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ABSTRACT

Surveillance data serving for epidemic alert systems are typically fully 

aggregated in space at the national level. However, epidemics may be spatially 

heterogeneous, undergoing distinct dynamics in distinct regions of the 

surveillance area. We unveil this in retrospective analyses by classifying 

incidence time series. We use Pearson correlation to quantify the similarity 

between local time series and then classify them using modularity maximization. 

The surveillance area is thus divided into regions with different incidence 

patterns. We analyzed 31 years (1985-2016) of data on influenza-like-illness 

from the French system Sentinelles and found spatial heterogeneity in 19/31 

influenza seasons. However, distinct epidemic regions could be identified only 4-

5 weeks after the nationwide alert. The impact of spatial heterogeneity on 

influenza epidemiology was complex. First, when the nationwide alert was 

triggered, 32-41% of the administrative regions were experiencing an epidemic, 

while the others were not. Second, the nationwide alert was timely for the whole 

surveillance area, but, subsequently, regions experienced distinct epidemic 

dynamics. Third, the epidemic dynamics were homogeneous in space. Spatial 

heterogeneity analyses can provide the timing of the epidemic peak and finish, in 

various regions, to tailor disease monitoring and control. 

Key words: Influenza-like-illness, Syndromic surveillance, Spatial heterogeneity, 

Modularity

Abbreviations: ILI, influenza-like illness; CI, confidence interval; NUTS, 

nomenclature of units for territorial statistics

Page 2 of 51American Journal of Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3

Syndromic surveillance systems (1-6) are operational in many countries (7-18). 

Such systems routinely gather data on the number of clinical cases of infectious 

diseases over large surveillance areas.  After curation and consolidation, data can 

be summarized as time series of disease incidence.  Nationwide epidemic alert 

systems (19-23) are typically based on aggregating data over the whole 

surveillance area (i.e., highest level of spatial aggregation), to inform top-down 

strategies of public health. However, epidemics may be highly heterogeneous in 

space. Therefore, alerts from global systems may not concur with local epidemic 

dynamics; the national public health message may arrive either too late or too 

early for the local health authorities. 

In this work, we develop new analyses of surveillance data to assess spatial 

heterogeneity of epidemics, using elements of metapopulation theory (24).  In 

this context, the problem of disentangling the dynamics occurring in a large 

surveillance area is known as the mega-patch problem (25).  Specifically, our 

problem is to classify large-scale, spatiotemporal surveillance data and figure out 

weakly interacting epidemics of the same infectious disease in subpopulations 

inhabiting different demographic areas. Hence, we aim to assess epidemic 

heterogeneity in the surveillance area and aggregate the data by subpopulation, 

to retrospectively analyze the performance of global epidemic alert systems. We 

also show that our methodology can be used in real-time, as an epidemic unfolds, 

to reveal spatial heterogeneity shortly after the nationwide alert.
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We apply our methods to influenza-like illness (ILI) data collected in the 

metropolitan France by the Sentinelles surveillance system (26, 27), a network 

of voluntary, unpaid, general practitioners who report weekly numbers of ILI 

diagnostics together with age, sex, vaccination status and clinical characteristics 

of patients. Influenza-like illness was defined as a sudden onset of fever over 39 

degrees Celsius with myalgia and respiratory symptoms (cough, sore throat) 

(28). 

Time series for the number of ILI cases per 100 000 individuals per week (i.e., ILI 

incidence), from 1984 to present day, are available at four different levels of 

spatial resolution, according to the nomenclature of units for territorial statistics 

(NUTS) in France (29): 96 departments (NUTS3), 22 administrative regions 

(NUTS2), 13 administrative regions (NUTS1) and the national level. The variance 

of incidence is estimated assuming that the number of reported cases obeys the 

Poisson distribution and local incidence rates are well-described by a normal 

distribution. Hence, 95% confidence intervals (CI) are calculated for all weekly 

incidence rate estimates, using these approximations (30). Furthermore, a 

weekly threshold for the national alert of influenza epidemic is estimated from 

the ILI incidence time series (18). The nationwide alert for influenza epidemic is 

triggered when ILI incidence exceeds this threshold for two consecutive weeks 

(18). Demographic data matching the time period of the Sentinelles data are 

available from the Institut National de la Statistique et des Etudes Economiques 

(31).
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METHODS

Each seasonal epidemic may have distinct dynamics and spatial patterns; we 

propose analyses for yearly datasets.  We assume that the surveillance area is 

divided into N smaller units for simultaneous data collection, called catchment 

areas. In each catchment area, data are collected independently and may be 

further used to reconstruct a time series of incidence, to be assigned to the 

catchment area.

Epidemics occur in spatially heterogeneous demographic environments. Hence, 

the epidemic dynamics at the national scale may originate from a sum of several, 

say C, nearly independent epidemics, each of them established into a distinct 

community, included in the surveillance area. A community epidemic may be 

localized in a region spanning several catchment areas, called epidemic region. 

See Fig. 1, where catchment areas i and j are included in epidemic region a, while 

catchment area k is included in epidemic region b. Studying interdependence 

between incidence time series, constructed for each catchment area, may suggest 

how to group/classify these space units and reconstruct the epidemic regions 

(Fig. 1).  

Over a short time interval, the total number of clinical cases reported in a 

catchment area, comprised into an epidemic region, has two contributions. It 

contains (1) a fraction of the infectious disease cases reported in the epidemic 

region and (2) other cases, which may not belong to the epidemic, and represent 

a time-independent background, specific to the catchment area.  Hence, the 

incidence of catchment area i, Ii, may be written as a fraction pi of the infectious 
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disease incidence in epidemic region a, Ja, supplemented by a local background 

incidence qi; i.e., Ii = pi Ja + qi. Thus, time series from two catchment areas 

included in the same epidemic region fit well one versus the other through a 

linear model, while time series from two catchment areas, not included in the 

same epidemic region, do not.  The purpose of our methodology is to estimate 

the number of epidemic regions and identify the catchment areas included in 

each epidemic region (Fig. 1). 

The analyses are organized according to the following steps:

(i) Assessment of time-series interdependence. We consider each pair of catchment 

areas and fit their corresponding time series, one versus the other, using a linear 

model.  In case of missing data, we select only the data at common time points.  

The adjusted squared coefficient of determination, R2, used as goodness of fit, 

characterizes the correlation strength between each pair of time series. R2 is also 

proportional to the squared coefficient of Pearson correlation and is thus 

symmetric in the two time series, defining a reflexive relationship of similarity. 

Hence, the R2 values from all pairs of time series can be organized as a symmetric 

matrix.

(ii) Determination of epidemic regions. We consider the matrix of R2 values as an 

adjacency matrix, defining an all-to-all undirected network with weighted edges, 

having all catchment areas as nodes.  We classify the time series corresponding 

to the catchment areas by determining the community structure of this all-to-all 

network using modularity maximization (32-35).  Thus, each community 

contains nodes (catchment areas) whose time series correlate well to one 
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another, and forms an epidemic region. In contrast, the correlation between time 

series of catchment areas included in different communities (epidemic regions) 

may be significantly weaker. Modularity maximization is employed here as an 

algorithm for unsupervised classification or hierarchical clustering (35-37), 

using a measure of similarity (i.e., R2). Many other classification schemes are 

available. However, modularity maximization is simple to implement 

numerically. Its methodological shortcomings are well documented (38) and 

minor for the application which we discuss below. 

We tested two numerical algorithms (32, 34) to maximize modularity and 

obtained similar results for our ILI data. The output of a single run of modularity 

maximization is a partition of the nodes into a number of disjoint communities, 

determined by the algorithm. In fact, each node is assigned a numerical label, 

from 1 to C, for the community where it belongs. The output is organized as a 

vector of community labels, with length equal to the number of nodes. This data 

structure, fundamental for our analyses, is called modularity vector (32, 34).

(iii) Impact of data uncertainty. 

Epidemic regions result from classifying a relatively small numbers of nodes 

(catchment areas) whose features are defined by noisy data. Bootstrap analyses 

can establish the robustness of the node classification with respect to noise. 

Here, we organized according to the following three steps.

(iiia) Surrogate datasets.
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We built surrogates for each data point using a normal distribution with mean at 

the incidence estimate and variance tuned by the corresponding CI (i.e., 

parametric bootstrap). We thus generated 10 000 surrogate datasets, which we 

analyzed according to steps (i) and (ii) described above. 

(iiib) Bootstrap analyses.

The labeling of the communities serves no particular purpose beyond single run 

analysis. This leads to difficulties in the case where many modularity vectors are 

to be processed as an ensemble; see Web Appendix 1 for illustration. Even in the 

case where nearly identical datasets are processed, all yielding exactly the same 

partition, the community labeling may differ, leading to different modularity 

vectors.  However, in this case, we can align each modularity vector to the first, 

by searching among all permutations of symbols from 1 to C for a relabeling of 

the communities that makes each modularity vector coincide with the first.  

The same principle works for the case where datasets are not too similar (still, 

noise in the data should be sufficiently small), so the resulting modularity 

vectors correspond to different, but similar partitions. In general, analysis of 

bootstrap data yields an ensemble of modularity vectors where the number of 

communities, C, ranges from 1 to some maximum value, Cmax. For each value of C, 

we chose a reference vector, which we align as follows. Given two modularity 

vectors with C1 and, respectively C2 communities (C1 ≤ C2), we search among all 

permutations of symbols from 1 to C1 for a relabeling that maximizes the number 

of identical symbols between the two vectors. The remaining (i.e., non-reference) 

modularity vectors may be then quickly aligned to the reference vector with the 

Page 8 of 51American Journal of Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

corresponding value of C, using a similar procedure. Alignment of modularity 

vectors ensures the same community labeling for the analyses of all bootstrap 

data. 

(iiic) Summary statistics for the ensemble of aligned modularity vectors

The ensemble of aligned modularity vectors is further processed to reveal 

distinctions in the node classification based on details attributable to noise in the 

data. In particular, we compute fa
i, the fraction of times catchment area i 

appeared in community a (Web Figure 1 in Web Appendix 1). To evaluate the 

global impact that uncertainty has on community structure, we calculate the 

following bootstrap score inspired by the Shannon entropy

𝐵=―
𝐶𝑚𝑎𝑥

∑
𝑎= 1

𝑁

∑
𝑖= 1

𝑓𝑖𝑎𝑙𝑜𝑔(𝑓𝑖𝑎)
𝑁𝑙𝑜𝑔(𝑁) .

If all values of fa
i are either 0 or 1, then data uncertainty has no impact on 

community decomposition and B=0; the higher the value of B, the deeper the 

impact of data uncertainty on community decomposition; see Web Appendix 2 

for further discussion.

(iv) Data aggregation for each epidemic region. Incidence time series belonging 

to community a may be aggregated using the catchment area population 

multiplied by fa
i, as weight. This yields a time series of expected incidence and 

corresponding CI for each community. We do not aggregate a time series for 

community a if ; that is, the weights for region a do not amount to ∑𝑁
𝑖= 1𝑓

𝑖
𝑎< 2

represent at least two catchment areas. 
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(v) Validation. We reject the output of the above analyses if the resulting 

bootstrap score B is above a pre-established threshold. Furthermore, we use 

Hellinger distance (39) to validate statistically the distinction between two 

aggregated time series. Namely, for each moment of time, we calculate the 

Hellinger distance between the corresponding data, assuming that incidence is 

normally distributed. Then, summing the pairwise Hellinger distances over the 

duration of the time series, we obtain a Hellinger score, denoted by H. The 

distinction between two epidemic regions is rejected if the Hellinger score 

between the corresponding aggregated time series is less than a certain 

threshold. In this case, one may choose to merge the two epidemic regions, as the 

distinction revealed by the algorithm may be considered too small to have 

operational value.

The interdependence between aggregated, community time series may be 

further assessed using Pearson correlation; see step (i).  Community 

decompositions with high bootstrap score B, where many values of fa
i differ 

significantly from 0 or 1, yield high R2 values between aggregated time series, 

because the time series for catchment area i may contribute significantly to 

several aggregated community time series. This is where our analyses do poorly. 

In contrast, for community decompositions with low bootstrap score B, we may 

expect that R2 between aggregated time series is small, indicating weak 

interdependence and a meaningful disaggregation of the national epidemic 

curve. We also validate our analyses if the bootstrap score B is low and only one 

community is most likely to be found. In this case, we say that the entire 

surveillance area was subject to an epidemic homogeneous in space.
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In the case of automated surveillance, where the lengths of the time series 

increase steadily with time, the above analyses may be repeated for each 

additional time point, to constantly monitor B, H and R2.

RESULTS

We split yearly data into two: a 26-week period (the influenza season, mid-

October to mid-April) when influenza epidemics can occur in France, and its 

yearly complement. Analyses were carried out independently. During an 

influenza season, the weekly number of ILI cases per 100 000 individuals 

typically peaks at high values (i.e., 350-2000), while off-season, it passes through 

much lower values (i.e., <100). Our analyses showed that findings are robust 

regarding the definition of the influenza season, provided that the time interval 

defined by the start week (Table 1) and the 26-week duration includes the high 

incidence values. 

We contrasted analyses of data collected during the influenza season with 

analyses of data collected off-season (Web Appendix 3, Web Figure 2). The 

adjusted R2 values were relatively high for the data collected during the 

influenza season, motivating the search for epidemic regions (Web Appendix 4, 

Web Figure 3). In contrast, R2 values were consistently low for the data collected 

off-season, indicating that ILI incidence time series are poorly correlated.  Thus, 

the search for epidemic regions was not motivated, in this case.
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We performed analyses at 3 levels of spatial resolution of the French 

administrative structure (Web Appendix 5, Web Figure 4). First, we considered 

the department level (NUTS3; 96 departments). The typical French department 

had ~500 000 population and 3-5 practitioners participating to the Sentinelles 

surveillance system. Under the circumstances, fluctuations in reported ILI cases 

proved important for time series dynamics and trends were not readily 

apparent. The resulting R2 values were relatively low and, searching for 

community structure at this level, unjustified. Fluctuations in reported ILI cases 

were much reduced when data were aggregated at the level of the 13 NUTS1 

regions; a NUTS1 region contains in median 6 departments. Spatial 

heterogeneity analyses were sound; however, this spatial resolution was found 

to be coarse and suboptimal for defining epidemic regions. A better approach 

was the middle ground of spatial resolution, provided by the 22 NUTS2 

administrative regions; a NUTS2 region contains in median 4 departments.

Bootstrap analyses unveiled the role of data uncertainty for our results; see 

Table 1. Based on retrospective analyses, we divided the 31 influenza seasons 

into four disjoint groups: seasons where (1) B>0.1 and data uncertainty had a 

substantial impact on ascertaining spatial homogeneity/heterogeneity of 

epidemics (5/31), (2) B<0.1, H<10 and thus, aggregated time series were very 

similar, considering data uncertainty (5/31), (3) B<0.1, H<10, R2 >0.6, and the 

level of spatial heterogeneity may be subject to further discussion (11/31), and 

(4) B<0.1, H<10, R2 <0.6, and spatial heterogeneity was particularly strong, 

playing a clear role for local surveillance (10/31).
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Retrospective analyses revealed three scenarios where epidemic heterogeneity 

played a role relative to the current protocols for epidemic alert and epidemic 

threshold in France.  Accordingly, we present detailed results about six 

illustrative influenza seasons. Figure 2 shows results for the 2015-2016 (panels 

A) and C)) and 1985-1986 (panels B) and D)) influenza seasons, where the 

surveillance area of Sentinelles was divided into two epidemic regions of 

comparable size. We colored a catchment area depending on the fraction of times 

it occurred in the first epidemic region and the fraction of times it occurred in 

the second epidemic region, in bootstrap analyses of 10 000 datasets. A 

catchment area was colored blue or red if it occurred always in the first or 

second epidemic region; i.e., the fractions were, respectively, either (1.0, 0.0) or 

(0.0, 1.0). Otherwise, we used intermediate colors, interpolated between the 

extremes of red and blue. However, in the case of low B, all map colors are nearly 

blue or nearly red.  

The two epidemic regions that we found had distinct influenza dynamics; see the 

panels C) and D) in Fig. 2. The epidemic in one region (blue) started early, while 

the epidemic in the other region (red) started 3-4 weeks later. The national 

epidemic alert (vertical line) was triggered by the early epidemic. Hence, for 3-4 

weeks, one region was under alert, yet not experiencing an epidemic, because of 

the epidemic in the other region. In these cases, simply mapping the difference 

between the local and national-level ILI incidence at the time of the national 

epidemic alert, suggested clear patterns of spatial heterogeneity (Web Appendix 

6, Web Figure 5).
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Figure 3 shows results for the 1997-1998 (panels A) and C)) and 1991-1992 

(panels B) and D)) influenza seasons. Again, in each case, the surveillance area 

was divided into two epidemic regions of comparable size. The epidemics 

arrived nearly at the same time; the delay was only 1 week, which is the time 

resolution of Sentinelles. However, the subsequent epidemic dynamics were 

quite different in the two regions that might have benefited from tailored 

surveillance. For example, in the 1997-1998 influenza season, ILI incidence 

peaked 5 weeks apart in the two epidemic regions. This was not the case for the 

1991-1992 influenza season. However, during the 1991-1992 influenza season, 

ILI incidence in one epidemic region (blue) reached below the epidemic 

threshold 5 weeks before the ILI incidence in the other epidemic region (red).

Finally, we report on the 2014-2015 and 2012-2013 influenza seasons (Table 1) 

where the whole surveillance area appeared as a single epidemic region in 97% 

and 85% of the bootstrap analyses, respectively. These are remarkable cases of 

epidemic homogeneity in space. Consequently, the national alerts were timely 

for the entire surveillance area and the current public health protocols worked 

as expected.

To assess their performance for real-time applications, we repeated our analyses 

with varying amount of data. Namely, we considered datasets from the beginning 

of the influenza season up to a certain week after the epidemic alert and 

investigated how B and R2 change with the amount of data. Figure 4 shows 

results for the 2015-2016 (panel A)) and 1997-1998 (panel B)) influenza 

seasons, where the most likely divide was into two epidemic regions. The 
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amount of data gathered from the beginning of the influenza season up to the 

time of the national alert, and immediately after, was insufficient for clear 

results. B values were high, indicating that data uncertainty had a strong impact 

on our results. Furthermore, aggregated time series were highly correlated, 

resembling the national epidemic curve. However, data gathered 4-5 weeks after 

the nationwide alert was already sufficient to ascertain spatial heterogeneity of 

the epidemic with B<0.1 and R2<0.6. Analyses of datasets for the following weeks 

provided confirmation, with a slightly increasing trend for R2 as the epidemic 

went extinct. 

It is important to note that, even if detection of epidemic regions may occur later 

than the nationwide alert, it can still offer critical information on the qualitative 

and quantitative dynamics of regional epidemics. For example, in the case of the 

2015-2016 influenza season (Fig. 4, panel A)), robust detection of epidemic 

regions is obtained in week 5 after the global epidemic alert. Inspection of Fig. 2 

reveals that this corresponds to week 10 of the influenza season. At that time, the 

epidemic was past its peak in the blue epidemic region, but not in the red region. 

Incidentally, the epidemic was also not past its peak at the national scale. Similar 

results hold for the 1997-1998 influenza season (Fig. 4, panel B)). Hence, our 

methods can successfully deliver the spatial structure of influenza epidemics, in 

time for improving monitoring and control during the influenza season. 

DISCUSSION
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Timeliness is a key performance measure of public health surveillance systems 

(40). However, timeliness can depend on the scale at which information is 

aggregated to inform public health practitioners. For example, in France, 

epidemic alerts for influenza are given once for the whole surveillance area, 

based on data aggregated at the national level. There are obvious statistical 

advantages in aggregating time series at the national level: noise is much 

reduced and incidence trends are more prominent as they cross epidemic 

thresholds. However, in case of spatial heterogeneity, this approach masks 

distinct epidemic dynamics taking place in the surveillance area, and undermines 

the usefulness of the surveillance system. 

The case of influenza illustrates this problem perfectly. The burden of seasonal 

influenza epidemics is large in western countries (41). Once the epidemic alert is 

triggered, national media campaigns on prevention are launched in the press, TV 

and radio, with messages on hygiene and vaccination. Timing can be critical, 

since vaccine-induced protection becomes effective about 2 weeks following 

vaccination (42). However, more concerning is the impact of influenza epidemics 

on the routine functioning of hospital wards (43). In France, influenza epidemic 

alerts put hospitals under stress, as emergency protocols may be activated (e.g., 

postponing non-urgent interventions, conscripting staff, freeing hospital beds). 

Untimely decisions in these situations may lead to inefficiency and incumbent 

costs to society. 

It is therefore important to identify situations where a public health message, 

designed for national broadcast, can be later supplemented with customized 
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information for the local practitioners. Mapping incidence data already gives 

important clues about epidemic heterogeneity (44). Furthermore, 

gravity/radiation models (45-49) could be employed for extensive 

spatiotemporal analyses, including data fitting. However, these models make 

strong assumptions on how two catchment areas must interact; i.e., gravity 

models assume that interaction declines with (squared) distance, while radiation 

models assume that individuals spread like radiation fluxes. With the goal of only 

classifying spatiotemporal data, we made minimal assumptions about the 

geographical structure, using concepts of metapopulation theory to discover the 

spatial structure of epidemics. Still, the epidemic regions that we found cluster, 

to a large extent, neighboring catchment areas. 

Regions of distinct epidemic dynamics may occur for a variety of reasons. 

Factors known to influence the transmission of influenza are: susceptibility 

profile of the population, circulating strains, vaccine parameters and vaccination 

patterns, travel and daily commuting, school holidays, and the weather. In 

addition, the spatiotemporal coordinates of the individuals who happen to 

initiate the influenza epidemics (so-called patients zero) may also be very 

important. Therefore, an account for the spatial heterogeneity of influenza, 

starting from first principles, may be particularly challenging. Our strategy was 

to determine influenza epidemic regions directly, using surveillance data, by 

analyzing local epidemic dynamics provided by incidence time series. 

Acknowledging spatial heterogeneity in a surveillance area and identifying 

epidemic regions may have important consequences for improving influenza 
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monitoring and control.  The operational value of epidemic regions depends on 

several key items. First, the spatial resolution must be appropriate (50). Here, 

the signal to noise ratio was too small for a meaningful analysis at the NUTS3 

level, but sufficient for defining epidemic regions at NUTS2 and NUTS1 level. 

This is relevant for the structure of public health administration in France. 

Second, the time to identification of distinct dynamics must be compatible with 

staggered delivery of public health messages. Here, 4-5 weeks of data past the 

time of the epidemic alert were necessary to identify epidemic regions. Even 

with this delay, valuable regional updates can be passed to the local health 

authorities during the epidemic, to maintain vigilance in the affected territories. 

The distinction of epidemic regions may be also relevant for collecting pathogen 

samples. Every influenza season, clinical samples from ILI cases are collected and 

analyzed, to establish the spectrum of circulating virus strains. In turn, this 

determines the composition of future influenza vaccines. Clinical samples should 

be collected from each epidemic region for a better characterization of the 

circulating influenza strains. 

In conclusion, we proposed new methodology to detect spatial heterogeneity in 

disease surveillance data and discussed monitoring ILI in France. However, our 

methods are not tailored to influenza epidemiology and may be used for other 

case diseases.
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TABLE

Table 1. Summary of results for 31 influenza seasons (1985-2016) in France, 

divided into 4 disjoint categories.

Season Start 

week

Bootstrap 

score, B

Hellinger 

score H 

between 

aggregated 

time series

Adjusted R2 

between 

aggregated 

time series

Most 

likely 

number of 

epidemic 

regions

Probability of 

most likely 

number of 

epidemic 

regions

seasons 

for which 

B > 0.1

 2007-2008 46 0.148 6.6 0.91 2 0.97

 2005-2006 48 0.208 3 0.87

  1 8.2 0.75

  2 10.0 0.65

  3 7.6 0.75

 2002-2003a 47 0.253 3 0.60

  1 13.3 0.39

  2 5.7 0.92

  3 10.5 0.60

 2000-2001a 44 0.290 3 0.66

  1 3.7 0.92

  2 9.4 0.73

  3 11.9 0.45

 1990-1991a 46 0.304 2 0.65
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  1 3.1 0.97

  2 5.8 0.81

  3 3.0 0.92

seasons 

for which 

B ≤ 0.1, 

but H < 10

 2013-2014 47 0.096 8.1 0.83 2 0.99

 2009-2010 32 0.082 9.9 0.76 2 1.00

 2006-2007 46 0.042 8.7 0.82 2 1.00

 2001-2002a 45 0.100 6.6 0.89 2 0.98

 1994-1995 52 0.070 8.8 0.80 2 0.99

seasons 

for which 

B ≤ 0.1, H 

> 10, but 

R2 > 0.6

 2008-2009 45 0.054 10.4 0.80 2 1.00

 2004-2005a 49 0.032 12.5 0.67 2 1.00

 2003-2004a 36 0.047 12.5 0.70 2 0.98

 1999-2000 42 0.086 11.1 0.79 2 0.99

 1998-1999a 46 0.069 10.6 0.68 2 1.00

 1995-1996a 38 0.012 13.8 0.73 2 1.00

 1993-1994 38 0.038 12.8 0.86 2 1.00

 1992-1993 47 0.050 11.7 0.65 2 0.99

 1988-1989 38 0.007 14.2 0.62 2 1.00

 1987-1988a 53 0.028 12.5 0.81 2 1.00

 1986-1987a 46 0.077 12.2 0.67 2 0.96

seasons 
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for which 

for which 

B ≤ 0.1, H 

> 10 and 

R2 ≤ 0.6

 2015-2016 48 0.006 13.3 0.49 2 1.00

 2014-2015 46 0.035 1 0.97

 2012-2013 46 0.074 1 0.85

 2011-2012 48 0.100 10.2 0.60 2 0.87

 2010-2011 44 0.028 13.4 0.46 2 1.00

 1997-1998a 50 0.014 12.9 0.34 2 1.00

 1996-1997a 42 0.014 14.4 0.56 2 1.00

 1991-1992 42 0.062 12.3 0.53 2 0.89

 1989-1990 41 0.000 14.8 0.43 2 1.00

 1985-1986a 44 0.026 13.4 0.41 2 0.94

a Corsica was excluded from the analyses due to missing data.
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FIGURE LEGENDS

Figure 1. Conceptual representation of a surveillance system observing a 

spatially heterogeneous epidemic. The surveillance area (thick contour) is 

divided into N catchment areas represented as squares (e.g., i, j, k). Several (say 

C) nearly independent community epidemics may develop simultaneously in 

various regions of the surveillance area; hence we may distinguish several 

epidemic regions (e.g., a, b). An epidemic region may include several catchment 

areas; e.g., catchment areas i and j are included in epidemic region a, while 

catchment area k is included in epidemic region b. The incidence time series of 

area i fits well the incidence time series of area j through a linear model, as 

catchment areas i and j belong to the same epidemic region and sample the same 

epidemic dynamics. In contrast, the incidence time series of area i fits badly the 

incidence time series of area k, as catchment areas i and k belong to different 

epidemic regions. The purpose of our methodology is to sort out the incidence 

time series in all catchment areas and attribute each area to an epidemic region.

Figure 2. Analyses for the 2015-2016 and 1985-1986 influenza seasons. The 

panels A) and C) refer to 2015-2016, while the panels B) and D) refer to 1985-

1986 (Corsica was excluded due to missing data). The panels A) and B) represent 

the epidemic regions that we found for France. A NUTS2 region (i.e., catchment 

area) was colored depending on the fraction of times it occurred in the first 

epidemic region and the fraction of times it occurred in the second epidemic 

region, in the analyses of 10 000 bootstrap datasets. Blue corresponds to 

fractions (1.0, 0,0) to occur in the first and second epidemic regions, respectively, 
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while red corresponds to the fractions (0.0, 1.0). For the other cases, we used 

intermediate colors. The panels C) and D) represent the ILI incidence time series 

(blue line with solid circle marker and red line with X marker) aggregated over 

the epidemic regions represented in panels A) and B) in respective colors. We 

also illustrate the national ILI incidence time series (black line) and the epidemic 

threshold (dotted line).  Note that the nationwide alert (vertical line) was not 

timely for both epidemic regions.

Figure 3. Analyses for the 1997-1998 and 1991-1992 influenza seasons. The 

panel arrangement and color code are similar to those of Fig. 2. The panels A) 

and C) refer to 1997-1998 (Corsica was excluded due to missing data), while the 

panels B) and D) refer to 1991-1992. The panels A) and B) represent the 

epidemic regions that we found for France. A NUTS2 region (i.e., catchment area) 

was colored blue (red) if it occurred all the time in the first (second) epidemic 

region. Intermediate colors represent NUTS2 regions that occurred in both 

epidemic regions. The panels C) and D) represent, in blue and red, the ILI 

incidence time series aggregated over the epidemic regions shown in respective 

colors in the panels A) and B). We also illustrate the national ILI incidence time 

series (black line) and the epidemic threshold (dotted line).  While the 

nationwide alert (vertical line) was appropriate, the epidemic regions 

experienced distinct dynamics and could have benefited from customized 

monitoring.

Figure 4. The bootstrap parameter B and the adjusted R2 between the 

aggregated time series of the first and second epidemic regions as a function of 
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the amount of data: results for the 2015-2016 and 1997-1998 influenza seasons. 

Data to estimate B and R2 was considered from the beginning of the influenza 

season up to a certain week after the epidemic alert, indicated on the horizontal 

axis. The values for B and R2 are plotted, respectively, in green with filled square 

markers and purple with + markers. Threshold values for B and R2 at 0.1 and 0.6, 

respectively, are shown as horizontal dashed lines in corresponding colors. We 

note a marked drop in B and R2 4-5 weeks after the epidemic alert.
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Correspondence to Dr. Romulus Breban, Unit d’Epidémiologie des Maladies Emergentes, Institut Pasteur,

25 rue du Dr. Roux, 75724 Paris Cedex 15, France (e-mail: romulus.breban@pasteur.fr)

November 1, 2018

Author a�liations: Institut Pasteur, UEME, Paris, France (Pavel Polyakov and Romulus Breban); and
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List of Web Figures

1 Alignment of modularity vectors. Two steps of analysis are illustrated: (a) relabeling of the

communities for each vector such that the number of symbols in common with the reference

(i.e., first) vector is maximized; (b) computation of f i
a, the fraction of times catchment area i

occurred in community (epidemic region) a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Comparison of results. PanelsA1 andB1 show histograms of the adjustedR2
values calculated

for each pair of time series, for the 2015-2016 winter season (weeks 48-20) and the 2015 summer

season (weeks 22-47) respectively. We note a substantial di↵erence in the median R2
values

(0.587 and 0.042, respectively). For the influenza season, many time series of catchment

areas correlate well, motivating a search for community structure. In contrast, o↵-season,

the correlation is much poorer and the search for community structure not motivated. The

catchment areas are represented by the 22 administrative regions, colored according to their

inclusion into di↵erent epidemic regions (panels A2 and B2, respectively). The community

structure in panel A2 (2 epidemic regions) is meaningful, the community structure in panel

B2 (4 epidemic regions) is spurious. No bootstrap was performed for this sample analysis. . . 5

3 Sample analyses for the 2015-2016 influenza season. Panel A shows the histogram of all

adjusted R2
values. Panel B shows the map of epidemic regions. The histograms of the

adjusted R2
values (corresponding medians: 0.723 and 0.750) for all pairs of time series in

each epidemic region, blue and red, are shown in the panels C and D, respectively. The panels

E and F represent the corresponding time series. Panel G shows the time series aggregated

over the blue and red regions, respectively. The adjusted R2
between the aggregated time

series is 0.492, indicating poor correlation. The national average is plotted in black and the

epidemic threshold is represented as the dashed line. Panel H shows the distribution of the

adjusted R2
(median: 0.354) where one time series belongs to the blue region and the other

to the red region. No bootstrap was performed for this sample analysis. . . . . . . . . . . . . 6

4 Analyses for the 2015-2016 influenza season at three di↵erent levels of spatial resolution. Each

resolution level is defined by a choice of catchment areas: 13 administrative regions (panels A1

and A2), 22 administrative regions (panels B1 and B2) and 96 departments (panels C1 and

C2). The top panels show graphical representations of the detected epidemic regions. The

bottom panels (A2, B2, C2) represent the histograms of the adjusted R2
values, calculated

between time series. We used blue (red) bars to show the histogram of R2
for time series

within the first (second) epidemic region. Yellow bars show the histogram of R2
in the case

one time series belongs to the blue region and the other to the red region. The median values

of the adjusted R2
for the blue and red histograms exceed that of the corresponding yellow

histogram, for each resolution level (i.e., 0.811 and 0.720 > 0.444 in panel A2; 0.723 and

0.750 > 0.354 in panel B2; 0.477 and 0.324 > 0.117 in panel C2, respectively). Analyses

at the level of the 13 administrative region implies the highest signal-to-noise ratio, but the

spatial resolution is rather coarse. For the highest resolution level (panels C1 and C2), noise

is important for the time series; the resulting R2
values are relatively low and, searching for

community structure at this level, unjustified. Compromise is achieved for the middle ground

of spatial resolution, provided by the 22 administrative regions. No bootstrap was performed

for this sample analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Spatial heterogeneity of weekly ILI incidence per 100 000 for the 2015-2016 (panel A) and the

1985-1986 (panel B) influenza seasons, at the time of the epidemic alert. The values show the

di↵erence between local and national ILI incidence for each of the 22 regions. Data is missing

for Basse-Normandie in panel B. For comparison, the spatial structures of time-correlated

epidemic regions (cf., Figure 2 of the main text) are shown in panels C and D, respectively. . 8
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1 Web Appendix 1

Illustration of the alignment of modularity vectors. Starting from the original dataset, we construct

a large collection of surrogate datasets (i.e., 10 000, in the main-text analyses), using parametric bootstrap.

Classifying each dataset using modularity maximization yields a partition of the catchment areas (nodes)

into a number of communities, C, that is determined by the algorithm in every single run. The output

corresponding to each dataset is stored as a modularity vector, a vector assigning a community label to each

catchment area. However, the number of communities and the community labeling is not preserved from

run to run. To use the set of modularity vectors as a statistical ensemble, we align the vectors, searching

for a consistent labeling of communities across the entire set. We assume that noise in the data is small, so

that the partitioning of the surrogate datasets is nearly identical and modularity vectors can be made nearly

identical by relabeling the communities found in each case.
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Web Figure 1: Alignment of modularity vectors. Two steps of analysis are illustrated: (a) relabeling of the commu-

nities for each vector such that the number of symbols in common with the reference (i.e., first) vector is maximized;

(b) computation of f i
a, the fraction of times catchment area i occurred in community (epidemic region) a.

The left side of Fig. 1 illustrates 4 column vectors, as a hypothetical set of 4 modularity vectors, emerging

from classifying 4 surrogate datasets, describing 5 catchment areas, coded 1 through 5. Entry i (i runs from
1 to 5) of a particular modularity vector provides the label of the community where catchment area i was
found in classifying that particular dataset. The numbers of communities, C, found across the datasets are:

3, 3, 3 and 2; Cmax = 3. However, the community labeling is not preserved from run to run. In fact, it

is easily seen that interchanging 1 and 3 (i.e., using the permutation 3 2 1 of 1 2 3) in the second vector

makes the second vector identical to the first. Such a transformation is not possible for the third vector,

because the partition of catchment areas is slightly di↵erent. Still, we can choose a permutation of 1 2 3

which maximizes the number of symbols that the third and first vectors have in common. A consistent

relabeling of communities for each modularity vector (see main text for the general recipe) yields a set of

aligned modularity vectors; see center of Fig. 1. This is used to compute f i
a, the fraction of times catchment

area i was classified in community a, over all bootstrap analyses; see the right side of Fig. 1. Note that we

necessarily have
PCmax

a=1 f i
a = 1. In Fig. 1, we found a total of Cmax = 3 communities (epidemic regions) for

5 catchment areas. Hence, the triplet (f i
1 f i

2 f i
3) helps define a color in the RGB palette for catchment area

i to be represented on the map.
⇤
If colors depart significantly from pure red, green or blue (i.e., f i

a departs

significantly from 0 and 1), then we say that noise in the time series data made a significant impact on the

data classification. The f i
a values are further used to quantify the impact of noise through a bootstrap score.

⇤In fact, since f i
1 + f i

2 + f i
3 = 1, the color palette is the additive RGB color triangle.
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2 Web Appendix 2

On the definition of the bootstrap score. A single run of data analyses (steps (i-ii) in the main text)

uncovers the number of epidemic regions, denoted by C, and assigns each of the N catchment areas to

one epidemic region. However, all this may change in a di↵erent run of analyses with bootstrapped data.

The number of epidemic regions could vary from 1, when all catchment areas are grouped together, to N ,

when each individual catchment area forms an epidemic region; the maximum number of epidemic regions

found over all bootstrap analyses Cmax is less or equal to N . Furthermore, the assignment of catchment

areas may change even though the number of epidemic regions does not. Each catchment area i is thus

characterized by the fraction of times it belonged to community a in the bootstrap analyses, f i
a. For each

fixed i, {f i
a; a = 1, . . . , Cmax  N} represents a set of normalized, independent probabilities,

PCmax

a=1 f i
a = 1.

If there exists b, 1  b  Cmax, such that f i
b = 1, we say that catchment area i is robustly assigned to

epidemic region b. The worse case scenario is f i
a = 1/N, 8a = 1, . . . , Cmax = N . We use the normalized

Shannon entropy Si
= �

PCmax

a=1 f i
a log f

i
a/ logN to quantify the information on the assignment of catchment

area i. For robust assignments, Si
= 0, while for the worst case scenario Si

takes its maximum value of 1.

We take the average Shannon entropy over the catchment areas to quantify the information for the whole

surveillance area B =
PN

i=1 S
i/N . Therefore, B may be written as

B = �
CmaxX

a=1

NX

i=1

f i
a log f

i
a

N logN
. (1)

It is important to note that, in general, B is not an entropy because the complete set of f i
a values, {f i

a; a =

1, . . . , Cmax  N, i = 1, . . . , N} cannot always be viewed as a set of independent, normalized probabilities.
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3 Web Appendix 3

Comparison of results for the 2015-2016 influenza season and the 2015 summer season: single
run analysis.
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Web Figure 2: Comparison of results. Panels A1 and B1 show histograms of the adjusted R2 values calculated for

each pair of time series, for the 2015-2016 winter season (weeks 48-20) and the 2015 summer season (weeks 22-47)

respectively. We note a substantial di↵erence in the median R2 values (0.587 and 0.042, respectively). For the

influenza season, many time series of catchment areas correlate well, motivating a search for community structure.

In contrast, o↵-season, the correlation is much poorer and the search for community structure not motivated. The

catchment areas are represented by the 22 administrative regions, colored according to their inclusion into di↵erent

epidemic regions (panels A2 and B2, respectively). The community structure in panel A2 (2 epidemic regions) is

meaningful, the community structure in panel B2 (4 epidemic regions) is spurious. No bootstrap was performed for

this sample analysis.

5

Page 38 of 51American Journal of Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 Web Appendix 4

Sample, single-run analyses for the 2015-2016 influenza season.
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Web Figure 3: Sample analyses for the 2015-2016 influenza season. Panel A shows the histogram of all adjusted

R2 values. Panel B shows the map of epidemic regions. The histograms of the adjusted R2 values (corresponding

medians: 0.723 and 0.750) for all pairs of time series in each epidemic region, blue and red, are shown in the panels

C and D, respectively. The panels E and F represent the corresponding time series. Panel G shows the time series

aggregated over the blue and red regions, respectively. The adjusted R2 between the aggregated time series is 0.492,

indicating poor correlation. The national average is plotted in black and the epidemic threshold is represented as the

dashed line. Panel H shows the distribution of the adjusted R2 (median: 0.354) where one time series belongs to the

blue region and the other to the red region. No bootstrap was performed for this sample analysis.
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5 Web Appendix 5

Comparison of results for three levels of spatial resolution.
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Web Figure 4: Analyses for the 2015-2016 influenza season at three di↵erent levels of spatial resolution. Each resolu-

tion level is defined by a choice of catchment areas: 13 administrative regions (panels A1 and A2), 22 administrative

regions (panels B1 and B2) and 96 departments (panels C1 and C2). The top panels show graphical representations

of the detected epidemic regions. The bottom panels (A2, B2, C2) represent the histograms of the adjusted R2

values, calculated between time series. We used blue (red) bars to show the histogram of R2 for time series within

the first (second) epidemic region. Yellow bars show the histogram of R2 in the case one time series belongs to the

blue region and the other to the red region. The median values of the adjusted R2 for the blue and red histograms

exceed that of the corresponding yellow histogram, for each resolution level (i.e., 0.811 and 0.720 > 0.444 in panel

A2; 0.723 and 0.750 > 0.354 in panel B2; 0.477 and 0.324 > 0.117 in panel C2, respectively). Analyses at the level

of the 13 administrative region implies the highest signal-to-noise ratio, but the spatial resolution is rather coarse.

For the highest resolution level (panels C1 and C2), noise is important for the time series; the resulting R2 values

are relatively low and, searching for community structure at this level, unjustified. Compromise is achieved for the

middle ground of spatial resolution, provided by the 22 administrative regions. No bootstrap was performed for this

sample analysis.
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6 Web Appendix 6

Incidence maps in comparison with maps of epidemic regions.
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Web Figure 5: Spatial heterogeneity of weekly ILI incidence per 100 000 for the 2015-2016 (panel A) and the 1985-

1986 (panel B) influenza seasons, at the time of the epidemic alert. The values show the di↵erence between local and

national ILI incidence for each of the 22 regions. Data is missing for Basse-Normandie in panel B. For comparison,

the spatial structures of time-correlated epidemic regions (cf., Figure 2 of the main text) are shown in panels C and

D, respectively.

8

Page 41 of 51 American Journal of Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


