
HAL Id: hal-03287324
https://hal.science/hal-03287324v1

Submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Roots of program revisited
Liesbeth de Mol, Maarten Bullynck

To cite this version:
Liesbeth de Mol, Maarten Bullynck. Roots of program revisited. Communications of the ACM, 2021.
�hal-03287324�

https://hal.science/hal-03287324v1
https://hal.archives-ouvertes.fr

Roots of “program” revisited1

Liesbeth De Mol2 and Maarten Bullynck3

Today, it is a widely accepted thesis amongst historians and computer scientists that the
modern notion of computer programs has its roots in the work of John von Neumann. This is
symptomatic of a general tendency amongst academic computer scientists to search for the
foundations of their field in logic and mathematics and, accordingly, also its historical roots. This
is a distorted view of what happened: at best, the modern computer was driven by concerns of
applied mathematics and developed by a collective of people (mathematicians, engineers,
physicists, (human) computers, etc.). We will not repeat why, in computing, history is reshaped in
function of disciplinary identity [2,13]. Instead, we will revisit the origins of the word “program”
and argue for the need of a deeper historical understanding, not just for the sake of academic history
but for the sake of the field itself.

The notion of “program” is a fundamental one. In the flux of historical time and space,
“program” underwent significant changes and has different connotations today when compared to
the 1950s. Indeed, today, other words are often used instead: “software”, “apps” or “algorithms” (as
in “ethics of algorithms”). Moreover, “program” means different things to different people: a
logically-minded computer scientist will have a different understanding than a software engineer.
Nonetheless, as soon as one starts to speak about the historical origins of the term, this plurality of
meanings disappears to be replaced by only one, viz. the “stored program”. This is anchored in
another historical narrative: the modern computer originates in the “stored-program” computer.
While this latter notion has been historically scrutinized [6], the origins of “program” have not been
looked at independently of that notion. So what is the classical story here?

A narrative
In the mid 1940s a group of engineers of the Moore School of Electrical Engineering, led by

John Mauchly and Presper J. Eckert, designed and constructed ENIAC, a large-scale and high-
speed machine that would become one of the first computers. Originally, it was a parallel and
electronic machine with loops and conditionals, and could, essentially, compute any problem
provided that its memory would have been unlimited. However, unlike some other large-scale
calculators of the time, like the relay-based ASCC/Harvard Mark I or the Bell Lab machines,
problems were not set-up via coded instructions on punched cards or tape but were directly wired
on the machine. In a sense, one had to reconfigure the whole machine every time it had to compute
another problem. By consequence, setting-up a problem was a time-consuming and error-prone
process. In order to deal with such efficiency issues, ENIAC was converted to emulate a “stored-
program” machine. However, unlike EDSAC for instance, instructions could not be modified since
programs were executed from preset switches (or, alternatively, punched cards)

It is here that von Neumann enters the story. A few months after he got involved with
ENIAC, in the spring of 1945, he wrote the famous “The first draft of a report on the EDVAC”
which is considered the blueprint of the modern computer. It is then often assumed that the first
“modern” programs must be those that ran on EDVAC-like machines, that is, machines like the
converted ENIAC [4,6,7]. This goes hand-in-hand with the idea that the roots of our modern
conception of program should be sought with von Neumann.

1 This is a preprint of a paper published in the Communications of the ACM, available here:
https://cacm.acm.org/magazines/2021/4/251342-roots-of-program-revisited/fulltext
2 CNRS, UMR 8163, Université de Lille. This research was supported by the ANR PROGRAMme
project ANR-17-CE38-0003-01
3 Université de Paris 8, UMR 8533 IDHE.S.

But of course, just as “code” was already in use before it was introduced in the computing
context (e.g. Morse code), also “program” (or in Bristish spelling “programme”)4 was an already
existing word. No new term was invented at the time. Instead it was used as a generic term to refer
to the planning and scheduling of events: an advance notice, an itinerary, something that is written
before some activity happens, orders it and, so, pre-(in)scribes (pro-gramma) it. Typical examples
are: a theater program, a training schedule, a research program or a production plan [5,6]. This
notion was then picked up in the context of radio broadcasting to refer to radio programs.
Presupposedly, Mauchly transposed this common term to the more specific engineering discourse of
ENIAC and it was only with the introduction of “stored-programs” that the term really gained its
current meaning [4,6,7]. Von Neumann himself, however, never really used it – he preferred the
more common terminology of preparing, planning, setting-up and coding a problem.

Deconstructing the narrative
We have found that “program” was already part of an extensive engineering discourse,

going beyond that mentioned in the existing literature. First of all, in the context of radio
engineering, the growing complexity of the broadcasting network increased the need for
automation, especially when it concerned the scheduling of radio programs in different networks for
different stations at different times and which had to be handled at so-called “switching points”.
This resulted in a discourse in which “program” steadily transposed from radio programs to the
technology itself and so one sees the emergence of terms like “program circuits”, “program trunks”,
"program switching", "program line", “program loop”, “program transfer”, etc.5 These are exactly
the kind of terms appearing in the ENIAC context.

More importantly, we have found that there is yet another engineering discourse originating
in so-called “programme clocks” or “program clocks”, a device first developed in the 19th century
and used to “furnish a convenient and practical clock, that may be set to strike according to any
required programme”.6 Program(me) clocks were devices that could be set according to a given
schedule or program to ring at preset times. This was very handy, for instance, for a factory work
floor, railway stations or a school. In other words, they automated time schedules and work
programs. From the first clocks onwards, one sees the steady development of a more general
technology of “program devices” or "program machines" used in a variety of applications: a paper
cutting machine, a washing machine, a calculator, etc.7 Here "program" comes to stand for the
automatic carrying out of a sequence of operations or as an automated scheduler.

This technology came to be used also for calculating machines in the late 1930s and early
1940s and so also appeared in that discourse, for instance, in the context of the IBM ASCC/Harvard
Mark I machine. This electromechanical large-scale calculator is mostly associated with Howard
Aiken, a Harvard physicist, but was designed and built by IBM engineers.

4 Note that in American spelling, “program” refers both to computer programs and, say, radio programs. In the British
spelling, an explicit distinction was made between “programs” to refer to computer programs, and “programme” as
used in the context of radio or theater programs.
5 See for instance US patents number U.S. patent nr. 2,198,326 and 2,238,070.
6 See U.S. patent nr. 98678
7 See for instance US patents numbers 2,134,280 or 2,026,850.

Fig. 1: Graphical representation of the “program tape” from the ASCC/Mark I patent, Lake et al
1945, US patent number 2,616,626

The operations of that machine were controlled by the “control tape” where the sequences of
operations were coded with punched holes. But while “control tape” was the standard term used
once the machine was put into operation at Harvard, the original IBM patents show traces of
another terminology where the control tape was also called a “program tape” and where the
sequences of operations, at some points, were called “programs” instead of “sequences” (See Fig.
1). This terminology is due to the IBM engineers involved with the design of the machine, notably,
James W. Bryce and Claire D. Lake. In fact, Bryce already had a patent in which a “program
device” is introduced (US patent number 2,244,241) that was capable of automatic transfer of
control and other operations. Also for the ENIAC, Mauchly’s original short proposal for an
“electronic computer” refers to a “program device” [10]. It is from there that the term in ENIAC
developed.

Some have claimed that earlier uses of “program” in relation to ENIAC were much more
restricted and referred only to specific programming circuitry in a (control) unit [5]. This does not
take into account this more general discourse which, by that time, had become common among
engineers working on automatic control, both within and outside of the context of large-scale
calculators. Combining that with the radio broadcasting discourse where “program” terminology
had been transposed to the technology itself, explains why, in ENIAC, “program” had different
semantic extensions and referred both to individual (control) units (as in “program switches”);
smaller pieces of an entire program (as in “program sequences”); or the complete schedule that
organizes program sequences (as in a “complete program [for which] it is necessary to put [the]
elements together and to assign equipment in detail” [1]). ``Program’’ then refers to how automatic
control, locally or globally, is organized. The semantics of the ``program device’’ discourse is still at
play here, but generalizes from the sequencing of operations to include also the scheduling of
sequences of operations.

This is still evident in Hartree’s later definition (1949) of “programming” where this notion
is used with reference to any “large automatic digital machine”: “programming is the process of
drawing up a schedule of the sequence of individual operations required to carry out the
calculation” [8, pp. 111-112]. The main difference between programming ENIAC before and after
its conversion to an EDVAC-like machine, is that in the second case the set-up is automated through
“a 100-way switch” [8, p. 87] where each position of the switch corresponded to a different
“computing sequence”.8

8 Of course, subsequent programming practices would impact later definitions. So, for instance, in the EDSAC, an
EDVAC-like and so serial machine with a symbolic assembly system, the definition of programs shortened to: “ A
sequence of orders for performing some particular calculation” [14]. In other contexts, where flowcharting played an
important role, emphasis was more on the planning aspects of programming, partially referencing back to earlier
practices of human computation (see the 1954 ACM Glossary by Grace Hopper).

To put it differently, the general understanding of “program” was first grafted onto the
existing discourse on program devices not on specific techniques for implementing them. The
addition of using coded instructions stored on cards, tape or flipflops rather than the technique of
wiring a program through plugboards was, from that perspective, non-essential for the meaning of
“program”. This, in a sense, should not be surprising: while “programs” are very much determined
and dependent on the computational technology on which they are ultimately implemented and ran,
that need not mean that understandings of “program” should be reduced to properties of and
possibilities offered by those technologies. If we would have done that, we would have never had,
say, concurrent programs, virtual machines or Docker containers.

Why this matters
The 2012 Turing centenary made clear that the academic computing field tends to construct

a storyline where the presumed theoretical foundations of the field coincide with its historical
foundations (the “first” computers and the “first” programs). This strengthens a computing
discipline where one often cares more about formalism than about actual programming [11] and
contributes to a growing “communication gap” between different communities. This affects not just
research and education policies but also how we understand this field we call computing [3].

As we showed, “program” did not coincide with the “stored-program” concept, rather it
naturally evolved from an engineering context. Program devices for automatic control of operations
were developed first for scheduling activities or communications, but were then applied to
computing machines as well. In this context, a transfer of meaning happened, preparing the ground
for our modern notions of program. Should we derive from this that, actually, computing should be
understood first of all as an engineering discipline? No. The point is that as soon as one confines
oneself to the perspectives offered by one discipline only, one misses out on the richness of the field
as a whole and so lacks a basic understanding: computing is not mathematics, it is not engineering,
it is not logic, it is not science but a field on its own and one which should, perhaps, not be reduced
to the confines of disciplinary thinking (which is, itself, a construction of the 19th century). Abiding
by such confinement may lead to errors and failed opportunities, as Hennessy and Patterson
recently pointed out [9] with respect to software design and hardware architecture.

“[W]hen experience is not retained [...] infancy is perpetual. Those who cannot remember
the past are condemned to repeat it” [12] History can and has been used to reinforce confines but it
can also be used against them. We must not see our historical legacy as a burden, but as the natural
environment to think about the future.

References

1. Curry, H.B. and Wyatt, W., A study of inverse interpolation on the Eniac, Aberdeen Proving
Ground, Maryland, Report nr. 615, 19 August 1946.

2. Bullynck, M., Daylight, E.G., and De Mol, L., “Why did computer science make a hero out of
Turing?”, Communications of the ACM, vol. 58, nr. 3, 2015, pp. 37–39.

3. Denning, P.J. and Tedre, M., Computational thinking, MIT Press, 2019.

4. Grier, D. A., `The ENIAC, the Verb “to program” and the emergence of digital computers', IEEE
Annals for the history of computing, vol. 18, nr. 1, 1996, pp. 51–55.

5. Grier, D.A., `Programming and planning’, IEEE Annals for the history of computing, vol. 33, nr.
1, 2011, pp. 85–87.

6. Haigh, T., Priestley, M., and Rope, C. ENIAC in action. Making and remaking the modern
computer, MIT Press, 2016.

7. Haigh, T. and Priestley, M., `Where code comes from: Automatic Control from Babbage to
Algol', Communications of the ACM , vol. 59, nr. 1, 2016, pp. 39–44.

8. Hartree, D.R., Calculating instruments and Machines , Urbana, University of Illinois Press, 1949.

9. Hennessy, J.L. and Patterson, D.A., `A new golden age for computer architecture,’
Communications of the ACM, vol. 62, no. 2, pp. 48--60, Feb. 2019.

10. Mauchly, John, `The use of high speed vacuum tube devices for calculating,’ Moore School of
electrical engineering, University of Pennsylvania, August 1942.

11. Noble, J. and Biddle, R., “Notes on postmodern programming,” ACM SIGPLAN Notices, vol.
39, nr. 12, 2004, pp. 40-56.

12. Santayana, G., Reason in Common Sense, volume I of The life of Reason, New York, Charles
Scribner’s Sons, 1905.

13. Tedre, M., The science of computing:Shaping a Discipline, CRC Press, 2014

14. Wilkes, M.V. and Wheeler, D.J., Gill, S., The preparation of programs for an electronic digital
computer, second edition, Addison-Wesley, 1957.

 These different uses of “program” circulated around ENIAC and there are different reports in
which one can find this terminology. Even though these reports were often written after the EDVAC
report they also referred to “programs” for a non-EDVAC-like machine. The addition of using
coded instructions stored on cards, tape or flipflops rather than the technique of wiring a program
through plugboards is, from that perspective, non-essential for the meaning of program. It matters
only from the efficiency perspective sketched before. To put it differently, the general
understanding of program was grafted onto the existing discourse on program devices not on
specific techniques for implementing them.

As is clear from these cases, within the early ENIAC, the semantics of ``program'' and
``programming'' is not fixed but shifts and moves between the local control units to the overall
program that is organized as a schedule or complex hierarchy of program sequences. In other
words, the semantics of the old discourse around ``program devices'' and problems of sequencing
\textit{and} scheduling is still at play here but rather than being about the sequencing of operations
(as was the case with the ASCC/Mark I) it shifted to the sequencing and scheduling of sequences.

The terminology had not made full abstraction yet from the physical machine. This is explained by
the fact that ``program'' did not refer to a code (which was absent in early ENIAC) but to the
organization of the machine itself. This could only change with the converted ENIAC and the
EDVAC design that underlined it and in which the set-up process was automated by the
introduction of the so-called ``order code''. ``Setting-up'' a problem steadily shifted to the ``coding''
of a problem. ``Programming'' with its reference to the organization of program sequences, shifted
again to refer much more to the practice of developing efficient methods that ease the burden of
organizing a computation into ``stages'', ``sequences'' or, what became the more popular term,
subroutines. The different strategies that were developed to attack this problem resulted in a number
of different concepts and conceptions of programming and coding.

Also later this meaning of program persists. Douglas R. Hartree, in his popularizing book
on computing machines [7], defines “program” as: “a sequence of operation[s] for a particular
calculation” (Hartree 1949). Later, Wilkes, Wheeler and Gill [11] define “program” as: “A sequence
of orders for performing some particular calculation”. Here, programs are intended for the
EDSAC, which was an EDVAC-like machine. However, “program” refers to program-controlled
computing, which has to be distinguished from stored-program control. The former is automatic
control over a computation through a program, whatever its materiality, the latter is a program
stored in the computer's memory, controlling the operations of the machine in the same medium.

Another understanding of “program” which starts to appear in the late 1940s is a definition
of program as a “plan”. Indeed, in the ACM Glossary of 1951, which was compiled by Grace
Hopper, programs are defined as: “a plan for the solution of a problem”. This was picked up in
several glossaries. Note that such definitions are historically connected to the earlier practices of
human computation where one spoke of a computation plan.

Thus “program” as used in the discourse around ENIAC and afterwards was not anchored in the
EDVAC report but in a more general understanding of “program” as a sequencing and scheduling of
operations. The EDVAC report then described a technology for achieving this more efficiently.

This, in a sense, should not be surprising: while “programs” are very much determined and
dependent on the computational technology on which they are ultimately implemented and ran, that
need not mean that understandings of “program” should be reduced to properties of and possibilities
offered by those technologies. If we would have done that, we would have never had, say,
concurrent programs, virtual machines or Docker containers.

