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On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo

For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software.

Recently, the MCMC BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.

Introduction

Complete genomes for numerous species in various life domains [1][2][3][4][5], and even for several individuals for some species [6,7] are nowadays available thanks to next generation sequencing. This flow of data finds applications in various fields such as pathogenecity [8], crop improvement [START_REF] Mansueto | SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa[END_REF], evolutionary genetics [START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] or population migration and history [START_REF] Gravel | Demographic history and rare allele sharing among human populations[END_REF][START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF][START_REF] Rouard | Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana)[END_REF]. Generally, phylogenomic studies use as input thousands to millions genomic fragments sampled across different species. To process such a large amount of data, methods need not only to be accurate, but also time efficient. The availability of numerous genomes at both the intra and inter species levels has been a fertile ground for studies at the interface of population genetics and phylogenetics [START_REF] Felenstein | Inferring phylogenies[END_REF] that aim to estimate the evolutionary history of closely related species. In particular, the well-known coalescent model from population genetics [START_REF] Kingman | On the genealogy of large populations[END_REF] has been extended to the multispecies coalescent (MSC) model [START_REF] Rannala | Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci[END_REF][START_REF] Knowles | Estimating species trees: practical and theoretical aspects[END_REF] to handle studies involving populations or individuals from several species. Recent works show how to incorporate sequence evolution processes into the MSC [START_REF] Roychoudhury | A two-stage pruning algorithm for likelihood computation for a population tree[END_REF][START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. As a result, it is now possible to reconstruct evolutionary histories while accounting for both incomplete lineage sorting (ILS) and sequence evolution [START_REF] Ebersberger | Mapping human genetic ancestry[END_REF][START_REF] Degnan | Gene tree discordance, phylogenetic inference and the multispecies coalescent[END_REF].

For a given locus, ILS leads different individuals in a same population to have different alleles that can trace back to different ancestors. Then, if speciation occurs before the different alleles get sorted in the population, the locus tree topology can differ from the species history [START_REF] Maddison | Gene Trees in Species Trees[END_REF]. But incongruence between these trees can also result from biological phenomena that can cause a species to inherit lineages and/or genomic fragments from more than one parent species. Examples of such phenomena include hybrid speciation [START_REF] Mallet | Hybrid speciation[END_REF][START_REF] Morales | Evolutionary role of interspecies hybridization and genetic exchanges in yeasts[END_REF][START_REF] Cui | Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes[END_REF][START_REF] Glemin | Pervasive hybridizations in the history of wheat relatives[END_REF], introgression [START_REF] Civáň | Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.)[END_REF][START_REF] Minamikawa | Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits[END_REF][START_REF] Duranton | The origin and remolding of genomic islands of differentiation in the European sea bass[END_REF] and horizontal gene transfer [START_REF] Koonin | Horizontal gene transfer in prokaryotes: quantification and classification[END_REF][START_REF] Szöllősi | Genome-scale phylogenetic analysis finds extensive gene transfer among fungi[END_REF] (the latter is not addressed in this paper). As a consequence of these reticulate events, trees are not suited to represent species history, and should be replaced by phylogenetic networks. A rooted phylogenetic network is mainly a directed acyclic graph whose internal nodes can have several children, as in trees, but can also have several parents [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF][START_REF] Nakhleh | Evolutionary phylogenetic networks: models and issues[END_REF][START_REF] Morrison | Introduction to Phylogenetic Networks[END_REF]. Various models of phylogenetic network have been proposed over time to explicitly represent reticulate evolution, such as hybridization networks [START_REF] Baroni | A framework for representing reticulate evolution[END_REF] or [START_REF] Schwarz | Estimating the dimension of a model[END_REF] 2/42 ancestral recombination graphs [START_REF] Hudson | Properties of a neutral allele model with intragenic recombination[END_REF], along with dozens of inference methods [START_REF] Huson | A survey of combinatorial methods for phylogenetic networks[END_REF][START_REF] Degnan | Modeling hybridization under the network multispecies coalescent[END_REF].

Model-based methods have been proposed to handle simultaneously ILS and reticulate evolution, which is a desired feature to avoid bias in the inference [START_REF] Fontaine | Extensive introgression in a malaria vector species complex revealed by phylogenomics[END_REF][START_REF] Marcussen | Ancient hybridizations among the ancestral genomes of bread wheat[END_REF][START_REF] Zhu | Displayed trees do not determine distinguishability under the network multispecies coalescent[END_REF].

These methods postulate a probabilistic model of evolution and then estimate its parameters -including the underlying network-from the data. The estimation of parameters such as branch lengths (hence speciation dates) and population sizes makes them more versatile than combinatorial methods [START_REF] Huson | A Survey of Combinatorial Methods for Phylogenetic Networks[END_REF]. On the down side, they usually involve high running times as they explore large parameter spaces. Two probabilistic models differentiate regarding the way a locus tree can be embedded within a network. In Kubatko's model [START_REF] Kubatko | Identifying hybridization events in the presence of coalescence via model selection[END_REF][START_REF] Meng | Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model[END_REF], all lineages of a given locus tree coalesce within a single species tree displayed by the network. The model of Yu et al. [START_REF] Yu | Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting[END_REF] is more general as, at each reticulation node, a lineage of the locus tree is allowed to descend from a parental ancestor independently of which ancestors provide the other lineages. Works on the latter model extend in various ways the MSC model to consider network-like evolution, giving rise to the multispecies network coalescent (MSNC), intensively studied in recent years [START_REF] Degnan | Modeling hybridization under the network multispecies coalescent[END_REF][START_REF] Zhu | Displayed trees do not determine distinguishability under the network multispecies coalescent[END_REF][START_REF] Yu | The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection[END_REF][START_REF] Yu | Fast algorithms and heuristics for phylogenomics under ILS and hybridization[END_REF][START_REF] Yu | Maximum likelihood inference of reticulate evolutionary histories[END_REF][START_REF] Yu | A maximum pseudo-likelihood approach for phylogenetic networks[END_REF][START_REF] Solís-Lemus | Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting[END_REF][START_REF] Wen | Bayesian inference of reticulate phylogenies under the multispecies network coalescent[END_REF][START_REF] Wen | Coestimating reticulate phylogenies and gene trees from multilocus sequence data[END_REF][START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF][START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF][START_REF] Elworth | Advances in computational methods for phylogenetic networks in the presence of hybridization[END_REF]. For this model, Yu et al. have shown how to compute the probability of a non-recombinant locus (gene) tree evolving inside a network, given the branch lengths and inheritance probabilities at each reticulation node of the network [START_REF] Yu | The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection[END_REF][START_REF] Yu | Maximum likelihood inference of reticulate evolutionary histories[END_REF]. This opened the way to infer networks according to the well-known maximum likelihood and Bayesian statistical frameworks.

When the input data consists of multi-locus alignments, a first idea is to decompose the inference process in two steps: first, infer locus trees from their respective alignments, then look for networks that assign high probability to these trees. Following this principle, Yu et al. devised a maximum likelihood method [START_REF] Yu | Maximum likelihood inference of reticulate evolutionary histories[END_REF], then a Bayesian sampling technique [START_REF] Wen | Bayesian inference of reticulate phylogenies under the multispecies network coalescent[END_REF]. However, using locus trees as a proxy for molecular sequences loses some information contained in the alignments [START_REF] Rannala | Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci[END_REF] and is subject to tree reconstruction errors. For this reasons, recent work considers jointly estimating the locus trees and the underlying network. This brings the extra advantage that better locus trees are likely to be obtained [START_REF] Bayzid | Naive binning improves phylogenomic analyses[END_REF], but running time may become prohibitive already for inferences on few species. Wen et al. in the PhyloNet software [START_REF] Wen | Coestimating reticulate phylogenies and gene trees from multilocus sequence data[END_REF] and Zhang et al. with the SpeciesNetwork method [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF] both proposed Bayesian methods following this principle.

Though a number of trees for a same locus are considered during such inference processes, they are still considered one at a time, which may lead to a precision loss (and a time loss) compared to an inference process that would consider all possible trees for a given locus at once. When data consists of a set of biallelic markers (e.g., SNPs), the ground-breaking work of Bryant et al. [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] allows to compute likelihoods while integrating over all gene trees, under the MSC model (i.e., when representing the history as a tree). This work was recently extended to the MSNC context by Zhu et al [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF].

In this paper, we present a novel way to compute the probability of biallelic markers, given a network. This likelihood computation is at the heart of a Bayesian network inference method we called SnappNet, as it extends the Snapp method [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] to networks. SnappNet is available at https://github.com/rabier/MySnappNet and distributed as a package of the well-known Beast 2 software [START_REF] Bouckaert | BEAST 2: a software platform for Bayesian evolutionary analysis[END_REF][START_REF] Bouckaert | BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis[END_REF]. This package partly relies on code from Snapp [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] to handle sequence evolution and on code from SpeciesNetwork [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF] to modify the network during the MCMC as well as to compute network priors. Example of a phylogenetic network. The top node represents the origin and its child node is called the root of the network. Time flows from the origin node to the leaves (here A, B, C, D) so branches are directed from the top to the leaves. Each branch x is associated to a length t x , and to a population size θ x . Additionally, branches x on top of a reticulation node have an inheritance probability γ x representing their probability to have contributed to any individual at the top of the branch just below.

Mathematical model

In this paper, we refer to phylogenetic networks as directed acyclic graphs with branches oriented as the time flows, see Fig 1. At their extremities, networks have a single node with no incoming branch and a single outgoing branch -the origin-and a number of nodes with a single incoming branch and no outgoing branches -the leaves. All other nodes either have a single incoming branch and two outgoing branches -the tree nodesor two incoming branches and a single outgoing branch -the reticulation nodes. Tree nodes and reticulation nodes represent speciations and hybridization events, respectively. For consistency with Zhang et al. [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF], the immediate descendant of the origin -that is, the tree node representing the first speciation in the network -is called the root.

Each branch x in the network represents a population, and is associated to two parameters: a scaled population size θ x and a branch length t x . Any branch x on top of a reticulation node h is further associated with a probability γ x ∈ (0, 1), under the constraint that the probabilities of the two parent branches of h sum to 1. These probabilities are called inheritance probabilities. All these parameters have a role in determining how gene trees are generated by the model, and how markers evolve along these gene trees, as described in the next two subsections, respectively.

Gene tree model

Gene trees are obtained according to the MSNC model. The process starts at the leaves of the network, where a given number of lineages is sampled for each leaf, each lineage going backwards in time, until all lineages coalesce. Along the way, this process determines a gene tree whose branch lengths are each determined as the amount of time between two coalescences affecting a single lineage. Here and in what follows, "times" -and therefore branch lengths-are always measured in terms of expected number of mutations per site.

Within each branch x of the network, the model applies a standard coalescent process governed by θ x . In detail, any two lineages within x coalesce at rate 2/θ x , August 26, 2021 5/42 meaning that the first coalescent time among k lineages follows an exponential distribution E(k(k -1)/θ x ), since the coalescence of each combination of 2 lineages is equiprobable. Naturally, if the waiting time to coalescence exceeds the branch length t x , the lineages are passed to the network branch(es) above x without coalescence. If there are two such branches y, z (i.e., the origin of x is a reticulation node), then each lineage that has arrived at the top of branch x chooses independently whether it goes to y or z with probabilities γ y and γ z = 1 -γ y , respectively [START_REF] Yu | Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting[END_REF]. The process terminates when all lineages have coalesced and only one ancestral lineage remains.

Mutation model

As is customary for unlinked loci, we assume that the data is generated by a different gene tree for each biallelic marker. The evolution of a marker along the branches of this gene tree follows a two-states asymmetric continuous-time Markov model, scaled so as to ensure that 1 mutation is expected per time unit. This is the same model as Bryant et al. [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. For completeness, we describe this mutation model below.

We represent the two alleles by red and green colors. Let u and v denote the instantaneous rates of mutating from red to green, and from green to red, respectively. Then, for a single lineage, P(red at t + ∆t | green at t) = v∆t + o(∆t), and P(green at t + ∆t | red at t) = u∆t + o(∆t), where o(∆t) is negligible when ∆t tends to zero. The stationary distribution for the allele at the root of the gene tree is green with probability u/(u + v) and red with probability v/(u + v). Under this model, the expected number of mutations per time unit is 2uv/(u + v). In order to measure time (branch lengths) in terms of expected mutations per site (i.e. genetic distance), we impose the constraint 2uv/(u + v) = 1 as in [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. When u and v are set to 1, the model is also known as the Haldane model [START_REF] Haldane | The combination of linkage values and the calculation of distances between the loci of linked factors[END_REF] or the Cavender-Farris-Neyman model [START_REF] Cavender | Taxonomy with confidence[END_REF].

Bayesian framework

Posterior distribution

Let D i be the data for the i-th marker. The posterior distribution of the phylogenetic network Ψ can be expressed as:

P(Ψ|D 1 , . . . , D m ) ∝ P (D 1 , . . . , D m | Ψ) • P(Ψ) = P(Ψ) • m i=1 P(D i |Ψ) (1) 
where ∝ means "is proportional to", and where P (D 1 , . . . , D m | Ψ) and P(Ψ) refer to the likelihood and the network prior, respectively.

Eq 1 -which relies on the independence of the data at different markers-allows us to compute a quantity proportional to the posterior by only using the prior of Ψ and the likelihoods of Ψ with respect to each marker, that is P(D i |Ψ). While we could approximate P(D i |Ψ) by sampling gene trees from the distribution determined by the species network, this is time-consuming and not necessary. Similarly to the work by Bryant et al. [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] for inferring phylogenetic trees, we show below that P(D i |Ψ) can be computed for networks using dynamic programming.

SnappNet samples networks from their posterior distribution by using Markov chain Monte-Carlo (MCMC) based on Eq 1.
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Priors

Before describing the network prior, let us recall the network components: the topology, the branch lengths, the inheritance probabilities and the populations sizes. In this context, we used the birth-hybridization process of Zhang et al. [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF] to model the network topology and its branch lengths. This process depends on the speciation rate λ, on the hybridization rate ν and on the time of origin τ 0 . Hyperpriors are imposed onto these parameters. An exponential distribution is used for the hyperparameters d := λ -ν and τ 0 . The hyperparameter r := ν/λ is assigned a Beta distribution. We refer to [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF] for more details. The inheritance probabilities are modeled according to a uniform distribution. Moreover, like Snapp, SnappNet considers independent and identically distributed Gamma distributions as priors on population sizes θ x associated to each network branch. This prior on each population size induces a prior on the corresponding coalescence rate (see [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] and Snapp's code). Last, as in Snapp, the user can specify fixed values for the u and v rates, or impose a prior for these rates and let them be sampled within the MCMC.

Partial likelihoods

In the next section we describe a few recursive formulae that we use to calculate the likelihood P(D i |Ψ) using a dynamic programming algorithm. Here we introduce the notation that allows us to define the quantities involved in our computations. Unless otherwise stated, notations that follow are relative to the ith biallelic marker. To keep the notations light, the dependence on i is not explicit.

Given a branch x, we denote by x and x the top and bottom of that branch. We call x and x population interfaces. We say that two population interfaces are incomparable if neither is a descendant of the other (which also excludes them being equal). N x and N x are random variables denoting the number of gene tree lineages at the top and at the bottom of x, respectively. Similarly, R x and R x denote the number of red lineages at the top and bottom of x, respectively. See Fig 2 for illustration of these concepts and of the notation that we introduce in the following.

For simplicity, when x is a branch incident to a leaf, we identify x with that leaf.

Two quantities that are known about each leaf are r x and n x , which denote the number of red lineages sampled at x and the total number of lineages sampled at x, respectively. Note that N x , in this case, is non-random: indeed, it must necessarily equal n x , which is determined by the number of individuals sampled from that species. On the other hand, the model we adopt determines a distribution for the R x . The probability of the observed values r x for these random variables equals P(D i |Ψ). Now let x be an ordered collection (i.e. a vector) of population interfaces. We use n x (or r x ) to denote a vector of non-negative integers in a 1-to-1 correspondence with the elements of x. Then N x = n x is a shorthand for the equations expressing that the numbers of lineages in n x are observed at their respective interfaces in x. For example, if x = (x, y) and n x = (m, n), then N x = n x is a shorthand for N x = m, N y = n. We use R x = r x analogously to express the observation of the numbers of red lineages in r x at x.

In order to calculate the likelihood P(D i |Ψ), we subdivide the problem into that of calculating quantities that are analogous to partial likelihoods. Given a vector of population interfaces x, let L(x) denote a vector containing the leaves that descend from any element of x, and let r L(x) be the vector containing the numbers of red lineages r x observed at each leaf x in L(x). Then we define:

F x (n x ; r x ) = P R L(x) = r L(x) | N x = n x , R x = r x • P (N x = n x ) (2) 
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(see Fig 2). These quantities are generalizations of similar quantities defined by Bryant et al. [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. We will call them partial likelihoods, although, as noted by these authors, strictly speaking this is an abuse of language. A gene tree is drawn inside the species network (green and red lines). One mutation occurs in the branch above D.

We focus on three branches: x, y and z. Colored horizontal bars represent the population interfaces x, y, y and z. Note that (x, y) (blue) is a vector of incomparable population interfaces, while (y, z) (orange) is not, as z is a descendant of y. Here, 

n A = n B = n C = n D = 2, r A = 2, r B = 1, r C = 0, r D =
P R A = r A , R B = r B , R C = r C | N x = n, N y = n , R x = r, R y = r P N x = n, N y = n .

Computing partial likelihoods: the rules

Here we show a set of rules that can be applied to compute partial likelihoods in a recursive way. Derivations and detailed proofs of the correctness of these rules can be found in Section 1 in S1 Text.

We use the following conventions. In all the rules that follow, vectors of population interfaces x, y, z are allowed to be empty. The comma operator is used to concatenate vectors or append new elements at the end of vectors, for example, if Rule 0: Let x be a branch incident to a leaf. Then,

F (x) ((n); (r)) = 1{n = n x } • 1{r = r x } August 26, 2021 8/42
Rule 1: Let x, x be a vector of incomparable population interfaces. Then,

F x,x (n x , n x ; r x , r x ) = mx n=nx n r=0 F x,x (n x , n; r x , r) exp(Q x t x ) (n,r);(nx,rx)
where t x denotes the length of branch x, and Q x is the rate matrix defined by Bryant et al. [19, p. 1922] that accounts for both coalescence and mutation (see also Section 1 in S1 Text).

Rule 2: Let x, x and y, y be two vectors of incomparable population interfaces, such that L(x, x) and L(y, y) have no leaf in common. Let x, y be the immediate descendants of branch z, as in Fig 3 . Then,

F x,y,z n x , n y , n z ; r x , r y , r z = nx rx F x,x (n x , n x ; r x , r x ) F y,y n y , n z -n x ; r y , r z -r x n x r x n z -n x r z -r x n z r z -1
The ranges of n x and r x in the summation terms are defined by

max(0, n z -m y ) ≤ n x ≤ min(m x , n z ) and max(0, n x + r z -n z ) ≤ r x ≤ min(n x , r z ). - - r (a) (b) x y z x y z F x,y,z F x,x F y,y Fig 3.
Illustration of Rule 2. Given (a) the partial likelihoods for the x, x (red) vector of population interfaces and the partial likelihoods for the y, y (blue) vector of population interfaces, Rule 2 allows us to compute the partial likelihoods for the (green) vector x, y, z (b).

Rule 3: Let x, x be a vector of incomparable population interfaces, such that branch

x's top node is a reticulation node. Let y, z be the branches immediately ancestral to x, as in Fig 4 . Then,

F x,y,z n x , n y , n z ; r x , r y , r z = F x,x n x , n y + n z ; r x , r y + r z n y + n z n y γ ny y • γ nz z August 26, 2021 9/42 E - eff - (a) 
x y z

F x,x (b) 
x y z Rule 4: Let z, x, y be a vector of incomparable population interfaces, and let x, y be immediate descendants of branch z, as in Fig 5 . Then,

F x,y,z
F z,z n z , n z ; r z , r z = nx rx F z,x,y n z , n x , n z -n x ; r z , r x , r z -r x n x r x n z -n x r z -r x n z r z -1
The ranges of n x and r x in the sums are the same as those in Rule 2.

Note that, in the rules above, we assume that the vectors of population interfaces (VPIs from here on) on the right-hand side of each equation only contain incomparable population interfaces. This is necessary to ensure the validity of the rules (see Section 1 in S1 Text). It is easy to verify that, as a consequence of that assumption, also the VPIs on the left-hand side of each equation only contain incomparable population interfaces. Therefore, repeated application of the rules can only result in a partial likelihood F x (n x ; r x ) where x is a vector of incomparable population interfaces. All VPIs that we will encounter only contain incomparable population interfaces.

Repeated application of the rules above, performed by an algorithm described in the next subsection, leads eventually to the partial likelihoods for ρ, the population interface immediately above the root of the network (i.e, ρ is the branch linking the origin to the root). From these partial likelihoods, the full likelihood P(D i |Ψ) is computed as follows:

P(D i | Ψ) = mρ n=1 n r=0 F (ρ) (n; r) • P(R ρ = r | N ρ = n), (3) 
where the conditional probabilities P(R ρ = r | N ρ = n) are obtained as described by Bryant et al. [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. Note that the length of branch ρ does not play any role in the computation of the likelihood, so it is not identifiable. 

x y z

F z,x,y (b) 
x y z 

F z,z

Likelihood computation

We now describe the algorithm that allows SnappNet to derive the full likelihood P(D i |Ψ) using the rules introduced above. We refer to Section 2 in S1 Text for detailed pseudocode.

The central ingredient of this algorithm are the partial likelihoods for a VPI x, which are stored in a matrix with potentially high dimension, denoted F x . We say that a VPI x is active at some point during the execution of the algorithm, if: (1) F x has been computed by the algorithm, (2) F x has not yet been used to compute the partial likelihoods for another VPI. To reduce memory usage, we only store F x for active VPIs. In a nutshell, the algorithm traverses each node in the network following a topological sort [START_REF] Cormen | Introduction to Algorithms[END_REF], that is, in an order ensuring that a node is only traversed after all its descendants have been traversed. Every node traversal involves deriving the partial likelihoods of a newly active VPI from those of at most two VPIs that, as a result, become inactive. Eventually, the root of the network is traversed, at which point the only active VPI is (ρ) and the full likelihood of the network is computed from F (ρ) using Eq 3.

In more detail, a node is ready to be traversed when all its child nodes have been traversed. At the beginning, only leaves can be traversed and their partial likelihoods

F (x)
are obtained by application of Rule 0, followed by Rule 1 to obtain F (x) . Every subsequent traversal of a node d entails application of one rule among Rules 2, 3 or 4, depending on whether d is a tree node and on whether the branch(es) topped by d correspond to more than one VPI (see . The selected rule computes F x for a newly active VPI x. This is then followed by application of Rule 1 to replace every occurrence of any population interface x in x with x.

It is helpful to note that at any moment, the set of active VPIs forms a frontier separating the nodes that have already been traversed, from those that have not yet been traversed (i.e., if branch x = (d, e) with d not traversed and e traversed, then there must be an active VPI with x or x among its population interfaces). Any node that lies August 26, 2021 11/42

immediately above this frontier can be the next one to be traversed. Thus, there is some latitude in the choice of the complete order in which nodes are traversed. Different orders will lead to different VPIs being activated by the algorithm, which in turn will lead to different running times. In fact, running times are largely determined by the sizes of the VPIs encountered. This point is explored further in the next section.

The correctness of our implementation of the algorithm above was confirmed by comparing the likelihoods we obtain to those computed with MCMC BiMarkers, which also relies on biallelic marker data [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF].

Time complexity of computing the likelihood

Our approach improves the running times by several orders of magnitude with respect to MCMC BiMarkers [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. This is clearly apparent for some experiments detailed in the Results section, but it can also be understood by comparing computational complexities.

Here, let n be the total number of individuals sampled, and let s denote the size of the species network Ψ (i.e. its number of branches or its number of nodes). Let us first examine the running time to process one node in Ψ. For any of Rules 0-4, let K be the number of population interfaces in the VPI for which partial likelihoods are being computed, that is, K is the number of elements of x, x for Rule 1, that of x, y, z for Rule 2, and so on. These partial likelihoods are stored in a 2K-dimensional matrix, with O(n 2K ) elements. Each rule specifies how to compute an element of this matrix in at most O(n 2 ) operations (in fact rules 0 and 3 only require O(1) operations). Thus, any node in the network can be processed in O(n 2K+2 ) time.

Since the running time of any other step -i.e. computing Eq 3, and exp(Q x t x ) -is dominated by these terms, the total running time is O(sn 2K+2 ), where K is the maximum number of population interfaces in a VPI activated by the given traversal.

Let us now compare this to the complexity of the likelihood computations described by Zhu et al. [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. Processing a node d of the network in their algorithm involves at most O(n 4r d +4 ) time, where r d is the number of reticulation nodes which descend from d, and for which there exists a path from d that does not pass via a lowest articulation node (see definitions in Zhu et al. [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]). In Section 3 of S1 Text, we show that this entails a total running time of O(sn 4 +4 ), where is the level of the network [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF][START_REF] Gambette | The structure of level-k phylogenetic networks[END_REF].

Thus, the improvement in running times with respect to the algorithm by Zhu et al. [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] relies on the fact that 2K + 2 4 + 4. One way of seeing this is to remark that, for any traversal of the network, K ≤ + 1. We refer to Section 3 in S1 Text for a proof of this result. Assuming that K and are close, this would imply that the exponent of n in the worst-case time complexity is roughly halved with respect to Zhu et al. [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. However, K is potentially much smaller than the level , as depicted in Fig 6 .     We call the minimum value of K over all possible traversals of the network the scanwidth of the network [START_REF] Berry | Scanning Phylogenetic Networks is NP-hard[END_REF]. The current implementation of SnappNet chooses an arbitrary traversal of the network, but research is ongoing to further lower running times by relying on more involved traversal algorithms producing VPIs with sizes closer to the scanwidth [START_REF] Berry | Scanning Phylogenetic Networks is NP-hard[END_REF].

MCMC operators

SnappNet incorporates the MCMC operators of SpeciesNetwork [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF] to move through the network space, and also benefits from operators specific to the mathematical model behind Snapp [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF] (e.g. population sizes, mutation rates, etc.).

In order to explore the network space, we used the following topological operators August 26, 2021 12/42 Example of a phylogenetic network where the level is equal to 6 (the reticulation nodes are depicted in grey), while K ∈ {3, 4, 5, 6, 7}, depending on the traversal algorithm (not shown). A traversal ensuring that K remains close to the lower end of this interval (the scanwidth of the network) will be several orders of magnitude faster than algorithms whose complexity depends exponentially on . Increasing the number of reticulation nodes while keeping a "ladder" topology as above can make arbitrarily large, while the scanwidth remains constant. This topology may seem odd but it is intended as the backbone of a more complex and realistic network with subtrees hanging from the different internal branches of the ladder, in which case the complexity issue remains. In summary, SnappNet relies on 16 MCMC operators, described in SnappNet's manual (https://github.com/rabier/MySnappNet). We refer to the original publications introducing these operators for more details [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF][START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF].
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Simulation study

Simulated data

We implemented a simulator called SimSnappNet, an extension to networks of the SimSnapp software [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF]. SimSnappNet handles the MSNC model whereas SimSnapp relies on the MSC model. SimSnappNet is available at https://github.com/rabier/SimSnappNet. In all simulations, we considered a given phylogenetic network, and a gene tree was simulated inside the network, according to the MSNC model. Next, a Markov process was generated along the branches of the gene tree, in order to simulate the evolution of a marker. Note that markers at different sites rely on different gene trees. In all cases, we set the u and v rates to 1. Moreover, we used the same θ = 0.005 value, for all network branches. Our configuration differs slightly from the one of [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. These authors considered θ = 0.006 for external branches and θ = 0.005 for internal branches. Indeed, since SnappNet considers the same prior distribution Γ(α, β) for all θ's, we found it more appropriate to generate data under SnappNet's assumptions.

Three numbers of markers were studied: 1,000, 10,000 or 100,000 biallelic sites were generated. Unless otherwise stated, constant sites were not discarded since SnappNet's mathematical formulas rely on random markers. When the analysis relied only on polymorphic sites, the gene tree and the associated marker were regenerated until it resulted in a polymorphic site. We considered 20 replicates for each simulation set up.

Phylogenetic networks studied

We studied the three phylogenetic networks shown in Fig 7 . Networks A and B are rather simple networks that we wish our tool to be able to infer. They have been taken from [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] and this permits us to compare the performances of SnappNet and MCMC BiMarkers on these networks, without having to rerun the latter. Networks A and B have one and two reticulations, respectively. Network C, like B, has two reticulations, but their relative positions are different: in C they are on top of one another, allowing us to investigate the influence of nested reticulations on the inference. In order to fully describe these networks, we give their extended Newick representation [START_REF] Cardona | Extended Newick: it is time for a standard representation of phylogenetic networks[END_REF] in Section 4 in S1 Text.

We also studied networks C(3) and C(4), which are variants of network C (see Fig 8). Network C(k)-containing k reticulation nodes-is obtained by splitting species C into k -1 species, named C 1 , C 2 , ..., C k-1 , and by adding reticulations between them in the way depicted in Fig 8 . The relative positions of reticulation nodes in these networks represents a significant computational challenge for network inference tools, and were therefore used to evaluate the efficiency of a single likelihood computation performed by SnappNet and MCMC BiMarkers.

Bayesian analysis

In the experiments on networks A, B and C, we used a single tree as initial state of the MCMC. None of the starting trees were subtrees of the correct network topology. A few alternative starting trees were used to check the convergence of the MCMC, showing a limited effect of the starting tree on the posterior probabilities. All relevant Newick representations are reported in S1 Text.

As priors on population sizes, we considered θ ∼ Γ(1, 200) for all branches. Since simulated data were generated by setting θ = 0.005, the expected value of this prior distribution is exactly matching the true value (E (θ) = 0.005). For calibrating the August 26, 2021 14/42 network prior, we chose the same distributions as suggested in [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF]: d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E [START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF]. This network prior enables to explore a large network space, while imposing more weights on networks with 1 or 2 reticulations (see

Fig A of S1
Text). Recall that network A is a 1-reticulation network, whereas networks B and C are 2-reticulation networks. However, in order to limit the computational burden for network C (and for estimating continuous parameters on network A), we modified slightly the prior by bounding the number of reticulations to 2. Last, on network B, the analysis was performed by bounding the number of reticulations to 3 in order to compare SnappNet's results with those obtained by MCMC BiMarkers [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. We refer to Figs B and C in S1 Text for illustrations of the "bounded" prior.

MCMC convergence

To track the behaviour of the Bayesian algorithm, we used the Effective Sample Size (ESS) criterion [START_REF] Liu | Monte Carlo strategies in scientific computing[END_REF]. We assume that MCMC convergence was reached and that enough "independent" observations were sampled, when the ESS values for all model parameters are greater than 200 (see https://beast.community/ess_tutorial). This threshold is commonly adopted in the MCMC community. The first 10% samples were discarded as burn-in and the ESSs were computed on the remaining observations, using the Tracer software [START_REF] Rambaut | Posterior summarization in Bayesian phylogenetics using Tracer 1.7[END_REF]. When we could not reach ESSs of 200, the ESS threshold is specified in the text. In the following, when speaking of a specific ESS value, we refer to the ESS computed for the posterior density function of the sampled networks (first value reported by Tracer). In order to estimate posterior distributions, we only sampled the MCMC every 1000 iterations. This was done to reduce autocorrelation across the sampled networks.

Note that here we do not attempt to measure an ESS of the network topologies sampled by the MCMC. While approaches to do this have been proposed for tree topologies [START_REF] Lanfear | Estimating the effective sample size of tree topologies from Bayesian phylogenetic analyses[END_REF], adapting such approaches to network topologies lies beyond the scope of this paper (see also the Discussion). Topological convergence was only assessed by inspecting the similarity between the results obtained for different MCMC replicates.

Accuracy of SnappNet

In order to evaluate SnappNet's ability to recover the true network topology, the posterior probability of the true topology was estimated by taking the proportion of sampled network topologies matching the true topology. Note that unlike previous works [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], we did not use a measure of topological dissimilarity, because most of the proposed measures can equal 0 even when the network topologies are different [START_REF] Degnan | Modeling hybridization under the network multispecies coalescent[END_REF][START_REF] Nakhleh | A metric on the space of reduced phylogenetic networks[END_REF].

In order to verify whether a sampled network and the true network have the same topologies, we used the isomorphism tester program available at https://github.com/igel-kun/phylo_tools. We report the average (estimated)

posterior probability of the true network topology over the different replicates.

For some networks, we also investigated the ability of estimating continuous parameters, including network length (the sum of all branch lengths) and network height (the distance between the root and the leaves).

Real data study on rice

In order to assess the performance of our method on real data, we addressed the case of rice, both a prominent crop and a well-studied advanced plant model for which extensive data is available. We used genomic data extracted from [START_REF] Huang | A map of rice genome variation reveals the origin of cultivated rice[END_REF] and [START_REF] Wang | Genomic variation in 3,010 diverse accessions of Asian cultivated rice[END_REF]. We focused on 24 [START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF], the SNPs were chosen for each of the 12 chromosomes to be as separated as possible from one another to avoid linkage between loci, though [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] has shown this kind of analysis is quite robust to this bias. The concatenation of these SNPs lead to 12k whole-genome SNP data sets on the selected rice varieties.

SnappNet was run again discarding the first 10% of samples as burn-in and sampling the MCMC every 1000 iterations. The number of reticulations was bounded by two for data sets 1 and 3. On data set 2, in order to obtain results in a reasonable amount of time (cf. the Results section), only one reticulation was finally allowed. 

Results

Simulations

First, we compare the performances of SnappNet and MCMC BiMarkers on data simulated with networks A and B (cf. Fig 7), already studied in [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], and the more complex C network. Second, we compare the two tools in terms of CPU time and memory required to compute the likelihood of network C and its variants. This step is usually repeated million times in an MCMC analysis, and is therefore critical for its overall efficiency. Note that focusing on a single likelihood calculation allows us to exclude the effect of the prior on the overall efficiency of the MCMC, and to only test the computational efficiency of the new algorithm to compute the likelihood implemented in SnappNet.

Study of networks A and B

1) Ability to recover the network topology

Table 1 reports on the ability of SnappNet to recover the correct topology of networks A and B. As in [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], we simulated one individual for each species. Note that under this setting, population sizes θ corresponding to external branches are unidentifiable, as there is no coalescence event occurring along these branches. We studied different densities of markers and different priors on θ. Besides, we focused on either a) the true prior Γ(1, 200) with E (θ) = 0.005, b) the incorrect prior Γ(1, 1000) with E (θ) = 0.001, or c) the incorrect prior Γ (1,2000) with E (θ) = 5 × 10 -4 . Last, in order to compare our results with [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], we considered u and v, the mutation rates, as known parameters. Indeed, MCMC BiMarkers relies on the operators of [START_REF] Wen | Coestimating reticulate phylogenies and gene trees from multilocus sequence data[END_REF] that do not allow changes of these rates.

First consider simulations under the true prior. As shown in Table 1, in presence of a large number of markers, SnappNet recovered networks A and B with high posterior probability. In particular, when m = 100, 000 sites were used, the posterior distributions were only concentrated on the true networks. For m = 10, 000, the average posterior probability of network A is again 100%, whereas that of B is lower (81.25%). This is not surprising since network B is more complex than network A. Our results are consistent with those of [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], who found that MCMC BiMarkers required 10,000 sites to infer precisely networks A and B. (Recall that we did not rerun MCMC BiMarkers on data simulated from networks A and B.)
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However, for a small number of sites (m = 1, 000), we observed differences between SnappNet and MCMC BiMarkers: SnappNet always inferred trees (see Fig 9), whereas MCMC BiMarkers inferred networks. For instance, on Network A, MCMC BiMarkers inferred a network in approximately 75% of cases, whereas SnappNet supported the tree ((((Q,A),L),R),C) with average posterior probability 78.71%. Interestingly, this tree can be obtained from network A by removing the hybridization branch with smallest inheritance probability. Details on the trees inferred by SnappNet for this setting are given in Table A of S1 Text. Similarly, on network B that hosts 2 reticulations, for m = 1, 000 MCMC BiMarkers almost always inferred a 1-reticulation network [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], whereas SnappNet hesitated mainly between two trees, (((Q,R),L),(A,C)) and (((Q,L),R),(A,C)), with average posterior probabilities 35.28% and 28.54%, respectively. This different behavior among the two tools is most likely due to the fact that their prior models differ. With only 1,000 markers, MCMC BiMarkers and SnappNet were both unable to recover network B. The ratio of trees (black), 1-reticulation networks (dark grey), 2-reticulations networks (light gray), sampled by SnappNet, under the different simulations settings studied in Table 1. Recall that networks A and B contain 1 and 2 reticulations, respectively.

Now consider simulations based on incorrect priors. This mimics real cases where there is no or little information on the network underlying the data. Recall that these priors are incorrect since E (θ) is either fixed to 0.001 or 5 × 10 -4 , instead of being equal to the true value 0.005. In other words, these priors underestimate the number of ILS events in the data. When considering as few as 1,000 sites, SnappNet only inferred trees (cf. Table A in S1 Text), whereas MCMC BiMarkers mostly inferred networks [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF].

For m = 10, 000 and m = 100, 000 sites, SnappNet inferred network A with high posterior probability. In the rare cases where the true network was not sampled, SnappNet inferred a network with two reticulations (see Fig 9). The bias induced by incorrect priors (underestimating ILS) led the method to fit the data by adding supplementary edges to the network. On network B, SnappNet's posterior distribution August 26, 2021 18/42 remained concentrated on the correct topology, and interestingly, for m = 10, 000 and m = 100, 000 sites, SnappNet sampled exclusively 2-reticulation networks (see Fig 9). To sum up, SnappNet's ability to recover the correct network topology did not really deteriorate with incorrect priors.

2) Ability to estimate continuous parameters for network A

Recall that in our modelling, the continuous parameters are branch lengths, inheritance probabilities γ, population sizes θ and instantaneous rates (u and v). As in [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF], we also studied the network length and the network height, that is the sum of the branch lengths and the distance between the root node and the leaves, respectively. In order to evaluate SnappNet's ability to estimate continuous parameters, we will focus here exclusively on network A (following [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]). Analogous results for networks B and C can be found in Figs D-G in S1 Text.

For network A, we considered the case of two lineages in each species. Indeed, under this setting, θ values are now identifiable for external branches: the expected coalescent time is here θ/2, that is to say 2.5 × 10 -3 , which is a smaller value than all external branch lengths. In other words, a few coalescent events should happen along external branches. For these analyses, we considered exclusively the true prior on θ and we bounded the number of reticulations to 2 (as in [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]) in order to limit the computational burden. In the following, we consider the cases where a) input markers can be invariant or polymorphic, and b) only polymorphic sites are considered. [START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] for the priors, number of reticulations bounded by 2 when exploring the network space).

θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E

2a) Constant sites included in the analysis

Before describing results on continuous parameters, let us first mention results regarding the topology. Although the number of lineages was increased in comparison with the previous experiment, SnappNet still sampled exclusively trees for m = 1, 000 , and always recovered the correct topology for m = 10, 000 and m = 100, 000. Note that for m = 1, 000, we observed that generated data sets contained 78% invariant sites on average given the parameters of the simulation, so that such simulated data sets only In order to limit the computational burden, the analysis for m = 100, 000 relied only on 17 replicates with ESS> 200. 

2b) Only polymorphic sites included in the analysis

In order to control for the fact that this analysis relies only on polymorphic sites, the August 26, 2021 21/42 likelihood of the data for a network Ψ becomes a conditional likelihood equal to P (X 1 , . . . , X m | Ψ) / P("the m sites are polymorphic"|Ψ), due to Bayes' rule.

Before focusing on continuous parameters, let us describe results regarding the topology. As mentioned in [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], polymorphic sites are considered as most informative to recover the topology. For m = 1, 000, SnappNet now recovers the correct topology of network A with high frequency in 94.45% of samples). SnappNet always sampled the true network for m = 10, 000 and m = 100, 000. In order to reduce the computational burden for m = 100, 000, our analysis relied on the 12 replicates that achieved ESS> 100.

Next, the same analysis was performed without applying the correction factor P("the m sites are polymorphic"|Ψ), which is done by toggling an option within the software. For m = 1, 000, the average posterior probability of network A dropped to 23.81%, while for m = 10, 000 and m = 100, 000, it remained relatively high (i.e., 95.24% and 95.65%, respectively). Using the correct likelihood computation is important here. We also highlight that for m = 100, 000, the sampler efficiency (i.e. the ratio ESS/nb iterations without burn-in) was much larger when the additional term was omitted Let us move on to the estimation of continuous parameters. Figs H-K in S1 Text illustrate results obtained from the experiment incorporating the correction factor. As previously, the network height, the network length, the rates u and v, the inheritance probability γ and the node heights were estimated very precisely. As expected, the accuracy increased with the number of sites. Estimated θ values were very satisfactory for external branches, whereas a slight bias was still introduced on internal branches.

Last, for the analysis without the correction factor, we observed a huge bias regarding network height and network length (cf Fig L in S1 Text). Surprisingly, the rates u and v were still very accurately estimated. 

Study of network C and its variants

We focus here on network C (Fig 7) and its variants (Fig 8).

1) Ability to recover the network topology

Tables 2 and3 to recover the correct topology of network C. We considered one lineage in species O, A and D, and let the number of lineages in species B and C vary. We studied either a) 1 lineage, or b) 4 lineages, in these hybrid species. In order to limit the computational burden for SnappNet, the ESS criterion was decreased to 100 and the number of reticulations was also bounded by 2.

In order to closely mimic what was done in [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] for networks A and B, we let MCMC BiMarkers run for 1,500,000 iterations instead of adopting an ESS criterion. Data were simulated with simBiMarker [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. Indeed, like SimSnapp, SimSnappNet generates only count data (the number of alleles per site and per species). In contrast, simBiMarker generates actual sequences, a prerequisite for running MCMC BiMarkers.

The commands used under the 4 lineages scenario are given in Section 5 of S1 Text.

Note that, to calibrate the network prior of MCMC BiMarkers, the maximum number of reticulations was set to 2, and the prior Poisson distribution on the number of reticulation nodes was centered on 2.

As expected, SnappNet's ability to recover the correct network topology increased with the number of sites and with the number of lineages in the hybrid species (see Table 2). For instance, in the presence of one lineage in hybrid species B and C, the posterior probability of network C increased from 7.87% for m = 10, 000 to 54.90% for m = 100, 000. In the same way, when 4 lineages were considered instead of a single lineage, we observed an increase from 7.87% to 50.00% for m = 10, 000. Note that the average posterior probability of 49.60% reported for m = 100, 000 and 4 lineages, is based only on 8 replicates. Surprisingly, in most cases studied, MCMC BiMarkers was unable to recover the true topology of network C. The different behaviors of MCMC BiMarkers and SnappNet may be due to the different network priors. Indeed, while the frequency of trees, 1-reticulation networks and 2-reticulations networks sampled by the two methods were globally similar (cf. Fig 14), we remarked that MCMC BiMarkers seems to be unable, for these data sets, to sample networks with two reticulations on top of each other.

Alternatively, we may be in the presence of failed or partial convergence of the MCMC process. Note the small ESS values for MCMC BiMarkers, especially when only one lineage was sampled in hybrid species B and C. However, we attempted increasing the number of iterations from 1.5 × 10 6 to 12 × 10 2 and3). Recall that network C contains 2 reticulations.

maximum of 555,000 iterations for 100,000 sites.

2) CPU time and required memory

To compare the CPU time and memory required by SnappNet and MCMC BiMarkers on a single likelihood calculation, we focused on network C (see Fig 7), with and without outgroup (i.e. the species O), and networks C(3) and C(4), again with and without outgroup (see Fig 8). The simulations protocol used here is similar to that used in the previous sections, where here we fixed 10 lineages in species C and one lineage in the other species, m = 1, 000 sites and 20 replicates per each network. The likelihood calculations were run on the true network.

The experiments were executed on a full quad socket machine with a total of 512GB of RAM (4 * 2.3 GHz AMD Opteron 6376 with 16 Cores, each with a RDIMM 32Go Quad Rank LV 1333MHz processor). The jobs that did not finish within two weeks, or required more than 128 GB, were discarded. We were able to run MCMC BiMarkers for all replicates of the network C, and we can thus compare its performance with that of SnappNet. From Table 4, we see that SnappNet is remarkably faster that MCMC BiMarkers, needing on average only 0.29% of the time and 21% of the memory required by MCMC BiMarkers. MCMC BiMarkers needed more than 2 weeks for all scenarios on the C(3) network (requiring less than 64 GB), thus no run time is available for these scenarios. The same holds for the C(4) network scenarios, but for a different reason: all runs needed more than 128 GB each, and were discarded.

The results are reported in

In Section 8 of S1 Text we provide the results of additional experiments on simulated data. In Section 8.1, we assess whether SnappNet's MCMC sampler can adequately sample from network space. In Section 8.2 we assess how population size priors and network priors influence SnappNet 's inferences.

Real data analysis

Real data derived from recent studies on rice were used to illustrate the application of SnappNet.

Diversity among Asian rice cultivars is structured around two major types which display worldwide distributions, namely Japonica and Indica, and two types localised around the Himalayas, namely circum Aus (cAus) and circum Basmati (cBasmati) [START_REF] Wang | Genomic variation in 3,010 diverse accessions of Asian cultivated rice[END_REF][START_REF] Glaszmann | Isozymes and classification of Asian rice varieties[END_REF]. Japonica and Indica each have several subgroups with geographical contrast (see [START_REF] Wang | Genomic variation in 3,010 diverse accessions of Asian cultivated rice[END_REF] as the most detailed description). Domestication scenarios that have been put forwards since the availability of whole genome sequences propose one to three domestications corresponding either to an early pivotal process in Japonica [START_REF] Huang | A map of rice genome variation reveals the origin of cultivated rice[END_REF], or to multiple parallel dynamics in Japonica, Indica and cAus [START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF][START_REF] Civáň | Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.)[END_REF] they consider the contribution of domestication alleles by the Japonica origin as predominant or as one among others. cBasmati has been posited as a specific lineage within Japonica [START_REF] Huang | A map of rice genome variation reveals the origin of cultivated rice[END_REF] or as a secondary derivative from admixture between Japonica and a local wild rice close to cAus [START_REF] Civáň | Origin of the aromatic group of cultivated rice (Oryza sativa L.) traced to the Indian subcontinent[END_REF], or between Japonica and cAus with the contribution of one or several additional cryptic sources [START_REF] Santos | Fine scale genomic signals of admixture and alien introgression among Asian rice landraces[END_REF].

The most advanced studies of wild rice [START_REF] Huang | A map of rice genome variation reveals the origin of cultivated rice[END_REF] recognize three populations designated Or-I to Or-III (Or for Oryza rufipogon), of which Or-I and Or-III are closely related to cultivars and Or-II is not. Using a data set constructed in [START_REF] Wang | Genomic variation in 3,010 diverse accessions of Asian cultivated rice[END_REF], we compared wild rices to cultivars on the basis of ca. For this data set, the resulting topology again features a single reticulation, although two were allowed. It also conjugates Jap with the precursor (Or1A/cAus) of Or1A and cAus to produce cBas. Yet the composition is more unbalanced towards Jap (0.85) and (Or1A/cAus) appears involved very close to the Or1A vs cAus initial divergence. Given this proximity, it was useful to describe the three networks retained by SnappNet during the MCMC process (Fig 18). The first one (67%) features a conjugation between Jap and (Or1A/cAus), while the second one (23%) conjugates Jap with cAus and the third one (10%) conjugates Jap with Or1A in the origin of cBas.

Altogether the various networks inferred by SnappNet reveal stable features:

the correspondence between wild subpopulations and cultivated subpopulations which point at three pillars for rice, namely Japonica, Indica and cAus the early divergence of Japonica, that predates the one between Indica and cAus the earlier divergence between wild and cultivated forms within the Japonica pillar the mobilisation of early Japonica cultivars to combine with the cAus pillar to produce the fourth varietal type cBas the indication that this hybridization may have occured before the domestication of cAus.

The latter item yet displays uneven strength levels between the various data sets. 

Discussion

In this paper, we introduced a new Bayesian method, SnappNet, dedicated to phylogenetic network inference. SnappNet has similar goals as MCMC BiMarkers, a method recently proposed by Zhu et al. [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], but differs from this method in two main aspects. The first difference is due to the way the two methods handle the complexity of the sampled networks. Unlike binary trees that have a fixed number of branches given the number of considered species, network topologies can be of arbitrary complexity.

Their complexity directly depends on the number of reticulations they contain. In MCMC processes, the complexity of sampled networks is regulated by the prior. distribution for the number of reticulation nodes and an exponential distribution for the diameter of reticulation nodes [START_REF] Wen | Bayesian inference of reticulate phylogenies under the multispecies network coalescent[END_REF][START_REF] Wen | Coestimating reticulate phylogenies and gene trees from multilocus sequence data[END_REF][START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. In contrast, SnappNet's prior is based on that of Zhang et al., which explicitly relies on speciation and hybridization rates and is extendable to account for extinction and incomplete sampling [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF].

MCMC

Our simulation study may provide some insight on the influence of these different priors. On two networks of moderate complexity (networks A and B), SnappNet and MCMC BiMarkers presented globally similar results. Indeed, when we considered numbers of sites that are largely achieved in current phylogenomic studies (i.e. 10,000 or 100,000 sites), both methods were able to recover the true networks under this realistic framework. However, in presence of only a few sites (1,000 sites) which is unusual nowadays but still can be the case for poorly sequenced organisms, MCMC BiMarkers recovered the correct topology with higher posterior probability than SnappNet. On the other hand, when focusing on a more complex network (network C) containing reticulation nodes on top of one another, the converse appeared to be true. With sufficiently large datasets, SnappNet recovered the correct scenario in approximately 50% of samples whereas MCMC BiMarkers inferred this history in less than 5% of cases. Although these differences may be due to the different network priors used by the two methods, more work is needed to elucidate the reasons behind them.

To conclude the discussion on priors, we also observed that, on simulated data, SnappNet's accuracy did not really deteriorate with incorrect priors on population sizes, although assuming a prior distribution skewed towards small population sizes has a tendency to favor hybridization over ILS as an explanation for non tree-like signals.

Similar robustness properties were observed by [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] for MCMC BiMarkers.

The second major difference between MCMC BiMarkers and SnappNet lies in the way they compute the likelihood of a network. This step is at the core of the Bayesian analysis. According to the authors of MCMC BiMarkers, this remains a major computational bottleneck and limits the applicability of their methods [START_REF] Zhu | Inference of species phylogenies from bi-allelic markers using pseudo-likelihood[END_REF]. To understand the origin of this bottleneck, recall that the MCMC process of a Bayesian sampling explores a huge network space and that, at each exploration step, computing the likelihood is by far the most time consuming operation. Moreover, we need sometimes millions of runs before the chain converges. Thus, likelihood computation is a key factor on which to operate to be able to process large data sets.

The likelihood computation of MCMC BiMarkers consists in a bottom-up traversal, from the leaves to the root. Each time a reticulation node r is visited, the partial likelihoods must be decomposed following all the possible ways the lineages reaching r can be assigned to the two parent populations of r. These partial likelihoods will be merged back only when the traversal reaches a lowest articulation node [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF], or in other words the root of the blob to which r belongs (a blob is a maximal biconnected subgraph [START_REF] Gambette | The structure of level-k phylogenetic networks[END_REF], see also S1 Text). For every other reticulation r reached before the root of the blob, the decomposition above is applied again. As a result, the time required to process a blob grows exponentially with the number of reticulations it contains. More precisely, the time complexity of the likelihood computation in MCMC BiMarkers is in

O(sn 4 +4
), where is the level of the network and s is the size of the species network.

Similarly to MCMC BiMarkers, we compute the likelihood in a bottom-up traversal and when reaching a reticulation node r, we also take into account the various ways lineages could have split. The interest in depending on K instead of (the number of reticulations in a blob), is that for some blobs, we can resort to a bottom-up traversal of the blob that limits K to a small constant and process the blob in polynomial time in n, while MCMC BiMarkers still requires an exponential time in .

Our results from simulated data confirm the above theoretical discussion. For a single likelihood evaluation, SnappNet was found to be orders of magnitude faster than MCMC BiMarkers on networks containing reticulation nodes on top of one another.

Besides, SnappNet required substantially less memory than MCMC BiMarkers. These gains enable us to consider complex evolution scenarios in our Bayesian analyses.

In practice, SnappNet is a very useful tool for analyzing complex genomic data, as evidenced by our study about rice. Indeed, the most recent extensive genetic studies on this crop confirm and document the extent of genetic exchanges in various directions.

Yet the same species consistently displays the reality of a simple classification scheme with only a few predominant types. Thus rice appears as a chance and a challenge for testing methods aiming to tackle phylogenetic resolution within a hybrid swarm. The application of SnappNet proves very efficient in resolving the three main phylogenetic pillars of current diversity in Asian rice [START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF][START_REF] Civáň | Misconceptions regarding the role of introgression in the origin of Oryza sativa subsp. indica[END_REF] and revealing a hybrid origin for the iconic varietal group cBasmati [START_REF] Civáň | Origin of the aromatic group of cultivated rice (Oryza sativa L.) traced to the Indian subcontinent[END_REF][START_REF] Santos | Fine scale genomic signals of admixture and alien introgression among Asian rice landraces[END_REF]. The various data sets treated here suggest a contribution of Japonica cultivars at a high level, between 0.6 and 0.85. This rather broad range is not surprising given that this hybrid origin probably reflects numerous recent individual stories for very specific varieties rather than an old common story for a homogeneous lineage. On the other side, the second component of cBasmati derived from local sources in the North of the Indian subcontinent seems to date from before the evolution of cAus varieties. Here again, it is likely that many diverse events occurred resulting in a very rich diversity. Full resolution of the origin of cBasmati may require further investigation given the vast diversity it encompasses [START_REF] Myint | Specific patterns of genetic diversity among aromatic rice varieties in Myanmar[END_REF][START_REF] Choi | Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice[END_REF]. SnappNet provides here a consistent and convincing set of results. Its integration in Beast may provide easier applicability than previous methods, potentially making it a method of choice to expand analysis of complex pictures generated by crop evolution and adaptation. Further applicability advantages may come from the fact that SnappNet can be used to compute the likelihoods of a set of networks of interest, and then to penalize more complex models with the AIC [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF] criteria.

In the future, in order to handle more sites in practice, the MSNC model should be extended to allow recombination events between loci. Recall that we have limited our rice study to 12,000 markers sampled along the genome because our model assumes independence between sampled sites, as does also Snapp's model, from which we inherit. As mentioned in the review of [START_REF] Degnan | Modeling hybridization under the network multispecies coalescent[END_REF], in order to model recombination properly, the study of gene networks within species networks is an area for future research. A possibility would be to exploit previous work on Ancestral Recombination Graphs (see for instance [START_REF] Gusfield | ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic networks[END_REF]).

Another important research topic for MCMC inference of phylogenetic networks is the question of how to properly assess the autocorrelation between the topologies of the sampled networks, or, in other words, how to estimate the effective sample size (ESS) of the sampled topologies. Indeed, a large ESS for continuous parameters in a phylogenetic model does not necessarily imply a large ESS for the sampled topologies. Methods to estimate the ESS of a sample of tree topologies have been recently proposed [START_REF] Lanfear | Estimating the effective sample size of tree topologies from Bayesian phylogenetic analyses[END_REF]. They rely on measures of the distance between pairs of trees in the sample-which enable to assess autocorrelation-or on translating tree topologies into numbers (e.g., the distance from a focal tree), which are then treated as continuous parameters-for which an ESS August 26, 2021 30/42 can then be computed using standard approaches. These methods to estimate topological ESS can be in principle adapted to networks. However some research will be needed for this, as standard tree metrics (e.g. the Robinson-Foulds distance [START_REF] Robinson | Comparison of phylogenetic trees[END_REF] or the path-lengths difference [START_REF] Steel | Distributions of tree comparison metrics-some new results[END_REF]) do not have unique, easy to compute, natural extensions for networks (see [START_REF] Degnan | Modeling hybridization under the network multispecies coalescent[END_REF] for a discussion on this). In the present work, different MCMC replicates led to consistent results, but we have not attempted to evaluate autocorrelation for the sampled topologies and/or their ESS. This is a limitation of all Bayesian approaches for network inference proposed so far [START_REF] Wen | Bayesian inference of reticulate phylogenies under the multispecies network coalescent[END_REF][START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF][START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF].

Related to the issue above, it would be useful to conduct an in-depth investigation of the efficiency of the MCMC operators for the exploration of network topology space. In this work, we rely on the operators by Zhang et al. [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF], who identified this as a major bottleneck of their approach (but they also had operators to change the gene tree embeddings, a feature that we do not need here). Although some important progress has been made in the last 20 years [START_REF] Lakner | Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics[END_REF], in 2004 Felsenstein aptly wrote (speaking about trees): "At the moment the choice of a good proposal distribution involves the burning of incense, casting of chicken bones, magical incantations and invoking the opinions of more prestigious colleagues" [START_REF] Felenstein | Inferring phylogenies[END_REF]. Since network space is significantly more complex than tree space, it is easy to predict that this topic will keep researchers busy for a long time. A good starting point to address convergence issues in SnappNet would be to integrate it to the new Beast 2 package coupled MCMC [START_REF] Mueller | Adaptive Metropolis-coupled MCMC for BEAST 2[END_REF], which tackles local optima issues thanks to heated chains. Also note that in this work we limited our experiments to relatively simple networks, with few reticulations and few species (leaves). While the number of reticulations represents a strong limitation of all existing Bayesian approaches, the number of species is a much weaker limiting factor. Networks over more species can already be inferred by SnappNet and related approaches, but MCMC inference for such networks will then necessitate much more complex downstream analyses than the ones used here. For example, the posterior probability of any single network topology will be very small, and thus it will be much more interesting to look at the probability of individual splits, or to develop a network analog of consensus trees. These are not simple tasks, because all the underlying algorithmic problems (checking the presence of a split/clade in a network, or that of a subtree etc.) are computationally hard to solve on large networks [START_REF] Kanj | Seeing the trees and their branches in the network is hard[END_REF].

Last, it would be interesting to study the identifiability of the model underlying SnappNet. For example, it is easy to see that if only one lineage is sampled from a given species at each locus, then the population size θ of that species is non-identifiable (because no coalescence can ever occur in it, and thus the likelihood does not depend on θ). Similarly, if only one lineage is sampled below a reticulation node, then the height of that node is non-identifiable [START_REF] Zhu | Displayed trees do not determine distinguishability under the network multispecies coalescent[END_REF][START_REF] Cao | Practical aspects of phylogenetic network analysis using PhyloNet[END_REF]. Intuitively, the more lineages can co-exist in a part of the species network, the more information there will be for the reconstruction of that part of the network. These aspects should be further investigated in future works.

Many methodological questions on Bayesian inference of phylogenetic networks

remain open. The present work focused on the efficient calculation of likelihood for a single network, which is the key component of any Bayesian approach. At the end of their paper, the authors of MCMC BiMarkers [START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF] concluded by mentioning that "An important direction for future research is improving the computational requirements of the method to scale up to data sets with many taxa". Our present work is a first answer to this demand.
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Fig B in S1 Text

Density probabilities for 5-tips networks with at most two reticulations, simulated with a prior corresponding to a birth hybridization process with parameters d = 10, r = 1/2 and τ 0 = 0.1, using the SpeciesNetwork package [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF]. Figures are drawn for the 4,377 cases in 10,000 where the network had at most two reticulations. The means are given by the dashed vertical lines.

Fig C in S1 Text

Density probabilities regarding the 5-tips network with a maximum of 3 reticulations, simulated under the birth hybridization process (d = 10, r = 1/2, τ 0 = 0.1, 5,837 replicates), using the SpeciesNetwork package [START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF]. The means are given by the dashed vertical lines. Description of the 24 rice varieties considered in our study. These varieties are either representative cultivars spanning the four main rice subpopulations (Indica, Japonica, circum Aus and circum Basmati), or wild types (Or1I, Or1A, Or3).

Table D in S1 Text

Data set 1, that includes only one variety per subpopulation. These varieties were chosen from Table C in S1 Text.

Table E in S1 Text

Data sets 2 and 3, that include two varieties per subpopulation. These varieties were chosen from Table C in S1 Text.

Table F in S1 Text

Informations obtained according to the Tracer software, when data set 1 was analyzed with SnappNet. Two different samplings of 12 kSNPs were considered, and also two chains for each sampling. 

Table H in S1 Text

MCMC summary statistics for network A (correct population size priors).

Table I in S1 Text

MCMC summary statistics for network A (incorrect priors).

Table J in S1 Text

MCMC summary statistics for Network B (correct population size priors).

Table K in S1 Text

MCMC summary statistics for Network B (incorrect population size priors

Gamma (1,[START_REF] Ebersberger | Mapping human genetic ancestry[END_REF]).

Table L in S1 Text

MCMC summary statistics for Network B (incorrect population size priors

Gamma(1,1000)).

Table M in S1 Text

MCMC summary statistics for Network B (incorrect population size priors

Gamma (1,2000)).

Table N in S1 Text

MCMC acceptance rates for Network B (correct population size priors).

Table O in S1 Text

MCMC acceptance rates for Network B (incorrect population size priors Γ(1, 1000)). 

A closer look at the rules

Here, we first provide proofs of correctness for the rules to compute the partial likelihoods introduced in the main text (Sec. 1.1). Then we explain the rationale behind the ranges used for the summation terms in Rules 2 and 4 (Sec. 1.2).

Correctness of the rules for partial likelihoods.

Recall the definition of the partial likelihoods, which will be used in each of the proofs below:

F x (n x ; r x ) = P R L(x) = r L(x) | N x = n x , R x = r x × P (N x = n x ) , (1) 
where L(x) is a vector of population interfaces (VPI) containing exactly once each leaf that descends from any element of x.

We will also use the following equation (proven by Bryant et al. [2,3] and based on [4]):

P R x = r x | N x = n x , N x = n x , R x = r x = exp(Q x t x ) (nx,rx);(nx,rx) P(N x = n x | N x = n x ) (2) 
where Q x = (q (n,r);(n ,r ) ) denotes the matrix with the following entries:

q (n,r);(n,r-1) = (n -r + 1)v 0 < r ≤ n, q (n,r);(n,r+1) = (r + 1)u 0 ≤ r < n, q (n,r);(n-1,r) = (n -1 -r)n θ x 0 ≤ r < n, q (n,r);(n-1,r-1) = (r -1)n θ x 0 ≤ r ≤ n, q (n,r);(n,r) = - n(n -1) θ x -(n -r)v -ru 0 ≤ r ≤ n,
q (n,r);(n ,r ) = 0 for all other entries.

Finally, we note that many statements of conditional independence that we require in our proofs depend on the fact that the involved VPIs are incomparable.

Rule 0. Let x be a branch incident to a leaf. Then,

F (x) ((n); (r)) = 1{n = n x } × 1{r = r x } Proof.
Recall that the number of lineages sampled from species x is known and equal to n x . Then, applying definition (1) above with x = (x), we have:

F (x) ((n); (r)) = P R x = r x | N x = n, R x = r × P N x = n = 1{r x = r} × 1{n x = n}.
Rule 1. Let x, x be a vector of incomparable population interfaces. Then,

F x,x (n x , n x ; r x , r x ) = mx n=nx n r=0 F x,x (n x , n; r x , r) exp(Q x t x ) (n,r);(nx,rx)
Proof. First, note that, because R L(x,x) is independent of N x , R x , when given N x , R x , and because L(x, x) = L(x, x):

P R L(x,x) = r L(x,x) | N x = n x , R x = r x , N x = n, R x = r, N x = n x , R x = r x = P R L(x,x) = r L(x,x) | N x = n x , R x = r x , N x = n, R x = r
Writing down the definition of F x,x , then summing over all possible values of N x and R x , and then using the identity above, we obtain:

F x,x (n x , n x ; r x , r x ) = mx n=nx n r=0 P R L(x,x) = r L(x,x) | N x = n x , R x = r x , N x = n, R x = r × P N x = n, R x = r | N x = n x , R x = r x , N x = n x , R x = r x × P (N x = n x , N x = n x ) Moreover, P N x = n, R x = r | N x = n x , R x = r x , N x = n x , R x = r x = P R x = r | N x = n, N x = n x , R x = r x × P N x = n | N x = n x , N x = n x ,
where we have used that R x is independent of N x and R x , when given N x , N x , R x .

We then have:

F x,x (n x , n x ; r x , r x ) = mx n=nx n r=0 P R L(x,x) = r L(x,x) | N x = n x , R x = r x , N x = n, R x = r × P R x = r | N x = n, N x = n x , R x = r x × P(N x = n, N x = n x , N x = n x )
Using the fact that N x is independent of N x , when given N x , the last term in the product can be rewritten as follows:

P(N x = n, N x = n x , N x = n x ) = P(N x = n x | N x = n) × P(N x = n, N x = n x )
Using Equation (2), we finally obtain:

F x,x (n x , n x ; r x , r x ) = mx n=nx n r=0 P R L(x,x) = r L(x,x) | N x = n x , R x = r x , N x = n, R x = r × P(N x = n, N x = n x ) × exp(Q x t x ) (n,r);(nx,rx) = mx n=nx n r=0 F x,x (n x , n; r x , r) × exp(Q x t x ) (n,r);(nx,rx)
In the following proofs, to make the mathematics more readable, we denote each event A = a inside a probability simply as a, whenever the left-hand side of A = a is unambiguously determined by the right-hand side. For example:

n x means N x = n x , r x means R x = r x , n x means N x = n x , r x means R x = r x , n x means N x = n x , r x means R x = r x .
We will still write the full version in those cases where the left-hand side cannot be inferred from the right-hand side. Rule 2. Let x, x and y, y be two vectors of incomparable population interfaces, such that L(x, x) and L(y, y) have no leaf in common. Let x, y be the immediate descendants of branch z. Then,

F x,y,z n x , n y , n z ; r x , r y , r z = nx rx F x,x (n x , n x ; r x , r x ) F y,y n y , n z -n x ; r y , r z -r x n x r x n z -n x r z -r x n z r z -1
The ranges of n x and r x in the summation terms are defined by max(0, n z -m y ) ≤ n x ≤ min(m x , n z ) and max(0,

n x + r z -n z ) ≤ r x ≤ min(n x , r z ).
Proof. By definition,

F x,y,z n x , n y , n z ; r x , r y , r z = P r L(x,y,z) | n x , n y , n z , r x , r y , r z × P n x , n y , n z Finally, R x , given N x = n x , N z = n z , R z = r z follows a hypergeometric distri- bution: P r x | n x , n z , r z = n x r x n z -n x r z -r x n z r z -1 , (3) 
which allows us to conclude:

F x,y,z n x , n y , n z ; r x , r y , r z = nx rx P r L(x,x) | n x , r x , n x , r x × P (n x , n x ) × P r L(y,y) | n y , r y , N y = n z -n x , R y = r z -r x × P n y , N y = n z -n x × n x r x n z -n x r z -r x n z r z -1 = nx rx F x,x (n x , n x ; r x , r x ) F y,y n y , n z -n x ; r y , r z -r x n x r x n z -n x r z -r x n z r z -1
.

Rule 3. Let x, x be a vector of incomparable population interfaces, such that branch x's top node is a reticulation node. Let y, z be the branches immediately ancestral to x. Then,

F x,y,z n x , n y , n z ; r x , r y , r z = F x,x n x , n y + n z ; r x , r y + r z n y + n z n y γ ny y •γ nz z Proof. First note that P r L(x,y,z) | n x , n y , n z , r x , r y , r z = P r L(x,x) | n x , N x = n y + n z , r x , R x = r y + r z .
Then, using the definitions of F x,y,z and F x,x :

F x,y,z n x , n y , n z ; r x , r y , r z F x,x n x , n y + n z ; r x , r y + r z = P n x , n y , n z P n x , N x = n y + n z But P n x , n y , n z P n x , N x = n y + n z = P n y , n z | n x , N x = n y + n z = n y + n z n y γ ny y • γ nz z ,
where the first equality applies the definition of conditional probability, and the second equality uses the fact that N y and N z are binomially distributed, when given N x . The Rule trivially follows.

Rule 4. Let z, x, y be a vector of incomparable population interfaces, and let x, y be immediate descendants of branch z. Then,

F z,z n z , n z ; r z , r z = nx rx F z,x,y n z , n x , n z -n x ; r z , r x , r z -r x n x r x n z -n x r z -r x n z r z -1
The ranges of n x and r x in the sums are the same as those in Rule 2.

Proof. Use the definition of F z,z and then sum over all possible realizations of N x and R x :

F z,z n z , n z ; r z , r z = P r L(z,z) | n z , n z , r z , r z × P n z , n z = nx rx P r L(z,z) | n z , n z , r z , r z , n x , r x × P(n x , r x | n z , n z , r z , r z ) × P(n z , n z )
Now note that L(z, z) = L(z, x, y), and that

N z = n z , R z = r z , N x = n x , R x = r x if and only if N x = n x , R x = r x , N y = n z -n x , R y = n z -n x , meaning that P r L(z,z) | n z , n z , r z , r z , n x , r x = P r L(z,x,y) | n z , r z , n x , r x , N y = n z -n x , R y = n z -n x .
Moreover,

P(n x , r x | n z , n z , r z , r z ) = P(r x | n x , n z , n z , r z , r z ) × P(n x | n z , n z , r z , r z ) = P(r x | n x , n z , r z ) × P(n x | n z , n z ),
where in the last equality we have used that r x is independent of n z , r z , when given n x , n z , r z , and the fact that n x is independent of r z , r z , when given n z .

Now use again Equation (3) to express P(r x | n x , n z , r z ) and conclude:

F z,z n z , n z ; r z , r z = nx rx P r L(z,x,y) | n z , r z , n x , r x , N y = n z -n x , R y = n z -n x × P(n x | n z , n z ) × P(n z , n z ) × n x r x n z -n x r z -r x n z r z -1 = nx rx F z,x,y n z , n x , n z -n x ; r z , r x , r z -r x n x r x n z -n x r z -r x n z r z -1

About ranges

We start this section with a general discussion about the values that the random variables N x , N x , R x , R x can take for any population interface in the network.

As usual, we will use lower-case letters for their realizations, i.e. n x , n x , r x , r x . Our remarks will allow us to derive the ranges used in our rules as simple consequences of a few equations.

Observable number of lineages across the network

The number of lineages n x , n x , r x , r x observed at any population interface in the network must satisfy a few simple and obvious constraints, which we list below:

• For any branch x, the number of lineages at the top of the branch is at least 1, unless there were no lineages at the bottom of the branch, and at most equal to the number of lineages at the bottom. That is,

1{n x > 0} ≤ n x ≤ n x (4) 
• At any population interface, the number of red and green lineages cannot exceed the total number of lineages. That is, for any branch x:

0 ≤ r x ≤ n x (5) 0 ≤ r x ≤ n x (6) 
• For any internal node u, the numbers of red and green lineages entering u are the same as the numbers of red and green lineages exiting u. That is, if u is a tree node with ingoing branch z and outgoing branches x, y:

n z = n x + n y (7) 
r z = r x + r y (8) 
(Note that these two equations also imply that the numbers of green lineages entering and exiting u are the same.)

If u is a reticulation with ingoing branches x, y and outgoing branch z:

n z = n x + n y (9) 
r z = r x + r y (10) 
• A simple consequence of Equations ( 4), ( 7) and ( 9) is that the number of lineages in any branch x cannot exceed the total number of lineages at the leaves that descend from x, that is:

n x , n x ≤ m x (11) 
(This can easily be proven by induction on the height of x.)

Constraints ( 4)- [START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] above are not only necessary, but also sufficient to describe all possible values of n x , n x , r x , r x across the network. In theory they could be used to infer the precise ranges for these variables, starting from the leaves and moving up the network.

In practice, however, this is unnecessary. SnappNet only ensures that for any population interface x or x, the following two equations are satisfied:

0 ≤ r x ≤ n x ≤ m x (12) 0 ≤ r x ≤ n x ≤ m x (13) 
These equations also specify the ranges for which F x (n x ; r x ) is defined and stored in memory.

Note that equations ( 12) and ( 13) permit a few more values for the n arguments than are actually possible. For example n x is allowed to be 0, even when this is not possible (e.g. when x lies on all paths from a leaf with sampled individuals to the root). Whenever this occurs, the probability term within F x (n x ; r x ) equals 0. As a result, the partial likelihood itself is 0 and does not contribute to the calculation of any partial likelihood higher up in the network.

Ranges of the sums in Rules 2 and 4

It is now easy to justify the ranges in the sums in Rules 2 and 4. Recall that both these rules describe the behavior of the algorithm when traversing a tree node with ingoing branch z and outgoing branches x, y. Also recall that these rules sum over the possible values for n x and r x . Note that, because conservation constraints (7) and ( 8) must hold here, these values also determine the values of n y = n z -n x and r y = r z -r x .

Let's first consider the range for n x . By applying constraint [START_REF] Rouard | Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana)[END_REF] to n x and then n y , we must ensure:

0 ≤ n x ≤ m x 0 ≤ n z -n x ≤ m y
The second equation is equivalent to n z -m y ≤ n x ≤ n z and therefore we get:

max(0, n z -m y ) ≤ n x ≤ min(m x , n z )
As for r x , by applying constraint (13) to r x and then r y , we must ensure:

0 ≤ r x ≤ n x 0 ≤ r z -r x ≤ n z -n x
The second equation is equivalent to n x + r z -n z ≤ r x ≤ r z and therefore we get: max(0, n x + r z -n z ) ≤ r x ≤ min(n x , r z ).

Other computational complexity results

In this section, we shall use the weak definition of connectivity in a directed graph: we say that two nodes in Ψ are connected is there is an undirected path between them in Ψ. The same holds for the notion of biconnected, see below.

Time complexity of the algorithm by Zhu et al. [1]

Although the time complexity stated by Zhu and coauthors is O(sn 4r+4 ), where r is the number of reticulation nodes in the network, they also note that all labelled partial likelihoods (LPLs) at a lowest articulation node can be merged into a single LPL, thus avoiding carrying forth all that information [1]. This means that, as we stated in the main text, the time complexity to process a node with their algorithm is actually O(n 4ru+4 ), where r u is the number of reticulation nodes which descend from u, and for which there exists a directed path from u that does not pass via a lowest articulation node. Note that r u is potentially much smaller than r. We refer to the original paper by Zhu and coauthors for the definition of LPL and the full description of their algorithm [1].

Here we prove that, since the time complexity to process a node is O(n 4ru+4 ), then the whole algorithm runs in O(sn 4 +4 ) time, where is the level of the network [5,6].

Let us first recall some definitions from the theory of phylogenetic networks that are fundamental to analyse the complexity of the algorithm by Zhu et al. [1]. A subgraph G of Ψ is biconnected if the removal of any one node in G leaves the remainder of G connected. A biconnected component of Ψ is a maximal biconnected subgraph of Ψ. The nodes of Ψ that belong to two or more biconnected components are called articulation nodes. (Equivalently, articulation nodes are the nodes in Ψ whose removal cause the network to become disconnected.) An articulation node is said to be a lowest articulation node if all of its children are not articulation nodes. The level of a phylogenetic network is the maximum number of reticulation nodes in one of its biconnected components.

It is easy to see that a phylogenetic network has two kinds of biconnected components: those that only consist of two adjacent nodes -which we call trivial biconnected components -and more complex ones -which we call nontrivial biconnected components or blobs. Every articulation node of Ψ is found at the root of a biconnected component. The lowest articulation nodes of a network coincide with the roots of the network's blobs.

Recall that r u is defined as the number of reticulation nodes which descend from u, and for which there exists a directed path from u that does not pass via a lowest articulation node. Now note that every directed path that ends in a reticulation node v and does not pass via a lowest articulation node can only be from a node u in the same blob as v. Then, r u is at most equal to the number of reticulation nodes in the same biconnected component as u. In turn, the number of reticulation nodes in the same biconnected component as u is at most equal to , the level of Ψ. We can then conclude that r u ≤ and that each node is processed in at most O(n 4 +4 ) time, giving a total running time of O(sn 4 +4 ).

SnappNet's K and the level of the network

Here we prove that for any traversal of the network Ψ, we have K ≤ +1, where is the level of Ψ (Proposition 1 below).

We let B(x) denote the set of branches x for which there exists a population interface x or x in the VPI x. Moreover we let G Ψ x denote the subgraph of Ψ induced by all the descendant nodes of the branches in B(x).

The intuition behind the proof is that, for any VPI activated by the traversal algorithm, the branches in B(x) must all belong to the same biconnected component of Ψ. Moreover, |B(x)| cannot exceed 1 + the number of reticulations within that biconnected component, which implies K ≤ + 1. Lemma 1. Let x be a VPI activated by any traversal algorithm using Rules 0-4. Then, G Ψ

x is connected.

Proof. If x = (x) is activated by Rule 0, then G Ψ x consists of a single leaf and is trivially connected. Thus, we just need to prove that every subsequent application of Rules 1-4 can only activate a VPI x with connected G Ψ

x , assuming that this property is satisfied by the VPI or VPIs that the rule uses as input.

For Rule 1, this is trivially true as G Ψ

x,x = G Ψ x,x . For Rule 2, let's assume that G Ψ

x,x is connected and that G Ψ y,y is connected. This implies that G Ψ x,y,z is connected, as x and y appear in G Ψ

x,y,z and ensure that all nodes in G Ψ x,x are connected to all nodes in G Ψ y,y . For Rule 3 and 4, the thesis is again trivial, because G Ψ

x for the newly active VPI only differs from the one for the input VPI by inclusion of a single new vertex, which is easily seen to be connected to the rest of G Ψ

x .

Corollary 1. Let x be a VPI activated by any traversal algorithm using Rules 0-4. Then, all the branches in B(x) belong to the same biconnected component of Ψ.

Proof. If |B(x)| = 1, this is trivial. If B(x) contains at least two branches x and y, it is now easy to see that x and y belong to a cycle obtained by attaching the following two disjoint paths: (1) the path within G Ψ x from the bottom of x to the bottom of y -which exists because of Lemma 1 -and (2) the path from the bottom of x to the bottom of y, going via x and y and only using branches that are ancestral to x and y. The existence of this cycle implies the thesis. We now have all we need to prove the main result of this section: Proposition 1. For any traversal algorithm using Rules 0-4 to process a network of level , K ≤ + 1.

Proof. Note that K = max{|B(x)| such that x is activated by the given traversal algorithm}.

Thus, using Lemma 2, and the definition of the level : K ≤ max{|R(x)| + 1 such that x is activated by the given traversal algorithm} 

≤ + 1.

Newick representations

MCMCBiMarkers commands

For m=100,000 , data were generated in the following way:

SimBiMarkersinNetwork -pi0 0.5 -sd 17000 -num 100000 -tm <A:A_0;B:B_0,B_1,B_2,B_3; C:C_0,C_1,C_2,C_3;D:D_0;O:O_0> -truenet "[0.005](O:0.08:0.005,((A:0.012:0.005,((B:0.002:0.005, (C:0.001:0.005)I1#H1:0.001:0.005:0.5)I2:0.002:0.005)I3#H2:0.008 :0.005:0.5)I4:0.038:0.005,((D:0.003:0.005, I1#H1:0.002:0.005:0.5)I5:0.017:0.005,I3#H2:0.016:0.005:0.5) I6:0.03:0.005)I7:0.03:0.005);" ;

Next, the following commands, were successively used to run MCMCBiMarkers. The first step consists in a pre-burnin phase relying on 3 chains of different temperatures.

MCMC_BiMarkers -cl 1500000 -sf 1000 -bl 200000 -prebl 10000 -premc3 (2.0,4.0) -premr 1 -pi0 0.5 -varytheta -pp 2.0 -ee 2.0 -mr 2 -pl 1 -esptheta -sd 12345678 -taxa (A_0,B_0,B_1,B_2,B_3,C_0,C_1,C_2,C_3,D_0,O_0) -tm <A:A_0;B:B_0,B_1,B_2,B_3;C:C_0,C_1,C_2,C_3;D:D_0;O:O_0> ;

The second step consists in MCMC sampling during 1.5 × 10 6 iterations.

MCMC_BiMarkers -cl 1500000 -sf 1000 -bl 200000 -pi0 0.5 -varytheta -pp 2.0 -ee 2.0 -mr 2 -pl 1 -esptheta -sd 12345678 -taxa (A_0,B_0,B_1,B_2,B_3,C_0,C_1,C_2,C_3,D_0,O_0) -tm <A:A_0;B:B_0,B_1,B_2,B_3;C:C_0,C_1,C_2,C_3;D:D_0;O:O_0> -snet"..." ;

Note that the "-snet" option refers to the starting network obtained from the pre-burnin phase. Besides, the options "-mr" and "-pp" allow to specify the network prior: the maximum number of reticulations was set to 2, and the prior Poisson distribution on the number of reticulation nodes was centered on 2.

6 Supplementary results for the simulation study 

Number of reticulations

Additional experiments on SnappNet's MCMC sampler

In the following, we describe a few experiments that were conducted to better understand the behavior of the MCMC sampler employed by SnappNet-in particular its efficiency at sampling from network space, and how this efficiency is affected by the priors on phylogenetic network and population sizes. The prior on phylogenetic networks is specified in terms of the birth-hybridization model by Zhang et al. [7].

Experiment with no data

Protocol

In the first experiment we assess whether the MCMC sampler employed by SnappNet can adequately sample from network space. We specify a posterior distribution over 5-taxon phylogenetic networks with high variance across multiple number of reticulations. We ran the MCMC sampler so that it sampled from a posterior distribution specified in terms of a birth-hybridization model prior, origin height prior and a null likelihood function (always returns zero regardless of the input data). We then compared the sampled networks with 5-taxon networks simulated directly from the birth-hybridization model. Theoretically we expect the distributions of sampled and simulated networks to match.

We studied three different cases of the birth-hybridization model prior, for each case we either specified a normal prior with mean 0.1 and standard deviation of 0.01 on the origin height or an exponential prior with mean 0.1 on the origin height (that is a total of six different scenarios): In the first case we used a birth-hybridization model with speciation rate 20 and hybridization rate 1 (mean number of reticulations close to zero). In the second case we used a birth-hybridization model with speciation rate 20 and hybridization rate 2 (mean number of reticulations close to one). In the third case we used a birthhybridization model with speciation rate 20 and hybridization rate 3 (mean number of reticulations close to two). We only kept simulated networks with 5 leaves.

In each case we simulated 1000 networks directly from the birth-hybridization model and sampled 2,000,000 networks using the SnappNet sampler (burning half the chain and logging every 1000th sample thereafter). Note that it is possible to fix the birth and hybridization rates in the prior used by SnappNet by fixing corresponding values for parameters d and r. We used Tracer to assess convergence of the MCMC chain by visually inspecting the trace and computing the ESS (effective sample size). Thereafter we compared the simulated networks with sampled networks in terms of the number of reticulations, time until first reticulation, network height and network length. 

Results

In the first experiment the sampler converged to the specified prior in all three cases (for both origin height priors) based on the computed summary statistics (see Figs O-Q andFigs R-T). The convergence of the sampler in all cases is a good indication that the implemented moves worked well enough. The ESS for the sampled networks given the normal prior on the network origin were: 1001 for the first case (mean number of reticulation close to zero); 844 for the second case (mean number of reticulations close to one); 1001 for the third case (mean number of reticulations close to two). The ESS for the sampled networks given the exponential prior on the network origin were: 872 for the first case; 955 for the second case; 838 for the third case. Note that the normal and exponential priors on the origin height permit to describe different knowledge on the expected number of reticulations, see Figs Q(a) and T(a). G. BH(birth rate, hybridisation rate) refers to the birth-hybridisation process of Zhang et al. with the specified birth and hybridisation rates. For data simulated with network A, only chains 1,2, 3,4,[START_REF] Mansueto | SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa[END_REF][START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF][START_REF] Gravel | Demographic history and rare allele sharing among human populations[END_REF][START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF][START_REF] Knowles | Estimating species trees: practical and theoretical aspects[END_REF][START_REF] Roychoudhury | A two-stage pruning algorithm for likelihood computation for a population tree[END_REF][START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF][START_REF] Ebersberger | Mapping human genetic ancestry[END_REF] were run. We indicate the mean number of reticulation for the Birth-Hybridization model given an exponential prior with mean 0.1 on network origin. Note that we only used the exponential prior in the experiment in Section 8.2.

8.2 Experiments on 10,000 simulated sites

Protocol

In the second experiment we assess how population size priors and network priors influence SnappNet's inferences, in particular the rate of convergence and sampling efficiency of the MCMC sampler. Recall that the network prior specifies a hybridization rate, whereas the prior on population sizes affects the probability of coalescence, and therefore that of ILS. Thus, these two priors have an important role in determining the relative probability of hybridization and ILS as causes of incongruent (non-tree-like) signals in the data. We simulated 10,000 SNPs for network A and network B under the multispecies network coalescent using SimSnappNet. For each of these two simulated SNP datasets, we ran 12 (for network A) or 24 (for network B) MCMC chains, for 500,000 iterations each. See Table G for details on the priors specified for each chain. In this experiment we only use the exponential prior with mean 0.1 on the network origin.

Briefly, as in the experiment of Sec. 8.1, we specified a network prior using the birth-hybridisation model of Zhang et al. [7]. Again, we fixed the birth rate to 20 for all MCMC chains and chose a hybridisation rate so that the mean number of reticulations is close to zero, one or two. Furthermore we specified either a 'correct' or 'incorrect' prior on population size ('correct' implies the mean of the prior distribution corresponds to the population size parameter used to simulate the SNP dataset). The 'correct' population size prior on each 95% HPD Interval [-16134.1, -16116.4 

Operator acceptance rates

To better understand the behavior of the MCMC sampler, we inspect the acceptance rates for the 5 operators acting on the network topology (AddReticulation, DeleteReticulation, FlipReticulation RelocateBranch, RelocateBranch-Narrow ), the 4 operators updating branch lengths (NodeSlider, NodeUniform, NetworkMultiplier, OriginMultiplier ) and the 2 operators updating population sizes (ChangeGamma, ChangeAllGamma).

We summarize the acceptance rates for network B in Table N 
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 1 Fig 1.Example of a phylogenetic network. The top node represents the origin and its child node is called the root of the network. Time flows from the origin node to the leaves (here A, B, C, D) so branches are directed from the top to the leaves. Each branch x is associated to a length t x , and to a population size θ x . Additionally, branches x on top of a reticulation node have an inheritance probability γ x representing their probability to have contributed to any individual at the top of the branch just below.

Fig 2 .

 2 Fig 2. Illustration of the concepts and notation employed to describe likelihood computations. The species network topology is the same as that in Fig 1, but branches (populations) are now represented as grey parallelograms.A gene tree is drawn inside the species network (green and red lines). One mutation occurs in the branch above D. We focus on three branches: x, y and z. Colored horizontal bars represent the population interfaces x, y, y and z. Note that (x, y) (blue) is a vector of incomparable population interfaces, while (y, z) (orange) is not, as z is a descendant of y. Here,n A = n B = n C = n D = 2, r A = 2, r B = 1, r C = 0, r D = 2are known, whereas the values of N x , N y , N y , N z and R x , R y , R y , R z are not observed, and depend on the gene tree generated by the MSNC process. For the gene tree shown, N (x,y) = (2, 1) and R (x,y) = (2, 0). Since z is incident to leaf B, we have z = B and R z = r B = 1. Now note L((x, y)) = (A, B, C). Then, F (x,y) ((n, n ); (r, r )) =

  Fig 2. Illustration of the concepts and notation employed to describe likelihood computations. The species network topology is the same as that in Fig 1, but branches (populations) are now represented as grey parallelograms.A gene tree is drawn inside the species network (green and red lines). One mutation occurs in the branch above D. We focus on three branches: x, y and z. Colored horizontal bars represent the population interfaces x, y, y and z. Note that (x, y) (blue) is a vector of incomparable population interfaces, while (y, z) (orange) is not, as z is a descendant of y. Here,n A = n B = n C = n D = 2, r A = 2, r B = 1, r C = 0, r D = 2are known, whereas the values of N x , N y , N y , N z and R x , R y , R y , R z are not observed, and depend on the gene tree generated by the MSNC process. For the gene tree shown, N (x,y) = (2, 1) and R (x,y) = (2, 0). Since z is incident to leaf B, we have z = B and R z = r B = 1. Now note L((x, y)) = (A, B, C). Then, F (x,y) ((n, n ); (r, r )) =

a = (a 1

 1 , a 2 , . . . , a k ) and b = (b 1 , b 2 , . . . , b h ), then a, b = (a 1 , . . . , a k , b 1 , . . . , b h ) and a, c = (a 1 , a 2 , . . . , a k , c). Trivially, if a is empty, then a, b = b and a, c = (c). A vector x of incomparable population interfaces is one where all pairs of population interfaces are incomparable. Finally, for any branch x, let m x denote the number of lineages sampled in the descendant leaves of x.

Fig 4 .

 4 Fig 4. Illustration of Rule 3. Given (a) the partial likelihoods for the x, x (red) vector of population interfaces, Rule 3 allows us to compute the partial likelihoods for the (green) vector x, y, z (b).

Fig 5 .

 5 Fig 5. Illustration of Rule 4. Given (a) the partial likelihoods for the z, x, y (red) vector of population interfaces, Rule 4 allows us to compute the partial likelihoods for the (green) vector z, z (b).

Fig 6 .

 6 Fig 6. Example of a phylogenetic network where the level is equal to 6 (the reticulation nodes are depicted in grey), while K ∈ {3, 4, 5, 6, 7}, depending on the traversal algorithm (not shown). A traversal ensuring that K remains close to the lower end of this interval (the scanwidth of the network) will be several orders of magnitude faster than algorithms whose complexity depends exponentially on . Increasing the number of reticulation nodes while keeping a "ladder" topology as above can make arbitrarily large, while the scanwidth remains constant. This topology may seem odd but it is intended as the backbone of a more complex and realistic network with subtrees hanging from the different internal branches of the ladder, in which case the complexity issue remains.

from

  SpeciesNetwork: (a) addReticulation and (b) deleteReticulation add and delete reticulation nodes respectively, (c) flipReticulation flips the direction of a reticulation branch and finally (d) relocateBranch and (e) relocateBranchNarrow relocate either the source or the destination of random branch. The operators on gene trees from SpeciesNetwork have been discarded since in SnappNet gene trees are integrated out. The following Snapp operators acting on continuous parameters are incorporated within SnappNet: (a) changeUAndV changes the values of the instantaneous rates u and v, (b) changeGamma and (c) changeAllGamma scale a single population size or all population sizes, respectively. Last, SnappNet takes also advantage of a few SpeciesNetwork operators for continuous parameters: (a) turnOverScale and (b) divrRateScale allow to change respectively the hyperparameters r and d for the birth-hybridization process, (c) inheritanceProbUniform and (d) inheritanceProbRndWalk transform the inheritance probability γ at a random reticulation node by drawing either a uniformly distributed number or by applying a uniform sliding window to the logit of γ, (e) networkMultiplier and (f) originMultiplier scale respectively the heights of all internal nodes or of the origin node, (g) nodeUniform and (h) nodeSlider move the height of a random node uniformly or using a sliding window.

Fig 7 . 8 .

 78 The three phylogenetic networks used for simulating data. Networks A and B are taken from[START_REF] Zhu | Bayesian inference of phylogenetic networks from bi-allelic genetic markers[END_REF]. Branch lengths are measured in units of expected number of mutations per site (i.e. substitutions per site). Displayed values represent inheritance probabilities. The networks from the C family, with either 3 or 4 reticulation nodes, and with or without outgroup O.

Fig 7 )

 7 obtained by running SnappNet on simulated data. Results are given as a function of the number of sites and as a function of the hyperparameter values α and β for the prior on θ (θ ∼ Γ(α, β) and E (θ) = α β ). Here, one lineage was simulated per species. Constant sites are included in the analysis, the rates u and v are considered as known, and 20 replicates are considered for each simulation set up (criterion ESS> 200 ; d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E[START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] for the network prior).

  Fig 9.The ratio of trees (black), 1-reticulation networks (dark grey), 2-reticulations networks (light gray), sampled by SnappNet, under the different simulations settings studied in Table1. Recall that networks A and B contain 1 and 2 reticulations, respectively.

10 .

 10 Estimated height and length for network A (seeFig 7), as a function of the number of sites. Heights and lengths are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. Two lineages per species were simulated. Constant sites are included in the analysis, and 20 replicates are considered for each simulation set up (criterion ESS> 200 ;

Fig 12 .

 12 Fig 12. Estimated node heights of network A (see Fig 7), as a function of the number of sites. Heights are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. Same framework as in Fig 10. The initials MRCA stand for "Most Recent Common Ancestor".

Fig 13 .

 13 Fig 13. Estimated population sizes θ for each branch of network A (see Fig 7), as a function of the number of sites. True values are given by the dashed horizontal lines. Same framework as in Fig 10. The initials MRCA stand for "Most Recent Common Ancestor".

( 1 .

 1 75 × 10 -4 vs. 2.55 × 10 -5 ). It enabled us to consider 20 replicates with ESS> 200 in this new experiment.

15 .

 15 The two networks obtained for data set 1 with only one variety per subpopulation. Each network corresponds to the posterior mean of the distribution sampled by SnappNet. Inheritance probabilities are reported above reticulation edges and branch lengths are given in units of expected number of mutations per site (see the scale at the top left).

16 .

 16 2.5 million SNPs (cf. Fig M in S1 Text) and we selected representatives of Japonica, Indica, cAus and cBasmati as well as wild rices Or-III, closer to Japonica and cBasmati, and Or-I, closer either to Indica (Or-Ii) or to cAus (Or-Ia). For clarity in our subsequent use, we call the wild forms Or3, Or1I and Or1A, respectively. We made data sets of different sample sizes, including either one or two varieties per subpopulation. The studied subpopulations are the 4 groups of cultivars (Japonica, Indica, cAus, cBasmati), and different types of wild rice (Or3, Or1A, Or1I) , consistent with the classification by [72]. The 3 data sets we constructed are described in the Materials and methods. The two networks obtained for data set 2 with two varieties per subpopulation. Each network corresponds to the posterior mean of the distribution sampled by SnappNet. Inheritance probabilities are reported above reticulation edges and branch lengths are given in units of expected number of mutations per site (see the scale at the top left). In Fig 15, we report results for data set 1, which includes only one variety per subpopulation (cf. Table D in S1 Text). We studied two different samplings of 12k SNPs along the whole genome alignment. For each sampling, we ran two independent Markov chains with different starting points, for 10 million iterations. To assess the convergence of SnappNet on data set 1, (a) the ESS of the posterior distribution was checked for each chain, (b) the trace plots of the different parameters and their August 26, 2021 26/42 associated ESS were examined and (c) the two posterior distributions corresponding to the two independent chains were compared (see Fig N and

  The three topologies sampled by SnappNet when data set 3 was considered. Reported inheritance probabilities for each topology are averages on sampled observations. been specifically involved in the emergence of cultivated forms. While the most ancient domestication occurred in China to produce Japonica cultivars, two other important foundations, namely Indica and cAus, contributed to the diversity of current rice cultivars. Early hybridization between Japonica cultivars and an ancestor, presumably wild, of current cAus cultivars and related wild forms resulted in the evolution of cBasmati cultivars.

  BiMarkers uses descriptive priors: more precisely, it assumes a Poisson August 26, 2021 28/42

Fig A in S1 Text Density probabilities for 5 -

 5 Fig A in S1 TextDensity probabilities for 5-tips networks, simulated with a prior corresponding to a birth hybridization process with parameters d = 10, r = 1/2 and τ 0 = 0.1, using the SpeciesNetwork package[START_REF] Zhang | Bayesian inference of species networks from multilocus sequence data[END_REF]. The figure is obtained for 10,000 replicates. The means are given by the dashed vertical lines.

Fig D

  Fig D in S1 Text Estimated node heights of network B. 10,000 sites are considered and 2 lineages per species. Constant sites are included in the analysis, and the estimated heights are based on the 12 replicates (over 14 replicates) for which network B was recovered by SnappNet (criterion ESS> 200 ; θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E(10) for the priors, number of reticulations bounded by 3 when exploring the network space). Heights are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. The initials MRCA stand for "Most Recent Common Ancestor".

Fig E in S1 Text

 S1 Fig E in S1 Text Estimated population sizes θ for each branch of network B. Same framework as Figure D in S1 Text. True values are given by the dashed horizontal lines. The initials MRCA stand for "Most Recent Common Ancestor".

FigF

  Fig F in S1 Text Same framework as Figure E in S1 Text.

Fig G in S1 Text

 S1 Fig G in S1 Text Estimated node heights of network C as a function of the number of sites. Same experiment as in Table 2 of the main manuscript: 1 lineage in species O, A and D, and 4 lineages in species B and C. The estimated heights are based on the replicates for which network C was recovered by SnappNet. True values are given by the dashed horizontal lines. The initials MRCA stand for "Most Recent Common Ancestor".

Fig H in S1 Text

 S1 Fig H in S1 TextEstimated height and length for network A, as a function of the number of sites.Heights and lengths are measured in units of expected number of mutations per site.True values are given by the dashed horizontal lines. Two lineages per species were simulated. Only polymorphic sites are included in the analysis, and 20 replicates are considered for each simulation set up (criterion ESS> 200 for m=1,000 and m=10,000 ,

Fig I in S1 Text

 S1 Fig I in S1 TextEstimated inheritance probability and instantaneous rates for network A, as a function of the number of sites. True values are given by the dashed horizontal lines. Same framework as in Figure11of the main paper, except that only polymorphic sites are taken into account.

Fig J in S1 Text

 S1 Fig J in S1 TextEstimated node heights of network A, as a function of the number of sites. Heights are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. Same framework as in Figure12of the main paper, except that only polymorphic sites are taken into account. The initials MRCA stand for "Most Recent Common Ancestor".

Fig K

  Fig K in S1 TextEstimated population sizes θ for each branch of network A, as a function of the number of sites. True values are given by the dashed horizontal lines. Same framework as in Figure13of the main paper, except that only polymorphic sites are taken into account. The initials MRCA stand for "Most Recent Common Ancestor".

Fig L in S1 Text

 S1 Fig L in S1 Text Experiments on Network A and based only on polymorphic sites. Same framework as in Figures H and I in S1 Text, except that the correction factor is not used in the calculations (criterion ESS> 200 in all cases).

Fig M in S1 Text

 S1 Fig M in S1 TextSummary of rice molecular diversity used for selecting our sample of rice cultivated varieties and wild types. (A) unweighted neighbour joining (UWNJ) tree reflecting dissimilarities among 899 accessions based on 2.48 million SNPs as described in[START_REF] Wang | Genomic variation in 3,010 diverse accessions of Asian cultivated rice[END_REF]; the accessions are colored according to their classification into wild population types or cultivar groups. (B, C) UWNJ tree using the same data for the 24 accessions we selected for assessing SnappNet performance, and showing their accessions number (B) and their country of origin (C); the colors are as in A.

Fig N

  Fig N in S1 Text Trace plots obtained according to the Tracer software when data set 1 was analyzed with SnappNet. (a) and (b) refer to the first sampling of 12 kSNPs along the whole genome, whereas (c) and (d) focus on the second sampling. Two chains were considered for each sampling.

Fig O in

  Fig O in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean number of reticulations close to zero) and a normal prior with mean 0.1 and standard deviation of 0.01 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Fig P

  Fig P in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean number of reticulations close to one) and normal prior with mean 0.1 and standard

Figure

  Figure Q in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean number of reticulations close to two) and normal prior with mean 0.1 and standard deviation of 0.01 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.Fig R in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean number of reticulations close to zero) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Fig S

  Fig S in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean number of reticulations close to one) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Fig T

  Fig T in S1 Text Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean number of reticulations close to two) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Fig U

  Fig U in S1 TextSummary distributions of all chains with correct population size priors (chain numbers1,2,[START_REF] Mansueto | SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa[END_REF][START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF][START_REF] Knowles | Estimating species trees: practical and theoretical aspects[END_REF][START_REF] Roychoudhury | A two-stage pruning algorithm for likelihood computation for a population tree[END_REF] given data simulated from network A. We summarize the MCMC chains by combining them, that is: Chains1and 2 are indicated by the blue line (mean reticulations close to zero); Chains 9 and 10 are indicated by the orange line (mean reticulations close to one); Chains 17 and 18 are indicated by the green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Fig V in S1 Text

 S1 Fig V in S1 TextSummary distributions of all chains with incorrect population size priors Gamma(1,20) (chain numbers3,4,[START_REF] Gravel | Demographic history and rare allele sharing among human populations[END_REF][START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF][START_REF] Bryant | Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis[END_REF][START_REF] Ebersberger | Mapping human genetic ancestry[END_REF] given data simulated from network A. We summarize the MCMC chains by combining them, that is: Chains 3 and 4 are indicated by the blue line (mean reticulations close to zero); Chains 11 and 12 are indicated by the orange line (mean reticulations close to one); Chains 19 and 20 are indicated by the green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network

Fig W

  Fig W in S1 Text Summary distributions of all chains with correct population size priors (chain numbers 1,2,9,10,17,18 given data simulated under network B. We summarize the MCMC chains by combining them, that is: Chains 1 and 2 are indicated by the blue line (mean reticulations close to zero); Chains 9 and 10 are indicated by the orange line (mean reticulations close to one); Chains 17 and 18 are indicated by the green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Fig X

  Fig X in S1 TextSummary distributions of all chains with incorrect population size priors (chain numbers3,4,7,8,[START_REF] Gravel | Demographic history and rare allele sharing among human populations[END_REF][START_REF] Civáň | Three geographically separate domestications of Asian rice[END_REF] given data simulated from network B. We summarize the MCMC chains by combining them, that is: Chains 3 and 4 are indicated by blue line (mean reticulations close to zero); Chains 7 and 8 are indicated by orange line (mean reticulations close to one); Chains 11 and 12 are indicated by green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Fig Y

  Fig Y in S1 TextIn this we figure we plot summary distributions of all chains with incorrect population size priors Gamma(1,20) (chain numbers5,6,[START_REF] Rouard | Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana)[END_REF][START_REF] Felenstein | Inferring phylogenies[END_REF][START_REF] Degnan | Gene tree discordance, phylogenetic inference and the multispecies coalescent[END_REF][START_REF] Maddison | Gene Trees in Species Trees[END_REF] given data simulated from Network B. We summarize the MCMC chains by combining them, that is: Chains 5 and 6 are indicated by blue line (mean reticulations close to zero); Chains 13 and 14 are indicated by orange line (mean reticulations close to one); Chains 21 and 22 are indicated by green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Fig Z

  Fig Z in S1 TextIn this we figure we plot summary distributions of all chains with incorrect population size priors (chain numbers7,8,[START_REF] Kingman | On the genealogy of large populations[END_REF][START_REF] Rannala | Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci[END_REF][START_REF] Mallet | Hybrid speciation[END_REF][START_REF] Morales | Evolutionary role of interspecies hybridization and genetic exchanges in yeasts[END_REF] given data simulated from network B. We summarize the MCMC chains by combining them, that is: Chain 7 and 8 are indicated by blue line (mean reticulations close to zero); Chain 15 and 16 is indicated by orange line (mean reticulations close to one); Chain 23 and 24 are indicated by green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Lemma 2 . 1 ≤

 21 Let x be a VPI activated by any traversal algorithm using Rules 0-4, and let R(x) be the set of reticulation nodes that descend from any branch in B(x) and belong to the same biconnected component as the one of B(x). Then,|B(x)| ≤ |R(x)| + 1.Proof. To make notation light, let b(x) = |B(x)| and r(x) = |R(x)|. As in the proof of Lemma 1, we start by noting that if x = (x) is activated by Rule 0, then the thesis trivially holds, as b((x)) = 1 and r((x)) = 0.We then consider the other rules, and show that if the thesis holds for the VPIs that have already been activated, then it must hold for the newly activated VPI. For Rule 1, b(x, x) = b(x, x) and r(x, x) = r(x, x), so b(x, x) ≤ r(x, x) + 1 trivially implies b(x, x) ≤ r(x, x) + 1.For Rule 2, we assume b(x, x) ≤ r(x, x) + 1 and b(y, y) ≤ r(y, y) + 1. Now note that b(x, y, z) = b(x, x) + b(y, y) -1, and r(x, y, z) = r(x, x) + r(y, y) which imply:b(x, y, z) = b(x, x) + b(y, y) -(r(x, x) + 1) + (r(y, y) + 1) -1 = r(x, x) + r(y, y) + 1 = r(x, y, z) + 1,thus proving the thesis for VPI x, y, z.For Rule 3, we assume b(x, x) ≤ r(x, x) + 1. Now note that b(x, y, z) = b(x, x) + 1, r(x, y, z) = r(x, x) + 1, which implies b(x, y, z) ≤ r(x, y, z) + 1.Finally, for Rule 4, we assume b(z, x, y) ≤ r(z, x, y)+1. Now distinguish between two cases. Either (i) z is nonempty, in which case B(z, x, y) and B(z, z) are in the same biconnected component andb(z, z) = b(z, x, y) -1, r(z, z) = r(z, x, y).In this case we therefore have b(z, z) ≤ r(z, z), which implies the thesis.Alternatively, (ii) z is empty, in which case b(z, z) = 1, r(z, z) = 0. Thus b(z, z) ≤ r(z, z) + 1 is again satisfied.

  :0.08,((R:0.007,(Q:0.004)#H1:0.003):0.035,((A:0.006,#H1:0.002):0.016, L:0.022):0.02):0.038):0); Network B: ((((R:0.014,(Q:0.004)#H1:0.01):0.028,(((A:0.003)#H2:0.003,#H1:0.002) :0.016,L:0.022):0.02):0.038,(C:0.005,#H2:0.002):0.075):0); Network C: ((O:0.08,((A:0.012,((B:0.002,(C:0.001)#H1:0.001):0.002)#H2:0.008):0.038, ((D:0.003,#H1:0.002):0.017,#H2:0.016):0.03):0.03):0); Starting tree for networks A and B: (((C:0.05,R:0.05):0.05,((A:0.05,L:0.05):0.025,Q:0.075):0.025):0); Alternative starting trees for networks A and B (only used to check the influence of the starting tree): (((A:0.05,Q:0.05):0.05,((C:0.05,L:0.05):0.025,R:0.075):0.025):0); ((((C:0.05,A:0.05):0.05,((R:0.05,Q:0.05):0.025,L:0.075):0.025):0); Starting tree for network C: (((O:0.05,A:0.05):0.05,((C:0.05,D:0.05):0.025,B:0.075):0.025):0);

  = 1, β = 200, α β = 0.005) 78.71% tree ((((Q,A),L),R),C) 35.28% tree (((Q,R),L),(A,C)) 28.54% tree (((Q,L),R),(A,C)) True (α = 1, β = 1000, α β = 0.001) 82.82% tree ((((Q,A),L),R),C) 45.27% tree (((Q,R),L),(A,C)) 40.35% tree (((Q,L),R),(A,C)) True (α = 1, β = 2000, α β = 5 × 10 -4 ) 82.92% tree ((((Q,A),L),R),C) 48.40% tree (((Q,R),L),(A,C)) 38.16% tree (((Q,L),R),(A,C))

Figure A .Figure G .

 AG Figure A. Density probabilities for 5-tips networks, simulated with a prior corresponding to a birth hybridization process with parameters d = 10, r = 1/2 and τ 0 = 0.1, using the SpeciesNetwork package[7]. The figure is obtained for 10,000 replicates. The means are given by the dashed vertical lines.

Figure M .

 M Figure M. Summary of rice molecular diversity used for selecting our sample of rice cultivated varieties and wild types. A: unweighted neighbour joining (UWNJ) tree reflecting dissimilarities among 899 accessions based on 2.48 million SNPs as described in [8]; the accessions are colored according to their classification into wild population types or cultivar groups. B and C: UWNJ tree using the same data for the 24 accessions we selected for assessing SnappNet performance, and showing

Figure O .

 O Figure O. Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean number of reticulations close to zero) and a normal prior with mean 0.1 and standard deviation of 0.01 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Figure P .Figure Q .

 PQ Figure P. Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean number of reticulations close to one) and normal prior with mean 0.1 and standard deviation of 0.01 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Figure R .

 R Figure R. Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean number of reticulations close to zero) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Figure S .

 S Figure S. Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean number of reticulations close to one) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Figure T .

 T Figure T. Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean number of reticulations close to two) and an exponential prior with mean 0.1 on the origin height. We plot the simulated networks (orange) against the sampled networks (blue) summarising the networks under: (a) Number of reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the network.

Figure U .Figure V .Figure X .

 UVX Figure U. Summary distributions of all chains with correct population size priors (chain numbers 1,2,9,10,17,18) given data simulated from network A. We summarize the MCMC chains by combining them, that is: Chains 1 and 2 are indicated by the blue line (mean reticulations close to zero); Chains 9 and 10 are indicated by the orange line (mean reticulations close to one); Chains 17 and 18 are indicated by the green line (mean reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that network height and network length used to simulate data are indicated by red lines.

Table 1 .

 1 Average posterior probability of the correct topology (for networks A and B, see

	August 26, 2021

  Fig 11. Estimated inheritance probability and instantaneous rates for network A (seeFig 7), as a function of the number of sites. True values are given by the dashed horizontal lines. Same framework as inFig 10. 
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Table 2 .

 2 Average

posterior probability (PP) of the topology of network C obtained by running SnappNet on data simulated from network C. Results are given as a function of the number of sites and as a function of the number of lineages sampled in hybrid species B and C (either both 1 or both 4). Only one lineage was sampled in every other species. Constant sites are included in the analysis and the rates u and v are considered as known. Posterior probabilities are computed on the basis of replicates for which the criterion ESS> 100 is fulfilled. The sampler efficiency (SE) is also indicated (true hyperparameter values for the prior on θ, i.e. θ ∼ Γ(1, 200) ; as a network prior d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E

[START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] 

; number of reticulations bounded by 2 when exploring the network space).

Table 3 .

 3 Average posterior probability (PP) of the topology of network C obtained by running MCMC BiMarkers on data simulated from network C. Results are given as a function of the number of sites and as a function of the number of lineages sampled in hybrid species B and C (either both 1 or both 4). Only one lineage was sampled in every other species, constant sites are included in the analysis, and the rates u and v are considered as known. 1.5 × 10 6 iterations are considered. ESS is the average ESS over the different replicates, and SE stands for the sampler efficiency.

	Number of sites

report the ability of SnappNet and MCMC BiMarkers, respectively, August 26, 2021 22/42

  6 and MCMC BiMarkers was still unable to recover network C, despite larger ESS values (see Table B in S1 Text). We note here that SnappNet was ran for a maximum 804,000 iterations for 10,000 sites, and a
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Fig 14. Frequency of trees (black), 1-reticulation networks (dark grey), 2-reticulations networks (light gray) sampled by SnappNet and MCMC BiMarkers, when data were simulated from Network C (see Tables

Table 4 .

 4 SnappNet managed to run for all the scenarios

	August 26, 2021

Table 4 .

 4 Computational efficiency of calculating a single likelihood value in SnappNet and MCMC BiMarkers for networks C, C(3) and C(4). 10 lineages are sampled in species C and 1 lineage in other species. Average and standard deviation are reported.

within the two weeks limit: on average within 2.62 minutes and using 1.67 GB on network C without outgroup, within 5.63 minutes and using 2 GB on network C with outgroup, within 14.21 minutes and using 2.19 GB on network C(3) without outgroup, within 24.69 minutes and using 2.21 GB on network C(3) with outgroup, within 45.47 minutes and using 2.63 GB on network C(4) without outgroup, and finally, within 70.98 minutes and using 3.17 GB on network C(4) with outgroup.

  Table F in S1 Text). In view of these results, SnappNet reached stationarity. The ESS of the posterior distribution took the values 844 (resp. 971), 1159 (resp. 535) for the two different chains of the first (resp. second) sampling. All the networks sampled by the MCMC had the same topology with one reticulation only. For both genome samplings the lineages associate Or1I with Ind, Or1A with cAus and Or3 with Jap, respectively, while the reticulation conjugates Jap with (Or1A/cAus), the common precursor of Or1-A/cAus, with a dosage ratio close to 2:1, to yield cBas.Next, we tackled a larger data set, data set 2, containing two varieties per subpopulation (see Table E in S1 Text). Two different chains corresponding to two different samplings of 12k SNPs along the whole genome alignment were run. The number of reticulations was bounded by one in order to reach convergence in a reasonable amount of time: after three months and half of computations, the ESS took the values 227 and 201 for the first and the second chain, respectively. Fig16 illustratesthe two networks obtained for the two different samplings. Each network corresponds to the posterior mean of the sampled distribution. Note that in both cases, the posterior distribution was concentrated on a single topology. The two genome samplings yield networks very similar to one another and remarkably close to that revealed with data set 1. The reticulation that was allowed again conjugates the Jap lineage with the common precursor of subpopulations Or1A and cAus. In contrast, after 6 months of calculations, SnappNet had still not reached the stationary regime for the two different samplings, when a maximum of 2 reticulations was imposed.

We also investigated another data set, data set 3, including two varieties per subpopulation and 12k SNPs for a different taxon sampling (see Table E in S1 Text). In this case, large ESS values were observed when SnappNet was allowed to infer networks with 2 reticulations: the ESS was estimated at 373 after having let SnappNet run for 7 months. The maximum a posteriori (MAP) network is represented in

Fig 17. 

  The MAP phylogenetic network obtained for data set 3 with two varieties per subpopulation. Inheritance probabilities are reported above reticulation edges and branch lengths are given in units of expected number of mutations per site (see the scale at the top left).
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The first four items confirm the latest interpretations of massive analyses among rice specialists. Wild rice displays broad diversity and some of the wild subpopulations have

  But the originality of SnappNet is to compute joint conditional probabilities for branches above a same reticulation node r (see the Materials and methods). The set of branches jointly considered increases when crossing other reticulation nodes in a same blob, but it can also decrease when crossing SnappNet runs in O(sn 2K+2 ), where K is the maximum number of branches simultaneously considered in a partial likelihood.

tree-nodes in the blob (i.e. nodes having one ancestor and several children). Of course, the time to compute each partial likelihood increases in proportion with the number of August 26, 2021 29/42 branches considered together. More precisely,

  Table A in S1 Text Table linked to Table 1 of the main manuscript. Trees inferred by SnappNet when m=1,000 sites were considered.

	Table B in S1 Text	
	Average posterior probability (PP) of the topology of network C obtained by running
	MCMC BiMarkers on data simulated from network C. Same as Table 3 of the main
	manuscript except that 12 × 10 6 iterations are considered, and only one lineage is
	sampled in hybrid species B and C. ESS is the average ESS over the different replicates,
	and SE stands for the sampler efficiency.	
	Table C in S1 Text	
	August 26, 2021	35/42

  Table G in S1 Text BH(birth rate, hybridisation rate) refers to the birth-hybridisation process of Zhang et al. with the specified birth and hybridisation rates. For data simulated with network A, only chains 1,2,3,4,9,10,11,12,17,18,19,20 were run. We indicate the mean number of reticulation for the Birth-Hybridization model given an exponential prior with mean 0.1 on network origin. Note that we only used the exponential prior in the experiment in Section 8.2 of S1 Text.
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Table A .

 A Table linked to Table 1 of the main manuscript. Trees inferred by SnappNet when m=1,000 sites were considered.

Table B .

 B Average posterior probability (PP) of the topology of network C obtained by running MCMCBiMarkers on data simulated from network C. Same as Table3of the main manuscript except that 12 × 10 6 iterations are considered, and only one lineage is sampled in hybrid species B and C. ESS is the average ESS over the different replicates, and SE stands for the sampler efficiency.
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Table D .

 D Table 2 of the main manuscript: 1 lineage in species O, A and D, and 4 lineages in species B and C. The estimated heights are based on the replicates for which network C was recovered by SnappNet.True values are given by the dashed horizontal lines. The initials MRCA stand for "Most Recent Common Ancestor". Estimated height and length for network A, as a function of the number of sites. Heights and lengths are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. Two lineages per species were simulated. Only polymorphic sites are included in the analysis, and 20 replicates are considered for each simulation set up (criterion ESS> 200 for m=1,000 and m=10,000 , and criterion ESS> 100 for m=100,000; θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), τ 0 ∼ E[START_REF] Hernandez | Classic selective sweeps were rare in recent human evolution[END_REF] for the priors, number of reticulations bounded by 2 when exploring the network space). Same framework as in Figure10of the main paper, except that only polymorphic sites are taken into account. Figure I. Estimated inheritance probability and instantaneous rates for network A, as a function of the number of sites. True values are given by the dashed horizontal lines. Same framework as in Figure 11 of the main paper, except that only polymorphic sites are taken into account.Figure J. Estimated node heights of network A, as a function of the number of sites. Heights are measured in units of expected number of mutations per site. True values are given by the dashed horizontal lines. Same framework as in Figure 12 of the main paper, except that only polymorphic sites are taken into account. The initials MRCA stand for "Most Recent Common Ancestor". Experiments on Network A and based only on polymorphic sites. Same framework as in Figures H and I above, except that the correction factor is not used in the calculations (criterion ESS> 200 in all cases). Data set 1, that includes only one variety per subpopulation. These varieties were chosen from Table C.
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	1,000 Network height 10,000 100,000 Number of sites 100,000 Figure H. 10,000 0.04 0.06 0.08 0.10 0.12 0.24 0.26 0.28 0.30 0.32 0.34 0.36 10,000 100,000 0.000 0.002 0.004 0.006 0.008 Number of sites 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 Height of H1 Height of MRCA(Q,A) 1,000 0.12 0.16 0.20 0.24 0.28 0.32 0.36 Network length 10,000 100,000 Number of sites 1,000 10,000 100,000 1,000 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 10,000 100,000 Number of sites 10,000 0.000 0.004 0.008 0.012 0.016 0.020 Number of sites 10,000 Height of MRCA(Q,R) 100,000 100,000 10,000 100,000 0.016 0.020 0.024 0.028 Number of sites 10,000 100,000 0.034 0.038 0.042 0.046 0.050 Number of sites 10,000 100,000 0.064 0.070 0.076 0.082 0.088 0.094 Number of sites Height of MRCA(L,A) Height of MRCA(L,R) Height of MRCA(L,C) 1,000 10,000 100,000 2.5 3 3.5 4 4.5 5 5.5 Number of sites 1,000 10,000 100,000 1 1.5 2 2.5 Number of sites Network length Network height 1,000 10,000 100,000 0.88 0.92 0.96 1.00 1.04 1.08 1.12 Number of sites 1,000 10,000 100,000 0.88 0.92 0.96 1.00 1.04 1.08 1.12 Number of sites Instantaneous rate u Instantaneous rate v Variety ID Country Variety name circum Aus IRIS-313-10852 India ARC 7336 circum Basmati IRIS-313-12094 Bangladesh ARC KASHA Indica IRIS-313-11741 SriLanka HERATH BANDA Japonica B269 China YUEFU Or1I W1559 Thailand W1559 Or1A W0574 Malaya W0574 Figure L. Subpopulation Or3 W3073 China W3073
	Number of sites	Number of sites	Number of sites
	Inheritance probability γ	Instantaneous rate u	Instantaneous rate v

Table E .

 E Data sets 2 and 3, that include two varieties per subpopulation. These varieties were chosen from TableC.

	Subpopulation Data set	Variety ID	Country	Variety name
	circum Aus	2 3	IRIS-313-11058 Bangladesh IRIS-313-10852 India IRIS 313-11737 India IRIS-313-11027 Pakistan	AUS 329 ARC 7336 CHUNDI JHONA 101
	circum Basmati	2 3	IRIS-313-11062 Bangladesh IRIS-313-11258 India IRIS-313-8326 India IRIS-313-12094 Bangladesh	BEGUNBICHI 33 ARC 13502 JC1 ARC KASHA
	Indica	2 3	IRIS-313-11819 IS-313-11646 IRIS-313-11741 IRIS-313-11089	Myanmar India SriLanka Cambodia	PADINTHUMA NCS771 A HERATH BANDA SRAU THMOR
	Japonica	2 3	B204 IRIS-313-11691 IRIS-313-10577 Philippines China Bhutan IRIS-313-7883 Indonesia	LONGHUAMAOHU SHANGYIPA IFUGAO RICE GANIGI
	Or1I	2,3	W1117 W1559	India Thailand	W1117 W1559
	Or1A	2,3	W0574 W1747	Malaya India	W0574 W1747
	Or3	2 3	W3042 W3073 W3048 W3073	China China China China	W3042 W3073 W3048 W3073

* Selected wild rices are in black

Table F .

 F Informations obtained according to the Tracer software, when data set 1 was analyzed with SnappNet. Two different samplings of 12 kSNPs were considered, and also two chains for each sampling.

			First Sampling	Second Sampling
			Chain 1	Chain 2	Chain 1	Chain 2
		mean	-23799.1709 -23798.9118 -24208.6649 -24208.8018
		stdev	5.7064	5.5892	5.867	5.9986
	LogPosterior	median	-23798.6288 -23798.4253 -24208.1221 -24208.2887
		auto-correlation time	10667.9058	7764.256	9263.5725	16818.357
		effective sample size	843.7	1159.3	971.7	535.2
		mean	-23610.9374 -23610.7083 -24021.9798 -24021.9297
		stdev	4.1712	4.0226	3.9336	4.0567
	LogLikelihood	median	-23610.6061 -23610.3848 -24021.6408 -24021.5582
		auto-correlation time	34252.7407	28373.4116	31661.3188	68782.4427
		effective sample size	262.8	317.2	284.3	130.9
		mean	-188.2335	-188.2035	-186.6851	-186.8721
		stdev	5.7941	5.4802	5.3762	5.4702
	LogPrior	median	-187.8239	-187.7722	-186.2485	-186.3268
		auto-correlation time	17357.6687	11954.8279	9509.4182	15383.8939
		effective sample size	518.6	752.9	946.5	585.1
		mean	0.5567	0.5567	0.5583	0.5583
		stdev	9.4491E-4	9.5177E-4	9.7888E-4	9.5855E-4
	u	median	0.5567	0.5567	0.5583	0.5582
		auto-correlation time	1898.9027	2043.8061	1913.3736	1932.747
		effective sample size	4740.1	4404	4704.3	4657.1
		mean	4.9094	4.9073	4.7922	4.7909
		stdev	0.0734	0.0739	0.0721	0.0706
	v	median	4.9072	4.9062	4.7903	4.7925
		auto-correlation time	1896.7939	2044.0868	1944.4961	1936.7774
		effective sample size	4745.4	4403.4	4629	4647.4
		mean	10.7192	10.9194	9.8551	10.0755
		stdev	5.2274	5.3009	4.7636	4.8326
	d	median	10.0307	10.2443	9.2427	9.4077
		auto-correlation time	3692.7762	2098.2587	5591.047	4875.9969
		effective sample size	2437.5	4289.7	1609.9	1846
		mean	0.2387	0.2349	0.2217	0.2159
		stdev	0.1707	0.1667	0.1633	0.1558
	r	median	0.1996	0.1952	0.1799	0.179
		auto-correlation time	6276.9007	2088.925	1786.1765	1610.1668
		effective sample size	1434	4308.9	5039.3	5590.1

Table I .

 I ] [-16133.4, -16114.9] [-16133.0, -16114.7] MCMC summary statistics for network A (incorrect priors)

	Auto-correlation time 4537.3247	1336.3834	1454.4489
	Effective sample size	198.5752	674.2077	619.4786
	Network height	0	1	2
	mean	0.076	0.0769	0.0767
	stdev	5.12E-03	4.09E-03	4.34E-03
	median	0.0768	0.0772	0.0774
	95% HPD Interval	[0.0647, 0.0854]	[0.0686, 0.0844]	[0.0682, 0.0847]
	Auto-correlation time 10376.3331	3552.1422	3800.8964
	Effective sample size	86.8322	253.6498	237.0493
	Network length	0	1	2
	mean	0.213	0.2144	0.2137
	stdev	0.0124	9.93E-03	0.0107
	variance	1.54E-04	9.87E-05	1.14E-04
	95% HPD Interval	[0.1882, 0.2369]	[0.1967, 0.2357]	[0.1934, 0.2344]
	Auto-correlation time 7533.4457	3113.3204	3818.75
	Effective sample size	119.6	289.4016	235.9411
	Posterior	0	1	2
	mean	-15953.476	-15917.2941	-15917.7676
	stdev	5.1764	7.0277	6.7969
	median	-15952.9488	-15916.1712	-15917.1603
	95% HPD Interval	[-15962.4, -15943.6] [-15932.0, -15905.4] [-15930.3, -15905.5]
	Auto-correlation time 2395.3008	2164.8158	3002.7331
	Effective sample size	167.4111	185.2352	133.545
	Network height	0	1	2
	mean	0.0548	0.0588	0.047
	stdev	9.30E-03	0.0121	0.0112
	median	0.0548	0.06	0.0476
	95% HPD Interval	[0.0394, 0.073]	[0.0383, 0.0791]	[0.025, 0.0662]
	Auto-correlation time 16248.1423	1.00E+05	34725.0867
	Effective sample size	24.6797	4.0042	11.5478
	Network length	0	1	2
	mean	0.1655	0.1783	0.156
	stdev	0.0206	0.0252	0.0255
	median	0.1649	0.1805	0.158
	95% HPD Interval	[0.1264, 0.2024]	[0.1331, 0.2263]	[0.1064, 0.201]
	Auto-correlation time 11802.0222	74214.3724	27882.5047
	Effective sample size	33.9772	5.4033	14.3818

Table N .

 N , Table O and Table P. Each table focuses on a different population size prior, while averaging across the topology priors.We observe that MCMC moves that update topology have a much lower acceptance rate than MCMC moves that update branch lengths and population sizes. FlipReticulation moves, which flip the direction of a reticulation branch, are the least likely to be accepted. There is no clear difference in the acceptance rates between different population size priors. More work is needed to determine what the proposal weights should be in order to optimally sample from the posterior distribution. MCMC acceptance rates for Network B (correct population size priors).Id Pr accept Pr proposed Pr proposed Pr accept

	RelocateBranch	2.59E-02	2.33E-02	6.02E-04
	RelocateBranchNarrow 6.01E-04	2.34E-02	1.41E-05
	Branch length			
	NodeSlider	5.20E-01	2.33E-02	1.21E-02
	NodeUniform	2.68E-01	2.32E-02	6.22E-03
	NetworkMultiplier	2.58E-01	1.15E-02	2.97E-03
	OriginMultiplier	7.42E-01	1.17E-02	8.67E-03
	Population size			
	ChangeGamma	3.36E-01	3.49E-01	1.17E-01
	ChangeAllGamma	3.15E-01	3.49E-01	1.10E-01
	Topology moves			
	AddReticulation	1.43E-04	2.32E-02	3.31E-06
	DeleteReticulation	4.55E-05	2.32E-02	1.06E-06
	FlipReticulation	8.05E-06	2.35E-02	1.89E-07
	RelocateBranch	3.07E-02	2.34E-02	7.20E-04
	RelocateBranchNarrow 1.81E-03	2.33E-02	4.21E-05
	Branch length			
	NodeSlider	5.29E-01	2.32E-02	1.23E-02
	NodeUniform	2.73E-01	2.32E-02	6.33E-03
	NetworkMultiplier	2.92E-01	1.15E-02	3.36E-03
	OriginMultiplier	7.50E-01	1.18E-02	8.86E-03
	Population size			
	ChangeGamma	3.16E-01	3.49E-01	1.10E-01
	ChangeAllGamma	2.80E-01	3.48E-01	9.75E-02
	Table O. MCMC acceptance rates for Network B (incorrect population size
	priors Γ(1, 1000)).			
	Id	Pr accept Pr proposed Pr proposed Pr accept
	Topology moves			
	AddReticulation	1.52E-04	2.33E-02	3.55E-06
	DeleteReticulation	6.72E-05	2.32E-02	1.56E-06
	FlipReticulation	1.44E-05	2.33E-02	3.33E-07
		56		

Table P .

 P MCMC acceptance rates for Network B (incorrect population size priors Γ(1, 2000)).

	Id	Pr accept Pr proposed Pr proposed Pr accept
	Topology moves			
	AddReticulation	1.14E-04	2.32E-02	2.64E-06
	DeleteReticulation	3.25E-05	2.32E-02	7.54E-07
	FlipReticulation	2.43E-05	2.33E-02	5.68E-07
	RelocateBranch	2.71E-02	2.33E-02	6.31E-04
	RelocateBranchNarrow 5.49E-04	2.33E-02	1.28E-05
	Branch length			
	NodeSlider	5.11E-01	2.33E-02	1.19E-02
	NodeUniform	2.53E-01	2.32E-02	5.86E-03
	NetworkMultiplier	2.65E-01	1.15E-02	3.04E-03
	OriginMultiplier	7.46E-01	1.18E-02	8.77E-03
	Population size			
	ChangeGamma	3.69E-01	3.49E-01	1.29E-01
	ChangeAllGamma	3.80E-01	3.49E-01	1.32E-01
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We then sum over all possible realizations of N x and R x , and obtain: F x,y,z n x , n y , n z ; r x , r y , r z = nx rx P r L(x,y,z) | n x , n y , n z , r x , r y , r z , n x , r x × P n x , r x | n x , n y , n z , r x , r y , r z × P n x , n y , n z , where the ranges in the summation terms are the same as those in the statement. Now recall that L(x, x) and L(y, y) are disjoint vectors and note that their concatenation is equivalent to L(x, y, z). This means that r L(x,y,z) can also be written as r L(x,x) , r L(y,y) . Moreover, N z = n z and N x = n x implies N y = n z -n x , and similarly R z = r z and R x = r x implies R y = r z -r x . We can then write: P r L(x,y,z) | n x , n y , n z , r x , r y , r z , n x , r x = P r L(x,x) , r L(y,y) | n x , n y , n z , r x , r y , r z , n x , r x , N y = n z -n x , R y = r z -r x = P r L(x,x) | n x , r x , n x , r x × P r L(y,y) | n y , r y , N y = n z -n x , R y = r z -r x .

In the last equality above, we used the fact that R L(x,x) and R L(y,y) are independent random variables, given N x,x , R x,x and N y,y , R y,y , respectively. Moreover, P n x , r x | n x , n y , n z , r x , r y , r z = P r x | n x , n x , n y , n z , r x , r y , r z × P n x | n x , n y , n z , r x , r y , r z = P r x | n x , n z , r z × P n x | n x , n y , n z , where in the last equality we have used the fact that R x is independent of N x , N y , R x , R y , when given N x , N z , R z , and the fact that N x is independent of R x , R y , R z , when given N x , N y , N z . Putting all this together, we get: F x,y,z n x , n y , n z ; r x , r y , r z = nx rx P r L(x,x) | n x , r x , n x , r x × P r L(y,y) | n y , r y , N y = n z -n x , R y = r z -r x × P r x | n x , n z , r z × P n x , n x , n y , n z .

Now note that

where the last equality is due to the independence between the lineages from L(x, x) and those from L(y, y).

Likelihood computation in detail

SnappNet uses Algorithm 1 to compute the full likelihood of a network Ψ with respect to D i , the data from marker i. The algorithm starts by initializing the data structures that will subsequently be used and then processes all nodes of the network Ψ using the rules presented in the main text. Rules 2, 3 and 4 are applied respectively in Algorithm 3, 4 and 5, together with suitable modifications of data structures.

The data structures are the following: ReadyNodesQ, a queue storing the nodes that are ready to be processed; Processed, which stores whether a node has already been processed or not; and CurrF, a dictionary that associates any branch x to the F x having x in x. In this pseudocode, F x represents a data structure holding all the relevant values of F x (n x , r x ), as well as the vector of population interfaces x. We also note that, to reduce memory usage, we only store the F x associated to branches that separate an unprocessed node to a processed node, as these are the only ones that will be used in future computations. Note that unlike in the main text, nodes are denoted u, u and u p in S1 Text. 7 Supplementary informations on rice real data branch was specified as Γ (1,200). The 'incorrect' population size prior on each branch was specified as Γ (1,[START_REF] Ebersberger | Mapping human genetic ancestry[END_REF]. For network B we considered two additional incorrect population size priors, namely Γ(1, 1000) and Γ (1,2000). Note that the rest of the priors of the model used the default SnappNet settings. In order to assess convergence we ran two MCMC chains for each prior setting (as specified in Table G). We randomly drew initial networks and population sizes for each MCMC chain from the prior distribution. Also note that, here we do not impose any upper bound on the number of reticulations in the sampled networks.

Results for network A

We c) and U(d)). We assume convergence for network topology since there was only one unique topology for each posterior distribution of the chains with correct population size priors. In each case the unique topology matched up with the topology of network A. Furthermore in Fig U(b) all chains have similar prior distributions. This could be due to the topology of network A that is very unlikely under all the specified birth-hybridization model priors (similar to sampling from a flat prior). We also note a much lower ESS under the model prior with reticulation mean close to zero (see ESS in Table H).

Chains with incorrect population size priors also converged to the correct topology. Similar to correct priors, there was only one unique topology for all chains. However the chains did not converge to the correct network height or network length. This is not unexpected since the length of a branch and its associated population size are correlated (see Bryant et al. [2] for more detail). Furthermore the ESS for chains with incorrect population size priors is significantly lower than chains with correct population size priors (see ESS in Table H and Table I). There is also a difference in ESS between chains with different topology priors. In this case ESS is highest when the mean number of reticulations on the network topology prior is close to one and lowest when mean number of reticulations for the network topology prior is close to two. This seems to suggest that specifying a prior with correct mean number of reticulations can improve sampling efficiency.