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Abstract. We prove that ω-languages of (non-deterministic) Petri nets and ω-languages of (non-
deterministic) Turing machines have the same topological complexity: the Borel and Wadge hi-
erarchies of the class of ω-languages of (non-deterministic) Petri nets are equal to the Borel and
Wadge hierarchies of the class of ω-languages of (non-deterministic) Turing machines. We also
show that it is highly undecidable to determine the topological complexity of a Petri net ω-lan-
guage. Moreover, we infer from the proofs of the above results that the equivalence and the
inclusion problems for ω-languages of Petri nets are Π1

2-complete, hence also highly undecid-
able.

Additionally, we show that the situation is quite the opposite when considering unambiguous Petri
nets, which have the semantic property that at most one run exists on every input. We provide a
procedure of determinising them into deterministic Muller counter machines with counter copy-
ing. As a consequence, we entail that the ω-languages recognisable by unambiguous Petri nets
are ∆0

3 sets.
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1. Introduction

In the sixties, Büchi was the first to study acceptance of infinite words by finite automata with the
now called Büchi acceptance condition, in order to prove the decidability of the monadic second
order theory of one successor over the integers. Since then there has been a lot of work on regular
ω-languages, accepted by Büchi automata, or by some other variants of automata over infinite words,
like Muller or Rabin automata, see [1, 2, 3]. The acceptance of infinite words by other finite machines,
like pushdown automata, counter automata, Petri nets, Turing machines, . . . , with various acceptance
conditions, has also been studied, see [2, 4, 5, 6, 7].

The Cantor topology is a very natural topology on the set Σω of infinite words over a finite al-
phabet Σ which is induced by the prefix metric. Then a way to study the complexity of languages of
infinite words accepted by finite machines is to study their topological complexity and firstly to locate
them with regard to the Borel and the projective hierarchies [1, 4, 8, 2].

Every ω-language accepted by a deterministic Büchi automaton is a Π0
2-set. On the other hand,

it follows from McNaughton’s Theorem that every regular ω-language is accepted by a deterministic
Muller automaton, and thus is a Boolean combination of ω-languages accepted by deterministic Büchi
automata. Therefore every regular ω-language is a ∆0

3-set. Moreover, Landweber proved that the
Borel complexity of any ω-language accepted by a Muller or Büchi automaton can be effectively
computed (see [9, 3]). In a similar way, every ω-language accepted by a deterministic Muller Turing
machine, and thus also by any Muller deterministic finite machine is a ∆0

3-set, [4, 2].
The Wadge hierarchy is a great refinement of the Borel hierarchy, firstly defined by Wadge via

reductions by continuous functions [10]. The trace of the Wadge hierarchy on the regular ω-languages
is called the Wagner hierarchy. It has been completely described by Klaus Wagner in [11]. Its length is
the ordinal ωω. Wagner gave an automaton-like characterisation of this hierarchy, based on the notions
of chain and superchain, together with an algorithm to compute the Wadge (Wagner) degree of any
given regular ω-language, see also [12, 13, 14, 15].

The Wadge hierarchy of deterministic context-free ω-languages was determined by Duparc in [16,
17]. Its length is the ordinal ω(ω2). We do not know yet whether this hierarchy is decidable or not.
But the Wadge hierarchy induced by deterministic partially blind 1-counter automata was described
in an effective way in [18], and other partial decidability results were obtained in [19]. Then, it was
proved in [20] that the Wadge hierarchy of 1-counter or context-free ω-languages and the Wadge
hierarchy of effective analytic sets (which form the class of all the ω-languages accepted by non-
deterministic Turing machines) are equal. Moreover, similar results hold about the Wadge hierarchy
of infinitary rational relations accepted by 2-tape Büchi automata, [21]. Finally, the Wadge hierarchy
of ω-languages of deterministic Turing machines was determined by Selivanov in [22].

We consider in this paper acceptance of infinite words by Petri nets. Petri nets are used for the
description of distributed systems [23, 24, 25, 26, 27], and form a very important mathematical model
in Concurrency Theory that has been developed for general concurrent computation. In the context of
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Automata Theory, Petri nets may be defined as (partially) blind multicounter automata, as explained
in [6, 4, 28]. First, one can distinguish between the places of a given Petri net by dividing them
into the bounded ones (the number of tokens in such a place at any time is uniformly bounded) and
the unbounded ones. Then each unbounded place may be seen as a partially blind counter, and the
tokens in the bounded places determine the state of the partially blind multicounter automaton that
is equivalent to the initial Petri net. The transitions of the Petri net may then be seen as the finite
control of the partially blind multicounter automaton and the labels of these transitions are then the
input symbols.

The infinite behaviour of Petri nets (i.e., Petri nets running over ω-words) was first studied by
Valk [6] and by Carstensen in the case of deterministic Petri nets [29]. The topological complexity of
ω-languages of deterministic Petri nets was completely determined. They are ∆0

3-sets and their Wadge
hierarchy has been determined by Duparc, Finkel, and Ressayre in [30]; its length is the ordinal ωω

2
.

On the other side, Finkel and Skrzypczak proved in [31] that there exist Σ0
3-complete, hence non ∆0

3,
ω-languages accepted by non-deterministic one-partially-blind-counter Büchi automata.

A next goal was to understand the expressive power of non-determinism in Petri nets, i.e. blind
multicounter automata. The assumption of blindness is important here, as it is already known that
ω-languages accepted by (non-blind) one-counter Büchi automata have the same topological com-
plexity as ω-languages of Turing machines [20]. However, the non-blindness of the counter, i.e. the
ability to use the zero-test of the counter, was essential in the proof of this result.

The first author proved in [32, 33] that ω-languages of non-deterministic Petri nets and effective
analytic sets have the same topological complexity. More precisely the Borel and Wadge hierarchies
of the class of ω-languages of Petri nets are equal to the Borel and Wadge hierarchies of the class
of effective analytic sets. The proof is based on a simulation of a given real time 1-counter (with
zero-test) Büchi automaton A accepting ω-words x over an alphabet Σ by a real time 4-blind-counter
Büchi automaton B reading some special codes h(x) of the words x. In particular, for each non-null
recursive ordinal α < ωCK

1 there exist some Σ0
α-complete and some Π0

α-complete ω-languages of
Petri nets, and the supremum of the set of Borel ranks of ω-languages of Petri nets is the ordinal γ1

2 ,
which is strictly greater than the first non-recursive ordinal ωCK

1 . Moreover it is proved in [32, 33] that
it is highly undecidable to determine the topological complexity of a Petri net ω-language. Moreover,
it is inferred from the proofs of the above results that also the equivalence and the inclusion problems
for ω-languages of Petri nets are Π1

2-complete, hence also highly undecidable.
A particular instance of the above construction of simulation is for the Wadge degrees of analytic

sets Σ1
1 — it follows that there exists a real time 4-blind-counter Büchi automaton recognising a

Σ1
1-complete ω-language, but also that it is consistent with the axiomatic system ZFC of set theory

that there exists some non-Borel non-Σ1
1-complete ω-language of 4-blind-counter Büchi automata,

[32, 33].
The first author also proved in [32] that the determinacy of Wadge games between two players in

charge of ω-languages of Petri nets is equivalent to the effective analytic (Wadge) determinacy, and
thus is not provable in the axiomatic system ZFC.

The second author independently proved in [34] that only one blind counter is enough to obtain a
non-Borel ω-language — he exhibits an example of a real time 1-blind-counter Büchi automaton that
also recognises a Σ1

1-complete ω-language.
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In the present journal paper we gather results of both authors from [32, 33] and [34] with some
complements which did not appear in these papers:

In particular, we prove that there exists a Petri net accepting an ω-language L such that L is a
Borel Π0

2-set in one model of ZFC and non-Borel in another model of ZFC (Theorem 4.18). We also
show that it is undecidable to determine the topological complexity of the ω-language accepted by a
given 1-blind counter automaton and, as a consequence, we prove several other undecidability results
for ω-languages accepted by 1-blind counter automata (Theorems 8.9, 8.10, 8.12, and 9.4).

We also study the important case of unambiguous Petri nets. In that case, we provide a determin-
isation procedure for unambiguous blind counter automata that constructs an equivalent deterministic
Muller counter machine with zero tests and counter copying, hence also an equivalent deterministic
Muller Turing machine. Its determinism already guarantees tight bounds on the topological com-
plexity of unambiguous blind counter automata: their ω-languages belong to the Borel class ∆0

3.
Notice that the blindness of the counters is crucial here since one can obtain some Σ0

3-complete and
Π0

3-complete ω-languages accepted by unambiguous 1-counter automata with zero-test [35]. The
topological complexity of ω-languages of unambiguous Petri nets may also been compared with the
complexity of ω-languages of unambiguous Turing machines: they form the class of effective ∆1

1-sets
which contains Σ0

α-complete sets and Π0
α-complete sets for each recursive ordinal α < ωCK

1 [36].
This paper is an extended journal version of both the paper [33] of the first author which appeared

in the Proceedings of the 41st International Conference on Application and Theory of Petri Nets and
Concurrency, Petri Nets 2020, which took place virtually in Paris on June 2020, and of the paper
[34] of the second author which appeared in the Proceedings of the 12th International Conference on
Reachability Problems, which took place in Marseille on September 2018.

The paper is organised as follows. In Section 2 we review the notions of (blind) counter automata
and ω-languages. In Section 3 we recall notions of topology, and the Borel and Wadge hierarchies
on a Cantor space. Section 4 is devoted to the main result of that work: the simulation construction
that provides 4-blind counter Büchi automata for levels of the Wadge hierarchy occupied by 1-counter
Büchi automata. Based on this construction, we show that the topological or arithmetical complexity
of a Petri net ω-language is highly undecidable in Section 5. The equivalence and the inclusion
problems for ω-languages of Petri nets are shown to be Π1

2-complete in Section 6. Section 7 is devoted
to a study of determinacy of Wadge games with winning conditions given by ω-languages recognised
by blind counter automata. The example of a Σ1

1-complete ω-language recognised by a 1-blind counter
Büchi automaton is given in Section 8. Section 9 is devoted to consequences of the high topological
complexity of ω-languages recognisable by Petri nets with regard to inherent non-determinism and
ambiguity. Section 10 provides a determinisation construction based on the assumption that a given
automaton is unambiguous. Concluding remarks are given in Section 11. An additional Appendix A
contains an extensive explanation of the technical construction from Section 10.

2. Basic notions

We assume the reader to be familiar with the theory of formal (ω-)languages [2, 3]. We recall the usual
notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence u = a1 . . . ak, where
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ai ∈ Σ for i = 1, . . . , k, and k is an integer≥ 1. The length of u is k, denoted by |u|. The empty word
is denoted by ε; its length is 0. Σ? is the set of finite words (including the empty word) over Σ, and we
denote Σ+ =df Σ? \ {ε}. A (finitary) language V over an alphabet Σ is a subset of Σ?.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a1 . . . an . . ., where for all
integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is a finite word of length at least n or an ω-word, we
write σ(n) = an, σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = ε.

The usual concatenation product of two finite words u and v is denoted u · v (and sometimes just
uv). This product is extended to the product of a finite word u and an ω-word v: the infinite word u · v
is then the ω-word such that:

(u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over an alphabet Σ is denoted by Σω. An ω-language V over an alphabet Σ is

a subset of Σω, and its complement (in Σω) is Σω \ V , denoted V −.
The prefix relation is denoted v: a finite word u is a prefix of a finite word v (respectively, an

infinite word v), denoted u v v, if and only if there exists a finite word w (respectively, an infinite
word w), such that v = u · w.

2.1. Counter automata

Let k be an integer with k ≥ 1. A k-counter machine has k counters, each of which containing a
non-negative integer. The machine can test whether the content of a given counter is zero or not, but
this is not possible if the counter is a blind (sometimes called partially blind, as in [28]) counter. This
means that if a transition of the machine is enabled when the content of a blind counter is zero then
the same transition is also enabled when the content of the same counter is a positive integer. The
transitions depend on the letter read by the machine, the current state of the finite control, and the tests
about the values of the counters. Notice that in the sequel we shall only consider real-time automata,
i.e. ε-transitions are not allowed (but the general results of this paper will be easily extended to the
case of non-real-time automata).

Formally, a non-deterministic real time k-counter machine is a 4-tupleM = 〈K,Σ,∆, q0〉, where
K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is an initial state, and ∆ ⊆ K × Σ ×
{0, 1}k ×K × {0, 1,−1}k is a transition relation.

If the machineM is in a state q and ci ∈ N is the content of the ith counter Ci for i = 1, . . . , k;
then the configuration (or global state) ofM is the (k+1)-tuple (q, c1, . . . , ck).

Consider a ∈ Σ, q, q′ ∈ K, and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈ E ⊆ {1, . . . , k} and
cj > 0 for j /∈ E. If (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ where ij = 0 for j ∈ E and ij = 1 for
j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then jm = 0 or jm = 1

(but jm may not be equal to −1).
Moreover, if the counters ofM are blind, then, if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ holds, and
im = 0 for some m ∈ {1, . . . , k} then (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ also holds if im = 1 and
the other integers are unchanged.
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An ω-sequence of configurations r = (qi, c
i
1, . . . c

i
k)i≥1 is called a run ofM on an ω-word σ =

a1a2 . . . an . . . over Σ iff:
(1) (q1, c

1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1,
ai : (qi, c

i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k ).
For every such run r, In(r) is the set of all states visited infinitely many times during r.

Definition 2.1. A Büchi k-counter automaton is a 5-tupleM = 〈K,Σ, ∆, q0, F 〉, whereM′ = 〈K,
Σ, ∆, q0〉 is a k-counter machine and F ⊆ K is a set of accepting states. The ω-language accepted
byM is: L(M) =df {σ ∈ Σω | there exists a run r ofM on σ such that In(r) ∩ F 6= ∅}.

Definition 2.2. A Muller k-counter automaton is a 5-tupleM = 〈K, Σ,∆, q0,F〉, whereM′ = 〈K,
Σ,∆, q0〉 is a k-counter machine and F ⊆ 2K is a set of accepting sets of states. The ω-language
accepted byM is: L(M) =df {σ ∈ Σω | there exists a run r ofM on σ such that In(r) ∈ F}.

Given a configuration (q, c1, . . . , ck) one can extend the above definitions to L
(
M, (q, c1, . . . , ck)

)
which is the set of ω-words accepted byM starting from the configuration (q, c1, . . . , ck).

A counter machine M = 〈K,Σ, ∆, q0〉 is deterministic if its transition relation ∆ is func-
tional in the following sense: for each q ∈ K, a ∈ Σ, and (i1, . . . , ik) ∈ {0, 1}k there is ex-
actly one transition of the machine of the form (q, a, i1, . . . , ik, q

′, j1, . . . , jk) for some q′ ∈ K and
(j1, . . . , jk) ∈ {−1, 0, 1}k.

Notice that the definition of a deterministic counter machine M ensures that for every input
ω-word σ = a1a2 . . . there exists a unique run r of M on σ. This observation motivates the fol-
lowing definition. We call a Büchi (resp. Muller) k-counter automatonM unambiguous if for every
input ω-word σ there exists at most one accepting run r ofM on σ. Notice that the uniqueness re-
quirement is not limited to the sequence of states visited in r but also the exact counter values — two
runs visiting the same states but with different counter values are considered distinct. Similarly, we
say thatM is countably unambiguous if for every input ω-word σ there exist at most countably many
accepting runs ofM on σ.

The semantic condition of unambiguity is known to be very intriguing [37], with certain tractabil-
ity features [38, 39], and expressive power ranging between deterministic and non-deterministic mod-
els [40, 41]. Also, various degrees of ambiguity, have been studied, see e.g. [42, 36, 35, 43, 44] and
the references therein.

There is a natural simulation order on the configurations of a counter automaton: a configuration
(q, c1, . . . , ck) simulates (q, c′1, . . . , c

′
k) (denoted (q, c1, . . . , ck) � (q, c′1, . . . , c

′
k)) if they have the

same state q and the counter values ci and c′i satisfy coordinate-wise cj ≥ c′j for j = 1, . . . , k.

Remark 2.3. If (q, c1, . . . , ck) � (q, c′1, . . . , c
′
k) are two configurations of a k-blind counter ma-

chineM then L
(
M, (q, c1, . . . , ck)

)
⊇ L

(
M, (q, c′1, . . . , c

′
k)
)
.

Proof:
It is enough to notice that each accepting run ofM from (q, c′1, . . . , c

′
k) can be lifted to an accepting

run from (q, c1, . . . , ck) just by increasing the counter values. ut
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The above remark relies heavily on the assumption of the blindness of counters. Moreover, it is
important that the acceptance condition of the machines is defined purely in terms of the visited states
— the counter values do not intervene.

The above remark implies that, if there is exactly one counter, the maximal size of an anti-chain
of the simulation order is bounded by the number of states.

It is well known that an ω-language is accepted by a non-deterministic (real time) Büchi k-counter
automaton iff it is accepted by a non-deterministic (real time) Muller k-counter automaton [4]. Notice
that it cannot be shown without using the non determinism of automata and this result is no longer
true in the deterministic case.

The class of ω-languages accepted by real time k-counter Büchi automata (respectively, real time
k-blind-counter Büchi automata) is denoted r-CL(k)ω (respectively, r-BCL(k)ω). (Notice that in
previous papers, as in [20], the class r-CL(k)ω was denoted r-BCL(k)ω so we have slightly changed
the notation in order to distinguish the different classes).

The class CL(1)ω is a strict subclass of the class CFLω of context free ω-languages accepted by
pushdown Büchi automata.

If we omit the counter of a real-time Büchi 1-counter automaton, then we simply get the notion
of Büchi automaton. The class of ω-languages accepted by Büchi automata is the class of regular
ω-languages.

3. Hierarchies in Cantor Space

3.1. Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions of topology which may be found in [45, 8, 2, 3].
There is a natural metric on the set Σω of infinite words over a finite alphabet Σ containing at least
two letters which is called the prefix metric and is defined as follows. For u, v ∈ Σω and u 6= v let
δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n+1)st letter of u is different
from the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology in which the open
subsets of Σω are of the form W · Σω, for W ⊆ Σ?. A set L ⊆ Σω is a closed set iff its complement
Σω − L is an open set.

Define now the Borel hierarchy of subsets of Σω:

Definition 3.1. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of the Borel hierarchy on
the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π0

γ .
Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ .

The class of Borel sets is ∆1
1 =df

⋃
ξ<ω1

Σ0
ξ =
⋃
ξ<ω1

Π0
ξ , where ω1 is the first uncountable ordinal.

There are also some subsets of Σω which are not Borel. In particular the class of Borel subsets of Σω

is strictly included into the class Σ1
1 of analytic sets which are obtained by projection of Borel sets.
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Definition 3.2. A subset A of Σω is in the class Σ1
1 of analytic sets if the following condition is

satisfied: there exists another finite set Y and a Borel subset B of (Σ × Y )ω such that x ∈ A iff
∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) is the infinite word over the alphabet Σ × Y such that
(x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

We now define completeness with regard to reduction by continuous functions. For a countable
ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively, Π0
α, Σ1

1)-complete set iff for any set
E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α (respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a
continuous function f : Y ω → Σω such that E = f−1(F ).

Let us now recall the definition of the arithmetical hierarchy of ω-languages, see for example
[2, 45]. Let Σ be a finite alphabet. An ω-language L ⊆ Σω belongs to the class Σn iff there exists a re-
cursive relation RL ⊆ (N)n−1×Σ? such that L = {σ ∈ Σω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an +
1]) ∈ RL}, where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An
ω-language L ⊆ Σω belongs to the class Πn if and only if its complement Σω − L belongs to the
class Σn. The inclusion relations that hold between the classes Σn and Πn are the same as for the
corresponding classes of the Borel hierarchy and the classes Σn and Πn are strictly included in the
respective classes Σ0

n and Π0
n of the Borel hierarchy.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the second Π-class) lead
beyond the arithmetical hierarchy, to the analytical hierarchy of ω-languages. The first class of the
analytical hierarchy of ω-languages is the (lightface) class Σ1

1 of effective analytic sets. An ω-language
L ⊆ Σω belongs to the class Σ1

1 if and only if there exists a recursive relationRL ⊆ (N)×{0, 1}?×Σ?

such that: L = {σ ∈ Σω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}. Thus an ω-language
L ⊆ Σω is in the class Σ1

1 iff it is the projection of an ω-language over the alphabet {0, 1} × Σ which
is in the class Π2.

Kechris, Marker, and Sami proved in [46] that the supremum of the set of Borel ranks of (light-
face) Π1

1 (so also of lightface Σ1
1) sets is the ordinal γ1

2 . This ordinal is precisely defined in [46]. It
holds that ωCK

1 < γ1
2 , where ωCK

1 is the first non-recursive ordinal, called the Church-Kleene ordinal.
Notice that it seems still unknown whether every non null ordinal γ < γ1

2 is the Borel rank of a
(lightface) Π1

1 (or Σ1
1) set. On the other hand it is known that for every ordinal γ < ωCK

1 there exist
some Σ0

γ-complete and Π0
γ-complete sets in the class ∆1

1.
Recall that a Büchi Turing machine is just a Turing machine working on infinite inputs with a

Büchi-like acceptance condition, and that the class of ω-languages accepted by Büchi Turing machines
is the class Σ1

1 [5, 2].

3.2. Wadge hierarchy

We now introduce the Wadge hierarchy, which is a great refinement of the Borel hierarchy defined via
reductions by continuous functions, [47, 10].

Definition 3.3. (Wadge [10])
Let X , Y be two finite alphabets. For L ⊆ Xω and L′ ⊆ Y ω, L is said to be Wadge reducible to L′

(L ≤W L′) iff there exists a continuous function f : Xω → Y ω, such that L = f−1(L′). ω-languages
L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted by L ≡W L′.
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Moreover, we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.
A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be non self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation. The equivalence
classes of ≡W are called Wadge degrees. The Wadge hierarchy WH is the class of Borel subsets of a
set Xω, where X is a finite set, equipped with ≤W and with ≡W .
For L ⊆ Xω and L′ ⊆ Y ω, if L ≤W L′ and L = f−1(L′) where f is a continuous function from
Xω into Y ω, then f is called a continuous reduction of L to L′. Intuitively it means that L is less
complicated than L′ because to check whether x ∈ L it suffices to check whether f(x) ∈ L′ where
f is a continuous function. Hence the Wadge degree of an ω-language is a measure of its topological
complexity.
Notice that in the above definition, we consider that a subset L ⊆ Xω is given together with the
alphabet X .
We can now define the Wadge class of a set L:

Definition 3.4. Let L be a subset of Xω. The Wadge class of L is :

[L] =df {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.

Recall that each Borel class Σ0
α and Π0

α is a Wadge class. A set L ⊆ Xω is a Σ0
α (respectively

Π0
α)-complete set iff for any set L′ ⊆ Y ω, L′ is in Σ0

α (respectively Π0
α) iff L′ ≤W L.

There is a close relationship between Wadge reducibility and games which we now introduce.

Definition 3.5. Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L,L′) is a game with perfect
information between two players, player 1 who is in charge of L and player 2 who is in charge of L′.
Player 1 first writes a letter a1 ∈ X , then player 2 writes a letter b1 ∈ Y , then player 1 writes a letter
a2 ∈ X , and so on. The two players alternatively write letters an of X for player 1 and bn of Y for
player 2. After ω steps, the player 1 has written an ω-word a ∈ Xω and the player 2 has written an
ω-word b ∈ Y ω. The player 2 is allowed to skip, even infinitely often, provided he really writes an
ω-word in ω steps. The player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for player 1 is a function σ : (Y ∪ {s})? → X . And a strategy for player 2 is a
function f : X+ → Y ∪ {s}. The strategy σ is a winning strategy for player 1 iff he always wins a
play when he uses the strategy σ, i.e. when the nth letter he writes is given by an = σ(b1 · · · bn−1),
where bi is the letter written by player 2 at step i and bi = s if player 2 skips at step i. A winning
strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart game G(X) (see [48]), with X a Borel set, is
determined and this implies the following :

Theorem 3.6. (Wadge)
Let L ⊆ Xω and L′ ⊆ Y ω be two Borel sets, where X and Y are finite alphabets. Then the Wadge
game W (L,L′) is determined: one of the two players has a winning strategy. And L ≤W L′ iff the
player 2 has a winning strategy in the game W (L,L′).
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Theorem 3.7. (Wadge)
Up to the complement and≡W , the class of Borel subsets ofXω, for a finite alphabetX having at least
two letters, is a well ordered hierarchy. There is an ordinal |WH|, called the length of the hierarchy,
and a map d0

W from WH onto |WH| − {0}, such that for all L,L′ ⊆ Xω:
d0
WL < d0

WL
′ ↔ L <W L′ and

d0
WL = d0

WL
′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is the limit of the ordinals
αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a non negative integer, ω1 being the first non countable
ordinal. Then 1ε0 is the first fixed point of the ordinal exponentiation of base ω1. The length of the
Wadge hierarchy of Borel sets in ∆0

ω = Σ0
ω ∩Π0

ω is the ωth1 fixed point of the ordinal exponentiation
of base ω1, which is a much larger ordinal. The length of the whole Wadge hierarchy of Borel sets
is a huge ordinal, with regard to the ωth1 fixed point of the ordinal exponentiation of base ω1. It is
described in [10, 47] by the use of the Veblen functions.

4. Wadge degrees of ω-languages of Petri nets

We are firstly going to prove the following result.

Theorem 4.1. The Wadge hierarchy of the class r-BCL(4)ω is equal to the Wadge hierarchy of the
class r-CL(1)ω.

In order to prove this result, we first define a coding of ω-words over a finite alphabet Σ by ω-words
over the alphabet Σ ∪ {A,B, 0} where A, B and 0 are new letters not in Σ.

We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A0x(1)B02x(2)A · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

This coding defines a mapping h : Σω → (Σ ∪ {A,B, 0})ω.
The function h is continuous because for all ω-words x, y ∈ Σω and each positive integer n, it holds
that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

We are going to state Lemma 4.2. Before that, we just describe some important facts given by this
lemma and its proof. The lemma provides, from a real time 1-counter Büchi automaton A accepting
ω-words over the alphabet Σ, a construction of a 4-blind-counter Büchi automaton B reading ω-words
over the alphabet Γ = Σ ∪ {A,B, 0} which is able in some sense to simulate the automaton A.
Actually the automaton B simulates the reading of an ω-word x by A only when B reads the specific
ω-word

h(x) = A0x(1)B02x(2)A · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

The reading by the automaton B of the ω-word h(x) will provide a decomposition of the ω-word h(x)
of the following form:

y = Au1v1x(1)Bu2v2x(2)Au3v3x(3)B · · ·
· · ·Bu2nv2nx(2n)Au2n+1v2n+1x(2n+ 1)B · · ·
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where, for all integers i ≥ 1, ui, vi ∈ 0?, x(i) ∈ Σ, |u1| = 0. Then an accepting run of B on h(x)
will correspond to an accepting run of A on x. Moreover the successive values of the single counter
of A during this run will be the integers |un|, n ≥ 1. Then the automaton B will be able to determine,
using a finite control component during the reading of the finite word un, whether |un| = 0, and thus
to simulate the zero-tests of the automaton A.

The proof of the following lemma will explain this in detail.

Lemma 4.2. Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet
Σ. Then one can construct a real time 4-blind-counter Büchi automaton B reading ω-words over the
alphabet Γ = Σ ∪ {A,B, 0}, such that L(A) = h−1(L(B)), i.e. ∀x ∈ Σω. h(x) ∈ L(B) ←→ x ∈
L(A).

Proof:
Let A = (K,Σ,∆, q0, F ) be a real time 1-counter Büchi automaton accepting ω-words over the
alphabet Σ. We are going to explain informally the behaviour of the 4-blind-counter Büchi automaton
B when reading an ω-word of the form h(x), even if we are going to see that B may also accept some
infinite words which do not belong to the range of h. Recall that h(x) is of the form

h(x) = A0x(1)B02x(2)A · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

Notice that in particular every ω-word in h(Σω) is of the form:

y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·

where for all i ≥ 1, ni > 0 is a positive integer, and x(i) ∈ Σ.
Moreover it is easy to see that the set of ω-words y ∈ Γω which can be written in the above form

is a regular ω-language R ⊆ Γω, and thus we can assume, using a classical product construction (see
for instance [3]), that the automaton B will only accept some ω-words of this form.

Now the reading by the automaton B of an ω-word of the above form

y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·

will give a decomposition of the ω-word y of the following form:

y = Au1v1x(1)Bu2v2x(2)Au3v3x(3)B · · ·
· · ·Bu2nv2nx(2n)Au2n+1v2n+1x(2n+ 1)B · · ·

where, for all integers i ≥ 1, ui, vi ∈ 0?, x(i) ∈ Σ, |u1| = 0.
The automaton B will use its four blind counters, which we denote C1, C2, C3, C4, in the following

way. Recall that the automaton B being non-deterministic, we do not describe the unique run of B on
y, but the general case of a possible run.

At the beginning of the run, the value of each of the four counters is equal to zero. Then the counter
C1 is increased of |u1| when reading u1, i.e. the counter C1 is actually not increased since |u1| = 0
and the finite control is here used to check this. Then the counter C2 is increased of 1 for each letter 0
of v1 which is read until the automaton reads the letter x(1) and then the letter B. Notice that at this
time the values of the counters C3 and C4 are still equal to zero. Then the behaviour of the automaton
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B when reading the next segment 0n2x(2)A is as follows. The counter C1 is firstly decreased of 1 for
each letter 0 read, when reading k2 letters 0, where k2 ≥ 0 (notice that here k2 = 0 because the value
of the counter C1 being equal to zero, it cannot decrease under 0). Then the counter C2 is decreased of
1 for each letter 0 read, and next the automaton has to read one more letter 0, leaving unchanged the
counters C1 and C2, before reading the letter x(2). The end of the decreasing mode of C1 coincide with
the beginning of the decreasing mode of C2, and this change may occur in a non-deterministic way
(because the automaton B cannot check whether the value of C1 is equal to zero). Now we describe
the behaviour of the counters C3 and C4 when reading the segment 0n2x(2)A. Using its finite control,
the automaton B has checked that |u1| = 0, and then if there is a transition of the automaton A such
that x(1) : (q0, |u1|) 7→A (q1, |u1| + N1) then the counter C3 is increased of 1 for each letter 0 read,
during the reading of the k2 + N1 first letters 0 of 0n2 , where k2 is described above as the number
of which the counter C1 has been decreased. This determines u2 by |u2| = k2 + N1 and then the
counter C4 is increased by 1 for each letter 0 read until B reads x(2), and this determines v2. Notice
that the automaton B keeps in its finite control the memory of the state q1 of the automaton A, and
that, after having read the segment 0n2 = u2v2, the values of the counters C3 and C4 are respectively
|C3| = |u2| = k2 +N1 and |C4| = |v2| = n2 − (|u2|).

Now the run will continue. Notice that generally when reading a segment B0n2nx(2n)A the
counters C1 and C2 will successively decrease when reading the first (n2n − 1) letters 0 and then
will remain unchanged when reading the last letter 0, and the counters C3 and C4 will successively
increase, when reading the (n2n) letters 0. Again the end of the decreasing mode of C1 coincide
with the beginning of the decreasing mode of C2, and this change may occur in a non-deterministic
way. But the automaton has kept in its finite control whether |u2n−1| = 0 or not and also a state
q2n−2 of the automaton A. Now, if there is a transition of the automaton A such that x(2n − 1) :
(q2n−2, |u2n−1|) 7→A (q2n−1, |u2n−1|+N2n−1) for some integerN2n−1 ∈ {−1; 0, 1}, and the counter
C1 is decreased of 1 for each letter 0 read, when reading k2n first letters 0 of 0n2n , then the counter
C3 is increased of 1 for each letter 0 read, during the reading of the k2n + N2n−1 first letters 0 of
0n2n , and next the counter C4 is increased by 1 for each letter 0 read until B reads x(2n), and this
determines v2n. Then after having read the segment 0n2n = u2nv2n, the values of the counters C3

and C4 have respectively increased of |u2n| = k2n + N2n−1 and |v2n| = n2n − |u2n|. Notice that
one cannot ensure that, after the reading of 0n2n = u2nv2n, the exact values of these counters are
|C3| = |u2n| = k2n + N2n−1 and |C4| = |v2n| = n2n − |u2n|. Actually this is due to the fact that
one cannot ensure that the values of C3 and C4 are equal to zero at the beginning of the reading of the
segment B0n2nx(2n)A although we will see this is true and important in the particular case of a word
of the form y = h(x).

The run will continue in a similar manner during the reading of the next segment A0n2n+1x(2n+
1)B, but here the role of the counters C1 and C2 on one side, and of the counters C3 and C4 on the other
side, will be interchanged. More precisely the counters C3 and C4 will successively decrease when
reading the first (n2n+1−1) letters 0 and then will remain unchanged when reading the last letter 0, and
the counters C1 and C2 will successively increase, when reading the (n2n+1) letters 0. The end of the
decreasing mode of C3 coincide with the beginning of the decreasing mode of C4, and this change may
occur in a non-deterministic way. But the automaton has kept in its finite control whether |u2n| = 0
or not and also a state q2n−1 of the automaton A. Now, if there is a transition of the automaton A
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such that x(2n) : (q2n−1, |u2n|) 7→A (q2n, |u2n| + N2n) for some integer N2n ∈ {−1; 0, 1}, and the
counter C3 is decreased of 1 for each letter 0 read, when reading k2n+1 first letters 0 of 0n2n+1 , then the
counter C1 is increased of 1 for each letter 0 read, during the reading of the k2n+1 + N2n first letters
0 of 0n2n+1 , and next the counter C2 is increased by 1 for each letter 0 read until B reads x(2n + 1),
and this determines v2n+1. Then after having read the segment 0n2n+1 = u2n+1v2n+1, the values of
the counters C1 and C2 have respectively increased of |u2n+1| = k2n+1 +N2n and |v2n+1| = n2n+1−
|u2n+1|. Notice that again one cannot ensure that, after the reading of 0n2n+1 = u2n+1v2n+1, the exact
values of these counters are |C1| = |u2n+1| = k2n+1 + N2n and |C2| = |v2n+1| = n2n+1 − |u2n+1|.
This is due to the fact that one cannot ensure that the values of C1 and C2 are equal to zero at the
beginning of the reading of the segment A0n2n+1x(2n + 1)B although we will see this is true and
important in the particular case of a word of the form y = h(x).

The run then continues in the same way if it is possible and in particular if there is no blocking
due to the fact that one of the counters of the automaton B would have a negative value.

Now an ω-word y ∈ R ⊆ Γω of the above form will be accepted by the automaton B if there is
such an infinite run for which a final state qf ∈ F of the automaton A has been stored infinitely often
in the finite control of B in the way which has just been described above.

We now consider the particular case of an ω-word of the form y = h(x), for some x ∈ Σω. Let
then

y = h(x) = A0x(1)B02x(2)A03x(3)B · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·
We are going to show that, if y is accepted by the automaton B, then x ∈ L(A). Let us consider

a run of the automaton B on y as described above and which is an accepting run. We first show by
induction on n ≥ 1, that after having read an initial segment of the form

A0x(1)B02x(2)A · · ·A02n−1x(2n− 1)B,

the values of the counters C3 and C4 are equal to zero, and the values of the counters C1 and C2 satisfy
|C1|+ |C2| = 2n− 1. And similarly after having read an initial segment of the form

A0x(1)B02x(2)A · · ·B02nx(2n)A,

the values of the counters C1 and C2 are equal to zero, and the values of the counters C3 and C4 satisfy
|C3|+ |C4| = 2n.

For n = 1, we have seen that after having read the initial segment A0x(1)B, the values of the
counters C1 and C2 will be respectively 0 and |v1| and here |v1| = 1 and thus |C1|+ |C2| = 1. On the
other hand the counters C3 and C4 have not yet increased so that the value of each of these counters is
equal to zero. During the reading of the segment 02 of 02x(2)A the counters C1 and C2 successively
decrease. But here C1 cannot decrease (with the above notations, it holds that k2 = 0) so C2 must
decrease of 1 because after the decreasing mode the automaton B must read a last letter 0 without
decreasing the counters C1 and C2 and then the letter x(2) ∈ Σ. Thus after having read 02x(2)A the
values of C1 and C2 are equal to zero. Moreover the counters C3 and C4 had their values equal to zero
at the beginning of the reading of 02x(2)A and they successively increase during the reading of 02 and
they remain unchanged during the reading of x(2)A so that their values satisfy |C3| + |C4| = 2 after
the reading of 02x(2)A.
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Assume now that for some integer n > 1 the claim is proved for all integers k < n and let us
prove it for the integer n. By induction hypothesis we know that at the beginning of the reading of
the segment A02n−1x(2n − 1)B of y, the values of the counters C1 and C2 are equal to zero, and
the values of the counters C3 and C4 satisfy |C3| + |C4| = 2n − 2. When reading the (2n − 2)
first letters 0 of A02n−1x(2n − 1)B the counters C3 and C4 successively decrease and they must
decrease completely because after there must remain only one letter 0 to be read by B before the letter
x(2n− 1). Therefore after the reading of A02n−1x(2n− 1)B the values of the counters C3 and C4 are
equal to zero. And since the values of the counters C1 and C2 are equal to zero before the reading of
02n−1x(2n − 1)B and these counters successively increase during the reading of 02n−1, their values
satisfy |C1|+ |C2| = 2n− 1 after the reading of A02n−1x(2n− 1)B. We can reason in a very similar
manner for the reading of the next segment B02nx(2n)A, the role of the counters C1 and C2 on one
side, and of the counters C3 and C4 on the other side, being simply interchanged. This ends the proof
of the claim by induction on n.

It is now easy to see by induction that for each integer n ≥ 2, it holds that kn = |un−1|. Then,
since with the above notations we have |un+1| = kn+1 +Nn = |un|+Nn, and there is a transition of
the automaton A such that x(n) : (qn−1, |un|) 7→A (qn, |un|+Nn) for Nn ∈ {−1; 0, 1}, it holds that
x(n) : (qn−1, |un|) 7→A (qn, |un+1|). Therefore the sequence (qi, |ui|)i≥0 is an accepting run of the
automaton A on the ω-word x and x ∈ L(A). Notice that the state q0 of the sequence (qi)i≥0 is also
the initial state of A.

Conversely, it is easy to see that if x ∈ L(A) then there exists an accepting run of the automaton
B on the ω-word h(x) and h(x) ∈ L(B). ut

The above Lemma 4.2 shows that, given a real time 1-counter (with zero-test) Büchi automatonA
accepting ω-words over the alphabet Σ, one can construct a real time 4-blind-counter Büchi automaton
B which can simulate the 1-counter automaton A on the code h(x) of the word x. On the other hand,
we cannot describe precisely the ω-words which are accepted by B but are not in the set h(Σω).
However we can see that all these words have a special shape, as stated by the following lemma.

Lemma 4.3. Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet
Σ, and let B be the real time 4-blind-counter Büchi automaton reading words over the alphabet Γ =
Σ ∪ {A,B, 0} which is constructed in the proof of Lemma 4.2. Let y ∈ L(B) \ h(Σω) being of the
following form

y = A0n1x(1)B0n2x(2)A0n3x(3)B · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·

and let i0 be the smallest integer i such that ni 6= i. Then it holds that either i0 = 1 or ni0 < i0.

Proof:
Assume first that y ∈ L(B) \ h(Σω) is of the following form

y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·
and that the smallest integer i such that ni 6= i is an even integer i0 > 1. Consider an infinite accepting
run of B on y. It follows from the proof of the above Lemma 4.2 that after the reading of the initial
segment
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A0n1x(1)B0n2x(2)A · · ·A0i0−1x(i0 − 1)B

the values of the counters C3 and C4 are equal to zero, and the values of the counters C1 and C2 satisfy
|C1|+ |C2| = i0 − 1. Thus since the two counters must successively decrease during the next ni0 − 1
letters 0, it holds that ni0 − 1 ≤ i0 − 1 because otherwise either C1 or C2 would block. Therefore
ni0 < i0 since ni0 6= i0 by definition of i0. The reasoning is very similar in the case of an odd integer
i0, the role of the counters C1 and C2 on one side, and of the counters C3 and C4 on the other side,
being simply interchanged. ut

LetL ⊆ Γω be the ω-language containing the ω-words over Γ which belong to one of the following
ω-languages.

• L1 is the set of ω-words over the alphabet Σ ∪ {A,B, 0} which have not any initial segment in
A · 0 · Σ ·B.

• L2 is the set of ω-words over the alphabet Σ ∪ {A,B, 0} which contain a segment of the form
B · 0n · a · A · 0m · b or of the form A · 0n · a · B · 0m · b for some letters a, b ∈ Σ and some
positive integers m ≤ n.

Lemma 4.4. The ω-language L is accepted by a (non-deterministic) real-time 1-blind counter Büchi
automaton.

Proof:
First, it is easy to see that L1 is in fact a regular ω-language, and thus it is also accepted by a real-time
1-blind counter Büchi automaton (even without active counter). On the other hand it is also easy to
construct a real time 1-blind counter Büchi automaton accepting the ω-language L2. The class of
ω-languages accepted by non-deterministic real time 1-blind counter Büchi automata being closed
under finite union in an effective way, one can construct a real time 1-blind counter Büchi automaton
accepting L. ut

Lemma 4.5. Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet
Σ. Then one can construct a real time 4-blind counter Büchi automaton PA such that L(PA) =
h(L(A)) ∪ L.

Proof:
LetA be a real time 1-counter Büchi automaton accepting ω-words over Σ. We have seen in the proof
of Lemma 4.2 that one can construct a real time 4-blind counter Büchi automaton B reading words
over the alphabet Γ = Σ∪ {A,B, 0}, such that L(A) = h−1(L(B)), i.e. ∀x ∈ Σω h(x) ∈ L(B)←→
x ∈ L(A). Moreover By Lemma 4.3 it holds that L(B) \ h(Σω) ⊆ L. and thus h(L(A)) ∪ L =
L(B) ∪ L. But By Lemma 4.4 the ω-language L is accepted by a (non-deterministic) real-time 1-
blind counter Büchi automaton, hence also by a real-time 4-blind counter Büchi automaton. The class
of ω-languages accepted by (non-deterministic) real-time 4-blind counter Büchi automata is closed
under finite union in an effective way, and thus one can construct a real time 4-blind counter Büchi
automaton PA such that L(PA) = h(L(A)) ∪ L. ut
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We are now going to prove that if L(A)⊆ Σω is accepted by a real time 1-counter automaton A
with a Büchi acceptance condition then L(PA) = h(L(A))∪L will have the same Wadge degree as
the ω-language L(A), except for some very simple cases.

We first notice that h(Σω) is a closed subset of Γω. Indeed it is the image of the compact set Σω by
the continuous function h, and thus it is a compact hence also closed subset of Γω = (Σ∪{A,B, 0})ω.
Thus its complement h(Σω)− = (Σ∪{A,B, 0})ω−h(Σω) is an open subset of Γω. Moreover the set
L is an open subset of Γω, as it can be easily seen from its definition and one can easily define, from
the definition of the ω-language L, a finitary language V ⊆ Γ? such that L = V · Γω. We shall also
denote L′ = h(Σω)− \ L so that Γω is the disjoint union Γω = h(Σω) ∪ L ∪ L′. Notice that L′ is the
difference of the two open sets h(Σω)− and L.

We now wish to return to the proof of the above Theorem 4.1 stating that the Wadge hierarchy of
the class r-BCL(4)ω is equal to the Wadge hierarchy of the class r-CL(1)ω.

To prove this result we firstly consider non self dual Borel sets. We recall the definition of Wadge
degrees introduced by Duparc in [47] and which is a slight modification of the previous one.

Definition 4.6. (a) dw(∅) = dw(∅−) = 1

(b) dw(L) = sup{dw(L′) + 1 | L′ non self dual and L′ <W L}
(for either L self dual or not, L >W ∅).

Wadge and Duparc used the operation of sum of sets of infinite words which has as counterpart the
ordinal addition over Wadge degrees.

Definition 4.7. (Wadge, see [10, 47])
Assume that X ⊆ Y are two finite alphabets, Y − X containing at least two elements, and that
{X+, X−} is a partition of Y −X in two non empty sets. Let L ⊆ Xω and L′ ⊆ Y ω, then L′+L =df

L ∪ {u · a · β | u ∈ X?, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L′−)}

This operation is closely related to the ordinal sum as it is stated in the following:

Theorem 4.8. (Wadge, see [10, 47])
Let X ⊆ Y , Y −X containing at least two elements, L ⊆ Xω and L′ ⊆ Y ω be non self dual Borel
sets. Then (L+ L′) is a non self dual Borel set and dw(L′ + L) = dw(L′) + dw(L).

A player in charge of a set L′+L in a Wadge game is like a player in charge of the set L but who can,
at any step of the play, erase his previous play and choose to be this time in charge of L′ or of L′−.
Notice that he can do this only one time during a play.

The following lemma was proved in [20]. Notice that below the empty set is considered as an
ω-language over an alphabet ∆ such that ∆− Σ contains at least two elements.

Lemma 4.9. Let L ⊆ Σω be a non self dual Borel set such that dw(L) ≥ ω. Then it holds that
L ≡W ∅+ L.

We can now prove the following lemma.
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Lemma 4.10. Let L ⊆ Σω be a non self dual Borel set accepted by a real time 1-counter Büchi
automatonA. Then there is an ω-languageL′ accepted by a real time 4-blind counter Büchi automaton
such that L ≡W L′.

Proof:
Recall first that there are regular ω-languages of every finite Wadge degree, [2, 12]. These regular ω-
languages are Boolean combinations of open sets, and they obviously belong to the class r-BCL(4)ω
since every regular ω-language belongs to this class.

So we have only to consider the case of non self dual Borel sets of Wadge degrees greater than or
equal to ω.

Let then L = L(A) ⊆ Σω be a non self dual Borel set, accepted by a real time 1-counter Büchi
automaton A, such that dw(L) ≥ ω. By Lemma 4.5, L(PA) = h(L(A))∪L is accepted by a a real
time 4-blind counter Büchi automaton PA, where the mapping h : Σω → (Σ∪{A,B, 0})ω is defined,
for x ∈ Σω, by:

h(x) = A0x(1)B02x(2)A03x(3)B · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

We set L′ = L(PA) and we now prove that L′ ≡W L.
Firstly, it is easy to see that the function h is a continuous reduction of L to L′ and thus L ≤W L′.
To prove that L′ ≤W L, it suffices to prove that L′ ≤W ∅ + (∅ + L) because Lemma 4.9 states

that ∅+ L ≡W L, and thus also ∅+ (∅+ L) ≡W L. Consider the Wadge game W (L′, ∅+ (∅+ L)).
Player 2 has a winning strategy in this game which we now describe.

As long as Player 1 remains in the closed set h(Σω) (this means that the word written by Player
1 is a prefix of some infinite word in h(Σω)) Player 2 essentially copies the play of player 1 except
that Player 2 skips when player 1 writes a letter not in Σ. He continues forever with this strategy if the
word written by player 1 is always a prefix of some ω-word of h(Σω). Then after ω steps Player 1 has
written an ω-word h(x) for some x ∈ Σω, and Player 2 has written x. So in that case h(x) ∈ L′ iff
x ∈ L(A) iff x ∈ ∅+ (∅+ L).

But if at some step of the play, Player 1 “goes out of” the closed set h(Σω) because the word
he has now written is not a prefix of any ω-word of h(Σω), then Player 1 “enters” in the open set
h(Σω)− = L ∪ L′ and will stay in this set. Two cases may now appear.

First case. When Player 1 “enters” in the open set h(Σω)− = L ∪ L′, he actually enters in the
open set L = V · Γω (this means that Player 1 has written an initial segment in V ). Then the final
word written by Player 1 will surely be inside L′. Player 2 can now write a letter of ∆ − Σ in such a
way that he is now like a player in charge of the whole set and he can now writes an ω-word u so that
his final ω-word will be inside ∅+ L, and also inside ∅+ (∅+ L). Thus Player 2 wins this play too.

Second case. When Player 1 “enters” in the open set h(Σω)− = L ∪ L′, he does not enter in the
open set L = V · Γω. Then Player 2, being first like a player in charge of the set (∅+ L), can write a
letter of ∆ − Σ in such a way that he is now like a player in charge of the empty set and he can now
continue, writing an ω-word u. If Player 1 never enters in the open set L = V ·Γω then the final word
written by Player 1 will be in L′ and thus surely outside L′, and the final word written by Player 2 will
be outside the empty set. So in that case Player 2 wins this play too. If at some step of the play Player
1 enters in the open set L = V · Γω then his final ω-word will be surely in L′. In that case Player 1, in
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charge of the set ∅ + (∅ + L), can again write an extra letter and choose to be in charge of the whole
set and he can now write an ω-word v so that his final ω-word will be inside ∅+ (∅+L). Thus Player
2 wins this play too.

Finally we have proved that L ≤W L′ ≤W L thus it holds that L′ ≡W L. This ends the proof. ut

End of Proof of Theorem 4.1.
Let L ⊆ Σω be a Borel set accepted by a real time 1-counter Büchi automaton A. If the Wadge

degree of L is finite, it is well known that it is Wadge equivalent to a regular ω-language, hence also to
an ω-language in the class r-BCL(4)ω. If L is non self dual and its Wadge degree is greater than or
equal to ω, then we know from Lemma 4.10 that there is an ω-language L′ accepted by a a real time
4-blind counter Büchi automaton such that L ≡W L′.

It remains to consider the case of self dual Borel sets. The alphabet Σ being finite, a self dual Borel
set L is always Wadge equivalent to a Borel set in the form Σ1 · L1 ∪ Σ2 · L2, where (Σ1,Σ2) form
a partition of Σ, and L1, L2 ⊆ Σω are non self dual Borel sets such that L1 ≡W L−2 . Moreover L1

and L2 can be taken in the form L(u1) = u1 ·Σω ∩ L and L(u2) = u2 ·Σω ∩ L for some u1, u2 ∈ Σ?,
see [16]. So if L ⊆ Σω is a self dual Borel set accepted by a real time 1-counter Büchi automaton
then L ≡W Σ1 · L1 ∪ Σ2 · L2, where (Σ1,Σ2) form a partition of Σ, and L1, L2 ⊆ Σω are non self
dual Borel sets accepted by real time 1-counter Büchi automata. We have already proved that there is
an ω-language L′1 in the class r-BCL(4)ω such that L′1 ≡W L1 and an ω-language L′2 in the class
r-BCL(4)ω such that L′−2 ≡W L2. Thus L ≡W Σ1 · L1 ∪ Σ2 · L2 ≡W Σ1 · L′1 ∪ Σ2 · L′2 and
Σ1 · L′1 ∪ Σ2 · L′2 is an ω-language in the class r-BCL(4)ω.

The reverse direction is immediate: if L ⊆ Σω is a Borel set accepted by a 4-blind counter Büchi
automaton A, then it is also accepted by a Büchi Turing machine and thus by [20, Theorem 25] there
exists a real time 1-counter Büchi automaton B such that L(A) ≡W L(B).

This concludes the proof of Theorem 4.1.
Recall that, for each non-null countable ordinal α, the Σ0

α-complete sets (respectively, the Π0
α-

complete sets) form a single Wadge degree. Thus we can infer the following result from the above
Theorem 4.1 and from the results of [20, 46].

Corollary 4.11. For each non-null recursive ordinal α < ωCK
1 there exist some Σ0

α-complete and
some Π0

α-complete ω-languages in the class r-BCL(4)ω. And the supremum of the set of Borel
ranks of ω-languages in the class r-BCL(4)ω is the ordinal γ1

2 , which is precisely defined in [46].

We have only considered Borel sets in the above Theorem 4.1. However we know that there also
exist some non-Borel ω-languages accepted by real time 1-counter Büchi automata, and even some
Σ1

1-complete ones, [49].
By Lemma 4.7 of [50] the conclusion of the above Lemma 4.9 is also true if L is assumed to be

an analytic but non-Borel set.

Lemma 4.12. ([50])
Let L ⊆ Σω be an analytic but non-Borel set. Then L ≡W ∅+ L.

Next the proof of the above Lemma 4.10 can be adapted to the case of an analytic but non-Borel set,
and we can state the following result.
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Theorem 4.13. Let L ⊆ Σω be an analytic but non-Borel set accepted by a real time 1-counter Büchi
automatonA. Then there is an ω-languageL′ accepted by a real time 4-blind counter Büchi automaton
such that L ≡W L′.

Proof:
It is very similar to the proof of the above Lemma 4.10, using Lemma 4.12 instead of the above Lemma
4.9. ut

Remark 4.14. Using Lemma 4.12 instead of the above Lemma 4.9, the proofs of [20] can also be
adapted to the case of a non-Borel set to show that for every effective analytic but non-Borel set
L ⊆ Σω, where Σ is a finite alphabet, there exists an ω-language L′ in r-CL(1)ω such that L′ ≡W L,
and thus also, by Theorem 4.13, an ω-language L′′ accepted by a real time 4-blind counter Büchi
automaton such that L ≡W L′′.

This implies in particular the existence of a Σ1
1-complete, hence non Borel, ω-language accepted

by a real-time 4-blind-counter Büchi automaton.

Corollary 4.15. There exists a Σ1
1-complete ω-language accepted by a 4-blind-counter automaton.

Notice that if we assume the axiom of Σ1
1-determinacy, then any set which is analytic but not

Borel is Σ1
1-complete, see [48], and thus there is only one more Wadge degree (beyond Borel sets)

containing Σ1
1-complete sets. On the other hand, if the axiom of (effective) Σ1

1-determinacy does not
hold, then there exist some effective analytic sets which are neither Borel nor Σ1

1-complete. Recall that
ZFC is the commonly accepted axiomatic framework for Set Theory in which all usual mathematics
can be developed.

Corollary 4.16. It is consistent with ZFC that there exist some ω-languages of Petri nets in the class
r-BCL(4)ω which are neither Borel nor Σ1

1-complete.

Proof:
Recall that ZFC is the commonly accepted axiomatic framework for Set Theory in which all usual
mathematics can be developed. The determinacy of Gale-Stewart games G(A), where A is an (effec-
tive) analytic set, denoted Det(Σ1

1), is not provable in ZFC; Martin and Harrington have proved that
it is a large cardinal assumption equivalent to the existence of a particular real, called the real 0], see
[51, page 637]. It is also known that the determinacy of (effective) analytic Gale-Stewart games is
equivalent to the determinacy of (effective) analytic Wadge games, denoted W-Det(Σ1

1), see [52].
It is known that, if ZFC is consistent, then there is a model of ZFC in which the determinacy of

(effective) analytic Gale-Stewart games, and thus also the determinacy of (effective) analytic Wadge
games, do not hold. It follows from [53, Theorem 4.3] that in such a model of ZFC there exists an
effective analytic set which is neither Borel nor Σ1

1-complete. The result now follows from Theorem
4.13 and Remark 4.14. ut

We can now get an amazing result on ω-languages of Petri nets from the following previous one
which was obtained in [54]. Recall that in a model V of ZFC, we denote by L the class of con-
structible sets of V which induces a submodel of ZFC. The axiom V=L expresses that “every set is
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constructible” and it is consistent with ZFC. The ordinal ωL
1 denotes the first uncountable ordinal in

the model L. It is consistent that ωL
1 = ω1 since this is true in the model L. But it is also consistent

with ZFC that ωL
1 < ω1. We refer the interested reader to [54], and to classical textbooks on set theory

like [51] for more information about these notions.
The following result was obtained in [54]:

Theorem 4.17. One can construct a real-time 1-counter Büchi automatonA such that the topological
complexity of the ω-language L(A) is not determined by the axiomatic system ZFC. Indeed it holds
that:

1. (ZFC + V=L). The ω-language L(A) is analytic but not Borel.

2. (ZFC + ωL
1 < ω1). The ω-language L(A) is a Π0

2-set.

We can now easily get the following result:

Theorem 4.18. One can construct a 4-blind counter Büchi automaton B such that the topological
complexity of the ω-language L(B) is not determined by the axiomatic system ZFC. Indeed it holds
that:

1. (ZFC + V=L). The ω-language L(B) is analytic but not Borel.

2. (ZFC + ωL
1 < ω1). The ω-language L(B) is a Π0

2-set.

Proof:
It follows directly from Theorem 4.17 and from the construction of the real time 4-blind counter
Büchi automaton PA such that L(PA) = h(L(A)) ∪ L, which was described above. It then suffices
to take B = PA, where A is the real-time 1-counter Büchi automaton constructed in the proof of
Theorem 4.17. ut

5. High undecidability of topological and arithmetical properties

We prove that it is highly undecidable to determine the topological complexity of a Petri net ω-
language. As usual, since there is a finite description of a real time 1-counter Büchi automaton or
of a 4-blind-counter Büchi automaton, we can define a Gödel numbering of all 1-counter Büchi au-
tomata or of all 4-blind-counter Büchi automata and then speak about the 1-counter Büchi automaton
(or 4-blind-counter Büchi automaton) of index z. Recall first the following result, proved in [55],
where we denote Az the real time 1-counter Büchi automaton of index z reading words over a fixed
finite alphabet Σ having at least two letters. We refer the reader to a textbook like [56] for more
background about the analytical hierarchy of subsets of the set N of natural numbers.

Theorem 5.1. Let α be a countable ordinal. Then

1. {z ∈ N | L(Az) is in the Borel class Σ0
α} is Π1

2-hard.
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2. {z ∈ N | L(Az) is in the Borel class Π0
α} is Π1

2-hard.

3. {z ∈ N | L(Az) is a Borel set } is Π1
2-hard.

Using the previous constructions we can now easily show the following result, where Pz is the
real time 4-blind-counter Büchi automaton of index z.

Theorem 5.2. Let α ≥ 2 be a countable ordinal. Then

1. {z ∈ N | L(Pz) is in the Borel class Σ0
α} is Π1

2-hard.

2. {z ∈ N | L(Pz) is in the Borel class Π0
α} is Π1

2-hard.

3. {z ∈ N | L(Pz) is a Borel set } is Π1
2-hard.

Proof:
It follows from the fact that one can easily get an injective recursive function g : N → N such that
PAz = h(L(Az))∪L = L(Pg(z)) and from the following equivalences which hold for each countable
ordinal α ≥ 2:

1. L(Az) is in the Borel class Σ0
α (resp., Π0

α)⇐⇒ L(Pg(z)) is in the Borel class Σ0
α (resp., Π0

α).

2. L(Az) is a Borel set⇐⇒ L(Pg(z)) is a Borel set.
ut

Recall that the arithmetical properties of ω-languages of real time 1-counter Büchi automata were
also proved to be highly undecidable in [55].

Theorem 5.3. Let n ≥ 1 be an integer. Then

1. {z ∈ N | L(Az) is in the arithmetical class Σn} is Π1
2-complete.

2. {z ∈ N | L(Az) is in the arithmetical class Πn} is Π1
2-complete.

3. {z ∈ N | L(Az) is a ∆1
1-set } is Π1

2-complete.

We can now prove similar results for ω-languages of real time 4-blind-counter Büchi automata.

Theorem 5.4. Let n ≥ 2 be an integer. Then

1. {z ∈ N | L(Pz) is in the arithmetical class Σn} is Π1
2-complete.

2. {z ∈ N | L(Pz) is in the arithmetical class Πn} is Π1
2-complete.

3. {z ∈ N | L(Pz) is a ∆1
1-set } is Π1

2-complete.
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Proof:
Firstly, the three sets of integers considered in this theorem can be seen to be in the class Π1

2. This can
be proved in a very similar way as in the proof of [55, Theorem 3.26]. Secondly, the completeness part
of the results follows from Theorem 5.3 and from the fact that one can easily get an injective recursive
function g : N→ N such that PAz = h(L(Az)) ∪ L = L(Pg(z)) and from the following equivalences
which hold for each integer n ≥ 2, due to the fact that L is an arithmetical Σ0

1-set and h is a recursive
function from Σω onto the effective closed set h(Σω).

1. L(Az) is in the arithmetical class Σn (resp., Πn)⇐⇒ L(Pg(z)) is in the arithmetical class Σn

(resp., Πn)

2. L(Az) is a ∆1
1-set⇐⇒ L(Pg(z)) is a ∆1

1-set.
ut

6. High undecidability of the equivalence and the inclusion problems

We now add a result obtained from our previous constructions and which is important for verification
purposes.

Theorem 6.1. The equivalence and the inclusion problems for ω-languages of Petri nets, or even for
ω-languages in the class r-BCL(4)ω, are Π1

2-complete.

1. {(z, z′) ∈ N | L(Pz) = L(Pz′)} is Π1
2-complete

2. {(z, z′) ∈ N | L(Pz) ⊆ L(Pz′)} is Π1
2-complete

Proof:
Firstly, it is easy to see that each of these decision problems is in the class Π1

2, since the equivalence and
the inclusion problems for ω-languages of Turing machines are already in the class Π1

2, see [57, 55].
The completeness part follows from the fact that the equivalence and the inclusion problems for ω-
languages accepted by real time 1-counter Büchi automata are Π1

2-complete [55], and from the fact
that there exists an injective recursive function g : N → N such that PAz = Pg(z), and then from the
following equivalences:

1. L(Az) = L(Az′)⇐⇒ L(Pg(z)) = L(Pg(z′))

2. L(Az) ⊆ L(Az′)⇐⇒ L(Pg(z)) ⊆ L(Pg(z′))
ut

7. Determinacy of Wadge games

We proved in [50] that the determinacy of Wadge games between two players in charge of ω-languages
accepted by real time 1-counter Büchi automata, denoted W-Det(r-CL(1)ω), is equivalent to the
(effective) analytic Wadge determinacy.

We can now state the following result, proved within the axiomatic system ZFC.
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Theorem 7.1. The determinacy of Wadge games between two players in charge of ω-languages in the
class r-BCL(4)ω is equivalent to the effective analytic (Wadge) determinacy, and thus is not provable
in the axiomatic system ZFC.

Proof:
It was proved in [50] that the following equivalence holds: W-Det(r-CL(1)ω)⇐⇒W-Det(Σ1

1). The
implication W-Det(Σ1

1)=⇒W-Det(r-BCL(4)ω) is obvious since the class BCL(4)ω is included into
the class Σ1

1. To prove the reverse implication, we assume that W-Det(r-BCL(4)ω) holds and we
show that every Wadge game W (L(A),L(B)) between two players in charge of ω-languages of the
class r-CL(1)ω is determined (we assume without loss of generality that the two real time 1-counter
Büchi automata A and B read words over the same alphabet Σ).

It is sufficient to consider the cases where at least one of two ω-languages L(A) and L(B) is
non-Borel, since the Borel Wadge determinacy is provable in ZFC. On the other hand, we have seen
how we can construct some real time 4-blind-counter Büchi automata PA and PB such that L(PA) =
h(L(A)) ∪ L and L(PB) = h(L(B)) ∪ L.

We can firstly consider the case where L(A) is Borel of Wadge degree smaller than ω, and L(B) is
non-Borel. In that case L(A) is in particular a Π0

2-set. Recall now that we can infer from Hurewicz’s
Theorem, see [48, page 160], that an analytic subset of Σω is either Π0

2-hard or a Σ0
2-set. Thus L(B)

is Π0
2-hard and Player 2 has a winning strategy in the game W (L(A),L(B)).

Secondly we consider the case where L(A) and L(B) are either non-Borel or Borel of Wadge
degree greater than ω. By hypothesis we know that the Wadge gameW (L(PA),L(PB)) is determined,
and that one of the players has a winning strategy. Using the above constructions and reasonings we
used in the proofs of Lemmas 4.5 and 4.10, we can easily show that the same player has a winning
strategy in the Wadge game W (L(A),L(B)).

We now consider the two following cases:
First case. Player 2 has a w.s. in the game W (L(PA),L(PB)). If L(B) is Borel then L(PB) is easily
seen to be Borel and then L(PA) is also Borel because L(PA) ≤W L(PB). Thus L(A) is also Borel
and the gameW (L(A),L(B)) is determined. Assume now that L(B) is not Borel. Consider the Wadge
gameW (L(A), ∅+(∅+L(B))). We claim that Player 2 has a w.s. in that game which is easily deduced
from a w.s. of Player 2 in the Wadge game W (L(PA),L(PB)) = W (h(L(A)) ∪ L, h(L(B)) ∪ L).
Consider a play in this latter game where Player 1 remains in the closed set h(Σω): she writes a
beginning of a word in the form

A0x(1)B02x(2)A · · ·B02nx(2n)A · · ·

Then player 2 writes a beginning of a word in the form

A0x′(1)B02x′(2)A · · ·B02px′(2p)A · · ·

where p ≤ n. Then the strategy of Player 2 inW (L(A), ∅+(∅+L(B))) consists to write x′(1)x′(2) · · ·
x′(2p) when Player 1 writes x(1)x(2) · · ·x(2n). (Notice that Player 2 is allowed to skip, provided he
really writes an ω-word in ω steps). If the strategy for Player 2 in W (L(PA),L(PB)) was at some
step to go out of the closed set h(Σω) then this means that the word he has now written is not a prefix
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of any ω-word of h(Σω), and Player 2 “enters” in the open set h(Σω)− = L ∪ L′ and will stay in this
set. Two subcases may now appear.

Subcase A. When Player 2 in the game W (L(PA),L(PB)) “enters” in the open set h(Σω)− =
L ∪ L′, he actually enters in the open set L. Then the final word written by Player 2 will surely be
inside L(PB). Player 2 in the Wadge game W (L(A), ∅+ (∅+ L(B))) can now write a letter of ∆−Σ
in such a way that he is now like a player in charge of the whole set and he can now write an ω-word
u so that his final ω-word will be inside ∅+ (∅+ L(B)). Thus Player 2 wins this play too.

Subcase B. When Player 2 in the game W (L(PA),L(PB)) “enters” in the open set h(Σω)− =
L∪L′, he does not enter in the open setL. Then Player 2, in the Wadge gameW (L(A), ∅+(∅+L(B))),
being first like a player in charge of the set (∅+L(B)), can write a letter of ∆−Σ in such a way that he
is now like a player in charge of the empty set and he can now continue, writing an ω-word u. If Player
2 in the gameW (L(PA),L(PB)) never enters in the open set L then the final word written by Player 2
will be in L′ and thus surely outside L(PB), and the final word written by Player 2 will be outside the
empty set. So in that case Player 2 wins this play too in the Wadge game W (L(A), ∅+ (∅+ L(B))).
If at some step of the play, in the game W (L(PA),L(PB)), Player 2 enters in the open set L then his
final ω-word will be surely in L(PB). In that case Player 2, in charge of the set ∅+ (∅+ L(B)) in the
Wadge game W (L(A), ∅+ (∅+ L(B))), can again write an extra letter and choose to be in charge of
the whole set and he can now write an ω-word v so that his final ω-word will be inside ∅+(∅+L(B)).
Thus Player 2 wins this play too.

So we have proved that Player 2 has a w.s. in the Wadge game W (L(A), ∅ + (∅ + L(B))) or
equivalently that L(A) ≤W ∅+(∅+L(B)). But by Lemma 4.12 we know that L(B) ≡W ∅+(∅+L(B))
and thus L(A) ≤W L(B) which means that Player 2 has a w.s. in the Wadge game W (L(A),L(B)).

Second case. Player 1 has a w.s. in the game W (L(PA),L(PB)). Notice that this implies that
L(PB) ≤W L(PA)−. Thus if L(A) is Borel then L(PA) is Borel, L(PA)− is also Borel, and L(PB)
is Borel as the inverse image of a Borel set by a continuous function, and L(B) is also Borel, so the
Wadge game W (L(A),L(B)) is determined. We now assume that L(A) is not Borel and we consider
the Wadge game W (L(A),L(B)). Player 1 has a w.s. in this game which is easily constructed from
a w.s. of the same player in the game W (L(PA),L(PB)) as follows. For this consider a play in this
latter game where Player 2 does not go out of the closed set h(Σω).

He writes a beginning of a word in the form

A0x(1)B02x(2)A · · ·B0nx(n)A · · ·

Then Player 1 writes a beginning of a word in the form

A0x′(1)B02x′(2)A · · ·B0px′(p)A · · ·

where n ≤ p (notice that here without loss of generality the notation implies that n and p are even,
since the segments B0nx(n)A and B0px′(p)A begin with a letter B but this is not essential in the
proof). Then the strategy for Player 1 in W (L(A),L(B)) consists to write x′(1)x′(2) · · ·x′(p) when
Player 2 writes x(1)x(2) · · ·x(n). After ω steps, the ω-word written by Player 1 is in L(A) iff the
ω-word written by Player 2 is not in the set L(B), and thus Player 1 wins the play.

If the strategy for Player 1 in W (L(PA),L(PB)) was at some step to go out of the closed set
h(Σω) then this means that she “enters” in the open set h(Σω)− = L ∪ L′ and will stay in this set.
Two subcases may now appear.
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Subcase A. When Player 1 in the game W (L(PA),L(PB)) “enters” in the open set h(Σω)− =
L ∪ L′, she actually enters in the open set L. Then the final word written by Player 1 will surely
be inside L(PA). But she wins the play since she follows a winning strategy and this leads to a
contradiction. Indeed if Player 2 decided to also enter in in the open set L then Player 2 would win
the play. Thus this case is actually not possible.

Subcase B. When Player 1 in the game W (L(PA),L(PB)) “enters” in the open set h(Σω)− =
L ∪ L′, she does not enter in the open set L. But Player 2 would be able to do the same and enter in
h(Σω)− = L∪L′ but not (for the moment) in the open set L. And if at some step of the play, Player 1
would enter in the open set L then Player 2 could do the same, and thus Player 2 would win the play.
Again this is not possible since Player 1 wins the play since she follows a winning strategy.

Finally both subcases A and B cannot occur and this shows that Player 1 has a w.s. in the Wadge
game W (L(A),L(B)). ut

8. Non-Borel ω-languages of one counter Petri nets

In this section we prove the following result.

Theorem 8.1. There exists a 1-blind counter automaton A1 such that the ω-language L(A1) of that
automaton is Σ1

1-complete, hence non-Borel.

The crucial obstacle of that construction is the fact that the simulation order � for 1-blind counter
automata has a finite width, namely the number of states of the machine. This means that the non-
deterministic choices of such a machine are inherently ordered. This explains why we use a Σ1

1-hard
ω-language that itself is a set of orders.

8.1. Topology of orders

Consider a set X and a relation o ⊆ X × X on X . We say that o is a linear order if it is reflexive,
transitive, and anti-symmetric. We interpret a pair (x, x′) ∈ o as representing the fact that x is o-
smaller-or-equal than x′. A linear order o is ill-founded if there exists an infinite sequence x0, x1, . . .
of pairwise distinct elements of X such that for all n we have (xn+1, xn) ∈ o, i.e. the sequence is
strictly decreasing. Such a sequence indicates an infinite o-descending chain. An order that is not
ill-founded is called well-founded.

The binary tree is the set of all sequences of directions T =df {L, R}∗ where the directions L and
R are two fixed distinct symbols. For technical reasons we sometimes consider a third direction M (it
does not occur in the binary tree).

A set X ⊆ T can be naturally identified with its characteristic function X ∈ {0, 1}
(
{L,R}∗

)
. Thus,

the family of all subsets of the binary tree, with the natural product topology, is homeomorphic with
the Cantor set {0, 1}ω.

The elements v, x ∈ T are called nodes. Nodes are naturally ordered by the following three
orders:

• the prefix order v, as defined on page 1005,
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• the lexicographic order: v ≤lex x if v is lexicographically smaller than x (we assume that
L <lex M <lex R),

• the infix order: v ≤inf x if vMω (i.e. the ω-word obtained by appending infinitely many symbols
M after v) is lexicographically less or equal than xMω. This order corresponds to the left-to-right
order on the nodes of the tree, when it is drawn in a standard way.

Notice that, for every fixed n, when restricted to {L, R}n, the lexicographic and infix orders coin-
cide. However, L <inf ε <inf R but ε is the minimal element of ≤lex. Both the lexicographic and infix
orders are linear.

Since the infix order is countable, dense, and has no minimal nor maximal elements, we obtain the
following fact.

Fact 8.2. (T ,≤inf) is isomorphic to the order of rational numbers (Q,≤).

In the following part of the paper we will use the following set.

IFinf =df {X ⊆ T | X contains an infinite ≤inf -descending chain}. (1)

Lemma 8.3. The set IFinf is Σ1
1-complete.

Proof:
IFinf belongs to Σ1

1 just by the form of the definition.
We prove Σ1

1-hardness by a reduction from the set of ill-founded linear orders on ω (seen as
elements of {0, 1}ω×ω). Let us prove this fact more formally. Consider an element o ∈ {0, 1}ω×ω
that is a linear order on ω. The latter set is Σ1

1-complete by a theorem by Lusin and Sierpiński [48,
Theorem 27.12]. We will inductively define Xo ⊆ T in such a way to ensure that o 7→ Xo is
a continuous mapping and o is ill-founded if and only if Xo ∈ IFinf .

Let us proceed inductively, defining a sequence of nodes (xn)n∈ω ⊆ T . Our invariant says that
|xk| = k and the map k 7→ xk is an isomorphism of the orders

(
{0, . . . , n}, o

)
and

(
{x0, . . . , xn},

≤inf

)
. We start with x0 = ε (i.e. the root of T ). Assume that x0, . . . , xn are defined and satisfy the

invariants. By the definition of ≤inf , there exists a node x ∈ {L, R}n+1 such that for k = 0, 1, . . . , n
we have x ≤inf xk if and only if (n+1, k) ∈ o. Let xn+1 be such a node.

The above induction defines an infinite sequence of nodes x0, x1, . . . Let Xo =df {xn | n ∈
ω} ⊆ T . By the definition of Xo, the mapping o 7→ Xo is continuous — the fact whether a node
x ∈ T belongs to Xo depends only on o∩{0, 1, . . . , |x|}2. Using our invariant, we know that the map
k 7→ xk is an isomorphism of the orders

(
ω, o

)
and

(
Xo,≤inf

)
. Thus, o is ill-founded if and only if

Xo ∈ IFinf . ut

To construct our continuous reduction in the one-counter case, we need the following simple
lemma that provides an alternative characterisation of the set IFinf . Let us introduce the following
definition.

Definition 8.4. A sequence v0, v1, . . . ∈ T is called a correct chain if v0 = ε and for every n =
0, 1, . . .:
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1. |vn+1| = |vn|+ 1,

2. vn+1 ≤inf vnR (or equivalently vn+1 ≤lex vnR).

A correct chain is witnessing for a set X ⊆ T if for infinitely many n we have vn ∈ X and
vn+1 ≤inf vnL.

Intuitively, the definition forces the sequence to be not so-much increasing in the infix order ≤inf :
the successive element vn+1 needs to be to the left in the tree from vnR. Such a sequence is witnessing
for a set X if infinitely many times it belongs to X and at these moments it actually drops in ≤inf .

Lemma 8.5. A setX ⊆ T belongs to IFinf if and only if there exists a correct chain witnessing forX .

Proof:
First take a correct chain witnessing forX . Let x0, x1, . . . be the subsequence that shows that (vn)n∈ω
is witnessing for X . In that case, by the definition, for all n we have xn ∈ X and xn+1 <inf xn
(because xn+1M

ω ≤lex xnLR
ω <lex xnM

ω). Thus, X has an infinite ≤inf -descending chain and belongs
to IFinf .

Now assume that X ∈ IFinf and x0 >inf x1 >inf x2 >inf . . . is a sequence witnessing that.
Without loss of generality we can assume that |xn+1| > |xn| because for each fixed depth k there
are only finitely many nodes of T in {L, R}≤k. We can now add intermediate nodes in-between the
sequence (xn)n∈ω to construct a correct chain witnessing for X; the following pseudo-code realises
this goal:

n := 0;
i := 0;
while (true) {

if (n > |xi|) {

i := i+ 1;
}

vn := xi[n];
n := n+ 1;

}

Clearly, Property 1 in the definition of a correct chain is guaranteed. Let i ∈ ω and n = |xi|.
By the fact that xi+1 <inf xi we know that xi+1[n + 1] ≤inf xiL. Therefore, for every n ∈ ω we
have vn+1 ≤inf vnR and if n = |xi| for some i then vn+1 ≤inf vnL. It implies that the sequence
(vn)n∈ω satisfies Property 2 in the definition of a correct chain. It is clearly witnessing for X because
it contains (xn)n∈ω as a subsequence. ut

8.2. Hardness for one counter

We are now ready to provide a definition of a 1-blind counter Büchi automaton A1 recognising Σ1
1-

complete ω-language. The automaton A1 is depicted in Figure 1, with the convention that an edge
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q0 q1 q2

qa

qr

q3

Σ0

<

d : −1
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i : +1

+

−

>

>

Σ0

]

Figure 1. The automaton A1 with 1-blind counter that recognises a Σ1
1-complete ω-language.

q
a:j−−→ q′ represents a transition from the state q to q′, over the letter a; that modifies the unique counter

value by j, i.e. a : (q, c1) 7→A1 (q′, c1 +j). Moreover, the state q0 is initial and qa is the only accepting
state.

Let Σ0 =df {<, d, |, i,+,−, >} and consider the alphabet Σ =df Σ0 ∪ {]}.
An ω-word accepted byA1 consists of infinitely many phases separated by ]. Each phase is a finite

word over the alphabet Σ0. In our reduction we will restrict to phases being sequences of blocks, each
block being a finite word of the form given by the following definition (for n,m ∈ ω and s ∈ {+,−}):

Bs(−n,+m) =df < dn | im s > ∈ A∗0. (2)

Such a block is accepting if s = +, otherwise s = − and the block is rejecting. If A1 starts
reading a block and moves from q0 to q1 over < then we say that it chooses this block. Otherwise A1

stays in q0 and it does not choose the given block. By the construction of the automaton A1, in every
run it needs to choose exactly one block from each phase. Additionally, the run is accepting if and
only if infinitely many of the chosen blocks are accepting.

Proposition 8.6. There exists a continuous reduction from IFinf to the ω-language recognised byA1.

We will take a set X ⊆ T and construct an ω-word α(X). This ω-word will be a concatenation of
infinitely many phases u0]u1] · · · . The n-th phase un will depend on X ∩ {L, R}n. The configurations
(q0, c) reached at the beginning of an n-th phase will be in correspondence with the nodes v ∈ {L, R}n.
The bigger the value c, the higher in the infix order (or the lexicographic order, as they overlap here)
the respective node v is.

To precisely define our ω-word α(X) we need to define some auxiliary functions. First, we define
inductively the function b : T → ω, assigning to nodes v ∈ T their binary value b(v):

• b(ε) = 0,

• b(vL) = 2 · b(v),

• b(vR) = 2 · b(v) + 1.
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Note that for every n ∈ ω we have

b
(
{L, R}n

)
= {0, 1, . . . , 2n−1},

and the function is bijective between these sets.
Now we can define fast-growing functions: m : {−1} ∪ ω → ω and e : T → ω:

m(−1) = 1,

m(n) = m(n− 1) · 2n for n ∈ ω,

e(v) = m(|v| − 1) · b(v) for v ∈ T .

These functions allow to use a big range of the possible values of a single counter of the automaton to
represent particular nodes of the tree. We will use the following two invariants of this definition, for
n ∈ ω and v, v′ ∈ {L, R}n:

v <inf v
′ ⇐⇒ e(v) ≤ e(v′), (3)

e(v) +m(|v| − 1) ≤ m(|v|). (4)

We take any n = 0, 1, . . . and define the n-th phase un. Let un be the concatenation of the
following blocks, for all v ∈ {L, R}n and d ∈ {L, R}:

Bs
(
−e(v),+e(vd)

)
,

where s = + if v ∈ X and d = L; otherwise s = −. Thus, the n-th phase is a concatenation of 2n+1

blocks, one for each node vd in {L, R}n+1.
To conclude the proof of Proposition 8.6 it is enough to prove the following two lemmas.

Lemma 8.7. If there exists a correct chain witnessing for X then α(X) ∈ L(A1).

Proof:
Consider a correct chain (vn)n∈ω witnessing for X . Assume that I ⊆ ω is an infinite set such that for
n ∈ I we have vn ∈ X and vn+1 ≤inf vnL. Let us construct inductively a run r of A1 on α(X). The
invariant is that for each n ∈ ω the configuration of r before reading the n-th phase of α(X) is of the
form (q0, cn) with cn ≥ e(vn). To define r it is enough to decide which block to choose from an n-th
phase of α(X):

• if n ∈ I then choose the block B+
(
−e(vn),+e(vnL)

)
,

• otherwise choose the block B−
(
−e(vn),+e(vnR)

)
.

Notice that by the invariant, it is allowed to choose the respective blocks as cn ≥ e(vn). Because
of (3) and the fact that (vn)n∈ω is a correct chain, the invariant is preserved. As the set I is infinite,
the constructed run chooses an accepting block infinitely many times and thus is accepting. ut

Lemma 8.8. If α(X) ∈ L(A1) then there exists a correct chain witnessing for X .
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Proof:
Assume that r is an accepting run of A1 over α(X). For n = 0, 1, . . . let (q0, cn) be the config-
uration in r before reading the n-th phase of α(X) and assume that r chooses a block of the form
Bsn

(
−e(vn),+e(vndn)

)
in the n-th phase of α(X). Our aim is to show that (vn)n∈ω is a correct

chain witnessing for X . First notice that by the construction of α(X) we have |vn| = n.
Clearly, as the counter needs to be non-negative, we have e(vn) ≤ cn. Notice that by (4) we obtain

inductively for n = 0, 1, . . . that cn < m(n). Therefore, we have

m(n) · b(vn+1) = e(vn+1) ≤ cn+1 =

= cn − e(vn) + e(vndn) < m(n) + e(vndn) =

= m(n) +m(n) · b(vndn).

By dividing by m(n) we obtain b(vn+1) < 1 + b(vndn), thus b(vn+1) ≤ b(vndn) and therefore
vn+1 ≤inf vndn ≤inf vnR. Moreover, if sn = + (i.e. the n-th chosen block is accepting) then vn ∈ X
and dn = L. Therefore, as r chooses infinitely many accepting blocks, (vn)n∈ω is witnessing for X .

ut

This concludes the proof of Proposition 8.6. Thus the ω-language of A1 is indeed Σ1
1-hard and

therefore Σ1
1-complete.

8.3. Undecidable properties of 1-blind counter ω-languages

From the above result we can now easily infer the following undecidability result.

Theorem 8.9. It is undecidable to determine whether the ω-language of a given 1-blind counter au-
tomaton is Borel (respectively, in the Borel class Σ0

α, in the Borel class Π0
α, for a given ordinal α).

Proof:
Let L1 = L(A1) ⊆ Σω be the Σ1

1-complete ω-language accepted by the 1-blind counter automaton
A1 given above.

We consider the shuffle operation for two ω-words x and y in Σω given by

Sh(x, y) = x(1)y(1)x(2)y(2).. ∈ Σω

This is extended to the shuffle of ω-languages by Sh(L,L′) = {Sh(x, y) | x ∈ L and y ∈ L′}.
Let now L be an ω-language of a given 1-blind counter automaton A over the alphabet Σ. We set

S = Sh(L1,Σ
ω)∪ Sh(Σω, L) It is easy to see that one can construct, fromA andA1, another 1-blind

counter automaton B accepting S.
There are now two cases:
First Case. L = Σω.
In that case S = Σω is in every Borel class (and actually in every Wadge class, except the class of

the empty set).
Second Case. L is not equal to Σω.
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In that case there exists an ω-word x ∈ Σω which is not in L. Let now T be the intersection of
S and of Sh(Σω, {x}). Then T = Sh(L1, {x}) is also Σ1

1-complete, and since L1 is continuously
reducible to S by F : y → Sh(y, x) it follows that S is Σ1

1-complete.
Now the conclusion follows from a recent result that the universality problem for one blind counter

Büchi automata is undecidable, see [58].
ut

Notice that one can also get other undecidability results, using the above one about topological
properties. First we can state the following theorem showing that the arithmetical properties of 1-
blind counter ω-languages are also undecidable.

Theorem 8.10. It is undecidable to determine whether the ω-language of a given 1-blind counter
automaton is an effective ∆1

1-set (respectively, an arithmetical Σ0
n-set, an arithmetical Π0

n-set, for a
given integer n ≥ 1).

Proof:
We can use the above proof of Theorem 8.9. Indeed, in the first case the ω-language S = Σω is in
every arithmetical class. Moreover, in the second case the ω-language S is not a Borel set, and thus it
is not an effective ∆1

1-set and does not belong to any arithmetical class. ut

Remark 8.11. It is open to determine the exact complexity of these undecidable problems. In partic-
ular we do not know whether they are highly undecidable, as in the general case of Petri nets or of
4-blind counter automata.

We can also use topological properties to prove other undecidability properties which are not
directly linked to topology.

Theorem 8.12. It is undecidable to determine whether the ω-language of a given 1-blind counter
automaton A:

1. is a regular ω-language.

2. is accepted by a deterministic Petri net.

3. is accepted by a deterministic Turing machine.

4. has a complement L(A)− which is accepted by a Petri net.

5. has a complement L(A)− which is accepted by a Turing machine.

Proof:
We can again use the above proof of Theorem 8.9. Indeed, in the first case the ω-language S = Σω

satisfies the five items of the theorem. In the second case the ω-language S is non-Borel hence it is
not a Boolean combination of Π0

2-sets and it does not satisfy any of the three first items. Moreover,
in this case the complement of S is Π1

1-complete hence it cannot be accepted by any Turing machine
and in particular by any Petri net (with Büchi acceptance condition). ut



1032 O. Finkel, M. Skrzypczak / On the expressive power of Petri nets over infinite words

9. Inherent non-determinism

In this section we formally state and prove the following corollary.

Corollary 9.1. No model of deterministic, unambiguous, nor even countably-unambiguous automata
with countably many configurations and a Borel acceptance condition can capture the class of ω-lan-
guages recognisable by real-time 1-blind counter Büchi automata.

It is expressed in the same spirit as the corresponding Theorem 5.5 in [59]: we consider an ab-
stract model of automata A with a countable set of configurations C, an initial configuration cI ∈ C,
a transition relation δ ⊆ C × Σ × C, and an acceptance condition W ⊆ Cω. The notions of a run
run(α, ρ); an accepting run acc(ρ); and the language L(A) are defined in the standard way. Thus,
under the assumption that the acceptance condition W is Borel, the set

P =df

{
(α, ρ) ∈ Σω × Cω | run(α, ρ) ∧ acc(ρ)

}
,

as in Definition 2.1 is also Borel. The assumptions that the machine is deterministic, unambiguous,
or countably-unambiguous imply that the cardinality of the sections Pα =df {ρ | (α, ρ) ∈ P} for
α ∈ Σω is at most countable. Therefore, the following small section theorem by Lusin and Novikov
applies.

Theorem 9.2. (see [48, Theorem 18.10])
Let X , Y be standard Borel spaces and let P ⊆ X × Y be Borel. If every section Px is countable,
then P has a Borel uniformisation and therefore πX(P ) is Borel.

Therefore, we know that L(A) = πΣω(P ) is Borel. Thus, no such machine can recognise L(A1)
for the automatonA1 from Section 8, or any non-Borel ω-language of Petri nets obtained in Section 4
as these languages are non-Borel.

Notice that the above Theorem of Lusin and Novikov had already been used in the study of ambi-
guity of context-free ω-languages in [42] or of ω-languages of Turing machines in [36] and even for
tree languages of tree automata [43]. In particular, it is proved in [36] that if L ⊆ Xω is accepted
by a Büchi Turing machine T and L is an analytic but non-Borel set, then the set of ω-words, which
have 2ℵ0 accepting runs by T , has cardinality 2ℵ0 . This extends a similar result of [42] in the case of
context-free ω-languages and infinitary rational relations. In that case we say that the ω-language L
has the maximum degree of ambiguity (with regard to acceptance by Büchi Turing machines). From
this result we can also infer the following one about ω-languages of Petri nets.

Theorem 9.3. Let L ⊆ Σω be an ω-language accepted by a Büchi k-counter automaton A such that
L is an analytic but non-Borel set. The set of ω-words, which have 2ℵ0 accepting runs by A, has
cardinality 2ℵ0 .

Moreover, it is proved in [36, Theorem 4.12] that it is consistent with ZFC that there exists an
ω-language accepted by a real-time 1-counter Büchi automaton which belongs to the Borel class Π0

2

and which has the maximum degree of ambiguity with regard to acceptance by Turing machines. It is
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then easy to infer from this result and from the previous constructions of Section 4 that a similar result
holds for an ω-language in the Borel class Π0

2 accepted by a 4-blind counter Büchi automaton.
We end this section with the following undecidability result.

Theorem 9.4. It is undecidable to determine whether the ω-language of a given 1-blind counter au-
tomaton A:

1. is accepted by an unambiguous Petri net.

2. has the maximum degree of ambiguity with regard to acceptance by Petri nets.

3. has the maximum degree of ambiguity with regard to acceptance by Turing machines.

Proof:
We can again use the above proof of Theorem 8.9. Indeed, in the first case the ω-language S = Σω is
accepted by an unambiguous (and even deterministic) Petri net (without any counter). In the second
case the ω-language S is non-Borel and thus it has the maximum degree of ambiguity with regard to
acceptance by Petri nets or even by Turing machines. ut

10. Determinisation of unambiguous Petri nets

The previous sections showed that non-deterministic blind counter automata are stronger in expressive
power than any reasonable model of computation with a restricted form of non-determinism. This
opens the question what is the actual expressive power of unambiguous blind counter automata. In this
section we provide a construction allowing to simulate them using a variant of deterministic counter
automata with copying.

A counter automatonM = 〈K,Σ,∆, q0〉 allows copying if its transitions can additionally require
to copy the value of one counter Cj to another counter Cj′ , symbolically Cj′ := Cj . The copying
instructions can be represented by another component of the transition relation taken from the set
2({1,...,k}2) indicating which counters should be copied to which (we can assume that all the copying
is executed simultaneously). A run of such a machine is defined analogously as in Section 2 with the
additional requirement that the copying instructions are executed in the natural way.

Theorem 10.1. If A is an unambiguous blind counter Büchi automaton then L(A) can be recognised
by a deterministic Muller counter machineM that allows copying, hence by a deterministic Muller
Turing machine. Moreover, the translation from A toM is effective.

The machineM above is not blind and during the construction we extensively use its ability to
perform zero tests. For a discussion of the possible variants of the machine models involved in that
theorem, see the end of this section.

It is known that every ω-language accepted by a deterministic Muller Turing machine is a Boolean
combination of arithmetical Π0

2-sets, hence an arithmetical ∆0
3-set. In particular, an ω-language ac-

cepted by a deterministic Muller Turing machine is a Boolean combination of Π0
2-sets, hence a Borel

∆0
3-set [2]. Thus we can also state the following corollary of Theorem 10.1.
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Corollary 10.2. Assume that A is an unambiguous blind counter Büchi automaton. Then the ω-lan-
guage L(A) is a Boolean combination of Π0

2-sets, hence a Borel ∆0
3-set. It is actually an effective

∆0
3-set, i.e. an arithmetical (lightface) ∆0

3-set.

The overall structure of the construction is a variant of the powerset construction with an additional
trimming. First we show how to split the space of configurations of a given unambiguous machine
into finitely many regions (called clubs). Then we argue that the assumption of unambiguity implies,
that after reading a prefix w of the input word σ, the machine cannot reach two distinct configurations
from the same club — it would lead to two distinct accepting runs on a certain word σ′ w w. This
means that it is enough to keep track of at most one run of the machine in each of the finitely many
clubs. Based on that, we build a deterministic counter machine that stores all those finitely many runs
in its memory.

10.1. Lasso patterns

We begin by recalling known structural properties of blind counter automata, namely lasso patterns
that are used to pump runs of the automaton. The patterns lie at the core of the decidability algorithms
for these automata. We will use these properties later to construct accepting runs of the machine under
certain assumptions, which leads to the effectiveness of the provided translation.

Fix a Büchi blind counter automaton A = 〈K,Σ,∆, q0, F 〉 with a set of states K, k-coun-
ters C1, . . . , Ck, and a transition relation ∆. To avoid double indexing, we will denote a transition
(q, a, i1, . . . , ik, q

′, j1, . . . , ji) of A by (q, a, I, q′, J) with I = (i1, . . . , ik) ∈ {0, 1}k and J =
(j1, . . . , jk) ∈ {−1, 0, 1}k. Similarly, a configuration (q, c1, . . . , ck) of such a counter automaton
can be written (q, τ) with τ = (c1, . . . , ck) ∈ Nk.

A lasso pattern is a sequence of transitions
(
δi=(qi, ai, Ii, q

′
i, Ji)

)
i=0,...,`

⊆ ∆ and a number
0 ≤ `′ ≤ `, such that the following conditions hold:

1. q0 is the initial state of A, and I0 = (0, 0, . . . , 0),

2. for each i = 0, 1, . . . , `−1 we have q′i = qi+1,

3. q′` = q`′ ,

4. for each i = 0, 1, . . . , ` the sum
∑i

j=0 Jj belongs to Nk (i.e. is coordinate-wise non-negative),

5. the sum
∑`

j=`′ Jj also belongs to Nk,

6. for each i = 0, 1, . . . , ` and c = 1, . . . , k if (Ii)c = 1 then
∑i−1

j=0(Jj)c > 0.

These conditions are meant to ensure that one can construct a run of A that uses consecutively the
transitions from the lasso pattern. Notice that if (Ii)c = 0 in the last item of the definition then the
assumption of blindness guarantees that there is another transition in ∆ with (Ii)c = 1, so we don’t
need to restrict the sum

∑i−1
j=0(Jj)c in that case.

We call ` the length of the lasso pattern and `′ is its looping point. A lasso pattern as above is
accepting if for some i = `′, . . . , ` the state qi is accepting. The definition of a lasso pattern is based
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on Problem 3.2 in [60]. The exact properties used in the definition of a lasso pattern are chosen in
such a way to ensure the following remark.

Remark 10.3. If a blind counter Büchi automaton A has an accepting lasso pattern (δi)i=0,...,` ⊆ ∆
with a looping point 0 ≤ `′ ≤ ` then L(A) 6= ∅.

Proof:
Let u = a0a1 · · · a`′−1 and w = a`′a`′+1 · · · a`. Then the ω-word α = uwww · · · belongs to L(A)
because one can construct an accepting run ofA over this ω-word using the transitions of the assumed
lasso pattern. ut

The following theorem from [60, Section 3] implies decidability of the emptiness problem for
blind counter Büchi automata by providing the converse implication.

Theorem 10.4. If A is a blind counter Büchi automaton such that L(A) 6= ∅ then A has an accepting
lasso pattern of length bounded by a function computable1 based on A. As a consequence, it is
decidable if L

(
A
)

is empty.

10.2. Clubs of configurations

This section is devoted to an introduction of a technical concept used in the determinisation procedure:
clubs of configurations. These are regions of the configuration space of a counter automaton that
represent somehow similar behaviour of the machine. We will see later on that certain clubs that are
optimal can be treated in a homogeneous way (Lemma 10.9); and moreover each club can be split into
a finite family of optimal ones (Proposition 10.11).

Fix a counter automaton A with a set of states K and k-counters C1, . . . , Ck. Let N ∈ N and γ =(
γ1, . . . , γk

)
be a vector where each γi for i = 1, . . . , k is either a natural number or the expression

(≥N). Recall that we will denote the configurations of A by (q, τ) with τ = (c1, . . . , ck) ∈ Nk being
the vector of counter values. A club is a set of configurations of A of the form

[q, γ] =df

{
(q, τ) | ∀1 ≤ i ≤ k. (γi = τi ∈ N) ∨ (γi = (≥N) ∧ τi ≥ N)

}
. (5)

The dimension of a club is the number of expressions (≥N) that appear in γ. Similarly, the value
N ∈ N is the threshold of the club. The minimal configuration of a club [q, γ] is the configuration
(q, τ) where for i = 1, . . . , k the coordinate τi equals γi when γi ∈ N and equals N otherwise. Notice
that the minimal configuration of a club is the �-least element of the club (see the definition of the
simulation order on page 1006 and Remark 2.3).

Let [q, γ] be a club with threshold N and M ≥ N be a natural number. By [q, γ�M ] (called the
restriction of [q, γ] to the threshold M ) we denote the club obtained from [q, γ] by replacing each
occurrence of (≥N) by (≥M). Notice that, as sets of configurations we have

[q, γ�M ] ⊆ [q, γ]. (6)
1The function is doubly-exponential, see the comment before Theorem 3.1 in [60].
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q0 q1 · · · qZ

A

q
a0 : τ1

0 a0 : τ2
0 a0 : τZ0

a1 : τ1

a2

Figure 2. The automaton denoted
(
[q, γ] · A

)
that checks non-emptiness of the set L

(
A, [q, γ]

)
.

10.3. Languages of clubs

Each club [q, γ], seen as a set of configurations ofA, induces its ω-language L
(
A, [q, γ]

)
being just the

set theoretic union of all the ω-languages L
(
A, (q, τ)

)
for all configurations (q, τ) ∈ [q, γ]. Although

the notation might suggest that, we do not consider the possibility to treat clubs as configurations of
a counter automaton and perform transitions on clubs — instead we execute the automaton from each
of the single configurations (q, τ) ∈ [q, γ] and then take the union of these ω-languages.

We will now show how to decide if the ω-language of a club is empty, see Corollary 10.6 at the end
of this subsection. For that, fix a k-blind counter Büchi automaton A and a club [q, γ] of dimension d
and threshold N .

Let (q, τ0) be the minimal configuration of [q, γ]. Without loss of generality we can assume that
γ =

(
γ1, . . . , γk′ , (≥N), . . . , (≥N)

)
with the values γ1, . . . , γk′ being natural numbers and k =

k′ + d. Notice that by the choice of τ0 we know that τ0 =
(
γ1, . . . , γk′ , N, . . . , N

)
.

Let a0, a1, a2 ∈ Σ be any (not necessarily distinct) fixed letters of the alphabet Σ. Let τ1
0 , . . . , τ

Z
0

be a sequence of vectors in {0, 1}k such that
∑Z

j=1 τ
j
0 = τ0, with Z ∈ N being the maximal of the

coordinates of τ0. Let τ1 = (0, . . . , 0, 1, . . . , 1) be a vector with k′ zeros followed by d ones.
Consider the blind counter Büchi automaton denoted

(
[q, γ] · A

)
depicted on Figure 2. This

automaton first reads a sequence of letters a0 increasing all the counters to the exact values given by
τ0 (using the vectors τ j0 for that); then it can arbitrarily many times read a1 and increase the counters
numbered k′+1, k′+2, . . . , k, i.e. those corresponding to the value (≥ N) in γ; and then it reads a2

and moves to a copy of the automaton A into the state q.

Proposition 10.5. Fix a blind counter Büchi automaton A and a club [q, γ] with threshold N . Then
one can effectively compute a number M ≥ N such that the following conditions are equivalent:

1. L
(
A, [q, γ]

)
6= ∅,

2. L
(
[q, γ] · A

)
6= ∅,

3. L
(
A, (q, τ ′0)

)
6= ∅ for (q, τ ′0) the minimal configuration of [q, γ�M ],

4. L
(
A, [q, γ�M ]

)
6= ∅.
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Proof:
Let us denote by A′ the automaton

(
[q, γ] · A

)
. Let M` be the bound on the length of a lasso pattern

for A′ given by Theorem 10.4 and take M =df N +M`.
We start with the implication 1 ⇒ 2. Assume that α ∈ L

(
A, (q, τ)

)
for some (q, τ) ∈ [q, γ]. Let

M ′ be the maximal coordinate of τ . Consider α′ = aZ0 a
M ′
1 a2α, where Z is taken as in the construction

of A′. Let (q, τ ′) be the configuration of A′ reached after reading the prefix aZ0 a
M ′
1 a2 of α′. By the

choice of M ′, we know that τ ′ � τ . Therefore, by Remark 2.3 we have α ∈ L
(
A, (q, τ ′)

)
. Thus,

there exists an accepting run of A′ over α′ and L
(
A′
)
6= ∅.

Now consider the implication 2⇒ 3. Theorem 10.4 together with the choice of M` guarantee that
if L
(
A′
)
6= ∅ then there exists an accepting lasso pattern ofA′. Let

(
δi=(qi, ai, Ii, q

′
i, Ji)

)
i=0,...,`

⊆ ∆

and 0 ≤ `′ ≤ ` be such a lasso pattern.
As the states q0, . . . , qZ of A′ are not accepting, it means that the state q must appear among

(qi)i≤`. Let j be the minimal index such that qj = q. Since q0, . . . , qZ are not reachable from the
copy of A within A′, we know that Z < j ≤ `′. Consider the run r of A′ over an ω-word α that is
obtained by following the transitions of the considered lasso pattern. We know that r(j) = (q, τ) for
a certain configuration (q, τ) and the considered state q. The rest of this run is accepting, witnessing
that L

(
A, (q, τ)

)
6= ∅. However, by the construction of A′ we know that τ = τ0 + τ1 · (j−Z−1).

Recall that M = N + M`, which implies that τ ′0 from Item 3 of the statement has the form
τ0+τ1 ·M`. As j ≤M`, we know that (q, τ) � (q, τ ′0) and Remark 2.3 implies that L

(
A, (q, τ ′0)

)
6= ∅.

The implication 3 ⇒ 4 is obvious, as (q, τ ′0) ∈ [q, γ�M ]. Similarly, 4 ⇒ 1 is also clear because
[q, γ�M ] ⊆ [q, γ], see (6). ut

Corollary 10.6. It is decidable for a club [q, γ] of A if the set of ω-words L
(
A, [q, γ]

)
is empty.

10.4. Optimal clubs

A club [q, γ] is called trivial if L
(
A, [q, γ]

)
= ∅; otherwise [q, γ] is called non trivial. Proposition 10.5

implies that each non-trivial club [q, γ] can be restricted to another non-trivial club [q, γ�M ] ⊆ [q, γ]
such that already the ω-language L

(
A, (q, τ ′0)

)
is non empty for τ ′0 the minimal configuration of

[q, γ�M ]. In the latter part of the construction we will be interested in such optimal clubs.
Let [q, γ] be a club with the minimal configuration (q, τ). Then [q, γ] is called optimal if the

following implication holds:

L
(
A, [q, γ]

)
6= ∅ =⇒ L

(
A, (q, τ)

)
6= ∅.

Notice that each club of dimension 0, as a set of configurations, is a singleton and therefore it is
optimal by the definition. Obviously, an optimal non-trivial club with the minimal configuration (q, τ)
satisfies L

(
A, (q, τ)

)
6= ∅.

Remark 10.7. By Theorem 10.4 and Corollary 10.6 it is decidable whether a given club is trivial and
whether it is optimal.

Lemma 10.8. If [q, γ] ⊇ [q, γ′] are two clubs and [q, γ] is optimal then also [q, γ′] is optimal.
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Proof:
By the assumption that [q, γ] ⊇ [q, γ′], the minimal configuration (q, τ) of [q, γ] is �-smaller than the
minimal configuration (q, τ ′) of [q, γ′]. Thus, Remark 2.3 implies that if the ω-language L

(
A, (q, τ)

)
is non empty then also L

(
A, (q, τ ′)

)
is non empty. ut

The following lemma shows that each club can be made optimal by increasing its threshold.

Lemma 10.9. If [q, γ] is a club with threshold N then there exists M ≥ N such that the club [q, γ�M ]
is optimal. Moreover, the value of M can be effectively computed based on A and a representation of
[q, γ].

Proof:
It is enough to take the value M from Proposition 10.5. The implication 4 ⇒ 3 of the proposition
implies that [q, γ�M ] is always optimal. ut

If one doesn’t care about the computability of the value M in Lemma 10.9, then one can use
directly Remark 2.3, as expressed by the following remark.

Remark 10.10. Every machine model satisfying Remark 2.3 has the following property: if [q, γ] is
a club with threshold N then there exists M ≥ N such that the club [q, γ�M ] is optimal.

Proof:
Let A be a machine of the considered model that satisfies Remark 2.3. If L

(
A, [q, γ]

)
is empty then

the club is already optimal for M = N . Otherwise, let (q, τ) ∈ [q, γ] be a configuration such that
L
(
A, (q, τ)

)
6= ∅. Let M be the maximal coordinate of τ and let (q, τ0) be the minimal configuration

of [q, γ�M ] (it is obtained from γ by replacing each coordinate (≥N) by M ). Then (q, τ) � (q, τ0)
and therefore L

(
A, (q, τ0)

)
6= ∅, which means that the club [q, γ�M ] is optimal. ut

The following proposition is the technical core of the construction. We believe that it is of inde-
pendent interest.

Proposition 10.11. Let [q, γ] be a club. Then [q, γ], as a set of configurations, can be written as
a finite pairwise disjoint union of optimal clubs. Moreover, such a decomposition can be computed
effectively.

Proof:
The proof is inductive on the dimension d of [q, γ]. Since each club of dimension 0 is optimal, the
thesis holds for d = 0. Assume the thesis for all the clubs of dimensions at most d and consider
a club [q, γ] of dimension d > 0 with threshold N . Without loss of generality we can assume that
γ =

(
γ1, . . . , γk′ , (≥N), . . . , (≥N)

)
— the total number k of coordinates of γ is k′+d and all the

values γ1, . . . , γk′ are natural numbers.
Apply Lemma 10.9 to [q, γ] to obtain M ≥ N such that the restriction [q, γ�M ] is optimal. Notice

that γ�M =
(
γ1, . . . , γk′ , (≥M), . . . , (≥M)

)
.
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Let F be the set of clubs of the form [q, γ′] where γ′ equals γ on coordinates 1,. . . , k′ and for each
coordinate i = k′+1,. . . , k either γ′i = (≥M) or γ′i is a natural number satisfying N ≤ γ′i < M .
Since there is exactly 2d choices for a set of coordinates with (≥M) in γ, and for each such choice
there is only finitely many clubs with (≥M) on exactly those coordinates in F , the set F is finite.

Claim 10.12. The clubs in F are pairwise disjoint and [q, γ] =
⋃
F .

The disjointness follows directly from the construction. For the union, it is enough to notice that
each [q, γ′] ∈ F satisfies [q, γ′] ⊆ [q, γ] and each (q, τ) ∈ [q, γ] can be found in one of the clubs of F .

Notice that [q, γ�M ] ∈ F — it corresponds to the choice of all d coordinates being (≥M). Let
F ′ = F \

{
[q, γ�M ]

}
. Observe that if [q, γ′] ∈ F ′ then the dimension of [q, γ′] is at most d−1. Thus,

we can apply the inductive assumption to each club in F ′ and take the union of all these clubs. Let F ′′

be the set of the clubs obtained this way. The clubs in F ′′ are pairwise disjoint, optimal, and disjoint
from [q, γ�M ]. Thus,

[q, γ] =
⋃
F ′′ ∪ [q, γ�M ],

is a decomposition of [q, γ] into finitely many pairwise disjoint optimal clubs.
For the effectiveness of the above construction, it is enough to observe that the bound M given

by Lemma 10.9 is effective and the rest of the construction is just a recursive application of the same
procedure. ut

10.5. Unambiguous automata

Fix an unambiguous blind counter Büchi automaton A with a set of states K and k-blind counters
C1, . . . , Ck. Our goal is to show that such an automaton cannot simultaneously (reading a finite word)
reach two distinct configurations belonging to the same optimal non-trivial club.

Lemma 10.13. Let [q, γ] be an optimal club and w ∈ Σ∗ be a finite word. Assume that for i =
1, 2 there exists a configuration (q, τi) ∈ [q, γ] that can be reached while reading w from the initial
configuration. If τ1 6= τ2 then the club [q, γ] is trivial.

Similarly, if a configuration (q, τ) can be reached by two distinct runs while reading a finite word
w from the initial configuration then L

(
A, (q, τ)

)
is empty.

Proof:
Consider the first statement of the lemma. Assume to the contrary that [q, γ] is non trivial. Let (q, τ)
be the minimal configuration of [q, γ]. By the assumption of optimality, the ω-language L

(
A, (q, τ)

)
is non-empty, let α ∈ L

(
A, (q, τ)

)
be an ω-word witnessing that. Since both (q, τ1) and (q, τ2) belong

to [q, γ], we know that (q, τ) � (q, τ ′1) and (q, τ) � (q, τ2). Thus, Remark 2.3 implies that

α ∈ L
(
A, (q, τ1)

)
∩ L
(
A, (q, τ2)

)
.

This gives a contradiction because it means that A has two distinct accepting runs over w · α.
For the second statement of the lemma, the proof is analogous: if α ∈ L

(
A, (q, τ)

)
then A has

two distinct accepting runs over w · α. ut
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Notice that we can easily extend the above lemma to p-unambiguous blind counter Büchi automa-
ton, for an integer p ≥ 1. Let us call a blind counter Büchi automaton p-unambiguous if every ω-word
over the input alphabet has at most p accepting runs. Then we can state the following result which
holds for a p-unambiguous blind counter Büchi automaton. The proof is similar to the above one.

Lemma 10.14. Let [q, γ] be an optimal club and w ∈ Σ∗ be a finite word. Assume that for i =
1, 2, . . . , p, p+ 1 there exists a configuration (q, τi) ∈ [q, γ] that can be reached while reading w from
the initial configuration. If for all i, j ∈ [1, p+ 1] i 6= j → τi 6= τj then the club [q, γ] is trivial.

Similarly, if a configuration (q, τ) can be reached by p+1 distinct runs while reading a finite word
w from the initial configuration then L

(
A, (q, τ)

)
is empty.

10.6. The machineM

The construction of the machineM is based on the above Lemma 10.13. Thanks to it, we know that
in the naive powerset construction, it is enough to remember at most one configuration of A for each
optimal club. Moreover, by Proposition 10.11, one can split the whole configuration space of A into
finitely many pairwise disjoint optimal clubs.

Let F be a (finite) family of these clubs. Let the machineM store at most one configuration (q, τ)
for each club [q, γ] ∈ F (of course we require that (q, τ) ∈ [q, γ]). Notice that a finite family of
counters is enough to store all these configurations at once.

Upon reading a successive letter,M can update all the stored configurations according to all the
possible transitions of A. Whenever two distinct configurations obtained that way belong to the same
club of F (we call such a situation a collision),M can discard both these configurations, because the
club is guaranteed to be trivial.

More precisely, there are in fact two possible scenarios for a configuration (q′, τ ′) to be discarded
because of a collision. The first case is that there might be a distinct configuration (q′, τ ′′) 6= (q′, τ ′)
reachable by one of the simulated transitions, such that both (q′, τ ′) and (q′, τ ′′) belong to a single club
[q′, γ′] ∈ F . The second case is that the same configuration (q′, τ ′) can also be reached by a different
transition from one of the previously stored configurations. However, in both cases Lemma 10.13
applies, guaranteeing that L

(
A, (q′, τ ′)

)
= ∅.

Due to the policy of discarding, the invariant of storing at most one configuration per club from F
is preserved.

Finally,M uses a Muller condition to check if any of the runs of A that are simulated in parallel,
turned out to be accepting.

See Appendix A for a precise construction ofM and a discussion of exact computational features
used in its construction.

This concludes the proof of Theorem 10.1.

Remark 10.15. Notice that Theorem 10.1 can be extended to the case of a p-unambiguous blind
counter Büchi automaton, using Lemma 10.14 instead of Lemma 10.13. We do not enter into the
details which are left to the reader. The ideas are identical but the machineM will be simply more
complicated since it has to store at most p configurations (q, τ) for each club [q, γ] ∈ F .
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Theorem 10.16. If A is a p-unambiguous blind counter Büchi automaton, for an integer p ≥ 1, then
L(A) can be recognised by a deterministic Muller counter machineM that allows copying, hence by
a deterministic Muller Turing machine. Moreover, the translation from A toM is effective.

Corollary 10.17. Assume that A is a p-unambiguous blind counter Büchi automaton, for an integer
p ≥ 1. Then the ω-language L(A) is a Boolean combination of Π0

2-sets, hence a Borel ∆0
3-set. It is

actually an effective ∆0
3-set, i.e. an arithmetical (lightface) ∆0

3-set.

11. Concluding remarks

We have proved that the Wadge hierarchy of Petri nets ω-languages, and even of ω-languages in the
class r-BCL(4)ω, is equal to the Wadge hierarchy of effective analytic sets, and that it is highly unde-
cidable to determine the topological complexity of a Petri net ω-language. Based on the constructions
used in the proofs of the above results, we have also shown that the equivalence and the inclusion
problems for ω-languages of Petri nets are Π1

2-complete, hence highly undecidable. In some sense,
from the two points of view of the topological complexity and of highly undecidable problems, our
results show that, in contrast with the finite behaviour, the infinite behaviour of non-deterministic Petri
nets is closer to the infinite behaviour of Turing machines than to that of finite automata.

As further developments showing the inherent complexity of the model, we have proved that the
determinacy of Wadge games between two players in charge of ω-languages of Petri nets is equivalent
to the (effective) analytic determinacy, which is known to be a large cardinal assumption, and thus is
not provable in the axiomatic system ZFC. We have also provided a Petri net whose ω-language is
either a Borel Π0

2-set or a non-Borel set, depending on the model of ZFC under consideration.
Additionally, we have shown that in fact only one counter is enough to obtain a single Σ1

1-com-
plete ω-language, i.e. an ω-language of maximal topological complexity among those recognisable by
Petri nets. All these results imply that non-deterministic Petri nets are expressively stronger than any
reasonable model of deterministic or unambiguous machines.

We have also studied the expressive power of unambiguous Petri nets. As it turns out, they admit
a determinisation procedure. As a consequence, the topological complexity of their ω-languages is
low in the Borel hierarchy (they all are ∆0

3 sets).
It remains open for further study to determine the Borel and Wadge hierarchies of ω-languages ac-

cepted by automata with less than four blind counters. In particular, it then remains open to determine
whether there exist some ω-languages accepted by 1-blind-counter automata which are Borel of rank
greater than 3.
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[41] Carayol A, Löding C, Niwiński D, Walukiewicz I. Choice functions and well-orderings over the infinite
binary tree. Central European Journal of Mathematics, 2010. 8:662–682.

[42] Finkel O, Simonnet P. Topology and ambiguity in omega context free languages. Bulletin of the Belgian
Mathematical Society, 2003. 10(5):707–722.

[43] Finkel O, Simonnet P. On Recognizable Tree Languages Beyond the Borel Hierarchy. Fundamenta
Informaticae, 2009. 95(2-3):287–303.

[44] Rabinovich A, Tiferet D. Degrees of Ambiguity of Büchi Tree Automata. In: Chattopadhyay A, Gastin P
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A. Construction of the machineM from Section 10

In this appendix we provide a precise construction of a real time counter machineM with zero tests
and copying, as stated in Theorem 10.1. We assume that an unambiguous blind counter Büchi au-
tomaton A is fixed.

A.1. Simulating transitions

First we show how it can represent single configurations of A and simulate transitions.
Let [q, γ0] =

[
q,
(
(≥0), (≥0), . . . , (≥0)

)]
be a maximal club of dimension k (recall that k is

the number of blind counters of the input automaton A). Notice that
⋃
q∈K [q, γ0] is the set of all

configurations of A. Apply Proposition 10.11 to each of the clubs [q, γ0] obtaining a finite set of
clubs Fq. Let F =df

⋃
q∈K Fq. Then F is a finite set of pairwise disjoint optimal clubs and

⋃
F is

the set of all configurations of A. By further splitting the clubs in F and applying Lemma 10.8, we
can ensure that all the clubs in F share the same threshold N — it is enough to take as N the maximal
threshold of the clubs in F and then perform a similar splitting as in the proof of Proposition 10.11.
Clearly we can ensure that N > 0. Notice that the set F can be effectively computed based on A—
it is enough to use Proposition 10.11 for that.

For each club [q, γ] ∈ F the machineM has a separate set of k counters, denoted C[q,γ]
1 , . . . , C[q,γ]

k .
This means thatM has k · |F | counters in total. A configuration (q, τ) ∈ [q, γ] ∈ F is represented in
these counters by subtractingN from each of the counter values, i.e. for j = 1, . . . , k the counter C[q,γ]

j

stores the value max(τj−N, 0). Notice that if the jth coordinate of γ equals (≥N) then τj−N ≥ 0
and our way of storing the value is exact. On the other hand, if γj is a natural number then τj = γj ,
because (q, τ) ∈ [q, γ]. This means that in this case the value τj (even if smaller thanN ) is determined
by γ and therefore known.

Now we will show how the machine M can simulate a transition a : (q, τ) 7→A (q′, τ ′) of A.
Assume that (q, τ) ∈ [q, γ] ∈ F and the configuration (q, τ) is stored in the counters C[q,γ]

1 , . . . , C[q,γ]
k

ofM. First notice that based on γ the machineM can decide if the transition is possible at all, i.e. if
the non-negativity conditions of the transition are met by τ (the assumption that N > 0 is used here).
Moreover, for each coordinate j such that γj = (≥N), the machineM can use a zero test on C[q,γ]

j to
determine if τj = N or τj > N . The remaining coordinates of τ are fixed by the knowledge of γ. This
allowsM to determine the unique club [q′, γ′] ∈ F such that (q′, τ ′) ∈ [q′, γ′]. Thus,M can copy the
values from the counters C[q,γ]

1 , . . . , C[q,γ]
k to the counters C[q′,γ′]

1 , . . . , C[q′,γ′]
k and additionally perform

the counter modifications as in the original transition: if τ ′j 6= τj then the machine updates C[q′,γ′]
j in

such a way to ensure that C[q′,γ′]
j = max(τ ′j−N, 0) — this update may also require to perform a zero

test on C[q,γ]
j to know if τj = N or not.

There are two technical subtleties of the above construction. First [q′, γ′] might be equal to [q, γ]
and then no copying is needed. Second, it might be the case that γj = τj is a natural number greater
than N in which case the value of C[q,γ]

j is a positive number equal to τj −N . In that case that number

needs to be stored in C[q,γ]
j (even though it is fixed by γ) and then copied to C[q′,γ′]

j because it might be
the case that γ′j = (≥N).
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We exploit here the fact that the thresholds of all the clubs in F are the same.

A.2. Simulating non-determinism

The above simulation allows us to represent one configuration of A for each club [q, γ] ∈ F . More-
over, we know how to perform transitions on these configurations. We can also simulate non-determin-
ism of A: if a : (q, τ) 7→A (q′, τ ′) and a : (q, τ) 7→A (q′′, τ ′′) such that (q′, τ ′) and (q′′, τ ′′) belong
to distinct clubs of F thenM can simulate both transitions simultaneously. This means thatM can
simulate in parallel all possible runs of A over the given input word α. The only situation when that
fails is a collision, i.e. the situation when two2 configurations (q′, τ ′) and (q′, τ ′′) can be reached via
distinct finite runs over a joint prefix of α, with both (q′, τ ′) and (q′, τ ′′) belonging to the same club
[q′, γ′] ∈ F .

The crucial observation that makes the construction of M possible is Lemma 10.13 — when-
ever a collision occurs, it means that either (q′, τ ′) 6= (q′, τ ′′) and the club [q′, γ′] is trivial (i.e.
L
(
A, [q′, γ′]

)
= ∅); or (q′, τ ′) = (q′, τ ′′) and L

(
A, (q′, τ ′)

)
= ∅. Thus, the following remark holds.

Remark A.1. If a configuration (q′, τ ′) is a part of a collision then L
(
A, (q′, τ ′)

)
= ∅.

Let us explain the construction more formally. Assume that the control state ofM remembers for
which clubs [q, γ] ∈ F the counters C[q,γ]

1 , . . . , C[q,γ]
k actually represent a configuration ofA (otherwise

their values are irrelevant). Thus, the set of states ofM is the set of bitmaps 2F that mark some clubs
[q, γ] ∈ F as inhabited and the other as not inhabited. The initial configuration ofM stores 0 in all
the counters and the bitmap marks only one club as inhabited — the one containing (q0, 0, . . . , 0),
i.e. the initial configuration of A.

Reading a letter a ∈ Σ, the machineM simulates all the possible transitions a : (q, τ) 7→A (q′, τ ′)

for all the configurations (q, τ) represented in the counters C[q,γ]
1 , . . . , C[q,γ]

k for each inhabited club
[q, γ] ∈ F . Consider the case when a collision occurs, and two configurations (q′, τ ′), (q′, τ ′′) ∈
[q′, γ′] belonging to the same club [q′, γ′] ∈ F need to be stored in the counters C[q′,γ′]

1 , . . . , C[q′,γ′]
k . In

that caseM discards both configurations (q′, τ ′) and (q′, τ ′′).
The control state ofM is updated accordingly to know which clubs are inhabited: a club [q′, γ′] ∈

F is inhabited after such a transition iff at least one of the simulated transitions led to a configuration
(q′, τ ′) ∈ [q′, γ′] that was not discarded. This concludes the definition of the transition function ofM.

A.3. Acceptance condition and equivalence

We now need to define the acceptance condition ofM. Assume that an ω-word σ = a1a2 . . . has been
read. Consider a run r of A over σ. The consecutive transitions used in r are simulated byM when
reading σ. There are two possibilities: either one of the configurations in r is discarded inM because
of a collision; or all the configurations in r are simulated byM (i.e. none of them is discarded). In
the latter case we say that r is simulated.

2We do not assume that the configurations (q′, τ ′) and (q′, τ ′′) are distinct, it might be the case that τ ′ = τ ′′ but there are
two distinct runs reaching the configuration (q′, τ ′).
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Let the acceptance condition ofM be chosen in such a way that a run ofM is accepting if and
only if it there exists at least one accepting run r of A that is simulated. Notice that Remark A.1
together with the policy of discarding configurations upon collisions imply the following fact.

Fact A.2. If r is an accepting run of A over an ω-word σ then it is simulated, i.e. none of its configu-
rations is discarded byM.

Lemma A.3. One can encode the above acceptance condition ofM as a Muller condition, at the cost
of extending the state space ofM.

Proof:
Consider a transition taken byM from one of its states upon reading a letter a. Our goal is to encode
that transition as an element θ of 2F×F . We will call θ the graph of that transition ofM. Let the graph
θ contain a pair 〈[q, γ], [q′, γ′]〉 ∈ F ×F if and only if the club [q, γ] was inhabited at the beginning of
the transition by a configuration (q, τ) ∈ [q, γ],M simulated a transition a : (q, τ) 7→A (q′, τ ′), the
configuration (q′, τ ′) was not discarded, and (q′, τ ′) ∈ [q′, γ′].

Each infinite execution ofM while reading an ω-word σ defines a sequence of graphs θ1, θ2, . . .
encoding the successive transitions of M. The ω-word θ1θ2 . . . ∈

(
2F×F

)ω is called the graph of
σ. A path in such a graph is a sequence of clubs

(
[qi, γi]

)
i=1,...

such that for each i ≥ 1 we have
〈[qi, γi], [qi+1, γi+1]〉 ∈ θi. Such a path is accepting if infinitely many of the states qi are accepting.

Notice that (for a fixed ω-word σ) there is a bijection between runs r ofA over σ that are simulated
and paths in the graph of σ. Moreover, accepting runs correspond to accepting paths. Therefore, to
check if there is an accepting simulated run it is enough to check if the graph θ1θ2 . . . ∈

(
2F×F

)ω
contains an accepting path.

Treating 2F×F as a finite alphabet, the ω-language of ω-words θ1θ2 . . . ∈
(
2F×F

)ω that contain
an accepting path is regular and therefore it can be recognised by a deterministic Muller automatonD.
By extending each state ofM by an additional state of D, one can encode the acceptance condition of
D directly onM, turning it into a Muller machine. ut

Notice that the above lemma relies heavily on the fact that the acceptance condition of A is en-
coded only on the set of states K of A, without considering the counter values. This allows us to
detect accepting runs of A by looking only on the sequence of clubs that were visited.

This concludes the construction of the machineM. The following corollary of Fact A.2 implies
thatM satisfies the requirements from Theorem 10.1.

Corollary A.4. The machineM accepts an ω-word σ ∈ Σω if and only if σ ∈ L(A).

A.4. Discussion

The above construction is quite flexible both in terms of the input and output models (i.e. the exact
abilities of the automata A andM respectively). For instance, if one doesn’t care about the effective-
ness of the determinisation construction, one can extend it to allow the input automaton to reset the
value of some of its counters to 0 (this can be simulated byM using copying). Clearly Remark 2.3 is
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still valid for these machines, therefore Remark 10.10 applies one can repeat the rest of the argument
proving the existence of the machineM. Notice that one cannot hope for an effective variant of Re-
mark 10.10 (i.e. Lemma 10.9) because the non-emptiness problem for Büchi blind counter automata
with resets is undecidable (see Theorem 10 and Lemma 17 in [66]).

On the other hand, it seems that the ability of the output machine M to perform zero tests is
inherent to that construction. At the same time, A needs to be blind because otherwise it would
violate Remark 2.3. This implies that there might be no single type of counter machines so that both
A andM could be assumed to be of that type (which would provide a determinisation construction
within that type of automata). Also, there seems to be no reasonable way to avoid the need of copying
the counters inM, as the graph of the possible traces inM can be complex and branching.

The above construction is arranged in such a way to ensure that M is a real time multicounter
automaton with zero tests and counter copying. This model of machines is much more concrete
than general Turing machines, but in the end its expressive power is essentially the same — already
two-counter Minsky machines with zero tests are able to simulate arbitrary Turing machines [65].


