ε2 cos 2θ ´ ε4 cos 4θ (see eq. 15). The relevant value of the various coefficients are
recalled in the captions of Figs. B1 and B2 for convenience.
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Fig. B1 a) Wulff shape (green line) and γ-plot (blue line) of the anisotropy function used for the simulations
shown in Fig. 9. The graph is rotated by an angle equal to the relevant θR value. b) Tilt angle θsp in the
sp approximation for the same anisotropy function. c) Detail of the experimental microstructure. Red dots:
locked (label L) and floating (label F) interphase boundaries. The L and F points are both close to an intersect
in the Wulff shape. The arrow (label U) in a) and b) designates the unstable branch. Coefficients in the
anisotropy function: εg “ 0.2, wg “ 0.1, ε2 “ 0.104, ε4 “ 0.02208, and θR “ 51o. Color online.
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Fig. B2 a) Wulff shape (green line) and γ-plot (blue line) of the anisotropy function used for the simulations
shown in Fig. 10. The graph is rotated by an angle equal to the relevant θR value. b) Tilt angle θsp in the
sp approximation for the same anisotropy function. c) Details of the experimental microstructure. Red dots:
locked (label L) and floating (label F) interphase boundaries. The arrow (label U) in a) and b) designates the
unstable branch. Coefficients in the anisotropy function: εg “ 0.2, wg “ 0.005, ε2 “ 0.2, ε4 “ 0.06, and
θR “ 35.0o.Color online.


