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ABSTRACT

When a soluble solid body is suddenly put in contact with water, a convection flow can be generated. Once the fluid layer charged into solute
is sufficiently dense, this layer becomes unstable under the action of the buoyancy forces. We perform here a linear stability analysis in order
to predict the time of appearance of the convection flow, the onset time, and the associated wavelength. As the base state evolves with time
due to the solute diffusion, the usual theoretical methods cannot be used. We show that the criterion of marginal instability with a “frozen
base state” used for convection in porous media fails for providing the onset parameters in fluid convection. Here, using a modified criterion,
i.e., the instability growth rate must be larger than the time evolution of the base state, we find the onset parameters in satisfying agreement
with the previous experimental and numerical works. Our results complete our previous numerical work [J. Philippi et al., “Solutal
convection induced by dissolution,” Phys. Rev. Fluids 4, 103801 (2019)] in order to determine the conditions for generating a convective
flow under the action of dissolution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052305

I. INTRODUCTION

Solutal convection instability constitutes a standard mechanism
for generating macroscopic flows in the absence of mechanical forcing.
A fluid area with a high concentration of solute is denser than sur-
rounding less concentrated fluid. Due to gravity, a solutal convection
flow can then appear. Literally analog to the thermal convection,
where the density variations are caused by fluid thermal expansion,
solutal convection can be triggered, for example, by the evaporation of
water,1,2 increasing the solute concentration at the top surface. Solutal
convection is also of prime importance in geosciences. This phenome-
non occurs, for example, not only in the shaping of magmatic cham-
bers3–5 but also for the chemical erosion of soluble rocks in
geomorphology. Specifically, solutal convection can lead to the forma-
tion of dissolution cavities in the absence of an external flow in soluble
minerals like salt,6,7 gypsum,8–10 and even in limestone caves11 despite
the very small saturation concentration. Solutal convection also has
been extensively studied for Darcy flows in porous media especially in
the context of CO2 sequestration.

12–14 In the laboratory, solutal con-
vection has also been investigated, when a soluble body (horizontal or
inclined) is suspended in a initially quiescent bath of water.15–19 On
the bottom, the concentrated boundary layer detaches by emitting
sinking plumes. The convection flows control the dissolution rate,
which is constant with time16,19,20 and leads to a patterning of the bot-
tom face, by differential dissolution.16,19 Despite the simplicity of the

experimental configuration, these examples do not correspond to the
classical Rayleigh–B�enard problem, where the initial base state is sta-
tionary. A fluid layer of a given height lies between two horizontal
plates, each having a prescribed temperature for thermal convection or
prescribed concentration for solutal convection. Here, first, there is no
equivalent of the plate separation. The geometry in the fluid phase can
be considered as semi-infinite. Second, due to the development of the
concentration boundary layer by diffusion in a first step, the base state
of the instability is time-dependent and the convective flow starts after
a specific duration, the onset time tonset. Then, the standard methods
of linear stability analysis cannot be used to predict tonset, the associ-
ated wavelength, and the growth-rate of the convective instability. One
notes that in numerous practical cases, thermal convection generates a
flow due to a time change of conditions. These situations do not corre-
spond to the classic stationary Rayleigh–B�enard problem.

Several approaches have been proposed for time dependent con-
vection in various configurations (thermal or solutal convection,
Navier–Stokes equations, or Darcy flow): the frozen base state assump-
tion,21–24 the amplification theory,25–27 the propagation theory,28–30

the energy stability analysis,31 and the non-normal linear stability anal-
ysis.32–34 Whereas these methods provide some insights on the physi-
cal mechanisms, they rely on strong hypotheses and on arbitrary
criteria defining the onset. They are thus difficult to compare with the
experimental situations. Although not supported by a linear instability
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analysis of the convection flow, Tan and Thorpe35 propose a simple and
pragmatic approach to determine the onset of non-stationary convec-
tion. They define a transient Rayleigh number based on the instanta-
neous temperature gradient ð@TÞ=ð@zÞ and calculate its maximal value
as a function of z. The onset time is determined, when the maximal tran-
sient Rayleigh number reaches the critical Rayleigh number established
in the literature for a constant gradient (linear temperature profile)
between two plates, i.e., a non-evolving base state. This method is appro-
priately tested and compared with experiments for thermal convection.

Recently, we reported in the article of Ref. 20 two dimensional
numerical simulations of the solutal convection flow using Boussinesq
approximations and a rigid top interface incorporating the solute flux
due to dissolution. By carrying out a correlation analysis on the density
profiles close to the interface, we determined the onset time tonset and
wavelength konset for an extensive exploration of the parameters.
Scaling laws were proposed and verified for fast and low chemical dis-
solution kinetics compared to the diffusion in the boundary layer. The
fast dissolving regime is consistent with salt dissolution experiments,
when the initial density of the bath is varied.

In this article, we complete that previous numerical work by a
theoretical study of the onset of the solutal convection. By performing
a linear stability analysis, we aim to determine the conditions of
appearance of solutal convection and to determine as a function of the
experimental parameters, the onset time, and the characteristic wave-
length at the onset. Using a simplified description of solutal convec-
tion, we propose two linear stability analysis models. The first is valid
for the large Schmidt number Sc (ratio of kinematic viscosity to the dif-
fusion coefficient) only. The influence of the dissolution kinetic coeffi-
cient is also considered in the first model. The second model takes into
account the fluid acceleration through a dependency with the Schmidt
number Sc. To incorporate the temporal evolution of the base state, we
propose a modified instability criterion: the instability growth rate
must be larger than the time evolution of the base state. Contrary to
the usual criterion of marginal instability for steady problems, this
modified criterion provides the correct orders of magnitude.

II. THEORETICAL BACKGROUND AND BASIC SCALING

We use the same set of equations than in Ref. 20 in the same
framework of hypothesis, and we recall here only the essential results.
The physical problem can be understood as an advection–diffusion
problem in the fluid, which is coupled with a moving solid boundary
due to the dissolution/precipitation.36 The dissolution reaction at the
solid/liquid interface imposes an in-going flux as a boundary condition
for the advection–diffusion equation of the solute mass concentration
cðr; tÞ. We assume that the flux is proportional to the distance to the
thermodynamic equilibrium, i.e., the difference between the saturation
concentration csat and the solute molecular concentration at the inter-
face ci (zi being the position of a point at the interface). a is a positive
coefficient with the dimension of a velocity, which accounts for the
kinetics of the chemical dissolution reaction and is sometimes called
the dissolution rate. When dissolving, by the mass conservation princi-
ple, the solid interface displaces. For a small saturation concentration
compared to the liquid density, the time evolution of the interface
remains large compared to the time change of the hydrodynamics,
defining a quasi-static regime. The advection flux of solute can be
neglected at the interface, leading to a simplified dissolution boundary
condition. Then, the erosion velocity vd corresponding to the motion
of the liquid–solid boundary multiplied by the solid density qs equals

this chemical flux and also the diffusion solute flux at the boundary of
the liquid domain (always for small enough vd)

qs vd � n ¼ a csat � cið Þ ¼ D$cji � n: (1)

Here, n is the normal vector to the interface directed outward from the
liquid. D is the diffusion coefficient of the solute in the liquid phase,
and it is supposed to be independent of the concentration in the first
approximation. (This hypothesis is acceptable for salt and most of
ionic solids but strongly false for some organic compounds like sugar.)
We suppose also a linear relation between the concentration cðx; z; tÞ
and the density field qðx; z; tÞ

q ¼ q0 þ ðqsat � q0Þ
c
csat

; (2)

with q0 being the density of fresh water and qsat being the density
when the concentration equals the saturation concentration csat. In
this work, we neglect the motion of the dissolving interface. The
hypothesis is valid for most practical cases to study the short time
hydrodynamics, which adapts quasi-instantaneously to the new
boundaries of the fluid domain.

We consider a fixed two-dimensional domain Oxz [see Fig. 1(a)],
with �Hz < z < 0, filled with the liquid, in which a solute is dissolv-
ing from the top boundary z¼ 0. Qualitatively as illustrated in Fig.
1(b), during a first step, the dissolution brings solute at the vicinity of
the interface. This concentrated area defines a solute boundary layer.
The thickness d of this boundary layer grows by diffusion, until it
reaches a critical value at t ¼ tonset , where due to the action of gravity,
this layer destabilizes, generating a convective flow. The objective of
this article is to evaluate theoretically by a linear stability analysis the
onset time tonset and the associated wavelength konset, which is also
related to the critical boundary layer thickness. After a duration of
order few onset times, we reach a quasi-stationary regime where the
convection is said turbulent,16,20 which is out of the validity range of
the linear stability analysis. Plumes are emitted intermittently, and the
concentration boundary layer thickness is in average constant, which
implies a constant dissolution rate.

In the domain [see Fig. 1(a)], we study the concentration field
cðx; z; tÞ and the fluid velocity uðx; z; tÞ ¼ ðu;wÞ. The horizontal
extension is supposed infinite. The boundary conditions are for the
velocity field uðz ¼ 0Þ ¼ 0; uðz ¼ �HzÞ ¼ 0 and for the concentra-
tion field ð@c=@zÞjz¼�Hz

¼ 0, and at the solid/liquid dissolving inter-
face, the specific dissolution boundary condition

a csat � cið Þ ¼ D ð@c=@zÞjz¼0: (3)

Although the domain is static in this approach, this boundary condi-
tion for cðx; z; tÞ involves simultaneously ci and its derivative $cji and
is thus non-classic. At t¼ 0, the concentration and the velocity field
are zero. In a first step, the solute concentration is carried out from the
dissolving boundary, which imposes a variable solute flux.

For this boundary condition given in Eq. (3), when the interface
is motionless, John Crank provides an analytic solution of the solute
diffusion equation in a semi-infinite domain (Ref. 37, Sec. 3.3.1)

c¼ csat erfc
�z

2
ffiffiffiffiffiffi
Dt
p

� �
�exp � z

L
þ Dt

L2

� �
erfc � z

2
ffiffiffiffiffiffi
Dt
p þ

ffiffiffiffiffiffi
Dt
p

L

 !" #
;

(4)
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whereL ¼ D=a is a characteristic length and erfc is the complemen-
tary error function. For a large enough distance from the boundary,
jzj �L, the concentration profile is well described by the simpler
function: c ¼ csat erfcð�z= 2

ffiffiffiffiffiffi
D t
p� �

Þ, which corresponds to the

solution of the diffusion equation when cðz ¼ 0Þ ¼ csat . Considering
that the characteristic spatial scale of the problem is the concentration
boundary layer thickness d, we introduce the dimensionless
Damk€ohler number Da ¼ ða dÞ=D ¼ d=L. For salt in water with
a ¼ 5:0� 10�4 m s�1 (Ref. 38) and D ¼ 1:61� 10�9 m2 s�1 (satu-
rated brine39), L ¼ 3:2� 10�6 m. The estimation of d will show that
Da is then large in front of one. This example corresponds to a fast dis-
solving case, where the dissolution rate is limited by the solute trans-
port and not by the chemical kinetics. By taking the limits Da � 1
and z ! 0 in Eq. (4), one can show that the top boundary condition is
approximated to cðz ¼ 0Þ � csat .

In the fluid phase, the solute is transported by the flow. The stan-
dard methods to address thermal convection40 can be used for solutal
convection by replacing the temperature field by the concentration
field. For small enough solute concentration, we can use the
Boussinesq approximation,40 i.e., the variations of q with c are only
considered for the gravity term. We assume also an incompressible
flow. The hydrodynamics and the solute advection are then described
by the equations, where � ¼ l=q0 is the kinematic viscosity,

r � u ¼ 0;
@c
@t
þ ðu � $Þc ¼ D�c;

q0
@u
@t
þ ðu � $Þu

� �
¼ �$P � qðcÞ g ez þ � q0 �u :

The spatial variations of diffusion coefficient D and of the kinematic
viscosity � with the concentration field are neglected. After removing
the hydrostatic part of the pressure and after appropriate nondimen-
sionalization where the distances are rescaled by a length L, the times
by the diffusive timescale L2=D, and the concentrations by the satura-
tion concentration csat, one obtains

@c�

@t�
þ ðu� � $�Þc� ¼ �

�c�; (5)

@u�

@t�
þ ðu� � $�Þu� ¼ �$�P� � Sc Ra c

� ez þ Sc ��u�; (6)

with Sc ¼ �=D, the Schmidt number (about 1000 for salt) and
Ra ¼ b g L3

�D , the Rayleigh number. b ¼ ðqsat � q0Þ=q0 is the density
contrast, which depends on the density for the saturation concentra-
tion. The boundary condition at the dissolving boundary [Eq. (3)]
reads in a dimensionless form in the fluid phase with a� ¼ ða LÞ=D

a� ðc� � 1Þ ¼ �$�c� � n: (7)

In a stationary regime, for the classic Rayleigh–B�enard problem by
choosing L as the distance between the two horizontal plates (the verti-
cal system size), the convective flow appears, when Ra exceeds a critical
value depending on the boundary conditions: Rac ¼ 27 p4=4 � 657:5
for free-surface boundaries, Rac ¼ 1708 for solid walls, and Rac ¼ 1101
for mixed conditions.40 The corresponding wavelengths at the instability
threshold are, respectively, 2:8 L; 2:0 L, and 2:3 L.

Here, the situation is more difficult to approach as the geometry
is semi-infinite and the base state is time dependent. To model the
experiments, we suppose indeed that at t¼ 0, the block is put in con-
tact with water and initially the velocity and concentration fields are
zero. In a first step, the solute diffuses from the solid interface and the
velocity field remains zero. When the boundary layer reaches a large

FIG. 1. (a) Schema of the domain on which the solutal convection instability is ana-
lyzed. (b) Schema of the instability near the dissolving interface. Before the onset
time tonset, the concentration boundary layer of thickness d grows by diffusion. Just
after tonset, due to the action of gravity, the convection starts and the boundary layer
adopts a sinusoidal shape with a wavelength konset. The purpose of the linear sta-
bility analysis is to predict the values of tonset and konset. After a few onset times,
due to the nonlinear terms, plumes that are concentrated into solute are emitted
toward the bottom. A turbulent regime is quickly reached as the position and the
duration between two successive plumes are strongly fluctuating.
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enough thickness, it becomes unstable to the gravity and a convective
flow starts. A simple criterion of convection onset consists thus to
build the Rayleigh number on this length scale. The following scaling
for the critical boundary layer thickness dc and the wavelength at onset
konset is obtained, using, for example, the mixed conditions
(Rac ¼ 1101)16,20

dc � Ra1=3c
� D
b g

� �1=3

� 10:33
� D
b g

� �1=3

; (8)

konset � 2:3donset � 23:75
� D
b g

� �1=3

: (9)

As the boundary layer grows by diffusion during the first step, the
onset time of convection scales as tonset ¼ d2c=D, and we get this last
scaling

tonset ¼ K
�

b g
ffiffiffiffi
D
p

� �2=3
; (10)

with the prefactor K � Ra2=3c ¼ 106:62. These simple scaling are valid
for large Da and do not take into account the geometry of the bound-
ary layer neither its dynamics, that is why they provide only the order
of magnitude. In Ref. 20, we perform an experimental determination
of tonset for the dissolution of salt in the water bath with varying initial
salt concentrations. We verify the scaling law [Eq. (10)], but the pre-
factor K differs by a factor 8 from the experiment, where K � 12:8.
Using fresh water, the first plumes are emitted at t � 1 s. The onset
time, when the boundary layer starts to deform, is thus smaller and ton-
set is of order 0.5 s. In the same work, we carry out a numerical simula-
tion of the convection flow in two-dimension and using the
Boussinesq approximation. We also find in the conditions of salt dis-
solution by fresh water, larger values: tonset � 1:02 s and a prefactor
K � 29:5.

In the slow dissolution kinetic regime (Da � 1), the previous
reasoning to determine the scaling laws is no longer valid. As the value
of the coefficient a matters now, the strength of convection would be
characterized at least by the Rayleigh number and the Damkh€oler
number. By estimating the density at the dissolving interface as a func-
tion of Da, the corresponding scaling for Da � 1 can be derived (see
Ref. 20)

donset 	
D2 �

a b g

 !1=4

and konset � 2:3 donset ; (11)

tonset 	
ffiffiffiffiffiffiffiffiffi
�

a b g

r
: (12)

One can notice that the onset time is independent of the diffusion
coefficient and grows to infinity as a is going to zero. The dissolution
kinetics is in this case the limiting factor in solute transport.

III. LINEAR STABILITY ANALYSIS: FIRST MODEL
AT LARGE SCHMIDT NUMBER
A. Model

To get a better understanding of the convection instability and of
the onset prediction, we propose a linear stability analysis. We adapt
earlier theoretical works performing a linear stability analysis of

convection with a time-dependent base state for the concentration
field, which is an unsteady solution of the diffusion equation in the
absence of flow. Often, its temporal variation is supposed sufficiently
slow compared to the growth rate of the instability; this is the hypothe-
sis of a frozen base state. It was used for solutal convection in the
porous media in the context of carbon dioxide sequestration, taking
into account the dissolution kinetics41 or not.22,24 We restrict first our
analysis to the case of large Schmidt number Sc, valid for salt dissolu-
tion, i.e., Sc � 100. The method used for this linear stability analysis
consists first in defining the time-dependent base state. After lineariz-
ing Eqs. (5) and (6), one considers then the time evolution of small
perturbations of this base state. The perturbations are usually decom-
posed into normal modes, each corresponding to a distinct horizontal
wavenumber, with the hypothesis of translation invariance along the
horizontal coordinate x. Each mode has a specific structure as a func-
tion of z, which for a finite system size Hz can be decomposed into the
Fourier series. The results are then extrapolated to a semi-infinite
domain, by taking the limit of large Hz. The time evolution of each
mode is described by a matrix system of the vertical Fourier modes.
Usually, the instability domain corresponds to the values of parame-
ters and wavenumbers for which the growth rate is positive. This is the
marginal instability criterion, for which infinitesimal perturbations are
amplified.

We consider the 2D domain Oxz depicted in Fig. 1, with
�Hz < z < 0, filled with the liquid phase, in which the solute pene-
trates by dissolution in the upper boundary in z¼ 0. The horizontal
dimension is infinite. To use the previous set of dimensionless equa-
tions, we choose the scale L¼H for which Ra¼ 1. Then, the dimen-
sionless system height H is defined by Hz ¼H� H. The solute
transport and the fluid motion are described in Eqs. (5) and (6). For
clarity, we omit the � superscript. The top and the bottom boundaries
are impermeable for the velocity field uð0Þ � ez ¼ uð�HÞ � ez ¼ 0.
The concentration flux is zero at the bottom @c

@z jz¼�H ¼ 0, but at the
top boundary, the concentration flux is ruled by the dissolution condi-
tion written in a dimensionless form in Eq. (7). Initially, at t¼ 0, the
concentration and velocity fields are zero.

The first step of the method consists in determining the evolving
base state for the concentration field cbðz; tÞ, which is the solution of
the diffusion equation [Eq. (5) with u¼ 0]. For a large system size, we
can adopt the solution for a semi-infinite system [Eq. (4)] in a dimen-
sionless form

cb;Cðz;tÞ¼ erfc � z

2
ffiffi
t
p

� �
�exp �DazþD2

at
� �

erfc � z

2
ffiffi
t
p þDa

ffiffi
t
p� �� �

;

(13)

with Da ¼ aH=D being the Damkh€oler number built with the scale
H. If we consider the limit of fast dissolution kinetics, Da � 1 (justi-
fied for salt dissolution) where cðz ¼ 0; tÞ ¼ csat , an exact solution of
the diffusion equation for any system size can be derived by doing a
Fourier decomposition in z22,24

cb;Sðz; tÞ ¼ 1þ
X1
n¼1

4
ð2n� 1Þ p exp � ð2n� 1Þp

2H

� �2
t

 !"

�sin ð2n� 1Þp z
2H

� �#
: (14)
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While the diffusion front has not approached the bottom boundary,
this last solution is well approximated by a simpler solution:
cb;E ¼ erfcð�z= 2

ffiffi
t
p� �
Þ, using the complementary error function erfc.

In the rest, we will investigate successively the two cases for the base
state cb ¼ cb;S (solution of the diffusion equation at large Da for a finite
size system), and then cb ¼ cb;C (solution of the diffusion equation
valid for all values of Da and for a semi-infinite system).

Then the system of equation is linearized in the vicinity of the
base state to consider the evolution of infinitesimal perturbations of
the concentration c0ðx; z; tÞ ¼ c� cb and of the velocity field
uðx; z; tÞ ¼ uðx; z; tÞ ex þ wðx; z; tÞ ez . The pressure field is elimi-
nated by taking the double curl of Navier–Stokes equations, which
gives only a dependency on the vertical velocity w40 with �1 ¼ @2

@x2

@c0

@t
��c0 ¼ �w @cb

@z
; (15)

1
Sc

@�w
@t
��ð�wÞ ¼ ��1 c

0: (16)

The horizontal fluctuations are decomposed into normal modes
of wavenumber k, and we examine the behavior of each mode sepa-
rately. We assume perturbations of the form

c0ðx; z; tÞ ¼
ð

~cðz; tÞ exp ðık xÞ þ c:c:½ 
 dk;

wðx; z; tÞ ¼
ð

~wðz; tÞ exp ðık xÞ þ c:c:½ 
 dk;

with c:c: being the complex conjugate.
We thus obtain

@~c
@t
¼ �~w

@cb
@z
þ @

2~c
@z2
� k2 ~c; (17)

1
Sc

@

@t
@2~w
@z2
� k2 ~w

� �
¼ @

4~w
@z4
� 2k2

@2~w
@z2
þ k4 ~w þ k2 ~c: (18)

Similarly to the work of Slim and Ramakrishnan,24 we look for
solutions of ~c and ~w under the form of Fourier series in z truncated at
the order N for the mode of wavenumber k

~cðz; tÞ ¼
XN
n¼1

cnðtÞ sin
ð2n� 1Þp z

2H

� �
; (19)

~wðz; tÞ ¼
XN
n¼1

xnðtÞ sin
npz
H

� �
: (20)

These expressions verify the boundary conditions for c and w,
but not the non-slip condition for u expected for a viscous fluid in
contact with a solid surface, because the horizontal velocity is derived
using $ � u ¼ 0, which imposes wðz ¼ 0Þ ¼ @w

@z jz¼0 ¼ 040 and thus is
not compatible with a Fourier series decomposition. However, we pur-
sue with these expressions, Eqs. (19) and (20), which describe satisfy-
ingly the physics at play but can possibly underestimate the predicted
onset times.

We neglect the inertial term in the limit Sc � 1, and we use the
Galerkin method that projects the concentration and the vertical
velocity fields on a discrete spatial Fourier base. Equation (17) is multi-
plied by Eq. (20), whereas Eq. (18) is multiplied by Eq. (19). The
results are integrated with respect to z between �H and 0. The

products imply us to consider both a sum of index n 2 ½1;N
 and
another of index m 2 ½1;N
. Using the properties of orthogonality of
the Fourier base, the results can be considerably simplified and the var-
iable w can then be eliminated. As in Ref. 24, we then write the linear-
ized system derived from Eqs. (17) and (18) under a matrix
differential linear equation for a given system size H, time t, and
wavenumber k: dV

dt ¼ AðtÞV with V ¼ ðc1;…; cNÞ> (> designates
the transpose operation). The elements of matrix A are computed
from the system in the limit Sc � 1 under the form:
A ¼ B� C E�1 D. In the case cb ¼ cb;S (fast dissolution kinetics), the
coefficients are exactly (see the Appendix)

Bmn ¼ � k2 þ ð2n� 1Þp
2H

� �2
" #

dmn;

Cmn ¼
1
H

expð� ðmþ n� 1=2Þp=H½ 
2 tÞ
	

�expð� ðm� n� 1=2Þp=H½ 
2 tÞ


;

Dmn ¼
k2

p
ð�1Þmþn 4m

4m2 � ð2n� 1Þ2
;

Emn ¼
1
2

k4 þ np
H

� �4

þ 2k2
np
H

� �2
" #

dmn:

In the case cb ¼ cb;C (the dissolution kinetics is taken into account for
a large enough system), the coefficients are the same except for Cnm,
which are computed by numerical integration

Cnm ¼
�2
H

ð0
�H

dcb;C
dt

sin
np z
H

� �
sin

ð2m� 1Þp z
2H

� �
dz :

If r, the largest real part of the eigenvalues of the matrix A is pos-
itive, then fluctuations are amplified, the system is unstable, and the
convection must start. The corresponding concentration perturbation
must grow exponentially in time (like ert), and the spatial shape of this
perturbation is given by the corresponding eigenvector. We obtain a
criterion of marginal instability, for the shortest time tonset and the first
wavenumber konset for which r > 0. However, as it will be presented
in Sec. III B, the orders of magnitude are inconsistent with the experi-
mental results. Among the simplifying hypotheses, the use of the mar-
ginal instability criterion with a frozen base state appears invalid for
convection in fluids modeled with the Navier–Stokes equations con-
trary to the convection in porous media described with the Darcy
equation.22,24,41,42 Therefore, we adopt a new instability criterion (the
modified instability criterion), which supposes that the fluctuations
must have a growth rate larger than the evolution of the base state.
Physically, the fluctuations must grow faster than the diffusion front
advances, so that the boundary layer emits plumes. For this model, it

means that the largest real eigenvalue verifies r > maxz
@cb
@t

� �
. This

criterion constitutes a sufficient condition to observe the development
of a convection flow.

The modified instability criterion can be computed analytically for
cb;E ¼ erfcð�z= 2

ffiffi
t
p� �
Þ, which constitutes a good approximation of cb;S

at short time, as long as the diffusion front has not reached the bottom
surface. The maximum of ð@cb;E=@tÞ is found analytically to be as a

function of time: e
�1=2ffiffiffiffi
2p
p

t
� 0:24

t . We note that this criterion provides results

very close from those derived using the relative instability criterion:43–45
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r > ð1=jjcbjjÞ � ðdjjcbjj=dtÞ with jjcbjj ¼ ½
Ð 0
�1 c2b dz


1=2. This condi-
tion is better established mathematically and gives for cb ¼ cb;E;
r > 1=ð4 tÞ ¼ 0:25=t. For cb ¼ cb;S, we again use as an approximate
instability criterion r > 0:24=t. When the dissolution kinetics must be
taken into account, the criterion is computed numerically for cb;C . We
thus define the corresponding new onset time tonset and wavenumber
konset for the fastest growing k-mode overtaking the base state growth.

B. Results

We now present the results of the linear stability analysis,
obtained with the function eig of MATLAB. We found that the com-
putations converge for a number of z� modes N of order of H. We
start in order to limit the computing time with H ¼ 50. To facilitate
the discussion and the comparison with experiments, we present the
results into dimensional units. The length scale H is chosen as Ra¼ 1,
which gives for the parameters of salt (b ¼ 0:2; D ¼ 1:61� 10�9 m2

s�1, and � ¼ 1:66� 10�6 m2 s�1),19,20 H � 1:11� 10�5 m. The cor-
responding timescale is then H2=D � 7:63� 10�2 s. The vertical size
of the system is thusHz ¼HH � 0:55mm.

In Fig. 2, we present the values r of the largest eigenvalue, which
identifies to the growth rate of the convective instability, as a function
of time and wavenumber. We start with the case cb ¼ cb;S (fast disso-
lution kinetics) in (a). As expected, at short time r is always negative
and becomes positive after, which is depicted by the red curve.
However, the criterion of marginal instability provides onset times and
onset wavenumbers that appear too small compared to the experimen-
tal values. By adopting the modified criterion, the values are notably
increased to be order of 0.2 s. The wavelength of the instability corre-
sponds to the minimum of the black curve [bounding the domain
where rðt; kÞ > @cb

@t ] for the shortest time and a maximum of r as a
function of k. We remark that this instability domain is, however, very
flat in k and that the instability may be weakly selective in wavelengths
around k � 1mm. In Fig. 2(b), we plot the same colormap of r in the
case cb ¼ cb;C with a ¼ 3:63� 10�6 m s�1 (the order of magnitude
for gypsum dissolution46). This case corresponds to a Damkh€oler
number Da � 1:25 (non-negligible dissolution kinetics) (with
D ¼ 1:61� 10�9 m2 s�1 and the vertical system size Hz as a charac-
teristic length). We observe that the instability onset time is delayed
and that the corresponding wavelength is slightly larger. The ampli-
tude of the growth rates is significantly reduced.

The largest eigenvalue defines the most unstable mode. The spa-
tial shape of this mode can be determined by computing numerically
the corresponding eigenvector for tonset and konset. This eigenvector is a
linear combination of the z-Fourier modes. In Fig. 3, we show then in
dimensionless units the spatial shape of the most unstable modes at
the onset time for the perturbed concentration field c0ðx; zÞ, using the
modified instability criterion, for both base states cb;S and cb;C . We
observe that c0ðx; zÞ is zero in z¼ 0, has a maximum close to this
boundary, and decreases slightly with �z. Nevertheless, the size of the
cavity Hz ¼ 50H � 0:55mm appears too small, because it is of the
same order of magnitude than the instability wavelength. In this exam-
ple, the convective boundary layer has the same size than the cavity,
which limits the extrapolation toward a semi-infinite system.

Then, we test the dependency with a for several base state profiles
cb;C , and we compare the results with cb;S, which does not take into
account the dissolution kinetics for both the marginal instability

criterion and the modified instability criterion. As it will be shown
later, the first criterion gives results that are not consistent with experi-
mental results and strongly depending on the domain size. Therefore,
we discuss here only the results from the modified instability criterion.
We find in Fig. 4 for strong values of a identical results for cb;C and
cb;S. Then the results differ for a < 10�4 m s�1, which corresponds to
a Damkh€oler number built on the rescaling length H smaller than
Da ¼ 0:69. This transition occurs, when tonset becomes larger than the
characteristic dissolution time D=a2, which is the typical time needed
for the concentration to reach csat at the dissolving boundary. In the
slow dissolution kinetics regime, tonset increases significantly when a
decreases, as well as konset but on a smaller variation range. The scaling
drawn at the end of Sec. II is tested for small a values in black dashed
lines. tonset follows reasonably Eq. (12). Both scaling at low Da were
also verified in our numerical simulations.20 In the fast dissolving

FIG. 2. Colormap of the growth rate r (s�1) of the instability as a function of time t and
of the wavenumber k, for the first model (Sec. III A). Parameters are given into dimen-
sional units (see Sec. III B for the parameters). Red line, a marginal instability threshold,
r¼ 0 (below this red line r < 0). Black line, a threshold given by the modified instability
criterion. Green cross, the onset position. Hundred values of k and 60 values of t are
successively tested generating the displayed image. (a) Fast dissolution kinetics,
cb ¼ cb;S. (b) Slow dissolution kinetics with a ¼ 3:63� 10�6 m s�1, cb ¼ cb;C . The
slower dissolution velocity decreases the growth rate of the instability and delays the con-
vection onset.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 076604 (2021); doi: 10.1063/5.0052305 33, 076604-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


regime, tonset and konset become independent of a. We emphasize that
the scaling laws at large Da [Eqs. (8)–(10)] are by construction verified
if the onset parameters do not depend on a or H. The choice of the
length L has been made such as Ra¼ 1 in the dimensionless system of
equations, which implies these scaling laws by returning into physical
units.

Finally, we investigate the behavior with the system size Hz, by
varying the value ofH, but only in the case of fast dissolution kinetics
(cb ¼ cb;S), in order to keep a reasonable computational time. In
Fig. 5, the results are found to not depend on Hz only for the modified
instability criterion, which supports its use and shows the non-validity
of the marginal instability criterion. The onset times appear indeed too
short and the onset wavelengths too large with the marginal instability
criterion. An onset wavelength growing with the system size appears
also nonphysical. Experimentally for fresh water and salt, the wave-
length is indeed of the order of a millimeter for a distance to the bot-
tom of the tank very large (	 10 cm) in front of the block size. With
the modified instability criterion, we find that tonset and konset do not
depend on Hz for Hz > 0:4mm. With this dimensionalization corre-
sponding to the salt parameters, we find tonset ¼ 0:176 s and konset
¼ 0:529 mm. However, the onset time is smaller than the values that
we reported experimentally and numerically.20 The prefactor of the

scaling for tonset ¼ K ð �
b g
ffiffiffi
D
p Þ2=3 is here K ¼ 2:30, smaller by a factor

5.6 than the experimental value and by a factor 12.8 than the numeri-
cal value. This model thus provides the good order of magnitude but
remains imprecise due to the strong hypotheses. The influence of the
dissolution kinetics delays the onset instability. This discussion illus-
trates that the frozen base state assumption used with the marginal
instability criterion is not valid for transient convection instabilities,
when the fluid motion is described using the Navier–Stokes equations
at large values of Sc. In contrast, the frozen base state assumption is
commonly used to predict onset for the solutal convection in the
porous media,22,24,42 in which the Darcy equation replaces the
Navier–Stokes ones.

IV. LINEAR STABILITY ANALYSIS: SECOND MODEL
OF SECOND ORDER
A. Model

In Sec. III, we observe that using the marginal instability crite-
rion, the wavelength of the fastest growing mode increases with the
system size Hz [Fig. 5(b)]. One can think that this non-physical state-
ment could be suppressed by incorporating the fluid acceleration in
the linear instability. Foster25 proposed a linear stability analysis

FIG. 3. Shape of the most unstable modes
for the perturbed concentration field c0ðx; zÞ
at the onset time with the modified criterion.
Vertical system size Hz ¼ 0:55 mm. (a)
Fast dissolution kinetics, cb ¼ cb;S.
Wavelength 0.53mm. (b) Slow dissolution
kinetics with a ¼ 3:63� 10�6 m s�1,
cb ¼ cb;C . Wavelength 0.76mm.

FIG. 4. Onset parameters onset time tonset (a) and onset wavelength k ¼ 2p=konset (b)
as a function of a for a vertical size of Hz ¼ 50H. Red curve, a modified instability crite-
rion for cb ¼ cb;S. Green curve, a modified instability criterion given for cb ¼ cb;C.
Dashed lines, scaling laws for Da � 1; tonset � 1:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ða b gÞ

p
and konset

� 46 ðD2 �=ða b gÞÞ1=4 [see Eqs. (12) and (11)]. As expected, the results are indepen-
dent of a for cb ¼ cb;S. We note for the range of a explored significantly longer onset
times and larger onset wavelengths in the slow dissolution kinetics regime. We note sig-
nificant differences between the cases cb ¼ cb;S and cb ¼ cb;C for a < 10�4. In this
range with the modified instability criterion, the proposed scaling at small a is reasonable
for tonset and for konset. For (a) only, dashed-dotted blue line, characteristic dissolution
time D=a2. The transition between fast and slow dissolution regimes for the onset pre-
diction occurs when tonset �D=a2.
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studying the transient thermal convection instability with a second
order in time model incorporating the fluid acceleration term.

We start from the dimensionless system of linearized equations
(15) and (16). By combining these two equations,25 we eliminate the
variable c0 and obtain a single equation in w but with a second deriva-
tive in time, justifying the term of second order in time

@

@t
��

� �
1
Sc

@

@t
��

� �
�w ¼ �1w

@cb
@z

: (21)

Again, we consider the 2D domain Oxz (Fig. 1) of vertical extension
H in dimensionless units. We seek a solution decomposed into hori-
zontal normal modes of wavenumber k and into vertical Fourier
modes under the form

wðx; z; tÞ ¼
ð X1

m¼1
AmðtÞ sin ðmpz=HÞ

 !
exp ði k xÞ þ c:c:

" #
dk ;

with c:c: being the complex conjugate.
For given k and t, one obtains

X1
m¼1

1
Sc
�m2p2

H2 � k2
� �

€AmðtÞ sin ðmpz=HÞ

"

� 1þ 1
Sc

� �
�m2p2

H2 � k2
� �2

_AmðtÞ sin ðmpz=HÞ

þ �m2p2

H2 � k2
� �3

AmðtÞ sin ðmpz=HÞ
#

þk2 @cb
@z

X1
m¼1

AmðtÞ sin ðmpz=HÞ ¼ 0:

The term �1w
@cb
@z introduces non-diagonal terms, which are pro-

jected on the basis Am sin ðmpz=HÞ by using the Galerkin method,
i.e., by computing the integral of the previous equality multiplied by
sin ðrpz=HÞ between�H and 0, with r an integer. We then get

1
Sc
�m2p2

H2 � k2
� �

€AmðtÞ � 1þ 1
Sc

� �
�m2p2

H2 � k2
� �2

_AmðtÞ

þ �m2p2

H2 � k2
� �3

AmðtÞ þ
2k2

H

X1
r¼1

ArðtÞ IrmðtÞ ¼ 0

with

IrmðtÞ ¼
ð0
�H

@cb
@z

sin ðrpz=HÞ sin ðmpz=HÞ dz :

To limit the computing time to manageable values, the integrals
Irm must be evaluated analytically, therefore, we restrict here our study
to the case cb ¼ cb;S in the case of fast dissolution kinetics (Da !1).
We suppose that the diffusive front cb;S does not reach the bottom of
the system, i.e., the dimensionless time must roughly obey
t <H2=10. With this hypothesis, the diffusive front can be approxi-
mated to the solution, for which the diffusive front is zero in
z ¼ �Hz . Foster

25 proposes in that case a simple analytic expression
of
P1

r¼1 ArðtÞ IrmðtÞ, which is applied here. Then, we find by setting
BmðtÞ ¼ _AmðtÞ, the following differential system of order one in time:

_BmðtÞ ¼ �ðSc þ 1Þ m2p2

H2 þ k2
� �

BmðtÞ

�Sc
m2p2

H2 þ k2
� �2

AmðtÞ þ
k2 Sc

H
m2p2

H2 þ k2
� �

�
X1
r¼1

ArðtÞ exp � ðm� rÞp
H

� �2
t

 !"

�exp � ðmþ rÞp
H

� �2
t

 !#
:

By doing a truncation at the order N, this differential system can be
written under a matrix form, dV

dt ¼ MV with the vector

FIG. 5. Onset time tonset (a) and onset wavelength konset ¼ 2p=konset (b) as a func-
tion of Hz. Cyan curve, a marginal instability criterion for cb ¼ cb;S. Red, a modified
instability criterion for cb ¼ cb;S. Black dashed curve, the line Hz vs Hz for (b) only.
The marginal instability criterion provides too short times and too large wavelengths
than expected. konset is also growing with the system size Hz. The visible steps visi-
ble for the marginal instability criterion are due to the lack of resolution for the small
values of k. With the modified criterion, the results are independent of the system
size for Hz > 0:4mm. For the salt parameters, we find tonset ¼ 0:176 s and
konset ¼ 0:529 mm.
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VðtÞ ¼ ðA1;…;AN ;B1;…;BNÞ> and the matrix M of size 2N � 2N ,
which is written by blocks

M ¼ Pmr Qmr

Rmr Smr

� �
:

We find the following coefficients:

Pmr ¼ 0;

Qmr ¼ dmr ;

Smr ¼ �ðSc þ 1Þ m2p2

H2 þ k2
� �

dmr ; and

Rmr ¼ �Sc
m2p2

H2 þ k2
� �2

dmr

þ k2 Sc

H
m2p2

H2 þ k2
� � e�

ðm�rÞp
H½ 
2t�e�

ðmþrÞp
H½ 
2t

h i
:

As done previously, we perform the linear stability analysis by
computing, for given values of H, k, and t, the eigenvalues of the
matrix M. We seek the eigenvalue of largest real part r. The marginal
onset of instability is given when r becomes positive for the shortest
time, k being varied. The corresponding eigenvector provides the spa-
tial shape of the most unstable mode. Again, we show in Sec. IVB that
the criterion of marginal instability gives nonphysical results, with too
short values of the onset times, because the frozen base state hypothe-
sis is not valid for fluid convection. We adopt also the same modified

instability criterion, r > maxz
@cb;S
@t

� �
� e�1=2ffiffiffiffi

2p
p

t
� 0:24

t .

B. Results

The linear stability analysis is always performed with MATLAB,
and we use the same scale of correspondence between the computa-
tional and the dimensional physical space, corresponding to the
parameters of dissolution of salt in fresh water. Again, the length
scale H is chosen as Ra¼ 1, which gives for the parameters of salt
(b ¼ 0:2; D ¼ 1:61� 10�9 m2 s�1, and � ¼ 1:66� 10�6 m2 s�1),19,20

H � 1:11� 10�5 m. The timescale is then H2=D � 7:63� 10�2 s.
The vertical size of the system is thusHz ¼HH.

By choosing N of the order ofH, we have a good convergence of
the method. We start with a Schmidt number Sc¼ 1000 for the case of
salt. In Fig. 6, we plot two colormaps of the values of r as a function of
k and t for two values of the system size Hz. The marginal instability
criterion provides too short times of onset, whereas the modified crite-
rion gives onset times of order 0.2 s. Compared with the results of the
first model (Sec. III B) (Sc !1), we note a weaker dependency of the
onset with k and the onset time is slightly smaller. Moreover, larger
wavenumbers appear more unstable than small wavenumbers, proba-
bly because the inertia of large-scale modes prevents them to grow
fast.

The spatial shape of the most unstable velocity modes according
to the modified criterion is plotted in Fig. 7 for Hz ¼ 0:55 and
Hz ¼ 2:22 mm. Despite the difference of size between the two sys-
tems, the shape of these modes at the onset is very similar, with identi-
cal wavelength konset ¼ 0:53mm. In the second case, the vertical
extension of the velocity boundary layer is dv ¼ 0:44mm, when
defined as the distance between z¼ 0 and the further point where

jwðz; x ¼ k=2Þj < 0:1maxðjwðz; x ¼ k=2ÞjÞ. With this definition,
the ratio between the wavelength at onset and the size of the boundary
layer konset=dv ¼ 1:20 is lower than the ratio of 2.3 between the wave-
length and the vertical system size for the classic Rayleigh–B�enard
instability with a top solid surface and a bottom free surface.40

However, in our case, the definition of the vertical boundary layer is
arbitrary. The maximal vertical velocity in norm is located at the posi-
tion z ¼ �0:11 mm. The ratio of the wavelength by twice of this dis-
tance gives 2.5.

The dependency with the system size Hz is tested in Fig. 8 for
Sc¼ 1000 and both instability criteria and two values of the number N,
100 and 200. We find for these values ofN that the computation is rea-
sonably converged for Hz < 10 mm corresponding to H < 1000.
Again, the marginal instability criterion gives nonphysical results with
an onset wavelength, which grows with Hz. The fluid acceleration does
not explain why the marginal instability criterion associated with the
frozen base state assumption does not work for fluid convection,

FIG. 6. Colormap of the growth rate r (s�1) as a function of time t and of the wave-
number k for the second model (Sec. IVA). Red line, a marginal instability thresh-
old, r¼ 0 (below this red line r < 0). Black line, a threshold given by the modified
instability criterion. (a) r in colormap as a function of k and of t for H ¼ 50 or
Hz ¼ 0:55 mm. (b) The same H ¼ 200 or Hz ¼ 2:22mm. In both cases,
Sc¼ 1000.
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contrary to the case of convection in the porous media. In contrast,
using the modified instability criterion, we observe that the onset
time and the onset wavelength are not depending on Hz, validating
our approach to take into account the dynamics of the base state.
However, rigorously a converged computation for growing values
of Hz requires an increasing number of modes N to the detriment
of the computing time. Nevertheless by extrapolating the results of
the flat part of the curve to an infinite system, we find for salt that
the convection would start at tonset ¼ 0:176 s with a wavelength
konset ¼ 0:531mm. These values for Sc¼ 1000 are nearly identical
to those of the first model, validating the method. We obtain the
proper order of magnitude, compared to the experimental measure-
ments,20 if we remember that the onset time is smaller than that of
the time of plumes emission. However, the onset time measured in
our numerical simulations (see Appendix C in Ref. 20) tonset num
¼ 1:02 s is larger than this last theoretical estimate and than that of
the experimental estimation. By construction of the dimensionless
system, the results of our stability analysis verify the scaling for the
onset at large Da [Eqs. (8)–(10)]. Then, one deduces a prefactor K
for the onset time, K¼ 2.31, which is 12.8 times smaller than our
numerical value and 5.54 times smaller than our experimental
value.20 Compared to the first model without the fluid acceleration,
we find the same behavior, both models underestimate the onset
times. This could be caused by an incorrect treatment of the

velocity boundary conditions, as the non-slipping of the horizontal
velocity is not imposed.

Finally, we test the influence of the value of Sc. In dimensionless
units, we find that the tonset and konset are weakly depending on Sc, as
we can see in Fig. 9. We observe a slight increase in tonset when Sc is of
order one. To express the results into dimensional units, we can
choose to keep the diffusion coefficient constant, whereas the viscosity
is varying. This approach is not physically justified, because these two
quantities are often linked, for example, by the Stokes–Einstein rela-
tion for diffusion of solute in a liquid. A Schmidt number of order one
occurs for a gas phase, like for diffusion of water vapor into air, where
D ¼ 2:42� 10�5 m2 s�1 (Ref. 39) at 25 �C, whereas the kinematic vis-
cosity of air is � ¼ 1:52� 10�5 m2 s�1 at the same temperature. This
case is relevant to study the sublimation of ice into air.19 Therefore, in
Fig. 10, we plot the dependency of tonset and konset as a function of the
Sc for a fixed kinematic viscosity � ¼ 1:66� 10�6 m2 s�1 and for a
variable diffusion coefficient D ¼ �=Sc. With this choice, we find
that tonset increases and konset decreases with Sc. However, performing
the computation for a constant value of H implies in physical
dimensional units, a varying system size Hz ¼HH, because H is
defined as the scale for which Ra¼ 1. Finally, we note that the choice
of D constant and � variable gives an increase in konset with Sc
according to the scaling Eq. (9) and in agreement with our numerical
simulations.20

FIG. 7. Second model. (a) Shape of the most unstable modes for the perturbed vertical velocity field w(x, z) at the onset time with the modified criterion. Top, H ¼ 50 or
Hz ¼ 0:55mm. (b) H ¼ 200 or Hz ¼ 2:22mm. In both cases, the wavelength at the onset is equal to konset ¼ 0:53 mm, and the spatial shape of the modes is very similar
despite the different aspect-ratio of the system. Sc¼ 1000.
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V. DISCUSSION

We have performed a linear stability analysis of solutal convec-
tion, occurring when a soluble body is suddenly put in a contact with a
fluid. Due to the strong hypotheses made, the results of this linear sta-
bility analysis remain qualitative. Nevertheless, we can draw several
interesting points. Our method translates the linearized partial differ-
ential equations obeyed by the perturbations [Eqs. (17) and (18)] into
a linear ordinary differential system of coupled spatial modes using a
Fourier series decomposition. The marginal criterion of instability is
given for the largest eigenvalue by the first positive value in time. This
eigenvalue corresponds to the temporal growth rate of the most unsta-
ble perturbation. We note that one may prefer to integrate numerically
the linear system as a function of time25 and to define the onset when
perturbation has been amplified by a given factor. However, with this
amplification method, the onset parameters are found to depend

notably on the initial conditions and several noise realizations are thus
required.25,47 Then, by computing the eigenvalues, we find that con-
trary to the convection in the porous media, assuming the base state
frozen, the marginal instability criterion gives non-physical results,
with too short tonset and too large konset. The difference consists in a
different structure of the viscous friction term: proportional to the
pressure gradient for the Darcy equation and proportional to the
Laplacian of the velocity field for the Navier–Stokes equations. In
the porous media, viscous dissipation occurs at the pore scale, which is
supposed small compared to all the scales involved in the instability,
and all wavelengths are equivalently damped. The problem is also
weakly dependent on boundary conditions. In contrast, with the vis-
cous Laplacian term of the Navier–Stokes equations, large scale struc-
tures are less damped and modes with a size comparable to the system
size become unstable according to the marginal instability criterion.
The failure of this hypothesis had been already reported in the seven-
ties.47 Qualitatively, the failure of this criterion could be explained by
considering the time domain between tonset given by the marginal

FIG. 8. Second model. Onset time tonset (a) and onset wavelength konset ¼ 2p=
konset (b) as a function of Hz for Sc¼ 1000. Comparison between the marginal
instability criterion (green for N¼ 100 and cyan N¼ 200) and the modified instabil-
ity criterion (red N¼ 100 and magenta N¼ 200). At low enough Hz and sufficient
value of N, the results with the modified criterion are independent of Hz, validating
the approach. The results are identical for both values of N when Hz < 5 mm and
differ notably when Hz > 10 mm, the flat behavior being extended with N ¼ 200 .
We find tonset¼ 0.176 s and konset ¼ 0:531 mm (salt parameters).

FIG. 9. Second model. Onset time tonset (a) and onset wavelength konset ¼ 2p=
konset (b) as a function of Sc, for H ¼ 100. Comparison between the marginal
instability criterion (cyan N¼ 100) and the modified instability criterion (magenta
N¼ 100). We observe a weak dependency of onset parameters with Sc. Black
dashed line for the left panel, prediction of tonset according to the propagation theory
Eq. (22).
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instability and the larger tonset corresponding to the experimental
observations. In this domain, the concentration and velocity perturba-
tions are unstable, but their growths are slower than the base state
temporal evolution and these perturbations are not detectable. This
idea motivates the definition of the modified instability criterion,
which supposes that the growth rate of perturbation must be larger
than the rate of change of the base state. In fact, this criterion provides
a qualitative physic interpretation of the onset, which does not appear
clearly in the numerical simulations.

Using this modified criterion, we observe also in our results a
weak selectivity into the wave number due to the flatness of the insta-
bility curve plotted as a function of k. Consequently, the experimental
wavelength could not be well defined and very sensitive to the sur-
rounding noise. Then using the first model, we investigate the effect of
the dissolution kinetics through the coefficient a, which changes the
shape of the base state. We observe a delay of the appearance of con-
vection and a slight change of the associated wavelength. The results
of our analysis are in agreement with the scaling derived for slow dis-
solution kinetics (Da � 1), when a is varied as illustrated in Fig. 4.

With the second model, the dependency with the Schmidt number Sc
expressed in dimensionless units is weak for the onset parameters.
Finally, the comparison with the experiments and the numerical simu-
lations performed for the dissolution of salt in water (see Ref. 20) show
that we obtain the correct orders of magnitude, but underestimating
the coefficientK for the onset [Eq. (10)] by a factor 5.6 (the first model,
Sc � 1) and by a factor 5.5 (the second model, Sc¼ 1000). The differ-
ence with the numerical simulations20 is larger with a factor 12.8 for
both models. This larger difference between the numerical simulations
and the linear instability than with the experiments is surprising,
because all the hypotheses in the numerical simulations are also used
for the linear stability analysis. Nonlinear terms are incorporated in
the simulations, and the onset time is defined by detecting the appear-
ance of a transverse structure in the concentration field. In experi-
ments, we cannot exclude also a systematic bias in the visual
determination of the onset time. We also note that the two models
give the same orders of magnitude, but the values for tonset at a large
Schmidt number (Sc¼ 1000 in the second model) differ by a factor
2.5. The first model describes the instability of the perturbation con-
centration field c0, whereas the second addresses the instability of the
vertical velocity field w. However, as these two fields are coupled, the
analysis must be equivalent. This discrepancy could be caused by a sig-
nificant effect of the acceleration term even for Sc¼ 1000. Moreover,
the modified criterion is not really justified mathematically and thus
should not be used to predict precise values. The pragmatic approach
of Tan and Thorpe35 for fixed temperature at the boundaries can also
be applied to our problem for fast dissolving kinetics, when the con-
centration is fixed at the top boundary and cðz ¼ 0Þ ¼ csat . For a top
solid surface and a bottom free surface and the fixed temperature or
concentration, the critical Rayleigh number is Rac ¼ 1100:7. Then the
onset time is tonset ¼ Kð �

b g
ffiffiffi
D
p Þ2=3; with K¼ 37.0. Compared to experi-

ments and numerical simulations, this value is better than the simple
estimate K¼ 106.6 and closer to our experimental K � 12:8 and
numerical K � 29:5 estimates in Ref. 20.

Several critics can be addressed to our theoretical study. First, the
proper boundary conditions for the velocity field are not implemented,
which can modify significantly the values of onset parameters. Using
the decomposition in a base of orthonormal functions26 adapted for a
semi-infinite system like the Chebyshev polynomials48 instead of the
decomposition into the Fourier series could solve this problem and
reduce the computational time. The semi-infinite geometry would also
be more appropriate to describe the experiments, where the tank depth
is large compared to the size of the dissolving block. We expect to
obtain qualitatively similar results but with different prefactor values.
Moreover, the modified instability criterion, needed to take into
account the evolution of the base state is not justified theoretically,
although it gives the good orders of magnitude. Comparable results
are provided by the propagation theory, where the solid boundary
conditions are used for the velocity field and where a part of the
dynamic of the base state is taken into account.28–30 For a given wave-
number, a self-similar change of variable adapted to the diffusing base
state transforms the space–time problem to the study of the stability of
two coupled ordinary differential equations. A base state, taking into
account the dissolution kinetics by the coefficient a thus cannot be
tested with this method, as the solution Eq. (4) is not self-similar.
Moreover, we note that an assumption equivalent to our modified
instability criterion is done supposing the equality between the growth

FIG. 10. Second model. Onset time tonset (a) and onset wavelength konset ¼ 2p=
konset (b) as a function of Sc for fixed � ¼ 1:66� 10�6 m2 s�1 and D ¼ �=Sc in
dimensional units for H ¼ 100 (varying values of Hz). Comparison between the
marginal instability criterion (cyan N¼ 100) and the modified instability criterion
(magenta N¼ 100).
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rate of the perturbation and the one of the base states. From a numeri-
cal exploration of parameters,49 the following evolution for the onset
time is obtained in dimensional units:

tonset ¼ 7:53 1þ 0:804
Sc

� �3=4
" #8=9

�

b g
ffiffiffiffi
D
p

� �2=3
: (22)

For salt, Sc � 1000, the term with the Schmidt number is negligible and
the prefactor prediction for the onset time becomes K¼ 7.53. The curve
becomes closer to the experimental points20 and differs by a factor 1.7.
The corresponding wavenumber of the convection instability at the
onset is given by the scaling konset ¼ 0:53 =

ffiffiffiffi
D
p

tonset
� �

.49 For salt, we
obtain then konset ¼ 7:62� 10�4 m, which is compatible with the order
of magnitude of the first wavelength observed in dissolution patterns.19

Compared to our linear stability analysis (the second model), the propa-
gation theory predicts onset times three times larger, but the trends with
the Schmidt number are similar to we can see in Fig. 9 (left).

In addition, the domain of validity of the linear analysis may be
small. In experiments and in numerical simulations, the nonlinear
interactions between modes at different wavenumbers play likely a
role in the emission of convective plumes, especially because this anal-
ysis suggests a weak selection in k of the fastest growing mode (see
Figs. 2 and 6). We also note, than in reality, the instability occurs in a
three-dimensional space and the width of the dissolving block is most
of the time smaller than the width of the liquid bath, which may
induce finite size effects. Therefore, the comparison of the onset
parameters between experiments with numerical simulations and
results from a linear stability analysis remains difficult.

From a theoretical point of view, a linear stability analysis valid for
infinitesimal perturbations is also a necessary condition but not suffi-
cient, because a transient growth of a mode could be interpreted as the
onset of the convection. The study must be completed by an energy sta-
bility analysis keeping nonlinear terms, which guarantees that finite per-
turbations decay exponentially in the domain of the stability.31,42 In our
case, the previous numerical simulations20 and experiments19 show that
the found onset is not a transient growth and is even followed by a
quasi-stationary regime. The determination of the onset of an instability
when the base state is depending on time thus remains theoretically a
difficult question. The most rigorous approach, the non-normal linear
stability analysis32–34 requires us to perform numerical simulations of
the adjoint problem to find the optimal perturbations. However, the
determined onset parameters by this last method are only found in qual-
itative agreement with the experiments.33 The recent linear optimal
transient growth method was recently proposed to address the
Rayleigh–Taylor instability in the presence of a varying thickness of the
fluid layer due to a flow.50,51 This method could also be adapted for
transient fluid convection. We also note that few experimental works
determine carefully the onset for instabilities with a unsteady base state,
for example, the buoyancy-driven instability in the presence of a radial
injection.52 Therefore, decisive confrontations between theories and
experiments remain missing for these kinds of hydrodynamic instabil-
ities, whose the solutal convection induced by dissolution constitutes a
practical and relevant case. Further theoretical work in combination
with numerical simulations is thus required. In geomorphology, a theo-
retical prediction of the onset of solutal convection is important for the
growth of cavities filled with quescient water by dissolution, in particu-
lar, for the water dissolution of gypsum.10,53
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APPENDIX: DERIVATION OF THE MATRIX
COEFFICIENTS USED IN SECTION III A

We detail here the derivation of the matrix coefficients
Bmn; Cmn; Dmn, and Emn involved in the first model valid for large Sc,
using the Galerkin method. We consider the linear differential system
Eqs. (17) and (18), where the temporal derivative is neglected in the sec-
ond equation in the limit Sc � 1. We look for solutions of ~c and ~w
under the form of a Fourier series in z truncated to order N

~cðz; tÞ ¼
XN
n¼1

cnðtÞ hnðzÞ; (A1)

~w ¼
XN
n¼1

wnðtÞ vnðzÞ: (A2)

Here, hnðzÞ and vnðzÞ are the base functions verifying the boundary
conditions

hnðzÞ ¼ sin
2n� 1

2
p
R
z

� �
; (A3)

vnðzÞ ¼ sin
2n
2

p
R
z

� �
: (A4)

Equation (17) is multiplied by hmðzÞ and Eq. (18) by vmðzÞ, and we
integrate with respect to z between �H and 0ð0
�H

@~c
@t

hmdz¼�
ð0
�H

~w
@cb
@z

hmdzþ
ð0
�H

@2~c
@z2

hmdz�
ð0
�H

k2~chmdz

and ð0
�H

k4 ~w vm dz þ
ð0
�H

@4~w
@z4

vm dz �
ð0
�H

2k2
@2~w
@z2

vm dz

þ
ð0
�H

k2 ~c vm dz ¼ 0 :

We express these equations as sums of index N to obtain the m
line of a matrix product. One gets

XN
n¼1

@

@t
cnðtÞ

ð0
�H

hnðzÞ hmðzÞdz

¼ �
XN
n¼1

wnðtÞ
ð0
�H

vn hm
@cb
@z

dz

þ
XN
n¼1

cnðtÞ
ð0
�H

@2hnðzÞ
@z2

hmðzÞ dz

�
XN
n¼1

k2cnðtÞ
ð0
�H

hnðzÞ hmðzÞ dz (A5)
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and

XN
n¼1

wnðtÞ k4
ð0
�H

vnðzÞ vmðzÞ dz

þ
XN
n¼1

wnðtÞ
np
H

� �4 ð0
�H

vnðzÞ vmðzÞ dz

þ
XN
n¼1

wnðtÞ 2k2
np
H

� �2 ð0
�H

vn vm dz

þ
XN
n¼1

cnðtÞ k2
ð0
�H

hnðzÞ vmðzÞdz ¼ 0: (A6)

These expressions involve several integrals, which must be cal-
culated now. With the orthogonality of the base functions, one
obtains first ð0

�H
hnðzÞ hmðzÞdz ¼

H

2
dmn;ð0

�H
vnðzÞ vmðzÞdz ¼

H

2
dmn:

The cross term between hn and vn induces non-diagonal con-
tributions [last line of Eq. (A6)]

Qmn ¼
ð0
�H

hn vmdz

¼
ð0
�H

sin
2n� 1

2
p
H

z

� �
sin m

p
H

z
� �

dz

¼ 4m

4m2 � ð2n� 1Þ2
H

p
ð�1Þmþn

¼ ð1=k2Þ � Dmn �H:

The most complex term corresponds to the projection of the
base state gradient @cb=@z [the second line of Eq. (A5)].

Pmn ¼
ð0
�H

vn hm
@cb
@z

dz:

In most cases, this term must be computed numerically to
obtain the matrix terms. However, in the limit Da� 1, the expres-
sion of the base state under a Fourier series cb;S [Eq. (14)] can be
used, which is very close to the solution cb;E ¼ erfcðz= 2

ffiffi
t
p� �
Þ at

short times. Then, an analytic solution can be found

Pmn ¼
ð0
�H

sin
np
H

z
� �

sin
2m� 1

2
p
H

z

� �"

�
X1
p¼1

2
H

e� 2p�1ð Þ p
2Hð Þ2t cos 2p� 1

2H
pz

� �
dz

#
:

Using trigonometry relations, one finds

Pmn ¼
1
2

e� 2ðm�nÞ�1ð Þ p
2Hð Þ2t � e� 2ðnþmÞ�1ð Þ p

2Hð Þ2t
� �

:

The differential system [Eqs. (A5) and (A6)] can now be writ-
ten under a matrix form using the vectors V ¼ ðc1;…; cNÞ> and
W ¼ ðw1;…;wNÞ>. These equations become

H

2
dV
dt
¼ �PW � p

H

2n� 1
2

� �2
H

2
V � k2

H

2
V ;

and the second

W k4
H

2
þ np

H

� �4 H

2
þ 2k2

np
H

� �2 H

2

 !
¼ �HDV :

Defining the matrix

Emn ¼
1
2

k4 þ np
H

� �4

þ 2k2
np
H

� �2
" #

dmn;

with I being the identity matrix, one obtains W ¼ E�1 DV .
Reporting this expression in the time evolution of V, one gets with
C ¼ �2P=ðHÞ

dV
dt
¼ �C E�1 DV þ � k2

2
� p

H

2n� 1
2

� �2
" #

V :

Finally, the differential system reads dV
dt ¼ AðtÞV with

A ¼ B� C E�1 D, where

Bmn ¼ � k2 þ ð2n� 1Þp
2H

� �2
" #

dmn;

Cmn ¼
1
H

expð� ðmþ n� 1=2Þp=H½ 
2 tÞ
	

�expð� ðm� n� 1=2Þp=H½ 
2 tÞ


;

Dmn ¼
k2

p
ð�1Þmþn 4m

4m2 � ð2n� 1Þ2
;

Emn ¼
1
2

k4 þ np
H

� �4

þ 2k2
np
H

� �2
" #

dmn:

In the case cb ¼ cb;S (fast dissolution kinetics), we find the exact
matrix coefficients given in Sec. III A.
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