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Abstract7

Phylogenetic reconstruction is one of the paramount challenges of contemporary bioinformatics. A8

subtask of existing tree reconstruction algorithms is modeled by the Small Parsimony problem:9

given a tree T and an assignment of character-states to its leaves, assign states to the internal10

nodes of T such as to minimize the parsimony score, that is, the number of edges of T connecting11

nodes with different states. While this problem is polynomial-time solvable on trees, the matter12

is more complicated if T contains reticulate events such as hybridizations or recombinations, i.e.13

when T is a network. Indeed, three different versions of the parsimony score on networks have14

been proposed and each of them is NP-hard to decide. Existing parameterized algorithms focus15

on combining the number of possible character-states with the number of reticulate events (per16

biconnected component). Here, we consider the treewidth of the undirected graph underlying the17

input network as parameter, presenting dynamic programming algorithms for (slight generalizations18

of) all three versions of the parsimony problem on networks. Our algorithms use a formulation of19

the treewidth that may facilitate formalizing treewidth-based dynamic programming algorithms on20

phylogenetic networks for other problems .21
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1 Introduction30

Molecular phylogenetic reconstruction consists in inferring a well-founded evolutionary31

scenario of a set of species from molecular data [12]. An evolutionary scenario, also called32

a phylogeny, is usually represented by a directed tree with a unique source called root. In33

a phylogeny, the tips of the tree are associated to extant species for which we have data,34

and each internal node represents an extinct species giving rise to new species – a speciation.35

Therefore, each internal node represents the hypothetical ancestor of all species below it, and36

the root models the lowest common ancestor of all the species at the tips.37

Parsimony on Trees.38

In this paper, molecular data consists of a set of molecular sequences (e.g. DNA or protein39

sequences) of the same length (one sequence per species). This kind of data can be seen as40

a matrix M of n sequences, each having m characters (exhibiting one of c possible states)41

where the state Mi,j corresponds to the jth character of the ith species. There are several42
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methods to reconstruct well-founded phylogenies from matrices of characters [12]. They43

are all based on the idea of retrieving similarities among species by comparing the states44

taken by these species at the different characters of M . Here, we will focus on parsimony45

methods. The main hypothesis of these methods is that character changes are not frequent.46

Thus, the phylogenies that best explain the data are those requiring the fewest evolutionary47

changes, i.e. the ones having the optimal parsimony score, formally defined in Section 4. The48

problem of finding the optimal parsimony score for a given phylogeny T with respect to a49

matrix M is called the small parsimony problem and can be solved in O(n ·m · c) time [14]50

since each column in the matrix can be analyzed independently in linear time. When T is51

unknown, the problem of finding the phylogeny minimizing the parsimony score is called52

the big parsimony problem. This latter is known to be NP-hard and numerous heuristic53

techniques for it are known [12].54

Parsimony on Networks.55

When the evolution of the species of interest include, in additions to speciations, reticulate56

events such as hybridizations or recombinations, a single species may inherit from multiple57

direct ancestors. In this case, the phylogenies are no longer represented by rooted trees but by58

rooted DAGs [16] called networks. When scoring a given network, three very different defini-59

tions of the parsimony score have been proposed: the hardwired [20], the softwired [15, 26], and60

the parental parsimony score [32]. Roughly, the hardwired score takes into account all edges61

of the given network (characters are inherited from all parents), the softwired score takes only62

the edges of any “switching” (each character is inherited from one parent), and the parental63

score allows embedding lineages into the network (each allele of a character is inherited from64

one parent). See Section 4 for details and Figure 3 for an example. While these definitions65

coincide for trees, they give rise to three different small parsimony problems for networks.66

When tracing mutually dependent characters (e.g. different genomic locations in a67

same non-recombinant region) on networks, we also have to make sure that dependent68

characters are inherited from the same parent (some columns of the matrix have to use the69

same “switching”/“embedding”). To avoid dealing with this problem, the small parsimony70

problems on networks have been studied predominantly under the assumption of independent71

genomic locations. This boils down to having m = 1 since each column of the matrix can be72

analyzed independently (as is the case for the small parsimony problem on trees). Another73

popular restriction is to consider binary networks, in which the root has outdegree 2, tips74

have indegree 1, and internal nodes have either indegree 1 and outdegree 2 (speciations) or75

indegree 2 and outdegree 1 (reticulations).76

The hardwired small parsimony problem has been proven NP-hard and APX-hard77

whenever the number of states that a character can take, denoted c, is strictly greater78

than 2, and polynomial time solvable for binary characters [13]. A polynomial-time 1.35-79

approximation for all c and a 12/11-approximation for c = 3 have been proposed [13]. Addition-80

ally, the problem has been shown fixed-parameter tractable (FPT) in the parsimony score [13],81

and with respect to c+ r, where r is the number of reticulate events in the network [21].82

The softwired small parsimony problem is also NP-hard and APX-hard [19, 13] for binary83

characters, and not FPT in the parsimony score (it is NP-hard to know if the softwired84

parsimony score is 1). Also, it has been shown that, for any constant ϵ > 0, an approximation85

factor of n1−ϵ is not possible in polynomial time, unless P = NP. On the positive side, the86

problem is FPT in c+ r [26, 13] and c+ ℓ, where ℓ is the level of the network [18, 13] (the87

maximum number of reticulations over all biconnected components of the network).88

Unsurprisingly, the parental small parsimony problem has also been proven NP-hard,89



C. Scornavacca and M. Weller 6:3

even for very restricted classes of networks [29], but is FPT both with respect to c+ r and90

with respect to c+ ℓ.91

In this paper, we consider the case of independent characters, showing that the three92

variants of the small parsimony problem on networks are fixed-parameter tractable with93

respect to c+ t, where t is the treewidth of the input network. Our proofs are constructive in94

the sense that a dynamic programming algorithm is provided for each version of the problem.95

Since the treewidth can be arbitrary small, even for growing values of ℓ, our algorithms can96

potentially be orders of magnitude faster than the state-of-the-art solutions. Moreover, our97

formulations are not limited to binary networks and they can take into account polymorphism98

as well as external information controlling the states that ancestral species may take.99

Treewidth for Phylogenetic Networks100

The treewidth of a graph can roughly be described as a measure of “tree-likeness” and it ranks101

among the smallest of such parameters [2] (in particular, the treewidth can be seen to be102

smaller than the level ℓ on any network). Together with the fact that it facilitates the design103

of dynamic programming algorithms, this explains the enormous popularity the treewidth104

received in the parameterized complexity community [5]. Starting with the groundbreaking105

work of Bryant and Lagergren [7] (using the celebrated result of Courcelle [9]), treewidth also106

gained traction with researchers studying algorithms for phylogenetics-related problems (sur-107

veyed in [8]). While this yielded some algorithms parameterized by the treewidth of the display108

graph of multiple trees (the result of “gluing” all trees at their leaves), we are not aware of any109

algorithms parameterized by the treewidth of the input network. In an attempt to facilitate110

the use of this parameter in future work, we dedicate Section 3 to presenting a “phylogenetics-111

friendly” formulation by representing tree-decompositions of the input network as a rooted112

tree Γ on the same vertex set as the network. In particular, this formulation generalizes113

our previously considered parameter “scanwidth” [3], which can be expected to yield easier114

dynamic programming formulations at the cost of being slightly larger than the treewidth.115

Missing proofs are deferred to the appendix at the end of the paper.116

2 Preliminaries117

Mappings.118

For any x and y, we define δ(x, y) to be 0 if x = y and 1, otherwise, and we abbreviate119

1 − δ(x, y) =: δ(x, y). We further abbreviate δ(ϕ(x), ϕ(y)) as δϕ(x, y) for any function ϕ.120

We may denote a pair (x, y) as x → y if it is referring to an assignment of y to x by121

some function and as xy if it refers to an arc in a network. We sometimes use the name122

of a function ϕ : X → Y to refer to its set of pairs {x → y | ϕ(x) = y} and we let123

ϕ |Z := {(x → y) ∈ ϕ | x ∈ Z} denote the restriction of ϕ to Z. We say ϕ(x) = ⊥ to indicate124

that ϕ is not defined for x. We denote the result of forcing ϕ(x) = y (whether or not x is125

mapped by ϕ) as126

ϕ [x → y] :=
{
ϕ ∪ {x → y} if ϕ(x) = ⊥
(ϕ \ {x → ϕ(x)}) [x → y] otherwise

127

Finally, for sets Z, X and Y ⊆ X and functions ϕ and ψ, we write ψ ⊴ ϕ (and say that128

ψ is a subfunction of ϕ) if (a) ϕ : X → Z and ψ : Y → Z and ψ(x) ≤ ϕ(x) for all x ∈ Y ,129

or (b) ϕ : X → 2Z and ψ : Y → Z and ψ(x) ∈ ϕ(x) for all x ∈ Y , or (c) ϕ : X → 2Z and130

ψ : Y → 2Z and ψ(x) ⊆ ϕ(x) for all x ∈ Y .131

WABI 2021
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ρΓ

x

v1 v2 v3 = vt

Succ↑
N

(Γx) Pred↓
N

(Γx)

y︸ ︷︷ ︸
Z2

x

A↑
x(N)

A↓
x(N)

A↑
{x}(N)

Figure 1 A tree Γ is depicted in gray and some arcs of N are depicted in black. Recall that t is
the number of children of x and Zi :=

⋃
1≤j≤i

Γvj . Note that x ∈ Succ↑
N (Z2) \ Succ↑

N (Γx) since x is
an ancestor of a node of Γv2 in N . Note that x is a reticulation of N with parents y (drawn) and z

(not drawn) with y <Γ v2 <Γ x <Γ z. Thus, z ∈ Pred↓
N (x) but y ∈ Pred↑v2

N (x) ⊆ Pred↑
N (x). Finally,

note that YWΓ
x = Pred↓

N (Γx) ∪ Succ↑
N (Γx) and

⋃
i≤t

YWΓ
vi

⊆ YWΓ
x ⊎{x}.

Graphs and Phylogenetic Networks.132

In this work, we consider (weakly) connected directed acyclic graphs (DAGs) N that have133

a unique source ρN called root. If the sinks (aka leaves) of N are labeled, we call N a134

phylogenetic network. We denote the set of nodes of N with in-degree at least two by R(N)135

and we call such nodes reticulations. If R(N) = ∅, then N is called a tree. The result of,136

for each v ∈ R(N) removing all but one of its incoming arcs is called a switching of N and137

S(G) denotes the set of all switchings of N (observe that all switchings are spanning trees).138

Let v ∈ V (N). We denote the successors (or “children”) of v in G by SuccG(v) and its139

predecessors (or “parents”) by PredG(v). If N contains a directed u-w-path, then we say140

that w is a descendant of u and u is an ancestor of w (denoted as w ≤N u and w <N u141

if u ̸= w). A set Z ⊆ V (N) such that u ̸<N w and w ̸<N u for all u,w ∈ Z is called an142

anti-chain in N . The induced subgraph N [Z] of a set Z ⊆ V (N) is the result of removing143

all nodes x ∈ V (N) \ Z from N (together with their incident arcs) and, for any v ∈ V (N),144

the network Nv := N [{w | w ≤N v}] is called the subnetwork rooted at v.145

Large parts of this work are in context of a rooted tree Γ on V (N) (see Figure 1).146

Specifically for the tree Γ, we permit ourselves to abbreviate V (Γx) to Γx to increase147

readability. In such context, we additionally define the following sets for any nodes y, z ∈148

V (N): Pred↑y
G (z) := PredG(z) ∩ Γy and Pred↓y

G (z) := PredG(z) \ Γy denote the respective149

predecessors of z in N that are or are not in Γy. Likewise, Succ↓y
G (z) := SuccG(z) ∩ Γy and150

Succ↑y
G (z) := SuccG(z) \ Γy denote the respective successors of z in N that are or are not151

in Γy – notice that the arrow in the notation indicates the direction of the arc between z152

and the members of the set when drawing Γ top-to-bottom. If z = y, we drop y and simply153

write Pred↓
G(z), Pred↑

G(z), Succ↓
G(z), and Succ↑

G(z). We also abbreviate Pred↓
G(z) ∩R(G) =:154

PredR↓
G (z) and Succ↑

G(z) ∩R(G) =: SuccR↑
G (z) as well as Pred↓

G(z) \R(G) =: PredT↓
G (z) and155

Succ↑
G(z) \R(G) =: SuccT↑

G (z). All these functions generalize to sets Z ⊆ V (N) (for example,156

PredG(Z) :=
⋃
z∈Z PredG(z)\Z). Further, for any X ⊆ V (N), we define the sets of arcs of N157

(a) from a node u ∈ X to any ancestor of u in Γ as A↑
X(N) := {uw ∈ A(N) | u ∈ X∧u <Γ w}158

and (b) to a node u ∈ X from any ancestor of u in Γ as A↓
X(N) := {uw ∈ A(N) | w ∈159

X ∧ w <Γ u}. For brevity, we abbreviate AX(N) := A↑
X(N) ∪ A↓

X(N), A↑
v(N) := A↑

Γv
(N),160

A↓
v(N) := A↓

Γv
(N), and Av(N) := AΓv

(N).161
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ρN

x

ρΓ

x

ρN

ρN x

Figure 2 Example of a network N (left) with a linear order σ of its nodes (below) as well as
their canonical tree Γσ (right) whose arcs are not drawn (the arcs of N are drawn in their stead).
Reticulations are black, leaves are boxes. For the first (wrt. σ) reticulation x, the set V (Γσ

x) is marked
(gray area), the arcs uv ∈ Ax(N) are dotted and the nodes in YWΓ

v = ZWσ
v are gray pentagons.

3 An Alternative Formulation of Treewidth162

In this section, we give an alternative definition of the treewidth, which allows to tackle the163

small parsimony problem for networks in a simpler and more intuitive way. Note that this164

alternative definition is known in the FPT community (Dendris et al. [11] call it the “support”165

of a vertex with respect to an ordering (when referring to Arnborg [1]) and Mescoff et al. [25],166

call it “tree vertex separation”). However, in these works its connection to treewidth is167

mostly touched in passing, so we felt the need to prove it explicitly here.168

For a linear ordering σ of the nodes of an undirected graph G and a node x of G, let169

σ[1..x] be the restriction of σ to the nodes preceeding x (that is, to {y | y ≤σ x}). We write170

x⇝G,σ y if x and y are connected in G[σ[1..x]]. Note that ⇝G,σ is a partial order on V (G).171

▶ Definition 1. Let σ be a linear order of the nodes of a graph G and let v ∈ V (G). Then,172

ZWσ
v := {u >σ v | ∃w∈σ[1..v]uw ∈ E(G) ∧ v⇝G,σ w} and zwσ

v := | ZWσ
v |.173

174

Further, we abbreviate zw(σ) := maxv zwσ
v and zw(G) := minσ zw(σ). Further, we call the175

transitive reduction of the directed graph (V (G), A∗) with A∗ := {uv ∈ V (G)2 | u⇝G,σ v}176

the canonical tree Γσ of σ for G (as it turns out, Γσ is a rooted tree, see below).177

In the following, we say that a rooted tree Γ on V (G) agrees with a directed or undirected178

graph G if, for all uv ∈ E(G) either u <Γ v or v <Γ u. We also extend the definition of179

⇝G,σ to such trees by writing u⇝G,Γ v if u and v are connected in G[Γu].180

▶ Definition 2. Let G be a graph and let Γ agree with G. For each v ∈ V (G), we define181

YWΓ
v := {u >Γ v | ∃w≤Γvuw ∈ E(G)} and ywΓ

v := | YWΓ
v |182

183

(see Figure 2). Then, we abbreviate yw(Γ) := maxv ywΓ
v and yw(G) := minΓ yw(Γ).184

▶ Lemma 3. Let Γ and Γ′ be rooted trees agreeing with an undirected graph G and let ≤Γ′185

be a subset of ≤Γ, that is, x ≤Γ′ y ⇒ x ≤Γ y for all x, y ∈ V (G). Then, yw(Γ′) ≤ yw(Γ).186

Proof. Let x ∈ V (G) and let y ∈ YWΓ′

x , that is, y >Γ′ x and there is some z ≤Γ′ x with187

yz ∈ E(G). Since ≤Γ is a superset of ≤Γ′ , we have y >Γ x ≥ z, implying y ∈ YWΓ
x . ◀188

WABI 2021
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▶ Lemma 4. Let σ be a linear order of the nodes of an undirected, connected graph G and189

let Γσ be its canonical tree. Then,190

(a) for each u and v with v ≤Γσ u, we have v ≤σ u,191

(b) for each u, v ∈ V (G), we have v ≤Γσ u if and only if u⇝G,σ v,192

(c) Γσ is connected,193

(d) Γσ is rooted at the last vertex r of σ,194

(e) Γσ is a tree,195

(f) for all uv ∈ E(G) with v <σ u, we have v <Γσ u,196

(g) Γσ agrees with G, and197

(h) YWΓσ

x = ZWσ
x for all x ∈ V (G).198

▶ Observation 5. Let Γ be a tree, let Γ′ be a contraction of Γ, and let x, y ∈ Γ′ be distinct.199

Then, x <Γ′ y if and only if x <Γ y.200

For the following lemmas, it makes sense to “normalize” some aspects of the structure of201

agreeing trees. To this end, for a rooted tree T and for X ⊂ V (T ) that does not contain the202

root r of T , we let T ↑ X denote the result of (1) replacing each arc uv with uv ∩X = {u}203

with the arc wv where w is the lowest ancestor of u that is not in X, and (2) removing all204

nodes in X from T . Note that T ↑ X may have strictly larger out-degree than T , but does205

not create new ancestor-descendant relations.206

▶ Observation 6. Let T be a tree, let X ⊆ V (T ) not contain its root, and let u ≤T↑X v.207

Then, u ≤T v.208

▶ Lemma 7. Let Γ be a rooted tree agreeing with an undirected graph G. There is some Γ∗
209

agreeing with G such that yw(Γ∗) ≤ yw(Γ) and, for all u, v ∈ V (G) with v ≤Γ∗ u, we have210

u⇝G,Γ∗ v.211

▶ Lemma 8. Let Γ be a tree agreeing with a graph G and let p be a non-empty path in G.212

Then, p contains a unique maximum u with respect to Γ, that is, v ≤Γ u for all vertices v of p.213

Proof. Let x on p be maximal with respect to Γ (that is, for all z on p, we have x ̸<Γ z) and214

assume towards a contradiction that there is another vertex y ̸= x on p that is maximal w.r.t.215

Γ. Without loss of generality, let x precede y in p and let pxy denote the unique x-y-subpath216

of p. Since y ≰Γ x, there is an edge st ∈ E(G) on pxy with s ≤Γ x and t ≰Γ x. Hence,217

t ≰Γ s. Further, s ≰Γ t since, otherwise, the unique t-s-path in Γ contains x, contradicting218

its maximality. But then Γ does not agree with G. ◀219

▶ Lemma 9. Let G be a graph. Then, zw(G) = yw(G).220

▶ Definition 10. Let G be a graph and let T be a rooted tree whose vertices are associated221

to subsets of V (G) by a function B : V (T ) → 2V (G) such that222

(a) for each uv ∈ E(G), there is some x ∈ V (T ) with uv ⊆ B(x) and223

(b) for each v ∈ V (G), the nodes x ∈ V (T ) with v ∈ B(x) are weakly connected in T .224

We call (T,B) a tree decomposition of G and its width is tw(T,B) := maxx∈V (T ) twT,B
x225

with twT,B
x := |B(x)| − 1. We call tw(G) := minT,B tw(T,B) the treewidth of G. We call226

(T,B) nice if T is binary and all x ∈ V (T ) fall into one of the following categories227

“leaf”: x is a leaf of T and B(x) = ∅,228

“root”: x is the root of T and B(x) = ∅,229

“introduce v”: x has a single child y in T and B(y) = B(x) − v,230

“forget v”: x has a single child y in T and B(x) = B(y) − v,231

“join”: x has two children y and z and B(x) = B(y) = B(z).232
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1100

1100

1100

1100

1100

Figure 3 Example for parsimony scores of a network (in gray). Black edges participate in the
score (solid = score 0, dotted = score 1). For the hardwired score (left), all edges of the network
are considered. For the softwired score (2 possible trees: middle), only edges of any switching are
considered. For the parental score (4 possible trees: middle & right), a tree is inscribed in the network.

All graphs G have a nice tree decomposition with |V (T )| ∈ O(tw(G) · |G|) and width233

tw(G) [23]. Further, since all bags of (T,B) containing a vertex v of G are connected, we234

can observe the following.235

▶ Observation 11. Let (T,B) be a nice tree decomposition for an undirected graph G and let236

v ∈ V (G). Then, T contains a single “forget v”-node x and y <T x for all y with v ∈ B(y).237

▶ Proposition 12. Let G be a graph. Then, yw(G) = tw(G). Further, given a tree238

decomposition (T,B) for G, we can compute a tree Γ agreeing with G such that yw(Γ) =239

tw(T,B) in linear time.240

4 Parsimony241

Given states of a character, observed in extant species, as well as a species phylogeny, the242

small parsimony problem asks to infer states of the same character for all ancestral species243

such as to minimize the “parsimony score” of this assignment. This problem comes in244

three flavors called “hardwired”, “softwired”, and “parental” parsimony. Throughout this245

section, let C be a fixed finite set (a “character”). For convenient use of the ⊴-relation,246

let C be an anti-chain (that is, for each x, y ∈ C, we have x ≤ y only if x = y). Formally,247

for a phylogeny N and a function ϕ : V (N) → 2C , we define the hardwired and softwired248

parsimony score as249

parHN (ϕ) := min
ψ:V (N)→C, ψ⊴ϕ

∑
uv∈A(N)

δψ(u, v) parSN (ϕ) := min
ψ:V (N)→C, ψ⊴ϕ

T∈S(N)

∑
uv∈A(T )

δψ(u, v).250

251

The “parental parsimony” is defined using “parental trees” but, in this work, we use the252

equivalent formulation using lineage functions [29].253

▶ Definition 13. A lineage function for a phylogeny N is any function f : V (N) → 2C . The254

cost of f is cost(f) :=
∑
v∈V (N) costf (v) where255

costf (v) := |f(v) \
⋃

u∈Pred(v)

f(u)| +


−1 if v = ρN and |f(v)| = 1
0 if v ̸= ρN and |f(v)| ≤

∑
u∈Pred(v) |f(u)|

∞ otherwise
256
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ψ′ = ψ∗

⋃
y∈Y

Succ↑
S

(Γy)︷ ︸︸ ︷
⋃

y∈Y

Pred↓
S

(Γy)︷ ︸︸ ︷︸ ︷︷ ︸⋃
y∈Y

Succ↑
N

(Γy)
︸ ︷︷ ︸⋃

y∈Y

Pred↓
N

(Γy)

YZ

S Sy

S∗

⇒ ⇒

Figure 4 Lemma 14 proves that any solution (S, ψ) that is optimal on sub-trees rooted at Z in Γ
must also be optimal (among all solutions with ψ’s behavior on

⋃
y∈Y

YWΓ
y (gray box on top)) on

all sub-trees of Γ that are rooted below Z (at Y ). That is, no solution (Sy, ψy) can be better than
(S, ψ) on the sub-network induced by Γy for any y ∈ Y . To prove this, a new solution (S∗, ψ∗) is
constructed by replacing the sub-solution of (S, ψ) below Y by the sub-solutions (Sy, ψy) below Y .

Given N and a function ϕ : V (N) → 2C , we denote the set of all lineage functions f on N257

with f ⊴ ϕ as LFN,ϕ. Finally, the parental parsimony score is258

parPN (ϕ) := min
f∈LFN,ϕ

cost(f) (1)259

260

For each of the presented variants, we give a dynamic programming formulation using261

a given tree Γ that agrees with the undirected graph G underlying the input network and262

corresponds to Lemma 7, that is, each non-leaf x of Γ has a child v with x ∈ YWΓ
v . The263

running time of the resulting algorithm will depend on the width yw(Γ) of Γ (recalling that264

yw(Γ) coincides with the treewidth of G for optimal Γ).265

As stated in the introduction, in this paper we focus on the case of analyzing a specific266

position in the genome. Since the function ϕ can associate several states to a same leaf,267

our definition permits to describe polymorphism in a population. While, in our current268

formulation, the algorithms “choose” an optimal state to associate to each leaf, the parental269

parsimony can be easily modified to explain all states of each leaf at the end of the run.270

This allows keeping the information on polymorphism in all steps of the algorithm (see271

Section 4.3). Note also that ϕ can associate information to internal nodes, thus permitting272

the user to impose restrictions on the states associated to ancestral species.273

In the presentation of the dynamic programming, a table entry Qyx[z] means that x and274

y are considered fix for this table and z is a variable index. Further, tables Qy1
x1

and Qy2
x2

275

are independent of one another, allowing an implementation to forget Qy1
x1

if it is no longer276

needed, even if Qy2
x2

still is. In the following, for an anti-chain Y in Γ and a class G of277

subnetworks of N , a Y -substitution system of G is a series of subnetworks (Ny)y∈Y of N such278

that, for all N ′ ∈ G, the digraph (V (N), (A(N ′) \
⋃
y∈Y Ay(N ′)) ∪

⋃
y∈Y Ay(Ny)) is also in G.279

Roughly, we can “swap out” the arcs in Ay(N ′) for Ay(Ny) for each y ∈ Y without loosing280

membership in G. Note that the Ny are not necessarily distinct, so a trivial Y -substitution281

system for {N ′} would be (N ′)y∈Y . The formulations are based on the following lemma282

about independent sub-solutions, showing that an optimal solution (S, ψ) for a sub-network283

(of G) “below” an anti-chain Z in Γ is also optimal on any sub-network “below” an anti-chain284

Y in Γ that is itself “below” Z (among all solutions with ψ’s behavior on
⋃
y∈Y YWΓ

y ).285

▶ Lemma 14 (see Figure 4). Let Y, Z ⊆ V (N) be anti-chains in Γ such that Y ⊆
⋃
z∈Z Γz.286

Let G be a class of subnetworks of N and let S ∈ G and ψ : V (N) → C such that287

(a)
∑
z∈Z

∑
uw∈Az(S) δψ(u,w) is minimum among all such S and ψ. Let (Sy)y∈Y be a288
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Y -substitution system for G and let ψy : V (N) → C for each y ∈ Y such that (b) ψy and ψ289

coincide on YWΓ
y . Then,290 ∑

y∈Y

∑
uw∈Ay(Sy)

δψy
(u,w) ≥

∑
y∈Y

∑
uw∈Ay(S)

δψ(u,w).291

4.1 Hardwired Parsimony292

To compute the hardwired parsimony score at a node v of N , we require knowledge of the293

character assigned to v and its neighbors. For all u ∈ YWΓ
v , we thus “guess” the character ψ(u)294

assigned to u by an optimal assignment. In our dynamic programming, we scan Γ bottom-up,295

computing a table entry THW [x, ψ] for each x ∈ V (Γ) = V (N) and each ψ : YWΓ
x → C,296

containing the parsimony cost incurred by all arcs in Ax(N), assuming that all nodes in297

YWΓ
x receive their characters according to ψ. Note that Ax(N) =

⋃
iAvi

(N) ∪ A{x}(N),298

where the vi are the children of x in Γ. Thus, THW [x, ψ] can be calculated as follows.299

▶ Definition 15. Let Γ be a tree that agrees with N , let x ∈ V (N) and let ψx : YWΓ
x → C300

with ψx ⊴ ϕ. Let v1, v2, . . . , vt denote the children of x in Γ (t = 0 if x is a leaf). Then, we301

define a table entry302

THW [x, ψx] := min
cx∈ϕ(x)

 ∑
1≤i≤t

THW
[
vi, ψx [x → cx] |YWΓ

vi

]
+

∑
z∈Pred↓

N
(x)∪Succ↑

N
(x)

δ(cx, ψx(z))

 (2)303

▶ Lemma 16. Let x ∈ V (N) and let ψx : YWΓ
x → C with ψx ⊴ ϕ. Let ψ : V (N) → C with304

ψx ⊴ ψ ⊴ ϕ such that ψ minimizes
∑
uw∈Ax(N) δψ(u,w). Then,305

THW [x, ψx] =
∑

uw∈Ax(N)

δψ(u,w)306

Proof Sketch. For “≥”, we construct a mapping ψ′ from mappings ψi that are optimal307

on Avi(N) among all mappings with ψi(x) := cx. This is possible since all such ψi co-308

incide with ψ′ and ψx on YWΓ
x . By induction hypothesis, the cost of ψ′ on Ax(N) is309 ∑

1≤i≤t T
HW

[
vi, ψ

′ |YWΓ
vi

]
+

∑
uw∈A{x}(N) δψ′(u,w). Then, “≥” follows from optimality of310

ψ on Ax(N).311

For “≤”, it suffices to show that the cost of ψ on Ax(N) is equal to the result of setting cx :=312

ψ(x) in the right hand side of (2) (which is a valid choice for the minimum since ψ(x) ∈ ϕ(x)).313

First, the cost of ψ on Avi
(N) is THW

[
vi, ψ |YWΓ

vi

]
by independence of sub-solutions and314

the induction hypothesis. Second, the cost of ψ on A↓
{x}(N) is

∑
z∈Pred↓

N
(x) δ(cx, ψx(z)) and315

the cost of ψ on A↑
{x}(N) is

∑
z∈Succ↑

N
(x) δ(cx, ψx(z)) since ψ and ψx coincide on YWΓ

x . ◀316

In order to solve the hardwired parsimony problem given N , ϕ and Γ, all we have to do317

is compute THW [x, ψx] for each x bottom-up in Γ and each of the (at most) |C|| YWΓ
x | many318

choices of ψx : YWΓ
x → C with ψx ⊴ ϕ. Then, by Lemma 16, the hardwired parsimony score319

of N with respect to ϕ can be read from THW [ρΓ,∅]. To compute THW, the sum over the320

children of x for all x ∈ V (N) in (2) can be computed in amortized O(|A(N)|) time and,321

with a bit of bookkeeping, it is possible to maintain the value of the second sum in (2) in322

O(|A(N)|) amortized time per choice of ψ. Then the following holds:323

▶ Theorem 17. Given a network N , some ϕ : V (N) → 2C and a tree Γ agreeing with N ,324

the hardwired parsimony score of (N,ϕ) can be computed in O(|C|yw(Γ)+1 · |A(N)|) time.325
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Proposition 12 lets us turn tree decompositions of N into trees Γ agreeing with N , allowing326

us to replace yw(Γ) by tw(N), incurring an additional running time of |N | · 2O(tw(N)3) [4].327

▶ Corollary 18. Let (N,ϕ) be an instance of Hardwired Parsimony. Let t ≥ tw(N) and328

let T be the time in which a width-t tree decomposition of N can be computed. Then, the329

hardwired parsimony score of (N,ϕ) can be computed in O(T + |C|t+1 · |A(N)|) time.330

4.2 Softwired Parsimony331

In contrast to the hardwired parsimony score, where the computation of the cost of the332

incident edges of a node x only required knowledge of the characters assigned to neighbors333

of x, computing the softwired score additionally requires knowledge of which parent of x334

remains a parent in the sought switching. A table entry TSW [x, . . .] contains the smallest335

combined cost of all arcs in Ax(S) for a switching S of N minimizing this cost. To be able336

to compute an entry for x ∈ V (N), we not only need to “guess” ψx but, additionally, some337

representation of the switching S. In particular, in S, no child of x may have another parent338

than x. However, since children of x in N may be above x in Γ, we have to “guess” which339

children of x in N are still children of x in S. Such a guess manifests itself as an additional340

index Rx of the dynamic programming table (note that we clearly only have to store this341

information for children of x that are reticulations). Indeed, this information has to be342

stored for all nodes considered below x who still have children in YWΓ
x . Thus, we index our343

DP-table also by a subset Rx ⊆ YWΓ
x ∩R(N) containing a reticulation r ∈ R(N) if and only344

if Γx contains a parent v of r and vr is an arc of an optimal switching S for N [Γx ∪ YWΓ
x ].345

▶ Definition 19. Let Γ be a tree that agrees with N , let x ∈ V (N), let ψx : YWΓ
x → C with346

ψx ⊴ ϕ, and let Rx ⊆ SuccR↑
N (Γx). Let v1, v2, . . . , vt denote the children of x in Γ (t = 0 if x347

is a leaf in Γ). Then, set348

TSW [x, ψx, Rx] := min
cx∈ϕ(x)

min
R∗⊆Rx∩SuccR↑

N
(x)

349

∑
r∈R∗∪SuccT↑

N
(x)

δ(cx, ψx(r)) + min

Qψx
x,cx

[t, Rx \R∗] + min
y∈Pred↓

N
(x)
δ(cx, ψx(y)) if Pred↓

N (x) ̸= ∅

Qψx
x,cx

[t, (Rx \R∗) ∪ ({x} ∩R(N))] if Pred↑
N (x) ̸= ∅

(3)350

351

where352

Qψx
x,cx

[i, R′] :=


min

R∗⊆R′∩SuccR↑
N

(Γvi
)
Qψx
x,cx

[i− 1, R′ \R∗] + TSW [vi, ψi, R∗] if i ̸= 0

0 if i = 0 and R′ = ∅
∞ otherwise

(4)353

where ψi := ψx [x → cx] |YWΓ
vi

for all i ≤ t. (Note how Qψx
x,cx

[i, R′] is used to assign the354

nodes in Rx to the vi (with v0 = x) such that every node in Rx has a parent in some Γvi
).355

In the following, for any anti-chainX in Γ and all Z ⊆
⋃
x∈X YWΓ

x , let SX→Z(N) denote356

the set of all switchings S of N with SuccR↑
S (X) = Z.357

▶ Lemma 20. Let Γ be a tree that agrees with N , let x ∈ V (N), let ψx : YWΓ
x → C with358

ψx⊴ϕ, and let Rx ⊆ SuccR↑
N (Γx). If SΓx→Rx(N) = ∅, then TSW [x, ψx, Rx] = ∞. Otherwise,359

let S ∈ SΓx→Rx(N) and ψ : V (N) → C such that (a) ψx⊴ψ⊴ϕ and (b)
∑
uw∈Ax(S) δψ(u,w)360

is minimum among all such S and ψ. Then,361

TSW [x, ψx, Rx] =
∑

uw∈Ax(S)

δψ(u,w). (5)362
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Proof Sketch. Let us abbreviate Zi :=
⋃
j≤i V (Γvj ). We first show that the table Q does363

what we expect it to do.364

▷ Claim 21. Qψx
x,cx

[i, R′] =
∑
j≤i

∑
uw∈Avj

(Si) δψi
(u,w) for optimal Si ∈ SZi→R′ and ψi365

coincides with ψx [x → cx] on
⋃
j≤i YWΓ

vj
.366

Proof Sketch. For “≥”, let R∗ ⊆ R′ ∩ SuccR↑
N (Γvi) such that equality holds in (4). We367

consider a switching S′ ∈ SZi→R′ constructed from switchings Si−1 ∈ SZi−1→R′\R∗ and368

S∗ ∈ SΓvi
→R∗ as well as a mapping ψ′ coinciding with ψx [x → cx] on

⋃
j<i YWΓ

vj
con-369

structed from mappings ψi−1 and ψ∗ such that (a) ψi−1 coincides with ψx [x → cx] on370 ⋃
j<i YWΓ

vj
, (b) ψ∗ coincides with ψx [x → cx] on YWΓ

vi
, (c) the cost of ψi−1 is optimal on371

AZi−1(Si−1) and (d) the cost of ψ∗ is optimal on Avi(S∗). By induction hypotheses, these372

costs are Qψx
x,cx

[i− 1, R′ \R∗] and TSW [vi, ψx [x → cx] , R∗], respectively. Then, “≥” follows373

by optimality of Si and ϕi.374

For “≤”, we let R∗ := SuccR↑
Si

(Γvi
) and use independence of sub-solutions and the375

induction hypotheses to show that the cost of ϕi on AZi−1(Si) is Qψx
x,cx

[i− 1, R′ \R∗] and376

the cost of ϕi on Avi
(Si) is TSW [vi, ϕi, R∗]. Then, “≤” follows from the fact that R∗ is only377

one of the possible choices for the minimum in (4). ■378

For “≥”, let cx ∈ ϕ(x) and R∗ ⊆ Rx ∩ SuccR↑
N (x) be such that equality holds in (3).379

We consider a switching S′ ∈ SΓx→Rx constructed from switchings St and S∗ with St ∈380

SZt→Rx\R∗ (if Pred↓
N (x) ̸= ∅) or St ∈ SZt→(Rx\R∗)∪{x} (if x ∈ R(N) and Pred↑

N (x) ̸= ∅),381

and S∗ ∈ S{x}→R∗ , as well as a mapping ψ′ coinciding with ψx on YWΓ
x constructed from382

mappings ψt and ψ∗ such that 1. ψt coincides with ψx [x → cx] on
⋃
i≤t YWΓ

vi
, 2. ψ∗ coincides383

with ψx on YWΓ
x , 3. ψ∗(x) = cx, 4. the cost of ψt is optimal on AZt(St) and 5. the cost of ψ∗

384

is optimal on A{x}(S∗). Then, the cost of ψ∗ on A↑
{x}(S∗) is

∑
r∈R∗∪SuccT↑

N
(x) δ(cx, ψx(r)),385

the cost of ψ∗ on A↓
{x}(S∗) is miny∈Pred↓

N
(x) δ(cx, ψx(y)) if the parent of x in St is above386

x in Γ (that is, x /∈ SuccR↑
St

(Zt)) and, by the claim above, the cost of ψt on AZt
(St) is387

Qψx
x,cx

[
t,SuccR↑

St
(Zt)

]
. Then, as S′ ∈ SΓx→Rx , “≥” follows by optimality of S and ϕ.388

For “≤”, let cx := ϕ(x) and let R∗ := SuccR↑
S (Γx). We use independence of sub-solutions389

and the induction hypothesis to show that the cost of ϕ on AZt(S) is Qψx
x,cx

[t, R′ \R∗]390

(if x /∈ R(N) or the parent of x in S is above x in Γ) or Qψx
x,cx

[t, (R′ \R∗) ∪ {x}] (if391

x ∈ R(N) and the parent of x in S is in Γx). Further, the cost of ψ on A↑
{x}(S) is392 ∑

r∈R∗∪SuccT↑
N

(x) δ(cx, ψx(r)), the cost of ψ on A↓
{x}(S) is miny∈Pred↓

N
(x) δ(cx, ψx(y)) if the393

parent of x in S is above x in Γ. Then, “≤” follows from the fact that our choices of cx and394

R∗ are only one of the possible choices for the minimum in (3). ◀395

In order to solve the softwired parsimony problem given N , ϕ and Γ, all we have to396

do is compute TSW [x, ψx, Rx] for each x bottom-up in Γ, each of the (at most) |C|| YWΓ
x |

397

many choices of ψx : YWΓ
x → C with ψx ⊴ ϕ, and each Rx ⊆ SuccR↑

N (x) ⊆ YWΓ
x ∩R(N).398

To this end, Qψx
x,cx

[i, Rx \R∗] and Qψx
x,cx

[i, (Rx \R∗) ∪ {x}] have to be computed for each399

child vi of x in Γ and each R∗ ⊆ Rx ∩ SuccR↑
N (x). Then, by Lemma 20, the softwired400

parsimony score of N with respect to ϕ can be read from TSW [ρΓ,∅,∅]. In the following,401

let ψx be fix. Then, for fix cx, we can compute Qψx
x,cx

[i, R′] for all choices of x, i and R′ in402

O(2|R′∩SuccR↑
N

(vi)| +
∑
x∈Γ | SuccΓ(x)|) ⊆ O(2| YWΓ

x |+1 + |Γ|) time total. Further, the values of403

miny∈Pred↓
N

(x) δ(cx, ϕx(y)) can be pre-computed for all x ∈ Γ in O(|A(N)|) time total. Then,404

to compute TSW [x, ψx, Rx] for all x and Rx, we have to check |V (N)| choices for x, as well as405

|ϕ(x)| ≤ |C| choices for cx and 3| SuccR↑
N

(x)| choices for Rx and R∗ ⊆ Rx combined. Altogether,406
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the table TSW can be computed in O(|C|| YWΓ
x | · (3| YWΓ

x | · |C| · |V (N)| + |A(N)|)) time. The407

computation of Qψx
x,cx

in O(2| YWΓ
x | + |A(N)|) time is absorbed by this. For practical purposes,408

note that estimating | SuccR↑
N (x)| ≤ | YWΓ

x | is quite crude and equality will almost never be409

attained. Then, the following result holds:410

▶ Theorem 22. Given a network N , ϕ : V (N) → 2C and a tree Γ agreeing with N , the411

softwired parsimony score of (N,ϕ) can be computed in O(|C|yw(Γ) · (3yw(Γ) · |C| · |V (N)| +412

|A(N)|)) time.413

Again, we can replace yw(Γ) by tw(N) using Proposition 12.414

▶ Corollary 23. Let (N,ϕ) be an instance of Softwired Parsimony. Let t ≥ tw(N) and let415

T be the time in which a width-t tree decomposition of N can be computed. Then, the softwired416

parsimony score of (N,ϕ) can be computed in O(T + |C|t · (3t · |C| · |V (N)| + |A(N)|)) time.417

4.3 Parental Parsimony418

For ease of presentation, we introduce some additional notation. First, for any a and b, we419

abbreviate max{a− b, 0} =: a .− b. Let ψ and ψ′ be functions with the same codomain. If ψ420

maps all items to ∅ or to 0, then we say that ψ is a zero-function and we write ψ = −→0 . We421

use ψ − ψ′ to denote the function defined on the domain of ψ for which (ψ − ψ′)(x) = ψ(x)422

if ψ′(x) = ⊥ and (ψ − ψ′)(x) = ψ(x) − ψ′(x), otherwise. This definition extends to functions423

mapping to sets in a natural way.424

Each lineage function gives rise to one or more phylogenetic trees, called lineages, em-425

bedded in N . For each x ∈ V (N), f(x) represents the set of branches of such a lineage426

passing through x. Each such lineage-branch may “choose” a parent among the parents of427

x in N . This models the biological circumstance that a character trait may be inherited428

from any parent. We compute (the cost of) an optimal lineage function on N using a tree Γ429

that agrees with N . To compute costf (x), we require knowledge of
∑
y∈Pred(x) |f(y)| as well430

as
⋃
y∈Pred(x) f(y). For all y ∈ YWΓ

x , we thus store the set λ(y) := f(y) of lineages in y,431

the subset ψ(y) of lineages of y that also occur in parents (in N) of y that are below x in432

Γ, that is, Pred↑x
N (y) (such lineages are inherited by y at no cost), and the total number433

η(y) of lineages of y that can be inherited from parents (in N) of y that are below x in Γ,434

that is, Pred↑x
N (y) (cost 0 or 1). Then,

∑
y∈PredN (x) |f(y)| = η(x) +

∑
y∈Pred↓

N
(x) |λ(y)| and435 ⋃

y∈PredN (x) f(y) = ψ(x) ∪
⋃
y∈Pred↓

N
(x) λ(y).436

In order to compute an entry TPT [x, λx, ψx, ηx], we “guess” the set U ⊆ ϕ(x) of lineages437

passing through x in an optimal solution, as well as the set D ⊆ U of lineages inherited from438

nodes in Pred↑
N (x). Then, the cost incurred by x is the number of lineages of x that are not439

lineages of any r ∈ PredN (x), that is, the number of lineages in U \ (D ∪
⋃
r∈Pred↓

N
(x) λ(r)).440

For the recursive table lookup, we have to make sure that λ(x) = U , ψ(x) = D, and that all441

lineage branches of x that do not come from Pred↓
N (x) can be inherited from Pred↑

N (x), that442

is, η(x) = |λ(x)| .−
∑
r∈Pred↓

N
(x) |λ(r)|. Further, each child y of x in N may inherit a lineage443

from x and, if y is above x in Γ, this has to be registered by removing the lineages of U from444

ψ(y) and subtracting |U | from η(y). Finally, the lineage branches represented by ψ and η445

are distributed among the children of x in Γ using the table Q. In the following, in order446

to avoid treating the case that x = ρN separately, we define ρ(x) := 1 − δ(x, ρN ), that is,447

ρ(x) = 1 if and only if x = ρN .448

▶ Definition 24. Let Γ be a tree that agrees with N , x ∈ V (N), λx : YWΓ
x → 2C with449

λx ⊴ ϕ and ψx ⊴ λx. Let {v1, v2, . . . , vt} = SuccΓ(x) (t = 0 if x is a leaf in Γ). Then, set450
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TPT [x, λx, ψx, ηx] to451

min
D⊆U⊆ϕ(x)

U ̸=∅

Qλx[x→U ]
x

[
t, ψx

[
x→D
∀

w∈Succ↑
N

(x)
w→ψx(w)\U

]
, ηx

[
x→|U | .−

∑
u∈Pred↓

N
(x)

|λx(u)|

∀
w∈Succ↑

N
(x)
w→ηx(w) .−|U |

]]
452

+

∣∣∣∣∣∣∣U \

D ∪
⋃

u∈Pred↓
N

(x)

λx(u)


∣∣∣∣∣∣∣ (6)453

454

where Qλx [i, ψ, η] equals455 
min

ψ′⊴ψ|YWΓ
vi

min
η′⊴η|YWΓ

vi

Qλx [i− 1, ψ − ψ′, η − η′] + TPT
[
vi, λ |YWΓ

vi
, ψ′, η′

]
if i > 0

−ρ(x) if i = 0 and ψ = −→0 and η = −→0 [x → ρ(x)]
∞ otherwise

(7)456

457

Note how the table Qλx distributes the lineage branches of x whose parents are in Γx among458

the children of x in Γ. Observe that both TPT and Qλx are monotone in ψ and η (wrt. ⊴) by459

construction.460

▶ Lemma 25. Let x ∈ V (N), let i ∈ N, let λ : YWΓ
x → 2C , let η, η′ : YWΓ

x → N, and let461

ψ,ψ′ : YWΓ
x → 2C such that ψ′ ⊴ ψ ⊴ λ and −→0 [x → ρ(x)]⊴ η′ ⊴ η. Then,462

TPT [x, λ, ψ′, η′] ≤ TPT [x, λ, ψ, η] and Qλx [i, ψ′, η′] ≤ Qλx [i, ψ, η]463
464

Proof Sketch. The lemma can be proved by induction on the height of x in Γ and the value465

of i. If x is a leaf, then Qλx [0, ψ, η] is finite only if ψ = −→0 and η = −→0 [x → ρ(x)], implying the466

second inequality. For monotony of TPT , fix the sets D ⊆ U ⊆ C for which the minimum in467

the formula of TPT [x, λ, ψ, η] is attained. Then, by monotony of Qλx, replacing ψ by ψ′ and468

η by η′ in this formula does not increase its value and this value is at most TPT [x, λ, ψ′, η′]469

since it is obtained for one of several possible choices for D and U . If x is not a leaf in Γ then470

monotonicity of Qλx [i, . . .] is implied by monotonicity of Qλx [i− 1, . . .] and monotonicity of471

TPT [v, . . .] for the children v of x. Finally, monotonicity of TPT follows from monotonicity472

of Qλx as in the induction base. ◀473

▶ Lemma 26. Let Γ be a tree agreeing with N , let x ∈ V (N), let ψx, λx : YWΓ
x → 2c474

and ηx : YWΓ
x → N. Let f minimize cost(f) among all lineage functions in LFN,ϕ such475

that, for all w ∈ YWΓ
x, λx(w) = f(w), ψx(w) = f(w) ∩

⋃
u∈Pred↑x

N
(w) f(u), and ηx(w) ≤476 ∑

u∈Pred↑x
N

(w) |f(u)|. If there are no such f , then TPT [x, λx, ψx, ηx] = ∞. Otherwise,477

TPT [x, λx, ψx, ηx] =
∑
z≤Γx

costf (z)478

Proof Sketch. Let us abbreviate Zi :=
⋃
j≤i V (Γvj

). We first show that the table Q does479

what we expect it to do.480

▷ Claim 27. Let λ, ψ : YWΓ
x ∪{x} → 2C and η : YWΓ

x ∪{x} → N such that ψ ⊴ λ⊴ ϕ. Let481

fi ∈ LFN,ϕ have minimum cost on
⋃
j≤i Γvj

among all lineage functions for N that, for all482

w ∈
⋃
j≤i YWΓ

vj
, satisfy (a) λ(w) = fi(w), (b) ψ(w) = fi(w) ∩

⋃
j≤i

⋃
u∈Pred

↑vj
N

(w)
fi(u),483

and (c) η(w) ≤
∑
j≤i

∑
u∈Pred

↑vj
N

(w)
|fi(u)| Then, Qλx [i, ψ, η] =

∑
j≤i

∑
u∈Γvj

costfi
(u).484
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Proof Sketch. For “≥”, let ψ′ ⊴ ψ |YWΓ
vi

and η′ ⊴ η |YWΓ
vi

such that equality holds in (7).485

Let fi−1 ∈ LFN,ϕ minimize
∑
j<i

∑
u∈Γvj

costfi−1(u) among all lineage functions satisfying486

(a)–(c) for i−1. Let f∗ ∈ LFN,ϕ minimize
∑
u∈Γvi

costf∗(u) among all lineage functions that,487

for all w ∈ YWΓ
vi

, satisfy λ(w) = f∗(w), ψ′(w) = f∗(w) ∩
⋃
u∈Pred↑vi

N
(w) f

∗(u) and η′(w) =488 ∑
u∈Γvi

|f∗(u)|. By induction hypotheses, the cost of fi−1 on Zi is Qλx [i− 1, ψ − ψ′, η − η′]489

and the cost of f∗ on Γvi
is TPT

[
vi, λ |YWΓ

vi
, ψ′, η′

]
. From fi−1 and f∗, we construct a lineage490

function f ′ ∈ LFN,ϕ whose cost on Zi is
∑
j<i

∑
u∈Γvj

costfi−1(u)+
∑
u∈Γvi

costf∗(u). Then,491

“≥” follows by optimality of fi on Zi.492

For “≤”, let ψ′ and η′ be such that, for all w ∈ YWΓ
vi

, we have ψ′(w) = fi(w) ∩493 ⋃
u∈Pred↑vi

N
(w) fi(u) ⊆ ψ(w) and η′(w) =

∑
u∈Pred↑vi

N
(w) |fi(u)|. By independence of sub-494

solutions, fi is optimal on Zi−1 and on Γvi
so, by induction hypotheses, the cost of fi on495

Zi−1 is Qλx [i− 1, ψ − ψ′, η − η′] and the cost of fi on Γvi
is TPT

[
vi, λ |YWΓ

vi
, ϕ′, η′

]
. Since496

ψ′ and η′ are only one of the possible choices for the minimum in (7), “≤” follows. ■497

For “≥”, let D ⊆ U ⊆ ϕ(x) such that equality holds in (6). We construct a lineage498

function f ′ that assigns f ′(x) = U and such that the lineages of D are inherited from parents499

of x (in N) that are below x in Γ. To this end, we ask the dynamic programming table for500

the cost of a lineage function that is optimal on Zt and such that 1. ψ′(x) = D (lineages501

in D are inherited from parents of x in Γx) 2. ψ′(w) = ψ′(w) \ U for all w ∈ Succ↑
N (x)502

(children of x in YWΓ
x no longer need to inherit the lineages in U from Γx) 3. η′(x) =503

|U | .−
∑
u∈Pred↓

N
(x) |λx(u)| (x needs to inherit |U | lineages in total: |λx(u)| come from every504

parent u of x in YWΓ
x while the rest has to be inherited from Γx) and 4. η′(w) = ηx(w) .− |U |505

for all w ∈ Succ↑
N (x) (children of x in YWΓ

x can inherit a maximum of |U | lineages from506

x). Since the functions λ′ := λx [x → U ], ψ′ := ψx

[
x → D,∀u∈Succ↑

N
(x)w → ψx(w) \ U

]
and507

η′ := ηx

[
x → |U | .−

∑
u∈Pred↓

N
(x) |λx(u)|,∀u∈Succ↑

N
(x)w → ηx(w) .− |U |

]
satisfy the conditions508

of Claim 27, the optimal cost of such a lineage function f ′ on Zt is Qλx [t, ψ′, η′]. Further, the509

cost of f ′ on x is the number of lineages in U that is not inherited “for free” from parents of510

x, that is, |U \ (D ∪
⋃
u∈Pred↓

N
(x) λx(u))|. Then, “≥” follows by optimality of f on Γx.511

For “≤”, let U := f(x) and let D := U ∩
⋃
u∈Pred↑

N
(x) f(x) be the set of lineages of U that512

are inherited from parents of x in N that are below x in Γ. By independence of sub-solutions,513

f is optimal on Zt so, by Claim 27, its cost on Zt is Qλx [t, ψ′, η′] where ψ′ := ψx [. . .]514

and η′ := ηx [. . .] are defined as in (6) and its cost on x is |f(x) \ (
⋃
u∈Pred↑

N
(x) f(x) ∪515 ⋃

u∈Pred↓
N

(x) f(x))| = |U \ (D∪
⋃

Pred↓
N

(x) f(x))|. Then, “≤” follows from the fact that U and516

D are only one of the possible choices for the minimum in (6). ◀517

To solve the parental parsimony problem given N , ϕ and Γ, we compute TPT [x, λx, ψx, ηx]518

for each x bottom-up in Γ, each ψx, λx : YWΓ
x → 2C with ψx⊴λx⊴ϕ and each ηx : YWΓ

x →519

{0, . . . , |C|} (by Definition 24, no value larger than |C| ever enters ηx and all modifications to520

ηx decrease the mapped-to values). To this end, Qλx [i, ψ, η] is computed for each x, i, λ, ψ, and521

η by making at most 2|C|·| YWΓ
x | · |C|| YWΓ

x | queries to Qψx
x,cx

and TPT . As there are O(|A(N)|)522

valid combinations of x and i, the table Q can be computed in O(|A(N)| ·3|C|·yw(N) · |C|yw(N) ·523

2|C|·yw(N) · |C|yw(N)) = O(|A(N)| · 6|C|·yw(N)| · 4yw(N)·log |C|) time. Further, computing each524

TPT [x, λx, ψx, ηx] requires testing 3|ϕ(x)| ≤ 3|C| choices for D ⊆ U ⊆ ϕ(x) and computing525

|U \ (D ∪
⋃
u∈Pred↓

N
(x) λx(u))| in O(|C|) time (we precompute

⋃
u∈Pred↓

N
(x) λx(u) for each526

fix x and λx). Thus, the table TPT can be computed in O(3|C|·yw(N) · (|C|yw(N)+1 · 3|C| +527

|A(N)|)) time, which is dominated by the construction of Q.528
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▶ Theorem 28. Given a network N , ϕ : V (N) → 2C and a tree Γ agreeing with N , the529

parental parsimony score of (N,ϕ) can be computed in O(6yw(Γ)·|C| ·4yw(Γ)·log |C| ·|A(N)|) time.530

Again, we can replace yw(Γ) by tw(N) using Proposition 12.531

▶ Corollary 29. Let (N,ϕ) be an instance of Parental Parsimony. Let t ≥ tw(N) and532

let T be the time in which a width-t tree decomposition of N can be computed. Then, the533

parental parsimony score of (N,ϕ) can be computed in O(T + 6t·|C| · 4t·log |C| · |A(N)|) time.534

Note that the parental parsimony setting supports assigning multiple states of a character535

to a single species, thereby modeling species carrying multiple alleles of a single gene. By536

forcing D ⊆ U = ϕ(x) instead of D ⊆ U ⊆ ϕ(x) if x is a leaf, we can trivially modify our537

dynamic programming to explain multiple character states in extant species.538

Corollaries 18, 23 and 29 give the running times of our algorithms as depending on the539

treewidth of N . The state-of-the-art solutions for Hardwired Parsimony, Softwired540

Parsimony and Parental Parsimony have the following respective running times:541

O(|C|r+2|V (N)|) [21], O(2ℓ|C|2|V (N)||A(N)|) [13] and O(|2C |ℓ+3|V (N)|) [29]. Since the542

scanwidth of N is potentially much smaller than its level ℓ [27], and the treewidth of N is543

smaller than its scanwidth [3], we have tw(N) − 1 ≤ ℓ ≤ r. Thus, we expect that there will544

be several cases where our algorithms will be faster than the current best-known ones.545

5 Discussion546

In this paper, we focused on the small version of the parsimony problem for networks given a547

specific position in the genome. When markers can be assumed to be independent, as it is the548

case when a certain distance is preserved between genomic locations included in the matrix,549

each position can be analyzed separately, and the parsimony score of a network w.r.t. the550

matrix is simply the sum of the parsimony scores of the network for each genomic location.551

Thus, the algorithms presented here can be easily expanded to several independent genomic552

locations. Moreover, our formulations are defined for networks that are not necessarily binary,553

can account for polymorphism and can impose restrictions on ancestral states. As discussed554

above, our algorithms can be orders of magnitude faster than the state-of-the-art solutions.555

A comparison of the reticulation number, the level, the scanwidth and the treewidth for556

practically relevant classes of networks would thus be an interesting project for future work.557

Our results are slightly overshadowed by the fact that optimal tree decompositions are558

very hard to compute, with even the best-known parameterized algorithm being considered559

impractical (see survey [5]). However, the treewidth can be 2-approximated in single-560

exponential time [24] and, with development driven by recent issues of the PACE challenge [10],561

more practical exact algorithms are now available as well [28]. We would welcome similar562

efforts also for the scanwidth, which is also hard to compute [3].563

The ability to fast-score phylogenetic networks under the parsimony framework could be564

a big help in designing likelihood-based heuristics or bayesian methods to infer networks from565

independent markers [31, 27] by providing fast heuristics to compute the initial networks566

with which to start the likelihood or bayesian search, or to design fast local-search techniques.567

In the future, we would like to tackle the small parsimony problem for several dependent568

genomic locations (e.g. a gene). Little is known for this problem, except that it stays NP-569

hard even for binary characters even on level-1 networks [22] and that it is fixed-parameter570

tractable in the number of reticulations of the network [26]. Another important direction571

would be to study the big parsimony problem, which is currently wide open, even lacking a572

consensus of the definition of optimality [26, 17, 30, 6].573
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Γ w

u

Γ′ Γ∗

Figure 5 Example for the construction of Γ′ (middle) from Γ (left) in Lemma 7. Repeated
application yields Γ∗ (right), for which v ≤Γ∗ u ⇒ u⇝G,Γ∗ v. The rooted trees Γ, Γ′, and Γ∗ are
drawn with thick, gray lines. Thin, black lines are edges of G. For the indicated node u, the black
nodes are in X, that is, they are below u in Γ but not connected to u in G[Γu].

A Proofs of results in the main text651

A.1 Proof of Lemma 4652

Proof. (a), (b): We show for all vertices w on a u-v-path p in Γσ that w ≤σ u and u⇝G,σ w.653

The base case w = u holds trivially. For the induction step, let q preceed w in p. Since Γσ654

contains the arc qw, Definition 1 implies q⇝G,σ w and, since q ≤σ u by induction hypothesis,655

w ≤σ q ≤σ u and u⇝G,σ w. For the reverse direction of (b), note that, by Definition 1, uv656

is an arc of the DAG whose transitive reduction Γσ is.657

(c),(d): Since G[σ[1..r]] = G and G is connected, there is an r-x-path in G[σ[1..r]] for all658

x ∈ V (G) and, thus, Γσ is connected and rooted at r.659

(e): To prove that Γσ is a tree, assume there is a vertex x ∈ V (G) with two distinct660

parents y and z in Γσ. Without loss of generality, let y <σ z. By (b), y⇝G,σ x and z⇝G,σ x.661

Since σ[1..y] ⊊ σ[1..z], we conclude z⇝G,σ y, implying zy ∈ A(Γσ) and contradicting Γσ662

being a transitive reduction.663

(f): Note that u⇝G,σ v, implying v ≤Γσ u by (b).664

(g): For each uv ∈ E(G), either u <σ v, implying u ≤Γσ v, or v <σ u, implying v ≤Γσ u665

(both by (f)).666

(h) “⊆”: Let x ∈ V (G) and let y ∈ YWΓσ

x . By Definition 2, y >Γσ x (implying y >σ x667

by (a)) and there is some z ≤Γσ x (implying z ≤σ x by (a)) with yz ∈ E(G). Then, by (b),668

x⇝G,σ z. But then, y ∈ ZWσ
x by Definition 1.669

(h) “⊇”: Let x ∈ V (G) and let y ∈ ZWΓσ

x , that is, x <σ y and there is some z ∈ σ[1..x]670

with x⇝G,σ z and yz ∈ E(G). Then, z ≤σ x <σ y. By (b), z ≤Γσ x and, by (f), z ≤Γσ y.671

Thus, as Γσ is a tree (by (e)), x and y are not unrelated in Γσ. Moreover, y ≰σ x implies672

y ≰Γσ x by (b) and, thus, x <Γσ y. Together with z ≤Γσ x and yz ∈ E(G), this implies673

y ∈ YWΓσ

x . ◀674

A.2 Proof of Lemma 7675

(See Figure 5).676

Proof. Let u ∈ V (G) such that X := {v <Γ u | u⇝̸G,Γ v} ̸= ∅. We will modify Γ into Γ′
677

with yw(Γ′) ≤ yw(Γ) such that Γ′ agrees with G and the relation ≤Γ′ is a strict subset of678

≤Γ. To this end, note that u has a parent w in Γ as, otherwise, G[Γu] = G, implying X = ∅.679

Then, Γ′ results from Γ by680
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1. replacing Γ by Γ ↑ (Γu \X) and681

2. dangling Γu ↑ X from w.682

First, we show that Γ′ agrees with G. To this end, let xy ∈ E(G) and let x and y be683

unrelated in Γ′. If neither x nor y are in Γu then, by construction of Γ′, they are also684

unrelated in Γ, contradicting that Γ agrees with G. So, without loss of generality, suppose685

x ≤Γ u. Since xy ∈ E(G) and Γ is a tree agreeing with G, we thus know that u and y are not686

unrelated in Γ. If u <Γ y, then w ≤Γ y and, thus, x ≤Γ′ y. Thus, suppose y ≤Γ u. Clearly,687

if x, y ∈ X or x, y /∈ X, then x and y are also unrelated in Γ, contradicting its agreement688

with G. Thus, without loss of generality, suppose x ∈ X and y /∈ X, that is, u⇝̸G,Γ x and689

u⇝G,Γ y, contradicting xy ∈ E(G).690

Second, we show that ≤Γ′ is a strict subset of ≤Γ. To this end, let xy ∈ A(Γ′) and assume691

towards a contradiction that y ̸<Γ x. Clearly, if x ≰Γ′ w, then xy ∈ A(Γ) contradicting692

y ̸<Γ x. Further, if x = w, then either y ∈ X or y is a child of w in Γ, all of which imply693

y <Γ x. Thus, x <Γ′ w. Since xy ∩ X = {x} or xy ∩ X = {y} contradicts xy ∈ A(Γ′), we694

have x, y ∈ X or x, y /∈ X. But then, y <Γ x by Observation 6. Thus, ≤Γ′ is a subset of ≤Γ695

and it is strict since we have v ≤Γ u and v ≰Γ′ u for all v ∈ X ̸= ∅.696

Third, yw(Γ′) ≤ yw(Γ) follows by Lemma 3. ◀697

A.3 Proof of Lemma 9698

Proof. “≥”: Let σ be an ordering of V (G) such that zw(σ) = zw(G). By Lemma 4(h), we699

have zw(σ) = yw(Γσ) for the canonical extension tree Γσ of σ. Thus, zw(G) = zw(σ) =700

yw(Γσ) ≥ yw(G).701

“≤”: Let Γ be some rooted tree agreeing with G such that yw(Γ) = yw(G) and, by702

Lemma 7, suppose703

u ≤Γ v ⇒ v⇝G,Γ u. (8)704

Let σ be any ordering of V (G) obtained by repeatedly picking and removing any leaf of Γ.705

▷ Claim 30. For each u, v ∈ V (G), we have u ≤Γ v if and only if v⇝G,σ u.706

Proof. First, note that all nodes below v in Γ are chosen before v, so Γv ⊆ σ[1..v].707

“⇒”: Let u ≤Γ v, that is, u ∈ Γv, implying u ≤σ v. By (8), v is connected to u in G[Γv]708

and, as Γv ⊆ σ[1..v], also in G[σ[1..v]].709

“⇐”: Let p be a v-u-path in G[σ[1..v]]. By Lemma 8, p has a unique maximum w in Γ.710

Hence, v ≤Γ w and, by “⇒”, we have v ≤σ w. Since p lives entirely in G[σ[1..v]], that is,711

V (p) ⊆ σ[1..v], we also have w ≤σ v. Thus, v = w and, since u ∈ V (p), we have u ≤Γ w = v712

by maximality of w. ■713

To prove the lemma, we show YWΓ
x ⊇ ZWσ

x for each x ∈ V (G). Let y ∈ ZWσ
x , that is714

y >σ x and there is some z ∈ σ[1..x] with yz ∈ E(G) and x⇝G,σ z. By Claim 30, z ≤Γ x.715

Further, as yz ∈ E(G) and Γ agrees with G, y and z are not unrelated in Γ and, since z ≤Γ x,716

neither are x and y. Since y <Γ x implies y <σ x by Claim 30, contradicting y >σ x, we717

conclude x <Γ y. Together with z ≤Γ x and yz ∈ E(G), this implies y ∈ YWΓ
x . ◀718

A.4 Proof of Proposition 12719

Proof. “≤”: Let (T,B) be a nice tree decomposition for G of width tw(G) and let F ⊂ V (T )720

denote the set of all “forget”-nodes in T (noting that the root of T is in F ). We construct Γ721
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from T by contracting all nodes in V (T ) \F onto their respective parents1 and identifying all722

nodes x ∈ F with the vertex v ∈ V (G) \B(x) of G that is forgotten in x. By Observation 11,723

V (Γ) = V (G).724

First, we show that Γ agrees with G. To this end, let uv ∈ E(G) and let fu, fv ∈ V (T )725

denote the unique “forget u” and “forget v”-nodes in T , which are distinct since T is nice.726

By Definition 10(a), there is a node q ∈ V (T ) with uv ⊆ B(q) and, by Observation 11,727

q <T fu, fv. Thus, fu and fv are not unrelated in T and, by Observation 5, neither in Γ.728

Second, we show for all v ∈ Γ and the unique “forget v”-node fv in T that YWΓ
v ⊆ B(fv).729

Let u ∈ YWΓ
v , that is, u >Γ v and there is some w ≤Γ v with uw ∈ E(G) (note that730

w ̸= u but w = v is possible). Let fu and fw be the unique “forget u” and “forget w”-731

nodes in T , which are distinct since T is nice. Then, w ≤Γ v <Γ u and, by Observation 5,732

fw ≤T fv <T fu. Since uw ∈ E(G), Definition 10(a) implies that there is a node q of T733

with uw ⊆ B(q), implying q <T fu, fw. Then, by Definition 10(b), u ∈ B(x) for all x with734

q ≤T x <T fu and, since q <T fw <T fv <T fu, we have u ∈ B(fv). Thus, YWΓ
v ⊆ B(fv),735

implying yw(G) ≤ YWΓ
v ≤ |B(fv)| and, since fv has a child x with B(x) = B(fv) ∪ {v}, we736

know |B(fv)| = |B(x)| − 1 ≤ tw(T,B) = tw(G).737

“≥”: Let Γ be a tree with yw(Γ) = yw(G) that agrees with G. For all u ∈ V (G), we738

define B(u) := YWΓ
u ∪{u} and show that (Γ, B) is a tree-decomposition for G noting that739

its width is yw(Γ) = yw(G).740

First, to prove Definition 10(a), let uv ∈ E(G). Since Γ agrees with G, either u <Γ v741

or v <Γ u. Without loss of generality, suppose the latter. Then, u ∈ YWΓ
v by Definition 2742

(using w = v), implying that uv ∈ B(v).743

Second, let u, v ∈ V (G) be distinct such that u ∈ B(v) = YWΓ
v ∪{v}, implying u ∈ YWΓ

v744

since u ̸= v. By Definition 2, there is some w ≤Γ v with uw ∈ E(G) and v <Γ u, implying745

that Γ contains a unique u-v-path p. To show Definition 10(b), it suffices to prove u ∈ B(x)746

for all x ∈ V (p) (since v has been chosen arbitrarily, a path with these properties exists747

for all v′ with u ∈ B(v′), so they all contain the node u and are, thus, connected). For748

x = u this follows by definition of B(u). Otherwise, x <Γ u since x ∈ V (p). But then,749

w ≤Γ v ≤Γ x <Γ u and uw ∈ E(G), implying u ∈ YWΓ
x ⊆ B(x). ◀750

A.5 Proof of Lemma 14751

Proof. Towards a contradiction, assume that the lemma is false. We construct ψ∗ : V (N) →752

C with753

ψ∗(u) =
{
ψy(u) if u ∈ Γy for any y ∈ Y

ψ(u) otherwise
754

Note that ψ∗ and ψ coincide with ψy on YWΓ
y for all y ∈ Y . Thus, δψ∗(u,w) = δψy (u,w) if755

uw ∈ Ay(S∗) for any y ∈ Y and δψ∗(u,w) = δψ(u,w), otherwise. Further, we construct a756

digraph S∗ := (V (N), (A(S) \
⋃
y∈Y Ay(S)) ∪

⋃
y∈Y Ay(Sy)) which is in G since (Sy)y∈Y is a757

Y -substitution system for G. Since all Sy are subnetworks of N , we know that Γ agrees with758

S∗. Furthermore, since Y ⊆
⋃
z∈Z Γz, we know that each y ∈ Y has a z ∈ Z with y ≤Γ z.759

1 One can also describe Γ as the transitive reduction of (F,>T ∩(F × F )).
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Thus,760 ∑
z∈Z

∑
uw∈Az(S∗)

δψ∗(u,w) =
∑
z∈Z

∑
v∈Γz

∑
uw∈A{v}(S∗)

δψ∗(u,w)761

=
∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S∗)

δψ∗(u,w) +
∑
y∈Y

∑
uw∈Ay(S∗)

δψ∗(u,w)762

=
∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S)

δψ(u,w) +
∑
y∈Y

∑
uw∈Ay(Sy)

δψy (u,w)763

assumption
<

∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S)

δψ(u,w) +
∑
y∈Y

∑
uw∈Ay(S)

δψ(u,w)764

=
∑
z∈Z

∑
uw∈Az(S)

δψ(u,w)765

766

contradicting optimality of S and ψ (that is, Lemma 14(a)) since S∗ ∈ G. ◀767
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