N
N

N

HAL

open science

Applying Model-based Requirements Engineering in
Three Large European Collaborative Projects: An
Experience Report

Andrey Sadovykh, Dragos Truscan, Hugo Bruneliere

» To cite this version:

Andrey Sadovykh, Dragos Truscan, Hugo Bruneliere. Applying Model-based Requirements Engineer-
ing in Three Large European Collaborative Projects: An Experience Report. 2021 IEEE 29th In-
ternational Requirements Engineering Conference (RE), Sep 2021, Notre Dame, South Bend, United
States. 10.1109/RE51729.2021.00040 . hal-03287261

HAL Id: hal-03287261
https://hal.science/hal-03287261
Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03287261
https://hal.archives-ouvertes.fr

Applying Model-based Requirements Engineering
in Three Large European Collaborative Projects: An
Experience Report

Andrey Sadovykh
Innopolis University - SOFTEAM
Innopolis, Russia - Paris, France

a.sadovykh@innopolis.ru,
andrey.sadovykh @softeam.fr

Abstract—In this paper, we report on our 5-year’s practi-
cal experience of designing, developing and then deploying a
Model-based Requirements Engineering (MBRE) approach and
language in the context of three different large European collab-
orative projects providing complex software solutions. Based on
data collected both during projects execution and via a survey
realized afterwards, we intend to show that such an approach
can bring interesting benefits in terms of scalability (e.g., large
number of handled requirements), heterogeneity (e.g., partners
with different types of RE background), traceability (e.g. from
the requirements to the software components), automation (e.g.,
requirement documentation generation), usefulness or usability.
To illustrate our contribution, we exemplify the application of our
MBRE approach and language with concrete elements coming
from one of these European research projects. We also discuss
further the general benefits and current limitations of using this
MBRE approach and corresponding language.

Index Terms—Requirements Engineering, Model-based Engi-
neering, Collaborative Projects, Experience Report, Scalability,
Heterogeneity, Traceability, Automation

I. INTRODUCTION

In many countries, funded collaborative projects involving
academic and industrial partners are a preferential way of
implementing ambitious Research and Innovation Actions
(RIAs) [1]l, [2]. Such projects are also frequently used to
foster international collaborations and to develop correspond-
ing long-term partnerships between organizations from various
countries. This is notably the case in Europe, where the Euro-
pean Commission has several active funding bodies proposing
various kinds of funding programmes targeting different soci-
etal, economic, and scientific grand challenges [3].

In the context of such collaborative projects in the Software
and Systems Engineering area, possibly important in terms of
the number and variety of involved partners and countries,
the main expected results are generally large and complex
integrated frameworks or tool sets. In order to allow for

This work has received funding from the ECSEL Joint Undertaking under
grant agreements No. 737494 (MegaM@Rt2 project) and No. 101007350
(AIDOaRt project), from ITEA3 (REVaMP2 project No. 15010), and from
H2020 under grant agreements No. 732064 (DataBio project) and No. 957212
(VeriDevOps project).

Dragos Truscan
Abo Akademi University
Turku,Finland
dragos.truscan@abo.fi

Hugo Bruneliere
IMT Atlantique, LS2N (UMR CNRS 6004)
Nantes, France
hugo.bruneliere @imt-atlantique.fr

their actual design, development and deployment, it is thus
fundamental to be able to support and manage as efficiently
as possible the corresponding Requirements Engineering (RE)
processes [4f], from the initial identification of the industrial
needs to their realization within the final innovative solutions.

As it can be observed in the literature, the state-of-art in
RE is already rich in terms of approaches and corresponding
technical solutions [5]]. Among other paradigms, some of these
approaches rely on model-based concepts [6]. This notably
reflects the fact that model-based principles and techniques
have become more popular in industry over the last two
decades, as they can provide relevant abstraction, genericity
or reusability capabilities (for example) [[7].

In this paper, we report on our practical experience of
proposing and applying a Model-based Requirements Engi-
neering (MBRE) approach and language during 5 years in
the context of three different large European collaborative
projects, each one of them providing as a result various
complex software solutions (e.g., frameworks, integrated tool
sets, etc.). The approach was mainly developed by the SOFT-
EAM company and applied in 3 different research projects in
which SOFTEAM participated in the technical coordination
activities. With this reporting and data analysis work, we
notably intend to show that such a MBRE approach can
bring interesting benefits in terms of scalability (e.g., large
number of handled requirements), heterogeneity (e.g., part-
ners with different profiles and types of RE background),
traceability (e.g., from the initial requirements to the software
components), automation (e.g., requirement documentation
generation), as well as general usefulness or usability.

The remainder of the paper is structured as follows. Section
introduces the general context and background of this expe-
rience report. Then, Section[[II] highlights relevant related work
while Section describes the MBRE approach we propose
in order to support RE processes in collaborative projects.
Section [V] evaluates this approach and its practical application
in the context of three different large European collaborative
projects. Finally, Section|VI|discusses the main lessons learned
from this experience while Section concludes the paper.



II. CONTEXT AND BACKGROUND

European collaborative projects are one of the main sources
of innovation in Europe [2]. There are several funding bodies
such as ECSEL, Horizon 2020, ITEA, etc. coming with
different types of funding programmes. The funded projects
all have in common that a number of organizations (academic
or industrial) from several European countries participate in a
collaborative research effort. The average number of partners
in such projects varies according to the funding framework.
For example, this goes from 4.69 in Horizon 2020 [_8] to 30
and 40 for Research and Innovation Actions and Innovation
Actions ECSEL projects respectively [9]. However, it is not
unusual that ECSEL projects exceed 100 organizations [10].

A key element of such European research projects is the
complementarity of the project’s participants. These partic-
ipants can come from different application domains (e.g.,
railway, avionics, telecom, manufacturing), have different sizes
(e.g., from small and medium enterprises to large industrial
groups), levels of maturity or come with different kinds of
research background. They have to work together to achieve
a set of shared R&D goals, usually validated via several case
studies that serve as a common platform for experimenting
on newly designed and developed technologies. The objective
is to provide evidence to the European Commission of the
benefits and drawbacks, both scientific and economical, that
the developed innovative technologies can offer.

However, the diversity and number of partners can also
imply project management challenges related to 1) the elic-
itation of the needs from the industrial case study providers
and 2) the identification of not only the concrete solutions to
be provided during the project (lasting typically three years),
but also of a roadmap for the development of the final technical
solution. These challenges are amplified by the number of
partners in the project and by the diversity of their (scientific
and technical) backgrounds and of their application domains
[11]. When such challenges are not addressed properly, they
can negatively influence the outcomes of the project [[12].

Therefore, appropriate RE practices are necessary for max-
imizing benefits and for achieving good technical results in
such projects. Those RE practices span over all areas of the
RE process such as requirements elicitation, specification,
validation and management [4]. The approach proposed in
this paper applies model-based principles and techniques to
support and improve the RE process in possibly large and di-
verse collaborative projects. With our approach, we intended to
provide better scalability, improved support for heterogeneous
types of partners, and more complete tool support / automation
for managing the requirements of the developed solutions.

In practice, the proposed approach was designed, developed,
matured and applied in three large European projects covering
a period of five years (cf. Section for more details):
H2020 DataBi 2017-2019 [13], ITEA3 REVaMP 2016-

Uhttps://www.databio.eu/
Zhttp://www.revamp2-project.eu/

2019 [14], ECSEL MegaM@Rtﬂ 2017-2020 [15].

In this paper, we specifically focus on the three above-
mentioned projects as the most recent ones from our side.
However, we have already faced the similar challenge to
coordinate RE processes and tool framework developments in
more than 15 similar European collaborative research projects.

III. RELATED WORK

By nature, RE always implies a modeling activity [16].
Thus, model-based principles and techniques have already
been applied to address different kinds of RE activities [6].
Notably, this resulted in acknowledged contributions such
as goal modeling languages for instance [17], [18] or the
ReqlF requirement modeling standard [19]. However, up to
our current knowledge, few model-based approaches have
been proposed to cover complete RE processes in the general
case. For example, an existing solution relies on a generic
modeling framework to represent and simulate requirements
independently from the context [20]. Another one is based on
a core requirements metamodel to be customized to support
various kinds of RE processes [21]. In addition, we can also
mention transformation-based approaches from goals models
to design models, such as the KAOS method [22].

However, these approaches have been deployed only in a
single project [23]] or were mostly focusing on some partic-
ular RE aspects, such as requirements visualization for in-
stance [24]). In this paper, we rather intend to propose a model-
based RE approach to possibly cover complete RE processes in
large collaborative projects with heterogeneous and numerous
partners, including important features such as requirements
traceability and automated documentation generation. From a
more industrial perspective, and to foster genericity, reusabil-
ity and interoperability, the proposed MBRE approach and
language are rooted in acknowledged software and system
modeling standards: UML [25]] and SysML [26]]. Moreover,
they are also partially inspired by the European Space Agency
standard terminology and structure for RE documents [27].

Closer to the context and background of our work, a
few model-based approaches have already been proposed and
used inside collaborative research projects to handle, at least
partially, corresponding RE processes. For instance, Nielsen et
al. [28] proposed a RE process for small EU-funded projects.
They proposed to have each case study provider pairing with
an academic partner to assist the former in eliciting and
specifying the requirements. Differently from this approach,
we propose to use model-based techniques to elicit generic
framework requirements as a meeting point between the case
study requirements and the tools developed in the project. We
also enforce traceability between requirements and use the
requirements specifications as the reference for performing gap
analysis, road mapping and generating documents.

In a different work [11]], the authors discuss lessons learned
in a large scale research project and exemplify different
techniques for elicitation, traceability and gap analysis. They

3https://megamart2-ecsel.eu/


https://www.databio.eu/
http://www.revamp2-project.eu/
https://megamart2-ecsel.eu/

partially use model-based techniques for elicitation and anal-
ysis or to identify the framework architecture, but did not
not applied at the entire approach level. They also defined
metrics-based validation criteria for requirements that we
could integrate in our approach in the future.

Another work focuses on identifying the framework archi-
tecture in an European project [29]. However, the approach is
not model-based and the links between the architecture and
the tools provided by technology providers are missing, thus
making gap analysis more difficult to perform.

IV. PROPOSED APPROACH

As a solution to the problem of covering complete RE
processes in the context of large collaborative projects involv-
ing many different kinds of partners, we propose a MBRE
approach with a dedicated modeling language and the corre-
sponding tool support. We give an overview of this approach in
Section and we describe the corresponding RE language
in Section In Section we also provide more details
on how these approach and language have been concretely
implemented and supported in the Modelio tool.

A. Overview of our Conceptual Approach

Our MBRE approach is defined to take into account the
typical participant roles and activities in large collaborative
research projects involving both academic and industrial part-
ners. From our long-term experience in many projects of this
type, both at the national level in each of our respective coun-
tries and at the international level (e.g. in Europe), we have
been able to observe a common general organization: Case
Study Providers have a practical problem, e.g., in terms of
development processes, product quality or features, for which
they are looking for innovative solutions; Research Partners
develop new research methods and prototypes and Technology
Providers offer technological solutions, in collaboration with
the research partners, that can be deployed and evaluated
against the industrial case studies. It is then the task of a
Technical Coordination Team to ensure a smooth collaboration
between the involved partners and that the project’s objectives
are globally achieved. Of course, there are different kinds
of project and the participants role may slightly vary: A
same entity can sometimes be both a Research Partner and
a Technology Provider, or a Case Study Provider can also be-
come an actual customer of a Technology Provider. However,
we believe the proposed global organization is adapted to a
majority of the large collaborative research projects we target.

As illustrated in Figure [I} our approach proposes that the
technological solutions are provided in the form of a generic
framework. The framework requirements are elicited from the
industrial case study requirements. The framework aggregates
Tool Components specific to different application domains
and applicable to one or several case studies. Each tool com-
ponent is developed by different project participants based on
Tool Component Requirements, also sometimes called “Tool
Purposes”, which satisfy the framework requirements. Each
tool component will have a specific architecture including

the interfaces available for being interconnected with other
tools. This notably allows for different tool chains to be easily
created for particular case studies. Each tool component is
developed with different priorities and becomes available at
different milestones from the Tool Component Roadmap.

Based on the individual tool component architectures and
roadmaps, the technical coordination team can design the
Framework Architecture and the Framework Development
Roadmap. Such a roadmap will allow the case study provider
to know when different technologies will be available for eval-
uation, and consequently to create Case Study Requirements
Validation Roadmaps. When different Tool Component
Implementations become available at different milestones of
the project, they are integrated in the framework and evaluated
against the case studies in the Case Study Requirements
Validation and Solution Evaluation process.

The above process is applied continuously during the im-
plementation of the project. However, several challenges have
to be addressed for ensuring a smooth process.

The first challenge is the elicitation of the framework
requirements that support the needs of the industrial case
study providers (i.e., the case study requirements). This is not
trivial since it requires the collaboration of all the partners
in the project, each one coming from different application
domains and having different technical backgrounds. Having
a centralized and clear mapping between case study require-
ments on one hand, and the framework and tool components
requirements on the other hand, also allows the technical
coordination team to track the progress, to spot further needs
for technical solutions and to mitigate the risks.

The second challenge that we address is to create a roadmap
for the development of the framework by collecting develop-
ment plans for individual tool components. This will allow
all partners in the project to be aware of when different
features of the framework will be implemented. This will also
allow case study providers to know when these tools can be
evaluated against their own case studies. In addition, having
such a roadmap allows the technical coordination team to
better plan and produce different deliverables, demonstrations
and thematic events in the project.

B. A Dedicated Modeling Language for RE

To realize the proposed conceptual approach, and to repre-
sent and share appropriately the requirement data during the
full RE process, we worked on a dedicated modeling language
for MBRE. The reason for developing a dedicated language,
rather than directly using an existing one, is that the commonly
used modeling languages (i.e. general-purpose ones such as
UML) are very wide in terms of scope. Thus, users tend to
have different ways to specify requirements and corresponding
design decisions when using them. This is actually an issue in
our context of large collaborative projects involving partners
with different backgrounds and experiences.

As a solution, we decided to design and build our modeling
language by following a bottom-up approach: We started
by analyzing what were the documents (i.e. deliverables)



Case Study

and roadmap Framework validation

Case study
Requirements

Case study
Requirements

Requirements

Case study
providers

Technical
Coordination
Team

Framework
Requirements

Validation Validation and Solution
Roadmap Evaluation
Framework Er:vn;;wx:n t Integrated
Architecture p Framework
Roadmap

Tool
component
architecture

Tool
Component
requirements

Research and
Technology
Providers

Individual
tool
Roadmap

Tool Component
Implementation

Project start

Project end

Fig. 1. A conceptual approach for MBRE.

generally needed in terms of both requirements and architec-
ture in large collaborative projects. To this end, we notably
studied standard representation formats such as ESA ESS [27]
and standard modeling languages such as UML [25]. Then,
inspired by them, we designed a generic modeling language
that would help in supporting and simplifying the automated
generation of these documents/deliverables. This language was
designed based on the needs of the requirements engineering
processes used in the three European projects mentioned
above. But it can be customized and extended if needed ac-
cording to the processes of other projects. The objective of the
language is to allow the project participants to elicit, specify
and then share both the requirements and corresponding archi-
tectural elements which are to be addressed by following the
proposed conceptual approach (cf. Section [V-A). This is why
we made the effort of using a common terminology between
the conceptual approach and the RE modeling language.

1) Abstract Syntax: The main concepts of our dedicated
modeling language for RE are depicted in Figure [2]

At the Requirements level, the base element is the Require-
ments Container that is used to logically group sets of related
requirements (e.g., requirements attached to a same tool). Each
Requirement is represented by various properties such as
an identifier, a definition, a criticality level, a corresponding
release, a status and additional comments if any. The criticality
level indicates the priority for the requirement’s implemen-
tation (i.e. low, medium or high). The release indicates the
milestone at which the requirement is planned to be satisfied
(i.e., baseline, initial, intermediate or final. If needed, the pos-
sible releases can be modified and configured in the beginning
of the project based on its own actual milestones. The status
indicates the state of fulfillment of the concerned requirement
(i.e. planned, in progress, done, postponed or cancelled). The
comments provide additional information on the concerned
requirement. A given requirement can be connected to another
requirement it depends on via a trace dependency link. For
example, a Tool Requirement (also called Tool Purpose)
can be linked to a corresponding Framework Requirement,
and this Framework Requirement to a corresponding Case

Study Requirement. Moreover, any architectural element
realizing a given Requirement can be mapped to it via a satisfy
dependency link. We can keep track of the source of the
requirements using RequirementsContainers and ID naming
conventions for the project participants.

At the Architecture level, the base element is the Package
that is used to logically group sets of related Framework
or Tool Components, common interfaces of platform nodes.
Each Component depicts a tool or its constituent part. A given
component can be composed of different sub-components to
represent its various constituent parts. An Interface describes
a required functional service (e.g., XMI import/export). It can
be connected to a component via an interface realization link to
indicate a provided service, e.g., the tool component’s output,
or via an use dependency link to indicate a consumed service,
e.g., the tool component’s input. A Node represents a de-
ployment platform (e.g., Eclipse RCP, a Java virtual machine,
etc.). A given component can be connected to different nodes,
i.e. its deployment platforms. It is important to note that the
metamodel is voluntarily not defining any specific element
to support the framework validation phase (cf. Figure [I).
This is mainly because that phase is a manual activity where
different case study providers instantiate tool chains from the
framework by taking advantage of the traceability between
requirements, and run them on different validation scenarios.
However, elements for requirements validation metrics could
be added in the future to be used both at case study and project
level in connection with the project objectives.

2) Concrete Syntax: Attached to the abstract syntax of our
language as introduced just before, various kinds of concrete
notations could be envisioned, either graphical, textual or
combining both. Based on our own experiences, and notably
the industrial experience of SOFTEAM when using Modelio-
based solutions for their customers’ projects, we decided to
consider a combination of tabular views and UML/SysML-
like diagrams as the syntax for our RE language.

In terms of diagrams, a SysML Requirements diagram is
used to graphically map the different tool components to their
respective tool requirements and then to their corresponding



(“_i RequirementsContainer

= name : EString
=1 description : EString

[0..11 container

[0..*] relatedRequirements

m|_‘. ArchitecturalElement |

= id : EString
=1 description : EString

=] Package

£ Component

[0..*] commonlinterfaces [0..*] platformNodes

10..#] relatedComponents ( H Interface ’ [ = Node

(== . [0..%] satisfy
= Requirement
[0. 1 trace S :.E.St_rlng X [0..*] subComponents
= definition : EString
= criticality : CriticalityLevel = low l
= release : ReleaseType = baseline
= status : Status = planned
= comments : EString
T
-
= CaseStudyRequirement ’ (g_; FrameworkRequirement ’ ( =} ToolRequirement

[0..*] consumedServices [0..*] providedServices

[0..*] deploymentPlatforms

£ CriticalityLevel 2 ReleaseType 2 Status
= low = baseline = planned
= medium = initial = in progress
= high = intermediate = done
= final = postponed
= cancelled

(‘_, FrameworkComponent ’ ( = ToolComponent |

Fig. 2. Metamodel describing the abstract syntax of our RE modeling language.

case study requirements. A UML Class diagram is used to both
describe a component, their constituent parts and its required
and provided interfaces. It is also used to map individual tool
components to conceptual frameworks components. A UML
Deployment diagram is used to represent the nodes showing
the deployment constraints of the different tool components.

As far as tabular views are concerned, they are mostly used
in order to easily enter and then properly display various
properties of possibly very large sets of requirements.

Figure [3] illustrates this concrete syntax, as currently im-
plemented in the Modelio tool (cf. Section [[V-C), on an
example RE model from the MegaM@Rt2 project. In this
particular example, we can see in the tabular view a set of
tool requirements/purposes for the MATERA2 tool (upper-
right view). These tool requirements are grouped in a same
requirements container named “MATERA2 (ABO)” (cf. left
panel). On the related diagram (cf. bottom view), we can see
how a given Modelio tool requirement “MATERA2-010" is
traced to some framework requirements “SYS-0101007, etc.
and then, by transitivity, to some case study requirements
“IKER_01", etc. We can also see that a given tool component
“MATERA2 (ABO)” satisfies a corresponding tool require-
ment “MATERA2-010”. To give a example, “IKER_01" case
study requirement stands for ”A modelling tool supporting

DDS UML profile, for the representation of DDS related
concepts in order to enable code generation based on it”.
By analysing this and similar requirements the following
framework requirement may be derived: ”SYS-010100: The
SE must support standard modelling languages, standard pro-
files (i.e. AADL, UML, SysML, MARTE, fUML, UTP) and
profile customisation capability”. ABO, the tool provider for
MATERAZ? tool, further interpreted these requirements and
mapped them to the purposes/requirements of their tool in
the following way: "MATERA2-010: MATERA2 shall provide
UML based modeling and executable specifications”.

3) Semantics: As partially extending UML core concepts,
the semantics of our RE language is directly connected to
the semantics of UML. For instance, we consider the con-
cepts of Package, Component, Interface, Node and various
types of links as having the same meaning as prescribed
by UML. However, in order to make the models universally
understandable and reusable by other persons relying on our
RE language, we limited their usage to the strict definitions
provided in Section As introduced earlier, one of the
main objectives of our RE language is to allow for the auto-
mated generation of corresponding requirements, architecture
and roadmap documents. Thus, RE models expressed in our
language are meant to be interpreted by (i.e. taken as inputs



“g- Model 52 = B | g MaTERAZ (ABO) &2
S e gL T

=] MegaMaRt2Architecture ~ n MATERAZ-010

R

‘Eﬁ RequirementsPurpose 1

v ‘% MegaM@Rt Tool Set Requirements
‘E@ MMRT Framework Requirement
v ‘% Tool component purpose
v >[@ MATERA2 (ABO)
“E MATERAZ-010
“FEy MATERAZ-020
“Ey MATERA2-D3D
“FEy MATERAZ-040
“Ey MATERA2-050
“FEy MATERAZ-060
“Ey MATERA2-070
“FEy MATERAZ-080
Eh - ——

£

Table  Form

Satisy

v 5] MATERAZ [ABO) — — —— —= [F MATERAZ-010

LR ST
T =

MATERAZ shall provide UML based modeling and executable specifications.

MATERAZ2-020  MATERAZ shall provide UML based simulation facilities. High =~ Final = done -~
h -
‘%' CaseStud)rScena.nos 2 MATERAZ2-030  MATERAZ shall generate a human-friendly report in order to visualize the test and High = Final = done -~
@ Case Study Requirements 3 MATERA2-040 MATERAZ shall provide feedback to the modeling phase, including timing High - Final - done -

>

E Outline FﬂAudit 2. Diagrams 7 Link Editor 22 | £ Script | 59 Properties| ® Document Publ... ﬁS}rsML @Template Editor| =

aQQ| &BaE| flls L»--emffﬂ?;?---ﬂ%:[:
e

IKER_01

«Tr » B
SR By nok_ot

= Trace » =
= sy TR 02
=Trace »

— ST = [y 5¥5.010100

Fig. 3. Example view of the concrete syntax of our RE modeling language, as implemented in the Modelio tool.

of) specific document generators. As a consequence, part of
the semantics of our RE language is also embedded in the
source code of these document generators. For example, a
Package would often correspond to a first-level chapter in
the specifications. A Common Interface is a section of the
Software Requirements Specification (SRS) where we list the
information that is very helpful for integration. Besides, each
Tool Component section will have exactly four subsections
based on the used diagrams (cf. Section [V-B2): The SysML
Requirements diagram is the main source to extract informa-
tion about the features (existing or planned) or a component,
the UML Class diagram maps to the corresponding section
giving more information on provided and required services,
etc. Basically, the document generator would navigate the
whole model from its root and, when finding an element
with a corresponding type e.g., a Package providing Common
Interfaces, it will collect the corresponding data from the
model and integrate it into paragraphs, tables, matrices and
figures of the generated document, cf. a deliverable generated
in MegaM @Rt2 for example [30].

C. Implementation of the RE Approach in Modelio

The MBRE approach and language presented in this paper
could be possibly implemented by relying on different mod-
eling tools (either open source or proprietary). However, we
made the choice of implement them in the Modelio tool [31]
because it is developed by SOFTEAM that was a core partner
in each of the three projects we report on in this paper. This
notably allowed us to benefit from an extensive support during
the design, development and deployment of the solution.

In the DataBio project, we first experimented with extend-
ing/refining ArchiMate as the high-level representation for
architecture. However, due to the constraints imposed by the
ArchiMate metamodel, collaborative modeling was quite te-
dious in Modelio. For example, the locking of a single element
was leading to the locking of a large portion of the model,
possibly impacting other users. Moreover, ArchiMate is quite
new and much less adopted in the industry. This would have
resulted in a steeper learning curve, such a limitation being

partially reflected in the survey data presented in Section [V-B]
These are the reasons why, in the subsequent REVAMP and
MegaM @Rt2 projects, we rather opted for extending/refining
UML as 1) allowing atomic editing of components and 2)
being already widely known in the industry.

¥

MegaMaRt2Architecture
g Requirements Level
“Fg Case Study Scenarios
‘E@ Case Study Requirements
v \ﬁa MegaM@Rt Tool Set Requirements
“Fg MMRT Framework Requirements
‘Ij‘;, Tool component purpose
~ "5 Architecture Level
v B3 MegaM@Rt2 Architecture
v B2 Conceptual Tool Set
"] MegaM@Rt Framework
v B3 Tool Set Components
“F1 Common Interfaces

<

“F2 Common Frameworks
"B Tool Components

Fig. 4. Structure of the RE model in Modelio: Example from MegaM @Rt2.

The main elements of a RE model in Modelio are shown
in Figure ] with respect to the MegaM@Rt2 project as
a practical example. Conforming to our RE language as
described in [[V-B] the overall structure of the RE model
includes both the Requirements and Architecture levels. For
the Requirements level, we directly benefited from Modelio
Analyst features such as Requirements Containers, Tabular,
Diagram view, Traceability matrices and Import from Excel.
Modelio also allowed us to specialize the Requirements prop-
erties (that correspond to the columns in the tabular view)
in order to implement our approach and language. For the
Architecture level, we relied on the standard implementation
of UML as currently available in Modelio. We refined this
UML implementation in order to limit the use of UML to
the concepts considered in our RE language. Moreover, in
order to facilitate the initial use of the RE language, we also
built-in a specific template for tool components and made it




available directly from the Modelio workbench. This way, the
users of our RE language in Modelio can benefit from clear
guidelines on what is expected from them when elaborating
on their Requirements model.

The Modelio Document Publisher was also a major fea-
ture to construct our MS Word document generator. Indeed,
Modelio provides a simplified document template editor with
graphical interface that has pre-build functionalities for navi-
gating the model, filtering model elements, extracting textual
notes and diagrams, as well as building sections, paragraphs,
tables and matrices. These features were particularly useful to
generate important parts of our documents. This is notably the
case for roadmaps, where we created tables displaying map-
pings between case study requirements and tool requirements
indicating planned delivery dates. Based on such roadmaps,
the case study providers could anticipate and organize both
the building of their tool chains and their validation activities.
Moreover, the traceability information in the RE model was
extremely important to identify the case study requirements
that are not addressed by any of the tool components. This
way, we were able to conduct gap analysis from our RE model
in order to better plan corrective actions.

In addition to the base implementation of our MBRE
approach and corresponding language, our Modelio-based
implementation also provides additional features which are
particularly relevant in our context. For example, it is possible
to relate and trace our RE models to elements coming from
other kinds of models in Modelio (Enterprise Architecture
models expressed in ArchiMate [32]], business models in
BPMN [33]], system models in SysML [26], etc.). It is also
possible to import requirements from external tools (e.g.,
Microsoft Excel) and to integrate them in our RE model.
Moreover, new generation capabilities can potentially be added
to target other kinds of text-, diagram-, table- and matrix-based
representations for the RE information. Finally, our Modelio-
based implementation directly benefits from the collaborative
features provided by the Modelio environment: support for
(un)locking model elements, commit and update, configuration
or version management, etc.

V. EVALUATION

To evaluate our MBRE approach and language, we collected
various kinds of data associated with the three large collab-
orative projects we considered. We describe quantitative and
qualitative data resulting from both the projects’ execution,
in Section and a survey realized after the end of these
projects, in Section In Section the collected data
is then used to assess the relevance of our RE approach and
language according to main targeted properties.

A. General Data on Projects

The proposed MBRE approach and language have been
designed, developed and then deployed in the context of three
large collaborative projects, financially supported by the Eu-
ropean Commission under different R&D funding programs.

The first project is named DataBio, standing for Data-
Driven Bioeconomy (Horizon 2020). It lasted 3 years from
2017 to 2019 and involved 48 partners from 17 countries, for
a total budget of € 15M. 27 case studies in the agriculture,
forestry and fishery areas were considered during this project.

The second project is named REVaMP2, standing for
Round-trip Engineering and Variability Management Platform
and Process (EUREKA ITEA3). It lasted 3 and a half years
from 2016 to 2019 and involved 27 partners from 5 countries,
for a total budget of € 22M. Seven industrial use cases in the
cyber-physical systems, electronic systems or tourism areas
were considered during the REVaMP2 project.

The third and last project is named MegaM @Rt2, standing
for MegaModeling at RunTime - An scalable model-based
framework for continuous development and runtime validation
of complex systems (ECSEL). It lasted 3 years from 2017 to
2020 and involved 27 partners from 6 countries, for a total
budget of € 16.7M. Nine industrial use cases in the aeronau-
tics, warehousing, automotive, construction, transportation or
telecommunication areas were considered.

Complementary to these global projects figures, we provide
in Table [I] additional data displaying the level of activity in
terms of RE, as registered during these three projects.

TABLE I
KEY FIGURES RELATED TO THE DATABIO, REVAMP2 AND
MEGAM @RT2 PROJECTS IN TERMS OF RE ACTIVITIES.

[ Number of ... [ DataBio [ REVaMP2 | MegaM@R(2 |
Registered users 55 43 56
Contributors 31 24 27
Commits 958 534 1322
Handled requirements: =188 =535 =428
(Case Study r. 77 190 106
+ Framework r. 104 56 91
+ Tool r.) NA 3 289 231
Model elements® =5406 =3307 =4742
(Requirements level 535 1091 2351
+ Architecture level) 4871 2216 2393
Pages generated 61 109 125
5Tn DataBio, there was no clear separation of framework and tool regs.
®Includes all applied elements e.g. attributes, relations and diagrams.

The data show that the number of individuals involved in
the RE process, whether they are just registered users having
a “read-only” profile or actually active contributors having a
read-and-write profile, was relatively important and globally
similar in the three projects.

In terms of RE activities, as illustrated in our case by the
number of commits on the Requirements model, we observed
a disparity between the three projects even though it stays
globally important in all of them. This can be explained by
the slightly different size of the three projects, e.g., number of
partners or use cases. This can also be partly explained by the
nature of the single commits: A given user can frequently do
small single commits while another can rather commit a large
number of updates as a single commit.

In terms of the Requirements models themselves, the data
highlight the globally high number of handled requirements
and related elements in the context of the three projects.



We can observe differences between the projects but, as
stated before, this can be explained by the specificity of each
particular project e.g., the number of partners and the use cases
to be covered. These differences are also directly reflected and
visible in the number/size of the various project’s documents
or deliverables generated from the Requirements models in
the three projects. We also want to note that the initial use of
ArchiMate in the DataBio project, as previously mentioned in
Section does not have a significant influence since the
number of concepts considered for modeling the architecture is
exactly the same than in UML. The slightly bigger numbers
can be rather explained by the greater size of the DataBio
project in terms of involved partners and tools.

We can observe that there is a significant difference between
the number of requirements level elements and architecture
level elements in the three projects. There are several possi-
ble explanations: 1) Architecture specification requires many
elements, e.g. interfaces, components, relations, in order to
satisfy a set of requirements, 2) the UML metamodel usually
requires the creation of several elements for a given goal, e.g.
association ends are created when an association is added (and
these are also counted).

B. Survey for Projects’ Participants

In order to be able to evaluate our MBRE approach and lan-
guage according to more data, we have also run a complemen-
tary online survey among the members of the MegaM @Rt2,
REVAMP and DataBio projects. The key research hypothesis
we want to validate is whether our approach is relevant and
helpful in the context of large collaborative research projects.

In the following, we summarize the main findings of the
survey, while the complete survey results are available at [|34].

We started with three quantitative assessment questions:

e QI: In your opinion, did you find this graphical model-
based approach useful in different activities of Requirements
Engineering? Followed by the list of main RE activities.

e 02: In your opinion, do you see the modeling approach as an
improvement compared to other non-modelling (e.g., text-only
or table-based) regarding the following aspects? Followed by
the list of characteristics that the requirements have to follow,
such as correctness and traceability [35]].

e (03: In your opinion, did you find the following Modelio
tool features useful in different Requirements Engineering
activities? We listed all presumably key features of Modelio
that could be considered helpful.

In addition to these quantitative assessment questions, we
proposed to answer three qualitative assessment questions:

e (O4: In your opinion, what was the most challenging aspect
of the Modelio-based approach?

e 05: In your opinion, what was the most useful aspect of the
Modelio-based approach?

e 06: In your opinion, which additional Modelio tool features
would have been useful for RE in the project?

The potential respondents were all project partners who had
an account in the shared model repository and presumably
had access to the modelling. We excluded the authors from

the survey in order to avoid the subjectivity bias, even though
they were primary beneficiaries of the approach as responsible
for architecture definition in the MegaM @Rt2 project.

In total, we had 154 individual contact persons: 55 for
DataBio, 43 for REVAMP and 56 for MegaM@Rt2. We
received 15 complete answers, including 1 person not involved
in RE activities. We explain this level of participation by
a couple of factors: (1) Few of these contact persons were
active contributors to the RE process in these projects, most
of them were “readers” or contributed very few elements; (2)
It has been at least 1 year since the projects terminated and
at least 2 year since the end of the corresponding RE work.
While this amount of data cannot be considered statistically
representative, we believe the received feedback still provides
interesting and relevant complementary insights.

The majority of the respondents considered that our model-
based RE approach was useful for different RE activities.
On average, 90% in average would agree that the proposed
graphical model-based approach is useful for RE (Q1), 65%
would agree that the modeling approach is better for RE
(Q2), and 79.59% would agree that the implementation of the
approach in Modelio was useful for RE (Q3).

In QI1, all respondents (100%) agree that model-based ap-
proaches are useful in Requirements analysis and negotiation.
However, only 80% find that model-based approaches are
useful in Requirements validation.

In Q2, the highest agreement (86.67%) concerns the ad-
vantages of a model-based approach regarding Traceability:
It can be linked to system requirements, designs, code, and
tests. The lowest agreement (53.33%) concerns the benefits of
model-based versus non-model-based approaches for dealing
with Correctness (it accurately states a customer or external
need) and Clearness (it has only one possible meaning).

In Q3, all respondents (100%) would find Changing/adding
dependencies useful in the implementation of our approach.
The lowest agreement (57.14%) concerns the usefulness of
Roadmapping (e.g., setting up expected delivery dates and
completion stage for designed components). However, this
feature was introduced in the Mega@Rt project only, where
80% (4/5) of the respondents would find it useful.

Moreover, additional questions on the appropriateness of the
approach resulted in the following assessments:

e 85.71% would find the approach appropriate for the given
size and scope of the project.

e 92.86% would find the tool support useful for guiding the
RE process and enforcing project conventions

e 71.43% would find the approach easy to learn.

e 78.57% would find the approach easy to apply and would
use it again in the future.

Finally, we also received some open qualitative feedback.
Respondents generally mentioned the difficulty to convince
stakeholders to apply the approach as well as difficulties in
terms of model synchronization during collaborative editing.
More positively, respondents also mention their appreciation
in terms of the standardization of the RE process provided
by our approach, the improved traceability support or the fast



and clean documentation generation. However, the respondents
also proposed several improvements according to their past
and present practices. Notably, they suggested to support in the
future a better connection with other tools, a more advanced
traceability between our RE language and other languages (e.g.
for software design and development), and to provide more
structured templates for the requirements description.

C. Overall Assessment of our MBRE Approach and Language

Based on all the collected data presented in Section [V-A]
and Section [V-B), we can provide a first assessment of the
relevance of our MBRE approach and language according to
the main properties introduced in Section
e Scalability - The consolidated data extracted from the
Requirements model repository in the three projects clearly
shows that we have been able to support a significant number
of users, including regularly active ones, as well as to handle
a relatively large number of requirements and related model
elements. Moreover, the final success of the three projects
in terms of deliveries (i.e. documents, tools, demonstrators)
and the results of the survey also demonstrate the general
scalability of our MBRE approach and language, at least for
projects going up to the size of the three mentioned ones.

e Heterogeneity - The varied characteristics of the three
projects (e.g., different partners providing different kinds of
tools and technologies, various use cases covering several
application domains) show that we have been able to handle a
certain level of heterogeneity. Based on our experience in these
three projects, and the participants’ feedback we collected via
the survey, we can also argue that our MBRE approach can
be applied similarly in any large collaborating project whose
main purpose is to produce integrated software solutions.

e Traceability - Looking at the results of the projects partic-
ipants survey notably, we can state that traceability and the
capability to guide and enforce full RE processes from the
beginning to the end of collaborative projects has been one
of the most acknowledged features of our MBRE approach
and language. Even though improvements and/or extensions
are still possible, e.g., tooling support for traceability down
to the source code, the feedback received up to now already
highlights a correct support for traceability.

e Automation - The quantitative data collected at the end of
the three projects show that we have been able to automatically
generate documents of significant sizes from the corresponding
Requirements models. These were quite complete require-
ments, architecture or roadmap documents whose content
could be then reused directly to produce the official projects
deliverables. The achieved level of automation, though not to-
tal, was already quite appreciated by the projects’ participants.
o Usefulness and Usability - The fact that our MBRE
approach and language have been successfully used in practice
in the context of three different collaborative projects already
shows a certain level of usability. The qualitative data collected
from the participants’ survey also confirm that the users glob-
ally found our approach useful during these three collaborative
projects. Furthermore, they appreciated in particular the fact

that the approach was easily applicable in their respective
contexts, i.e. both easy to learn and to apply.

VI. DISCUSSION

Our evaluation results are globally similar to the results
observed in the context of the other approaches we discussed
in the Section This is notably the case with respect to
gap analysis, roadmapping and traceability for requirements.
In what follows, we discuss further the contributions proposed
in this paper as well as our own experience in their contexts.
We notably present general lessons learned from the three
collaborative projects in Section We also describe in
Section a few threats to validity we have identified
concerning the current evaluation of our MBRE approach and
language. Finally, we introduce in Section some open
challenges concerning both our approach and its applications
in other contexts in the future.

A. Lessons Learned

From our global experience of designing and then applying
our MBRE approach and language in the context of three
different large collaborative European projects, we have been
able to extract some general lessons learned we hope to be
useful to the RE community as well as more globally to the
whole Software Engineering community:

e Project management - The received feedback shows that
our MBRE approach and language is mostly beneficial from
a project management perspective: One of the most valuable
user features is the automation capability. Notably, the possi-
bility to perform more easily gap analysis and obtain a cor-
responding roadmap, or to generate long documents directly
from the Requirements model, were highly appreciated.

e Framework architecture - The proposed approach and
language was relevant for defining the framework architecture.
Notably, the mostly appreciated features were the support for
collaborative work, the integration with a model repository,
etc. The combination of well-known diagrams coming from
UML and SysML with tabular views was also perceived as a
good way to facilitate the use of our solution, e.g. for partners
already having experiences in modeling activities.

e Learning curve - Some participants in our projects had
a somehow limited experience in modeling, both conceptu-
ally and technically. This resulted in difficulties for them to
catch up with some of the concepts in our RE language.
It also appears that the guidelines initially provided, on the
approach/language and Modelio tooling, were not sufficiently
detailed to allow for a first usage. This was quickly fixed by
the Modelio team via online hands-on sessions for example.
The participants were then more easily able to go on with their
RE activities in the context of their respective projects.

B. Threats to Validity

The main threat to validity concerned the amount of data we
have been able to gather. Our MBRE approach and language
have been deployed in “only” three different projects from
which we have extracted mostly quantitative data. However,



the fact that these were large projects that run over 5 years in
total already provides a certain level of confidence about the
quality and relevance of the collected data. Moreover, we com-
plemented this quantitative data with extra data (quantitative
but also qualitative this time) collected from a survey largely
distributed among the three projects participants. Obviously, it
would have been more significant to get more answers to the
survey. However, we believe the collected feedback coming
from 15 different participants is already interesting in order
to improve our global appreciation of the proposed solution.
Another threat stands in the fact that the the evaluation of
the proposed approach included the modeling language, the
process and the tool. We have tried to reduce this bias by
having separate groups a question for each of them in the
survey, still the separation was not completely achieved.

C. Challenges

As a result of the work and experience reported in this paper,
we identified some challenges we believe to be worth inves-
tigating as far as MBRE or more generally RE is concerned:
o From requirements to source code - Our requirements
models contain information concerning mostly the needs and
architectural decisions at the project level. While this is already
useful for coordinating the common global effort towards the
realization of the target solution, it remains relatively far from
being full model-driven development where implementation
and verification artifacts can be produced from the models.
Thus, more efforts still have to be made in order to better fill
this gap between the architecture and development levels in
our MBRE solution and also possibly in others.

e User training and support - In our RE language, we
deliberately restricted the UML usage to a limited number of
concepts. We also provided tooling support, user guidelines
and online workshops to make the life of the various projects’
partners easier. Nevertheless, the partners appeared to still need
constant support with the tooling and the approach. Thus, we
strongly believe that the usability and learning curve of RE
solutions are key elements to consider and improve accord-
ingly in order to allow for their large industrial dissemination.
e Collaborative and online work - One of the most reported
issues concerned restrictions in the collaborative editing ca-
pabilities provided by our MBRE solution as relying on a
Subversion-based lock - edit - commit - release operation
mode. The fact is that, nowadays, users generally tend to prefer
online editing collaboration modes e.g., via their favorite Web
browser. However, we have seen limited support for that so
far in existing modelling tools or even in popular IDEs. Such
a support for online collaboration at the requirements level is
probably a path to be explored more deeply in the future as
far as RE solutions are concerned.

e Automation and production - There are still open chal-
lenges related to the support for automation in RE processes
and more generally in Software Engineering processes. For
instance, we could have considered to build-in some more
automated support for document generation or even code gen-
eration. However, it is always a matter of cost/benefit balance

since development resources can be limited in collaborative
R&D projects. Thus, our MBRE solution is still not in full
production stage e.g., it requires some level of customization
for each new project, and it will need more work to be made
available as an actual product in the future.

D. Next steps

The very next step of our work will consist in improving our
experience with the proposed MBRE approach and language
by applying in the context of another large collaborative
project. This will actually be the case as we are now starting
RE activities in the context of two new European projects
- VeriDevOps (H2020) [36] and AIDOaRt (H2020 ECSEL)
that will run 3 more years and involve more than 40 partners,
both industrial and academic ones, coming from 7 different
countries. As we (the authors) are strongly involved in these
new projects, we have already planned to work on deploying
again our MBRE approach and language. This way, we hope
to be able to 1) collect more relevant feedback from our
partners and 2) upgrade our solution accordingly. For instance,
similarly to what we did in the MegaM @Rt2 project, we plan
to experiment further on the use of our MBRE approach and
language in the context of hackathons mixing both business
and technical people [37]]. Moreover, we plan to run several
controlled experiments with the objective to evaluate and
compare our approach against other RE approaches.

VII. CONCLUSION

In this paper, we reported on our practical experience
of proposing and deploying a Model-based Requirements
Engineering approach and language during 5 years in the
context of three different large European collaborative projects
providing complex software solutions. Our MBRE approach
and language mostly focused on supporting three complemen-
tary aspects: 1) requirements are described appropriately at
different abstraction layers (case study, framework, tool), 2)
requirements can be better interconnected and traced during
the RE process and 3) requirements can be used to (semi-)-
automatically perform gap analysis, roadmap and correspond-
ing document generation.

Based on this global experience and the collected data,
we showed that our MBRE approach and language can
bring interesting benefits in terms of scalability, heterogeneity,
traceability, automation, general usefulness or usability. We
also discussed the added-value of our solution from a project
management and architecture perspective while identifying
some limitations we faced, in terms of RE solution learning
curve for instance, and that we already managed to partially
overcome. As a conclusion, we have concrete plans to continue
working on extending and applying our MBRE approach and
language in the context of other large collaborative projects
we will be involved in the near future.



[1]
[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

(16]
[17]

[18]

[19]

[20]

[21]

REFERENCES

Richard Van Noorden and Declan Butler. Science in europe: by the
numbers. Nature, 569, May 2019.

European Commission-DG CONNECT. Digital economy and society
index (DESI) 2020 - the EU ICT sector and its R&D performance. On-
line at https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=72352.
Accessed: 2021-04-07.

European Commission. EU research programmes. https://ec.europa.
eu/info/funding-tenders/funding-opportunities/funding-programmes/
overview-funding-programmes_en. Accessed: 2021-04-07.
IEEE/ISO/IEC. International standard - systems and software engineer-
ing — life cycle processes — requirements engineering. Technical Report
29148-2018, IEEE Standards Association, 2018.

Betty H. C. Cheng and Joanne M. Atlee. Research directions in
requirements engineering. In 2007 Future of Software Engineering,
FOSE ’07, page 285-303, USA, 2007. IEEE Computer Society.

S. Assar. Model driven requirements engineering: Mapping the field and
beyond. In 2014 IEEE 4th International Model-Driven Requirements
Engineering Workshop (MoDRE), pages 1-6, 2014.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
software engineering in practice.  Synthesis Lectures on Software
Engineering, 1(1):1-182, 2012.

Accelopment. Lessons  learnt from  horizon 2020
for its final 2  years. https://accelopment.com/blog/
lessons-learnt-from-horizon-2020-for-its-final-2-years/, February
2019. Accessed: 2021-04-07.

Ecsel joint undertaking work plan 2020.
calls-2020-wp2020.

ECSEL-JU.  Productive4.0 project.
productive40. Accessed: 2021-04-07.
Seda Giirses, Magali Seguran, and Nicola Zannone. Requirements en-
gineering within a large-scale security-oriented research project: lessons
learned. Requirements Engineering, 18(1):43—-66, Mar 2013.

Daniel Nepelski and Giuseppe Piroli. Organizational diversity and
innovation potential of EU-funded research projects. J. Technol. Transf.,
43(3):615-639, June 2018.

Andrey Sadovykh, Alessandra Bagnato, Arne J. Berre, and Stale Walder-
haug. Archimate as a specification language for big data applications -
databio example. In Jean-Michel Bruel, Manuel Mazzara, and Bertrand
Meyer, editors, Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment, pages
191-199, Cham, 2020. Springer International Publishing.

Andrey Sadovykh, Tewfik Ziadi, Alessandra Bagnato, Thorsten Berger,
Jan-Philipp Steghofer, Jacques Robin, Raul Mazo, and Elena Gallego.
Revamp2 project: Towards round-trip engineering of software product
lines - approach, intermediate results and challenges. In Manuel
Mazzara, Jean-Michel Bruel, Bertrand Meyer, and Alexander Petrenko,
editors, Software Technology: Methods and Tools, pages 406—417, Cham,
2019. Springer International Publishing.

Wasif Afzal, Hugo Bruneliere, Davide Di Ruscio, Andrey Sadovykh,
Silvia Mazzini, Eric Cariou, Dragos Truscan, Jordi Cabot, Abel Gémez,
Jesus Gorrofiogoitia, Luigi Pomante, and Pavel Smrz. The MegaM @Rt2
ECSEL project: MegaModelling at runtime — scalable model-based
framework for continuous development and runtime validation of com-
plex systems. Microprocessors and Microsystems, 61:86-95, 2018.
Axel van Lamsweerde. Requirements engineering in the year 00, 2000.
Eric SK Yu. Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering. In ISRE 1997, pages 226-235, Washington,
DC, U.S.A., 1997. IEEE Computer Society.

Axel Van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In ISRE 2001, pages 249-262, Washington, DC, U.S.A.,
2001. IEEE Computer Society.

Object Management Group (OMG). Requirements Interchange Format
(ReqlIF), 2020.

B. Baudry, C. Nebut, and Y. L. Traon. Model-driven engineering for
requirements analysis. In /1th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), pages 459-459, 2007.
Arda Goknil, Ivan Kurtev, and Klaas van den Berg. A metamodeling
approach for reasoning about requirements. In Ina Schieferdecker and
Alan Hartman, editors, Model Driven Architecture — Foundations and
Applications, pages 310-325, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

https://www.ecsel.eu/

https://www.ecsel.eu/projects/

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]
[32]
(33]

[34]

[35]

[36]

[37]

Emmanuel Letier, Jeff Kramer, Jeff Magee, and Sebastian Uchitel.
Deriving event-based transition systems from goal-oriented requirements
models. Automated Software Engineering, 15(2):175-206, 2008.
Stefan Karg, Alexander Raschke, Matthias Tichy, and Grischa Liebel.
Model-driven software engineering in the openETCS project. In Pro-
ceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, 2016.

H Solheim, F Lillehagen, S A Petersen, H Jorgensen, and M Anas-
tasiou. Model-driven visual requirements engineering. In /3th IEEE
International Conference on Requirements Engineering (RE’05), 2005.
OMG Unified Modeling Language. https://www.uml.org/.
OMG Systems Modeling Language
https://www.omgsysml.org/.

European Cooperation for Space Standardization. Space engineering
software. Technical Report ECSS-E-ST-40C, ECSS Secretariat ESA-
ESTEC Requirements & Standards Division, Noordwijk, The Nether-
lands, March 2009.

Thomas D. Nielsen, S. Hovda, A. Ferndndez, H. Langseth, A. Madsen,
A. Masegosa, and A. Salmerén. Requirement engineering for a small
project with pre-specified scope. In NIK, 2014.

Andreas Koukias, Gokan May, Volodymyr Vasyutynskyy, Drazen
Nadoveza, Jessica C. McCarthy, Marco Taisch, and Dimitris Kiritsis.
Approach on analysis of heterogeneous requirements in software engi-
neering. [FAC Proceedings Volumes, 46(7):372-377, 2013. 11th IFAC
Workshop on Intelligent Manufacturing Systems.

MegaM@Rt2 project.  Deliverable d2.2 MegaM@Rt2 design tool
set specification. https://ec.europa.eu/research/participants/documents/
downloadPublic?documentlds=080166e5b8e 1feb7&appld=PPGMS.
Accessed: 2021-04-07.

Modelio: A Collaborative Business or Software Modeling Platform.
https://www.modeliosoft.com/en/.

The ArchiMate Enterprise Architecture Modeling Language.
https://www.opengroup.org/archimate-forum/archimate-overview.
OMG. Business Process Model and Notation (BPMN).
https://www.omg.org/bpmn/.

Andrey Sadovykh, Hugo Bruneliere, and Dragos Truscan. Dataset -
Survey results - Applying Model-based Requirements Engineering in
Three Large European Collaborative Projects, June 2021.

Karl Wiegers and Joy Beatty. Software Requirements. Pearson Educa-
tion, August 2013.

Andrey Sadovykh, Gunnar Widforss, Dragos Truscan, Eduard Paul
Enoiu, Wissam Mallouli, Rosa Iglesias, Alessandra Bagnto, and Olga
Hendel. Veridevops: Automated protection and prevention to meet
security requirements in devops. In Design, Automation and Test in
Europe Conference (DATE’20), 2020.

A Sadovykh, D Truscan, P Pierini, G Widforss, A Ashraf, H Bruneliere,
P Smrz, A Bagnato, W Afzal, and A E Hortelano. On the use of
hackathons to enhance collaboration in large collaborative projects : -
a preliminary case study of the MegaM@Rt2 EU project -. In 2079
Design, Automation Test in Europe Conference Exhibition (DATE), pages
498-503, March 2019.

(SysML).


https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=72352
https://ec.europa.eu/info/funding-tenders/funding-opportunities/funding-programmes/overview-funding-programmes_en
https://ec.europa.eu/info/funding-tenders/funding-opportunities/funding-programmes/overview-funding-programmes_en
https://ec.europa.eu/info/funding-tenders/funding-opportunities/funding-programmes/overview-funding-programmes_en
https://accelopment.com/blog/lessons-learnt-from-horizon-2020-for-its-final-2-years/
https://accelopment.com/blog/lessons-learnt-from-horizon-2020-for-its-final-2-years/
https://www.ecsel.eu/calls-2020-wp2020
https://www.ecsel.eu/calls-2020-wp2020
https://www.ecsel.eu/projects/productive40
https://www.ecsel.eu/projects/productive40
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b8e1feb7&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b8e1feb7&appId=PPGMS

	Introduction
	Context and Background
	Related Work
	Proposed Approach
	Overview of our Conceptual Approach
	A Dedicated Modeling Language for RE
	Abstract Syntax
	Concrete Syntax
	Semantics

	Implementation of the RE Approach in Modelio

	Evaluation
	General Data on Projects
	Survey for Projects' Participants
	Overall Assessment of our MBRE Approach and Language

	Discussion
	Lessons Learned
	Threats to Validity
	Challenges
	Next steps

	Conclusion
	References

