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Abstract

For various species, high quality sequences and complete genomes are nowadays
available for many individuals. This makes data analysis challenging, as methods need
not only to be accurate, but also time efficient given the tremendous amount of data to
process. In this article, we introduce an efficient method to infer the evolutionary
history of individuals under the multispecies coalescent model in networks (MSNC).
Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate
nodes, which allow to model complex biological events such as horizontal gene transfer,
hybridization and introgression. We present a novel way to compute the likelihood of
biallelic markers sampled along genomes whose evolution involved such events. This
likelihood computation is at the heart of a Bayesian network inference method called
SnappNet, as it extends the Snapp method inferring evolutionary trees under the
multispecies coalescent model, to networks. SnappNet is available as a package of the
well-known beast 2 software.

Recently, the MCMC BiMarkers method, implemented in PhyloNet, also extended
Snapp to networks. Both methods take biallelic markers as input, rely on the same
model of evolution and sample networks in a Bayesian framework, though using
different methods for computing priors. However, SnappNet relies on algorithms that
are exponentially more time-efficient on non-trivial networks. Using simulations, we
compare performances of SnappNet and MCMC BiMarkers. We show that both
methods enjoy similar abilities to recover simple networks, but SnappNet is more
accurate than MCMC BiMarkers on more complex network scenarios. Also, on complex
networks, SnappNet is found to be extremely faster than MCMC BiMarkers in terms of
time required for the likelihood computation. We finally illustrate SnappNet
performances on a rice data set. SnappNet infers a scenario that is consistent with
previous results and provides additional understanding of rice evolution.
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Author summary

Nowadays, to make the best use of the vast amount of genomic data at our disposal,
there is a real need for methods able to model complex biological mechanisms such as
hybridization and introgression. Understanding such mechanisms can help geneticists to
elaborate strategies in crop improvement that may help reducing poverty and dealing
with climate change. However, reconstructing such evolution scenarios is challenging.
Indeed, the inference of phylogenetic networks, which explicitly model reticulation
events such as hybridization and introgression, requires high computational resources.
Then, on large data sets, biologists generally deduce reticulation events indirectly using
species tree inference tools.

In this context, we present a new Bayesian method, called SnappNet, dedicated to
phylogenetic network inference. Our method is competitive in terms of execution speed
with respect to its competitors. This speed gain enables us to consider more complex
evolution scenarios during Bayesian analyses. When applied to rice genomic data,
SnappNet retrieved an evolution scenario that confirms the global triple foundation of
the species and the origin of cBasmati as a hybrid derivative between Japonica cultivars
and a local Indian form. It suggests that this hybridization is ancient and probably
precedes the domestication of cAus.

Introduction 1

Complete genomes for numerous species in various life domains [1–5], and even for 2

several individuals for some species [6, 7] are nowadays available thanks to next 3

generation sequencing. This flow of data finds applications in various fields such as 4

pathogenecity [8], crop improvement [9], evolutionary genetics [10] or population 5

migration and history [11–13]. Generally, phylogenomic studies use as input thousands 6

to millions genomic fragments sampled across different species. To process such a large 7

amount of data, methods need not only to be accurate, but also time efficient. The 8

availability of numerous genomes at both the intra and inter species levels has been a 9

fertile ground for studies at the interface of population genetics and phylogenetics [14] 10

that aim to estimate the evolutionary history of closely related species. In particular, 11

the well-known coalescent model from population genetics [15] has been extended to the 12

multispecies coalescent (MSC) model [16,17] to handle studies involving populations or 13

individuals from several species. Recent works show how to incorporate sequence 14

evolution processes into the MSC [18,19]. As a result, it is now possible to reconstruct 15

evolutionary histories while accounting for both incomplete lineage sorting (ILS) and 16

sequence evolution [20,21]. 17

For a given locus, ILS leads different individuals in a same population to have 18

different alleles that can trace back to different ancestors. Then, if speciation occurs 19

before the different alleles get sorted in the population, the locus tree topology can 20

differ from the species history [22]. But incongruence between these trees can also result 21

from biological phenomena that can cause a species to inherit lineages and/or genomic 22

fragments from more than one parent species. Examples of such phenomena include 23

hybrid speciation [23–26], introgression [27–29] and horizontal gene transfer [30, 31] (the 24

latter is not addressed in this paper). As a consequence of these reticulate events, trees 25

are not suited to represent species history, and should be replaced by phylogenetic 26

networks. A rooted phylogenetic network is mainly a directed acyclic graph whose 27

internal nodes can have several children, as in trees, but can also have several 28

parents [32–34]. Various models of phylogenetic network have been proposed over time 29

to explicitly represent reticulate evolution, such as hybridization networks [35] or 30
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ancestral recombination graphs [36], along with dozens of inference methods [37,38]. 31

Model-based methods have been proposed to handle simultaneously ILS and 32

reticulate evolution, which is a desired feature to avoid bias in the inference [39–41]. 33

These methods postulate a probabilistic model of evolution and then estimate its 34

parameters –including the underlying network– from the data. The estimation of 35

parameters such as branch lengths (hence speciation dates) and population sizes makes 36

them more versatile than combinatorial methods [42]. On the down side, they usually 37

involve high running times as they explore large parameter spaces. Two probabilistic 38

models differentiate regarding the way a locus tree can be embedded within a network. 39

In Kubatko’s model [43,44], all lineages of a given locus tree coalesce within a single 40

species tree displayed by the network. The model of Yu et al. [45] is more general as, at 41

each reticulation node, a lineage of the locus tree is allowed to descend from a parental 42

ancestor independently of which ancestors provide the other lineages. Works on the 43

latter model extend in various ways the MSC model to consider network-like evolution, 44

giving rise to the multispecies network coalescent (MSNC), intensively studied in recent 45

years [38,41,46–55]. For this model, Yu et al. have shown how to compute the 46

probability of a non-recombinant locus (gene) tree evolving inside a network, given the 47

branch lengths and inheritance probabilities at each reticulation node of the 48

network [46,48]. This opened the way to infer networks according to the well-known 49

maximum likelihood and Bayesian statistical frameworks. 50

When the input data consists of multi-locus alignments, a first idea is to decompose 51

the inference process in two steps: first, infer locus trees from their respective 52

alignments, then look for networks that assign high probability to these trees. Following 53

this principle, Yu et al. devised a maximum likelihood method [48], then a Bayesian 54

sampling technique [51]. However, using locus trees as a proxy for molecular sequences 55

loses some information contained in the alignments [16] and is subject to tree 56

reconstruction errors. For this reasons, recent work considers jointly estimating the 57

locus trees and the underlying network. This brings the extra advantage that better 58

locus trees are likely to be obtained [56], but running time may become prohibitive 59

already for inferences on few species. Wen et al. in the PhyloNet software [52] and 60

Zhang et al. with the SpeciesNetwork method [53] both proposed Bayesian methods 61

following this principle. 62

Though a number of trees for a same locus are considered during such inference 63

processes, they are still considered one at a time, which may lead to a precision loss 64

(and a time loss) compared to an inference process that would consider all possible trees 65

for a given locus at once. When data consists of a set of biallelic markers (e.g., SNPs), 66

the ground-breaking work of Bryant et al. [19] allows to compute likelihoods while 67

integrating over all gene trees, under the MSC model (i.e., when representing the history 68

as a tree). This work was recently extended to the MSNC context by Zhu et al [54]. 69

In this paper, we present a novel way to compute the probability of biallelic markers, 70

given a network. This likelihood computation is at the heart of a Bayesian network 71

inference method we called SnappNet, as it extends the Snapp method [19] to 72

networks. SnappNet is available at https://github.com/rabier/MySnappNet and 73

distributed as a package of the well-known Beast 2 software [57,58]. This package 74

partly relies on code from Snapp [19] to handle sequence evolution and on code from 75

SpeciesNetwork [53] to modify the network during the MCMC as well as to compute 76

network priors. 77

Our approach differs from that of Zhang et al. [53] in that SnappNet takes a matrix 78

of biallelic markers as input while SpeciesNetwork expects a set of alignments. Thus, 79

the substitution models differ, as we consider only two states (alleles) while 80

SpeciesNetwork deals with nucleotides. The computational approaches also differ as 81
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our MCMC integrates over all locus trees for each sampled network, while 82

SpeciesNetwork jointly samples networks and gene trees. Though summarizing the 83

alignments by gene trees might be less flexible, this allows SpeciesNetwork to 84

provide embeddings of the gene trees into the sampled networks, while in our approach 85

this needs to be done in a complementary step after running SnappNet. However, 86

managing the embeddings can also lead to computational issues as Zhang et al. report, 87

since a topological change for the network usually requires a recomputation of the 88

embeddings for all gene trees [53]. 89

The SnappNet method we present here is much closer to the MCMC BiMarkers 90

method of Zhu et al. [54], which also extends the Snapp method [19] to network 91

inference. Both methods take biallelic markers as input, rely on the same model of 92

evolution and both sample networks in a Bayesian framework. However, they differ in 93

two important respects: the way the Bayesian inference is conducted and, most 94

importantly, in the algorithm to compute the likelihoods. The results we present here 95

show that this often leads to tremendous differences in running time, but also to 96

differences in convergence. 97

We note that reducing running times of model-based methods can also be done by 98

approximating likelihoods, as done by pseudo-likelihood methods: the network likelihood 99

is computed for subparts of its topology, these values being then assembled to 100

approximate the likelihood of the full network. A decomposition of the network into 101

rooted networks on three taxa (trinets) is proposed in the PhyloNet software [49,59] 102

and one into semi-directed networks on four taxa in the SNaQ method of the 103

PhyloNetwork package [50]. Since pseudo-likelihood methods are approximate 104

heuristics to compute a likelihood, they are usually much faster than full likelihood 105

methods and can handle large genomic data sets. On the downside, these methods face, 106

more often than the full-likelihood methods, serious identifiability problems since some 107

networks simply cannot be recovered from topological substructures such as rooted 108

triples, quartets or even embedded trees [49,50,60]. Here we focus on the exact 109

computation of the full likelihood, for which identifiability issues are likely to be less 110

serious [41,61]. 111

In the following, we first detail the mathematical model considered, then explain the 112

SnappNet method, before illustrating its performances on simulated and real data. 113

Materials and methods 114

Input data 115

SnappNet considers as input data a matrix D containing an alignment of m biallelic 116

markers sampled from a number of individuals. Each individual belongs to a given 117

species. These species are in a 1-to-1 correspondence with the leaves of an unknown 118

phylogenetic network, which is the main parameter that we wish to estimate. The 119

markers can be SNPs or random sites sampled from chromosomes, including invariant 120

sites. All markers are considered to be independent, so a certain distance must be 121

preserved between genomic locations included in the matrix. We identify the two alleles 122

with the colors red and green. 123

Each column Di of the alignment corresponds to a different marker. The only 124

information that is relevant to SnappNet’s computations are the numbers of red and 125

green alleles observed in Di for the individuals of a given species. This implies that 126

unphased data can be analyzed with SnappNet, as long as it is translated in the input 127

format expected by the software. 128
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Fig 1. Example of a phylogenetic network. The top node represents the origin and its
child node is called the root of the network. Time flows from the origin node to the
leaves (here A,B,C,D) so branches are directed from the top to the leaves. Each
branch x is associated to a length tx, and to a population size θx. Additionally, branches
x on top of a reticulation node have an inheritance probability γx representing their
probability to have contributed to any individual at the top of the branch just below.

Mathematical model 129

In this paper, we refer to phylogenetic networks as directed acyclic graphs with branches 130

oriented as the time flows, see Fig 1. At their extremities, networks have a single node 131

with no incoming branch and a single outgoing branch —the origin— and a number of 132

nodes with a single incoming branch and no outgoing branches —the leaves. All other 133

nodes either have a single incoming branch and two outgoing branches —the tree nodes— 134

or two incoming branches and a single outgoing branch —the reticulation nodes. Tree 135

nodes and reticulation nodes represent speciations and hybridization events, respectively. 136

For consistency with Zhang et al. [53], the immediate descendant of the origin – that is, 137

the tree node representing the first speciation in the network – is called the root. 138

Each branch x in the network represents a population, and is associated to two 139

parameters: a scaled population size θx and a branch length tx. Any branch x on top of 140

a reticulation node h is further associated with a probability γx ∈ (0, 1), under the 141

constraint that the probabilities of the two parent branches of h sum to 1. These 142

probabilities are called inheritance probabilities. All these parameters have a role in 143

determining how gene trees are generated by the model, and how markers evolve along 144

these gene trees, as described in the next two subsections, respectively. 145

Gene tree model 146

Gene trees are obtained according to the MSNC model. The process starts at the leaves 147

of the network, where a given number of lineages is sampled for each leaf, each lineage 148

going backwards in time, until all lineages coalesce. Along the way, this process 149

determines a gene tree whose branch lengths are each determined as the amount of time 150

between two coalescences affecting a single lineage. Here and in what follows, “times” 151

—and therefore branch lengths— are always measured in terms of expected number of 152

mutations per site. 153

Within each branch x of the network, the model applies a standard coalescent 154

process governed by θx. In detail, any two lineages within x coalesce at rate 2/θx, 155
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meaning that the first coalescent time among k lineages follows an exponential 156

distribution E(k(k − 1)/θx), since the coalescence of each combination of 2 lineages is 157

equiprobable. Naturally, if the waiting time to coalescence exceeds the branch length tx, 158

the lineages are passed to the network branch(es) above x without coalescence. If there 159

are two such branches y, z (i.e., the origin of x is a reticulation node), then each lineage 160

that has arrived at the top of branch x chooses independently whether it goes to y or z 161

with probabilities γy and γz = 1− γy, respectively [45]. The process terminates when all 162

lineages have coalesced and only one ancestral lineage remains. 163

Mutation model 164

As is customary for unlinked loci, we assume that the data is generated by a different 165

gene tree for each biallelic marker. The evolution of a marker along the branches of this 166

gene tree follows a two-states asymmetric continuous-time Markov model, scaled so as 167

to ensure that 1 mutation is expected per time unit. This is the same model as Bryant 168

et al. [19]. For completeness, we describe this mutation model below. 169

We represent the two alleles by red and green colors. Let u and v denote the 170

instantaneous rates of mutating from red to green, and from green to red, respectively. 171

Then, for a single lineage, P(red at t+ ∆t | green at t) = v∆t+ o(∆t), and 172

P(green at t+ ∆t | red at t) = u∆t+ o(∆t), where o(∆t) is negligible when ∆t tends to 173

zero. The stationary distribution for the allele at the root of the gene tree is green with 174

probability u/(u+ v) and red with probability v/(u+ v). Under this model, the 175

expected number of mutations per time unit is 2uv/(u+ v). In order to measure time 176

(branch lengths) in terms of expected mutations per site (i.e. genetic distance), we 177

impose the constraint 2uv/(u+ v) = 1 as in [19]. When u and v are set to 1, the model 178

is also known as the Haldane model [62] or the Cavender-Farris-Neyman model [63]. 179

Bayesian framework 180

Posterior distribution 181

Let Di be the data for the i-th marker. The posterior distribution of the phylogenetic
network Ψ can be expressed as:

P(Ψ|D1, . . . , Dm) ∝ P (D1, . . . , Dm | Ψ) · P(Ψ)

= P(Ψ) ·
m∏
i=1

P(Di|Ψ) (1)

where ∝ means “is proportional to”, and where P (D1, . . . , Dm | Ψ) and P(Ψ) refer to 182

the likelihood and the network prior, respectively. 183

Eq 1 —which relies on the independence of the data at different markers— allows us 184

to compute a quantity proportional to the posterior by only using the prior of Ψ and 185

the likelihoods of Ψ with respect to each marker, that is P(Di|Ψ). While we could 186

approximate P(Di|Ψ) by sampling gene trees from the distribution determined by the 187

species network, this is time-consuming and not necessary. Similarly to the work by 188

Bryant et al. [19] for inferring phylogenetic trees, we show below that P(Di|Ψ) can be 189

computed for networks using dynamic programming. 190

SnappNet samples networks from their posterior distribution by using Markov 191

chain Monte-Carlo (MCMC) based on Eq 1. 192
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Priors 193

Before describing the network prior, let us recall the network components: the topology, 194

the branch lengths, the inheritance probabilities and the populations sizes. In this 195

context, we used the birth-hybridization process of Zhang et al. [53] to model the 196

network topology and its branch lengths. This process depends on the speciation rate λ, 197

on the hybridization rate ν and on the time of origin τ0. Hyperpriors are imposed onto 198

these parameters. An exponential distribution is used for the hyperparameters 199

d := λ− ν and τ0. The hyperparameter r := ν/λ is assigned a Beta distribution. We 200

refer to [53] for more details. The inheritance probabilities are modeled according to a 201

uniform distribution. Moreover, like Snapp, SnappNet considers independent and 202

identically distributed Gamma distributions as priors on population sizes θx associated 203

to each network branch. This prior on each population size induces a prior on the 204

corresponding coalescence rate (see [19] and Snapp’s code). Last, as in Snapp, the user 205

can specify fixed values for the u and v rates, or impose a prior for these rates and let 206

them be sampled within the MCMC. 207

Partial likelihoods 208

In the next section we describe a few recursive formulae that we use to calculate the 209

likelihood P(Di|Ψ) using a dynamic programming algorithm. Here we introduce the 210

notation that allows us to define the quantities involved in our computations. Unless 211

otherwise stated, notations that follow are relative to the ith biallelic marker. To keep 212

the notations light, the dependence on i is not explicit. 213

Given a branch x, we denote by x and x the top and bottom of that branch. We call 214

x and x population interfaces. We say that two population interfaces are incomparable if 215

neither is a descendant of the other (which also excludes them being equal). Nx and Nx 216

are random variables denoting the number of gene tree lineages at the top and at the 217

bottom of x, respectively. Similarly, Rx and Rx denote the number of red lineages at 218

the top and bottom of x, respectively. See Fig 2 for illustration of these concepts and of 219

the notation that we introduce in the following. 220

For simplicity, when x is a branch incident to a leaf, we identify x with that leaf. 221

Two quantities that are known about each leaf are rx and nx, which denote the number 222

of red lineages sampled at x and the total number of lineages sampled at x, respectively. 223

Note that Nx, in this case, is non-random: indeed, it must necessarily equal nx, which is 224

determined by the number of individuals sampled from that species. On the other hand, 225

the model we adopt determines a distribution for the Rx. The probability of the 226

observed values rx for these random variables equals P(Di|Ψ). 227

Now let x be an ordered collection (i.e. a vector) of population interfaces. We use nx 228

(or rx) to denote a vector of non-negative integers in a 1-to-1 correspondence with the 229

elements of x. Then Nx = nx is a shorthand for the equations expressing that the 230

numbers of lineages in nx are observed at their respective interfaces in x. For example, 231

if x = (x, y) and nx = (m,n), then Nx = nx is a shorthand for Nx = m,Ny = n. We 232

use Rx = rx analogously to express the observation of the numbers of red lineages in rx 233

at x. 234

In order to calculate the likelihood P(Di|Ψ), we subdivide the problem into that of 235

calculating quantities that are analogous to partial likelihoods. Given a vector of 236

population interfaces x, let L(x) denote a vector containing the leaves that descend 237

from any element of x, and let rL(x) be the vector containing the numbers of red 238

lineages rx observed at each leaf x in L(x). Then we define: 239

Fx (nx; rx) = P
(
RL(x) = rL(x) | Nx = nx, Rx = rx

)
· P (Nx = nx) (2)
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(see Fig 2). These quantities are generalizations of similar quantities defined by Bryant 240

et al. [19]. We will call them partial likelihoods, although, as noted by these authors, 241

strictly speaking this is an abuse of language. 242

F

z

x

y

A B C D

Fig 2. Illustration of the concepts and notation employed to describe likelihood
computations. The species network topology is the same as that in Fig 1, but branches
(populations) are now represented as grey parallelograms. A gene tree is drawn inside
the species network (green and red lines). One mutation occurs in the branch above D.
We focus on three branches: x, y and z. Colored horizontal bars represent the
population interfaces x, y, y and z. Note that (x, y) (blue) is a vector of incomparable
population interfaces, while (y, z) (orange) is not, as z is a descendant of y. Here,
nA = nB = nC = nD = 2, rA = 2, rB = 1, rC = 0, rD = 2 are known, whereas the
values of Nx, Ny, Ny, Nz and Rx, Ry, Ry, Rz are not observed, and depend on the gene

tree generated by the MSNC process. For the gene tree shown, N(x,y) = (2, 1) and
R(x,y) = (2, 0). Since z is incident to leaf B, we have z = B and Rz = rB = 1. Now
note L((x, y)) = (A,B,C). Then, F(x,y) ((n, n′); (r, r′)) =

P
(
RA = rA, RB = rB , RC = rC | Nx = n,Ny = n′, Rx = r,Ry = r′

)
P
(
Nx = n,Ny = n′

)
.

Computing partial likelihoods: the rules 243

Here we show a set of rules that can be applied to compute partial likelihoods in a 244

recursive way. Derivations and detailed proofs of the correctness of these rules can be 245

found in Section 1 in S1 Text. 246

We use the following conventions. In all the rules that follow, vectors of population 247

interfaces x,y, z are allowed to be empty. The comma operator is used to concatenate 248

vectors or append new elements at the end of vectors, for example, if 249

a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bh), then a,b = (a1, . . . , ak, b1, . . . , bh) and 250

a, c = (a1, a2, . . . , ak, c). Trivially, if a is empty, then a,b = b and a, c = (c). A vector 251

x of incomparable population interfaces is one where all pairs of population interfaces 252

are incomparable. Finally, for any branch x, let mx denote the number of lineages 253

sampled in the descendant leaves of x. 254

Rule 0: Let x be a branch incident to a leaf. Then, 255

F(x) ((n); (r)) = 1{n = nx} · 1{r = rx}
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Rule 1: Let x, x be a vector of incomparable population interfaces. Then, 256

Fx,x (nx, nx; rx, rx) =

mx∑
n=nx

n∑
r=0

Fx,x (nx, n; rx, r) exp(Qxtx)(n,r);(nx,rx)

where tx denotes the length of branch x, and Qx is the rate matrix defined by 257

Bryant et al. [19, p. 1922] that accounts for both coalescence and mutation (see 258

also Section 1 in S1 Text). 259

Rule 2: Let x, x and y, y be two vectors of incomparable population interfaces, such
that L(x, x) and L(y, y) have no leaf in common. Let x, y be the immediate
descendants of branch z, as in Fig 3. Then,

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
=∑

nx

∑
rx

Fx,x (nx, nx; rx, rx)Fy,y

(
ny, nz − nx; ry, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1
The ranges of nx and rx in the summation terms are defined by 260

max(0, nz −my) ≤ nx ≤ min(mx, nz) and 261

max(0, nx + rz − nz) ≤ rx ≤ min(nx, rz). 262

-

-

r

(a)

(b)

x y

z

x y

z

Fx,y,z

Fx,x Fy,y

Fig 3. Illustration of Rule 2. Given (a) the partial likelihoods for the x, x (red) vector
of population interfaces and the partial likelihoods for the y, y (blue) vector of
population interfaces, Rule 2 allows us to compute the partial likelihoods for the (green)
vector x,y, z (b).

Rule 3: Let x, x be a vector of incomparable population interfaces, such that branch 263

x’s top node is a reticulation node. Let y, z be the branches immediately ancestral 264

to x, as in Fig 4. Then, 265

Fx,y,z

(
nx, ny, nz; rx, ry, rz

)
= Fx,x

(
nx, ny + nz; rx, ry + rz

)(ny + nz
ny

)
γ
ny
y · γnzz
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⇒E
-eff-

(a)

x

y z

Fx,x

(b)

x

y z

Fx,y,z

Fig 4. Illustration of Rule 3. Given (a) the partial likelihoods for the x, x (red) vector
of population interfaces, Rule 3 allows us to compute the partial likelihoods for the
(green) vector x, y, z (b).

Rule 4: Let z, x, y be a vector of incomparable population interfaces, and let x, y be
immediate descendants of branch z, as in Fig 5. Then,

Fz,z

(
nz, nz; rz, rz

)
=∑

nx

∑
rx

Fz,x,y

(
nz, nx, nz − nx; rz, rx, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1
The ranges of nx and rx in the sums are the same as those in Rule 2. 266

Note that, in the rules above, we assume that the vectors of population interfaces 267

(VPIs from here on) on the right-hand side of each equation only contain incomparable 268

population interfaces. This is necessary to ensure the validity of the rules (see Section 1 269

in S1 Text). It is easy to verify that, as a consequence of that assumption, also the VPIs 270

on the left-hand side of each equation only contain incomparable population interfaces. 271

Therefore, repeated application of the rules can only result in a partial likelihood 272

Fx (nx; rx) where x is a vector of incomparable population interfaces. All VPIs that we 273

will encounter only contain incomparable population interfaces. 274

Repeated application of the rules above, performed by an algorithm described in the 275

next subsection, leads eventually to the partial likelihoods for ρ, the population interface 276

immediately above the root of the network (i.e, ρ is the branch linking the origin to the 277

root). From these partial likelihoods, the full likelihood P(Di|Ψ) is computed as follows: 278

P(Di | Ψ) =

mρ∑
n=1

n∑
r=0

F(ρ)(n; r) · P(Rρ = r | Nρ = n), (3)

where the conditional probabilities P(Rρ = r | Nρ = n) are obtained as described by 279

Bryant et al. [19]. Note that the length of branch ρ does not play any role in the 280

computation of the likelihood, so it is not identifiable. 281
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Fig 5. Illustration of Rule 4. Given (a) the partial likelihoods for the z, x, y (red)
vector of population interfaces, Rule 4 allows us to compute the partial likelihoods for
the (green) vector z, z (b).

Likelihood computation 282

We now describe the algorithm that allows SnappNet to derive the full likelihood 283

P(Di|Ψ) using the rules introduced above. We refer to Section 2 in S1 Text for detailed 284

pseudocode. 285

The central ingredient of this algorithm are the partial likelihoods for a VPI x, 286

which are stored in a matrix with potentially high dimension, denoted Fx. We say that 287

a VPI x is active at some point during the execution of the algorithm, if: (1) Fx has 288

been computed by the algorithm, (2) Fx has not yet been used to compute the partial 289

likelihoods for another VPI. To reduce memory usage, we only store Fx for active VPIs. 290

In a nutshell, the algorithm traverses each node in the network following a 291

topological sort [64], that is, in an order ensuring that a node is only traversed after all 292

its descendants have been traversed. Every node traversal involves deriving the partial 293

likelihoods of a newly active VPI from those of at most two VPIs that, as a result, 294

become inactive. Eventually, the root of the network is traversed, at which point the 295

only active VPI is (ρ) and the full likelihood of the network is computed from F(ρ) 296

using Eq 3. 297

In more detail, a node is ready to be traversed when all its child nodes have been 298

traversed. At the beginning, only leaves can be traversed and their partial likelihoods 299

F(x) are obtained by application of Rule 0, followed by Rule 1 to obtain F(x). Every 300

subsequent traversal of a node d entails application of one rule among Rules 2, 3 or 4, 301

depending on whether d is a tree node and on whether the branch(es) topped by d 302

correspond to more than one VPI (see Figs 3-5). The selected rule computes Fx for a 303

newly active VPI x. This is then followed by application of Rule 1 to replace every 304

occurrence of any population interface x in x with x. 305

It is helpful to note that at any moment, the set of active VPIs forms a frontier 306

separating the nodes that have already been traversed, from those that have not yet 307

been traversed (i.e., if branch x = (d, e) with d not traversed and e traversed, then there 308

must be an active VPI with x or x among its population interfaces). Any node that lies 309
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immediately above this frontier can be the next one to be traversed. Thus, there is some 310

latitude in the choice of the complete order in which nodes are traversed. Different 311

orders will lead to different VPIs being activated by the algorithm, which in turn will 312

lead to different running times. In fact, running times are largely determined by the 313

sizes of the VPIs encountered. This point is explored further in the next section. 314

The correctness of our implementation of the algorithm above was confirmed by 315

comparing the likelihoods we obtain to those computed with MCMC BiMarkers, which 316

also relies on biallelic marker data [54]. 317

Time complexity of computing the likelihood 318

Our approach improves the running times by several orders of magnitude with respect 319

to MCMC BiMarkers [54]. This is clearly apparent for some experiments detailed in the 320

Results section, but it can also be understood by comparing computational complexities. 321

Here, let n be the total number of individuals sampled, and let s denote the size of 322

the species network Ψ (i.e. its number of branches or its number of nodes). Let us first 323

examine the running time to process one node in Ψ. For any of Rules 0-4, let K be the 324

number of population interfaces in the VPI for which partial likelihoods are being 325

computed, that is, K is the number of elements of x, x for Rule 1, that of x,y, z for 326

Rule 2, and so on. These partial likelihoods are stored in a 2K-dimensional matrix, 327

with O(n2K) elements. Each rule specifies how to compute an element of this matrix in 328

at most O(n2) operations (in fact rules 0 and 3 only require O(1) operations). Thus, 329

any node in the network can be processed in O(n2K+2) time. 330

Since the running time of any other step – i.e. computing Eq 3, and exp(Qxtx) – is 331

dominated by these terms, the total running time is O(sn2K+2), where K is the 332

maximum number of population interfaces in a VPI activated by the given traversal. 333

Let us now compare this to the complexity of the likelihood computations described 334

by Zhu et al. [54]. Processing a node d of the network in their algorithm involves at 335

most O(n4rd+4) time, where rd is the number of reticulation nodes which descend from 336

d, and for which there exists a path from d that does not pass via a lowest articulation 337

node (see definitions in Zhu et al. [54]). In Section 3 of S1 Text, we show that this 338

entails a total running time of O(sn4`+4), where ` is the level of the network [32,65]. 339

Thus, the improvement in running times with respect to the algorithm by Zhu et 340

al. [54] relies on the fact that 2K + 2� 4`+ 4. One way of seeing this is to remark that, 341

for any traversal of the network, K ≤ `+ 1. We refer to Section 3 in S1 Text for a proof 342

of this result. Assuming that K and ` are close, this would imply that the exponent of 343

n in the worst-case time complexity is roughly halved with respect to Zhu et al. [54]. 344

However, K is potentially much smaller than the level `, as depicted in Fig 6. 345

We call the minimum value of K over all possible traversals of the network the 346

scanwidth of the network [66]. The current implementation of SnappNet chooses an 347

arbitrary traversal of the network, but research is ongoing to further lower running 348

times by relying on more involved traversal algorithms producing VPIs with sizes closer 349

to the scanwidth [66]. 350

MCMC operators 351

SnappNet incorporates the MCMC operators of SpeciesNetwork [53] to move 352

through the network space, and also benefits from operators specific to the 353

mathematical model behind Snapp [19] (e.g. population sizes, mutation rates, etc.). 354

In order to explore the network space, we used the following topological operators 355

August 26, 2021 12/42



Fig 6. Example of a phylogenetic network where the level ` is equal to 6 (the
reticulation nodes are depicted in grey), while K ∈ {3, 4, 5, 6, 7}, depending on the
traversal algorithm (not shown). A traversal ensuring that K remains close to the lower
end of this interval (the scanwidth of the network) will be several orders of magnitude
faster than algorithms whose complexity depends exponentially on `. Increasing the
number of reticulation nodes while keeping a “ladder” topology as above can make `
arbitrarily large, while the scanwidth remains constant. This topology may seem odd
but it is intended as the backbone of a more complex and realistic network with
subtrees hanging from the different internal branches of the ladder, in which case the
complexity issue remains.

from SpeciesNetwork: (a) addReticulation and (b) deleteReticulation add and delete 356

reticulation nodes respectively, (c) flipReticulation flips the direction of a reticulation 357

branch and finally (d) relocateBranch and (e) relocateBranchNarrow relocate either the 358

source or the destination of random branch. The operators on gene trees from 359

SpeciesNetwork have been discarded since in SnappNet gene trees are integrated 360

out. The following Snapp operators acting on continuous parameters are incorporated 361

within SnappNet: (a) changeUAndV changes the values of the instantaneous rates u 362

and v, (b) changeGamma and (c) changeAllGamma scale a single population size or all 363

population sizes, respectively. 364

Last, SnappNet takes also advantage of a few SpeciesNetwork operators for 365

continuous parameters: (a) turnOverScale and (b) divrRateScale allow to change 366

respectively the hyperparameters r and d for the birth-hybridization process, (c) 367

inheritanceProbUniform and (d) inheritanceProbRndWalk transform the inheritance 368

probability γ at a random reticulation node by drawing either a uniformly distributed 369

number or by applying a uniform sliding window to the logit of γ, (e) networkMultiplier 370

and (f) originMultiplier scale respectively the heights of all internal nodes or of the 371

origin node, (g) nodeUniform and (h) nodeSlider move the height of a random node 372

uniformly or using a sliding window. 373

In summary, SnappNet relies on 16 MCMC operators, described in SnappNet’s 374

manual (https://github.com/rabier/MySnappNet). We refer to the original 375

publications introducing these operators for more details [19, 53]. 376
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Simulation study 377

Simulated data 378

We implemented a simulator called SimSnappNet, an extension to networks of the 379

SimSnapp software [19]. SimSnappNet handles the MSNC model whereas SimSnapp 380

relies on the MSC model. SimSnappNet is available at 381

https://github.com/rabier/SimSnappNet. In all simulations, we considered a given 382

phylogenetic network, and a gene tree was simulated inside the network, according to 383

the MSNC model. Next, a Markov process was generated along the branches of the gene 384

tree, in order to simulate the evolution of a marker. Note that markers at different sites 385

rely on different gene trees. In all cases, we set the u and v rates to 1. Moreover, we 386

used the same θ = 0.005 value, for all network branches. Our configuration differs 387

slightly from the one of [54]. These authors considered θ = 0.006 for external branches 388

and θ = 0.005 for internal branches. Indeed, since SnappNet considers the same prior 389

distribution Γ(α, β) for all θ’s, we found it more appropriate to generate data under 390

SnappNet’s assumptions. 391

Three numbers of markers were studied: 1,000, 10,000 or 100,000 biallelic sites were 392

generated. Unless otherwise stated, constant sites were not discarded since SnappNet’s 393

mathematical formulas rely on random markers. When the analysis relied only on 394

polymorphic sites, the gene tree and the associated marker were regenerated until it 395

resulted in a polymorphic site. We considered 20 replicates for each simulation set up. 396

Phylogenetic networks studied 397

We studied the three phylogenetic networks shown in Fig 7. Networks A and B are 398

rather simple networks that we wish our tool to be able to infer. They have been taken 399

from [54] and this permits us to compare the performances of SnappNet and 400

MCMC BiMarkers on these networks, without having to rerun the latter. Networks A 401

and B have one and two reticulations, respectively. Network C, like B, has two 402

reticulations, but their relative positions are different: in C they are on top of one 403

another, allowing us to investigate the influence of nested reticulations on the inference. 404

In order to fully describe these networks, we give their extended Newick 405

representation [67] in Section 4 in S1 Text. 406

We also studied networks C(3) and C(4), which are variants of network C (see Fig 8). 407

Network C(k)—containing k reticulation nodes—is obtained by splitting species C into 408

k − 1 species, named C1, C2, ..., Ck−1, and by adding reticulations between them in the 409

way depicted in Fig 8. The relative positions of reticulation nodes in these networks 410

represents a significant computational challenge for network inference tools, and were 411

therefore used to evaluate the efficiency of a single likelihood computation performed by 412

SnappNet and MCMC BiMarkers. 413

Bayesian analysis 414

In the experiments on networks A, B and C, we used a single tree as initial state of the 415

MCMC. None of the starting trees were subtrees of the correct network topology. A few 416

alternative starting trees were used to check the convergence of the MCMC, showing a 417

limited effect of the starting tree on the posterior probabilities. All relevant Newick 418

representations are reported in S1 Text. 419

As priors on population sizes, we considered θ ∼ Γ(1, 200) for all branches. Since 420

simulated data were generated by setting θ = 0.005, the expected value of this prior 421

distribution is exactly matching the true value (E (θ) = 0.005). For calibrating the 422
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network prior, we chose the same distributions as suggested in [53]: d ∼ E(0.1), 423

r ∼ Beta(1, 1), τ0 ∼ E(10). This network prior enables to explore a large network space, 424

while imposing more weights on networks with 1 or 2 reticulations (see Fig A of S1 425

Text). Recall that network A is a 1-reticulation network, whereas networks B and C are 426

2-reticulation networks. However, in order to limit the computational burden for 427

network C (and for estimating continuous parameters on network A), we modified 428

slightly the prior by bounding the number of reticulations to 2. Last, on network B, the 429

analysis was performed by bounding the number of reticulations to 3 in order to 430

compare SnappNet’s results with those obtained by MCMC BiMarkers [54]. We refer to 431

Figs B and C in S1 Text for illustrations of the “bounded” prior. 432

MCMC convergence 433

To track the behaviour of the Bayesian algorithm, we used the Effective Sample Size 434

(ESS) criterion [68]. We assume that MCMC convergence was reached and that enough 435

“independent” observations were sampled, when the ESS values for all model parameters 436

are greater than 200 (see https://beast.community/ess_tutorial). This threshold 437

is commonly adopted in the MCMC community. The first 10% samples were discarded 438

as burn-in and the ESSs were computed on the remaining observations, using the Tracer 439

software [69]. When we could not reach ESSs of 200, the ESS threshold is specified in 440

the text. In the following, when speaking of a specific ESS value, we refer to the ESS 441

computed for the posterior density function of the sampled networks (first value 442

reported by Tracer). In order to estimate posterior distributions, we only sampled the 443

MCMC every 1000 iterations. This was done to reduce autocorrelation across the 444

sampled networks. 445

Note that here we do not attempt to measure an ESS of the network topologies 446

sampled by the MCMC. While approaches to do this have been proposed for tree 447

topologies [70], adapting such approaches to network topologies lies beyond the scope of 448

this paper (see also the Discussion). Topological convergence was only assessed by 449

inspecting the similarity between the results obtained for different MCMC replicates. 450

Accuracy of SnappNet 451

In order to evaluate SnappNet’s ability to recover the true network topology, the 452

posterior probability of the true topology was estimated by taking the proportion of 453

sampled network topologies matching the true topology. Note that unlike previous 454

works [54], we did not use a measure of topological dissimilarity, because most of the 455

proposed measures can equal 0 even when the network topologies are different [38,71]. 456

In order to verify whether a sampled network and the true network have the same 457

topologies, we used the isomorphism tester program available at 458

https://github.com/igel-kun/phylo_tools. We report the average (estimated) 459

posterior probability of the true network topology over the different replicates. 460

For some networks, we also investigated the ability of estimating continuous 461

parameters, including network length (the sum of all branch lengths) and network 462

height (the distance between the root and the leaves). 463

Real data study on rice 464

In order to assess the performance of our method on real data, we addressed the case of 465

rice, both a prominent crop and a well-studied advanced plant model for which extensive 466

data is available. We used genomic data extracted from [72] and [73]. We focused on 24 467
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representative varieties (see Table C and Fig M in S1 Text) spanning the four main rice 468

subpopulations of cultivars (Indica, Japonica, cAus and cBasmati) as well as the 469

different types of wild rice O. rufipogon that are suspected to have been involved in the 470

origin of cultivated rice. We built three random data sets, keeping a large panel of Asian 471

countries. Data set 1 contains only one variety per subpopulation, whereas data sets 2 472

and 3 contain two varieties per subpopulation (cf. Tables D and E in S1 Text). For each 473

of the 12 chromosomes, we sampled 1k SNPs having only homozygous alleles. Following 474

recommendations of [19], the SNPs were chosen for each of the 12 chromosomes to be as 475

separated as possible from one another to avoid linkage between loci, though [54] has 476

shown this kind of analysis is quite robust to this bias. The concatenation of these 477

SNPs lead to 12k whole-genome SNP data sets on the selected rice varieties. 478

SnappNet was run again discarding the first 10% of samples as burn-in and 479

sampling the MCMC every 1000 iterations. The number of reticulations was bounded 480

by two for data sets 1 and 3. On data set 2, in order to obtain results in a reasonable 481

amount of time (cf. the Results section), only one reticulation was finally allowed. 482
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Fig 7. The three phylogenetic networks used for simulating data. Networks A and B
are taken from [54]. Branch lengths are measured in units of expected number of
mutations per site (i.e. substitutions per site). Displayed values represent inheritance
probabilities.
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Network A Network B

Hyperparameters
Number of sites

1,000 10,000 100,000 1,000 10,000 100,000

True (α = 1, β = 200, α
β = 0.005) 0% 100% 100% 0% 81.25% 100%

Incorrect (α = 1, β = 1000, α
β = 0.001) 0% 94.73% 91.30% 0% 80% 95.65%

Incorrect (α = 1, β = 2000, α
β = 5× 10−4) 0% 100% 80% 0% 85% 85.71%

Table 1. Average posterior probability of the correct topology (for networks A and B,
see Fig 7) obtained by running SnappNet on simulated data. Results are given as a
function of the number of sites and as a function of the hyperparameter values α and β
for the prior on θ (θ ∼ Γ(α, β) and E (θ) = α

β ). Here, one lineage was simulated per
species. Constant sites are included in the analysis, the rates u and v are considered as
known, and 20 replicates are considered for each simulation set up (criterion ESS> 200 ;
d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10) for the network prior).

Results 483

Simulations 484

First, we compare the performances of SnappNet and MCMC BiMarkers on data 485

simulated with networks A and B (cf. Fig 7), already studied in [54], and the more 486

complex C network. Second, we compare the two tools in terms of CPU time and 487

memory required to compute the likelihood of network C and its variants. This step is 488

usually repeated million times in an MCMC analysis, and is therefore critical for its 489

overall efficiency. Note that focusing on a single likelihood calculation allows us to 490

exclude the effect of the prior on the overall efficiency of the MCMC, and to only test 491

the computational efficiency of the new algorithm to compute the likelihood 492

implemented in SnappNet. 493

Study of networks A and B 494

1) Ability to recover the network topology 495

Table 1 reports on the ability of SnappNet to recover the correct topology of 496

networks A and B. As in [54], we simulated one individual for each species. Note that 497

under this setting, population sizes θ corresponding to external branches are 498

unidentifiable, as there is no coalescence event occurring along these branches. We 499

studied different densities of markers and different priors on θ. Besides, we focused on 500

either a) the true prior Γ(1, 200) with E (θ) = 0.005, b) the incorrect prior Γ(1, 1000) 501

with E (θ) = 0.001, or c) the incorrect prior Γ(1, 2000) with E (θ) = 5× 10−4. Last, in 502

order to compare our results with [54], we considered u and v, the mutation rates, as 503

known parameters. Indeed, MCMC BiMarkers relies on the operators of [52] that do not 504

allow changes of these rates. 505

First consider simulations under the true prior. As shown in Table 1, in presence of 506

a large number of markers, SnappNet recovered networks A and B with high posterior 507

probability. In particular, when m = 100, 000 sites were used, the posterior distributions 508

were only concentrated on the true networks. For m = 10, 000, the average posterior 509

probability of network A is again 100%, whereas that of B is lower (81.25%). This is not 510

surprising since network B is more complex than network A. Our results are consistent 511

with those of [54], who found that MCMC BiMarkers required 10,000 sites to infer 512

precisely networks A and B. (Recall that we did not rerun MCMC BiMarkers on data 513

simulated from networks A and B.) 514
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However, for a small number of sites (m = 1, 000), we observed differences between 515

SnappNet and MCMC BiMarkers: SnappNet always inferred trees (see Fig 9), whereas 516

MCMC BiMarkers inferred networks. For instance, on Network A, MCMC BiMarkers 517

inferred a network in approximately 75% of cases, whereas SnappNet supported the 518

tree ((((Q,A),L),R),C) with average posterior probability 78.71%. Interestingly, this 519

tree can be obtained from network A by removing the hybridization branch with 520

smallest inheritance probability. Details on the trees inferred by SnappNet for this 521

setting are given in Table A of S1 Text. 522

Similarly, on network B that hosts 2 reticulations, for m = 1, 000 MCMC BiMarkers 523

almost always inferred a 1-reticulation network [54], whereas SnappNet hesitated 524

mainly between two trees, (((Q,R),L),(A,C)) and (((Q,L),R),(A,C)), with average 525

posterior probabilities 35.28% and 28.54%, respectively. This different behavior among 526

the two tools is most likely due to the fact that their prior models differ. With only 527

1,000 markers, MCMC BiMarkers and SnappNet were both unable to recover network B. 528
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Fig 9. The ratio of trees (black), 1-reticulation networks (dark grey), 2-reticulations
networks (light gray), sampled by SnappNet, under the different simulations settings
studied in Table 1. Recall that networks A and B contain 1 and 2 reticulations,
respectively.

Now consider simulations based on incorrect priors. This mimics real cases where 529

there is no or little information on the network underlying the data. Recall that these 530

priors are incorrect since E (θ) is either fixed to 0.001 or 5× 10−4, instead of being 531

equal to the true value 0.005. In other words, these priors underestimate the number of 532

ILS events in the data. When considering as few as 1,000 sites, SnappNet only inferred 533

trees (cf. Table A in S1 Text), whereas MCMC BiMarkers mostly inferred networks [54]. 534

For m = 10, 000 and m = 100, 000 sites, SnappNet inferred network A with high 535

posterior probability. In the rare cases where the true network was not sampled, 536

SnappNet inferred a network with two reticulations (see Fig 9). The bias induced by 537

incorrect priors (underestimating ILS) led the method to fit the data by adding 538

supplementary edges to the network. On network B, SnappNet’s posterior distribution 539
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remained concentrated on the correct topology, and interestingly, for m = 10, 000 and 540

m = 100, 000 sites, SnappNet sampled exclusively 2-reticulation networks (see Fig 9). 541

To sum up, SnappNet’s ability to recover the correct network topology did not really 542

deteriorate with incorrect priors. 543

2) Ability to estimate continuous parameters for network A 544

Recall that in our modelling, the continuous parameters are branch lengths, 545

inheritance probabilities γ, population sizes θ and instantaneous rates (u and v). As 546

in [53], we also studied the network length and the network height, that is the sum of 547

the branch lengths and the distance between the root node and the leaves, respectively. 548

In order to evaluate SnappNet’s ability to estimate continuous parameters, we will 549

focus here exclusively on network A (following [54]). Analogous results for networks B 550

and C can be found in Figs D-G in S1 Text. 551

For network A, we considered the case of two lineages in each species. Indeed, under 552

this setting, θ values are now identifiable for external branches: the expected coalescent 553

time is here θ/2, that is to say 2.5× 10−3, which is a smaller value than all external 554

branch lengths. In other words, a few coalescent events should happen along external 555

branches. For these analyses, we considered exclusively the true prior on θ and we 556

bounded the number of reticulations to 2 (as in [54]) in order to limit the computational 557

burden. In the following, we consider the cases where a) input markers can be invariant 558

or polymorphic, and b) only polymorphic sites are considered. 559

1,000 10,000 100,000

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

 

Number of sites

1,000 10,000 100,000

0.
12

0.
16

0.
20

0.
24

0.
28

0.
32

 

Number of sites

Network height Network length

Fig 10. Estimated height and length for network A (see Fig 7), as a function of the
number of sites. Heights and lengths are measured in units of expected number of
mutations per site. True values are given by the dashed horizontal lines. Two lineages
per species were simulated. Constant sites are included in the analysis, and 20 replicates
are considered for each simulation set up (criterion ESS> 200 ; θ ∼ Γ(1, 200),
d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10) for the priors, number of reticulations bounded
by 2 when exploring the network space).

2a) Constant sites included in the analysis 560

Before describing results on continuous parameters, let us first mention results 561

regarding the topology. Although the number of lineages was increased in comparison 562

with the previous experiment, SnappNet still sampled exclusively trees for m = 1, 000 , 563

and always recovered the correct topology for m = 10, 000 and m = 100, 000. Note that 564

for m = 1, 000, we observed that generated data sets contained 78% invariant sites on 565

average given the parameters of the simulation, so that such simulated data sets only 566
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contained on average 220 variable sites. 567
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Fig 11. Estimated inheritance probability and instantaneous rates for network A (see
Fig 7), as a function of the number of sites. True values are given by the dashed
horizontal lines. Same framework as in Fig 10.
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Fig 12. Estimated node heights of network A (see Fig 7), as a function of the number
of sites. Heights are measured in units of expected number of mutations per site. True
values are given by the dashed horizontal lines. Same framework as in Fig 10. The
initials MRCA stand for “Most Recent Common Ancestor”.

In order to limit the computational burden, the analysis for m = 100, 000 relied only 568

on 17 replicates with ESS> 200. Fig 10 reports on the estimated network height and 569

the estimated network length. As expected, the accuracy increased with the number of 570

sites. Fig 11 shows the same behaviour, regarding the inheritance probability γ, the 571

rates u and v. Fig 12 is complementary to Fig 10, since it reports on the estimated node 572

heights. All node heights were estimated quite accurately, which is not surprising in 573

view of the results on the network length. Fig 13 is dedicated to population sizes. For 574
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Fig 13. Estimated population sizes θ for each branch of network A (see Fig 7), as a
function of the number of sites. True values are given by the dashed horizontal lines.
Same framework as in Fig 10. The initials MRCA stand for “Most Recent Common
Ancestor”.

external branches, SnappNet’s was able to estimate θ values very precisely. 575

Performances slightly deteriorated on internal branches (see the box plots, from number 576

6 to number 12) whose θ values were underestimated (see the medians) and showed a 577

higher posterior variance. This phenomenon was also observed for 578

MCMC BiMarkers [54, Fig 7 obtained under a different setting]. 579

2b) Only polymorphic sites included in the analysis 580

In order to control for the fact that this analysis relies only on polymorphic sites, the 581
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likelihood of the data for a network Ψ becomes a conditional likelihood equal to 582

P (X1, . . . , Xm | Ψ) /P(“the m sites are polymorphic”|Ψ), due to Bayes’ rule. 583

Before focusing on continuous parameters, let us describe results regarding the 584

topology. As mentioned in [54], polymorphic sites are considered as most informative to 585

recover the topology. For m = 1, 000, SnappNet now recovers the correct topology of 586

network A with high frequency in 94.45% of samples). SnappNet always sampled the 587

true network for m = 10, 000 and m = 100, 000. In order to reduce the computational 588

burden for m = 100, 000, our analysis relied on the 12 replicates that achieved 589

ESS> 100. 590

Next, the same analysis was performed without applying the correction factor 591

P(“the m sites are polymorphic”|Ψ), which is done by toggling an option within the 592

software. For m = 1, 000, the average posterior probability of network A dropped to 593

23.81%, while for m = 10, 000 and m = 100, 000, it remained relatively high (i.e., 95.24% 594

and 95.65%, respectively). Using the correct likelihood computation is important here. 595

We also highlight that for m = 100, 000, the sampler efficiency (i.e. the ratio ESS/nb 596

iterations without burn-in) was much larger when the additional term was omitted 597

(1.75× 10−4 vs. 2.55× 10−5). It enabled us to consider 20 replicates with ESS> 200 in 598

this new experiment. 599

Let us move on to the estimation of continuous parameters. Figs H-K in S1 Text 600

illustrate results obtained from the experiment incorporating the correction factor. As 601

previously, the network height, the network length, the rates u and v, the inheritance 602

probability γ and the node heights were estimated very precisely. As expected, the 603

accuracy increased with the number of sites. Estimated θ values were very satisfactory 604

for external branches, whereas a slight bias was still introduced on internal branches. 605

Last, for the analysis without the correction factor, we observed a huge bias regarding 606

network height and network length (cf Fig L in S1 Text). Surprisingly, the rates u and v 607

were still very accurately estimated. 608

Number of sites

Number of lineages
for B and for C 1,000 10,000 100,000

1
PP 0% (20 replicates) 7.87% (20 replicates) 54.9% (20 replicates)
SE 3.18× 10−4 3.47× 10−4 4.84× 10−3

4
PP 0% (20 replicates) 50.00% (18 replicates) 49.6% (8 replicates)
SE 7.63× 10−3 3.89× 10−4 2.65× 10−4

Table 2. Average posterior probability (PP) of the topology of network C obtained by
running SnappNet on data simulated from network C. Results are given as a function
of the number of sites and as a function of the number of lineages sampled in hybrid
species B and C (either both 1 or both 4). Only one lineage was sampled in every other
species. Constant sites are included in the analysis and the rates u and v are considered
as known. Posterior probabilities are computed on the basis of replicates for which the
criterion ESS> 100 is fulfilled. The sampler efficiency (SE) is also indicated (true
hyperparameter values for the prior on θ, i.e. θ ∼ Γ(1, 200) ; as a network prior
d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10) ; number of reticulations bounded by 2 when
exploring the network space).

Study of network C and its variants 609

We focus here on network C (Fig 7) and its variants (Fig 8). 610

1) Ability to recover the network topology 611

Tables 2 and 3 report the ability of SnappNet and MCMC BiMarkers, respectively, 612
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Number of sites

Number of lineages
for B and for C 1,000 10,000 100,000

1
PP 0% (20 replicates) 4.84% (20 replicates) 0% (20 replicates)
SE 9.70× 10−5 3.10× 10−5 3.60× 10−5

ESS 126.08 40.38 46.80

4
PP 0% (20 replicates) 0% (12 replicates) 0% (9 replicates)
SE 2.38× 10−4 8.53× 10−5 1.03× 10−5

ESS 309.00 110.90 159.96

Table 3. Average posterior probability (PP) of the topology of network C obtained by
running MCMC BiMarkers on data simulated from network C. Results are given as a
function of the number of sites and as a function of the number of lineages sampled in
hybrid species B and C (either both 1 or both 4). Only one lineage was sampled in
every other species, constant sites are included in the analysis, and the rates u and v are
considered as known. 1.5× 106 iterations are considered. ESS is the average ESS over
the different replicates, and SE stands for the sampler efficiency.

to recover the correct topology of network C. We considered one lineage in species O, A 613

and D, and let the number of lineages in species B and C vary. We studied either a) 1 614

lineage, or b) 4 lineages, in these hybrid species. In order to limit the computational 615

burden for SnappNet, the ESS criterion was decreased to 100 and the number of 616

reticulations was also bounded by 2. 617

In order to closely mimic what was done in [54] for networks A and B, we let 618

MCMC BiMarkers run for 1,500,000 iterations instead of adopting an ESS criterion. Data 619

were simulated with simBiMarker [54]. Indeed, like SimSnapp, SimSnappNet 620

generates only count data (the number of alleles per site and per species). In contrast, 621

simBiMarker generates actual sequences, a prerequisite for running MCMC BiMarkers. 622

The commands used under the 4 lineages scenario are given in Section 5 of S1 Text. 623

Note that, to calibrate the network prior of MCMC BiMarkers, the maximum number of 624

reticulations was set to 2, and the prior Poisson distribution on the number of 625

reticulation nodes was centered on 2. 626

As expected, SnappNet’s ability to recover the correct network topology increased 627

with the number of sites and with the number of lineages in the hybrid species (see 628

Table 2). For instance, in the presence of one lineage in hybrid species B and C, the 629

posterior probability of network C increased from 7.87% for m = 10, 000 to 54.90% for 630

m = 100, 000. In the same way, when 4 lineages were considered instead of a single 631

lineage, we observed an increase from 7.87% to 50.00% for m = 10, 000. Note that the 632

average posterior probability of 49.60% reported for m = 100, 000 and 4 lineages, is 633

based only on 8 replicates. 634

Surprisingly, in most cases studied, MCMC BiMarkers was unable to recover the true 635

topology of network C. The different behaviors of MCMC BiMarkers and SnappNet may 636

be due to the different network priors. Indeed, while the frequency of trees, 637

1-reticulation networks and 2-reticulations networks sampled by the two methods were 638

globally similar (cf. Fig 14), we remarked that MCMC BiMarkers seems to be unable, for 639

these data sets, to sample networks with two reticulations on top of each other. 640

Alternatively, we may be in the presence of failed or partial convergence of the MCMC 641

process. Note the small ESS values for MCMC BiMarkers, especially when only one 642

lineage was sampled in hybrid species B and C. However, we attempted increasing the 643

number of iterations from 1.5× 106 to 12× 106 and MCMC BiMarkers was still unable to 644

recover network C, despite larger ESS values (see Table B in S1 Text). We note here 645

that SnappNet was ran for a maximum 804,000 iterations for 10,000 sites, and a 646
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Fig 14. Frequency of trees (black), 1-reticulation networks (dark grey), 2-reticulations
networks (light gray) sampled by SnappNet and MCMC BiMarkers, when data were
simulated from Network C (see Tables 2 and 3). Recall that network C contains 2
reticulations.

maximum of 555,000 iterations for 100,000 sites. 647

2) CPU time and required memory 648

To compare the CPU time and memory required by SnappNet and 649

MCMC BiMarkers on a single likelihood calculation, we focused on network C (see Fig 7), 650

with and without outgroup (i.e. the species O), and networks C(3) and C(4), again with 651

and without outgroup (see Fig 8). The simulations protocol used here is similar to that 652

used in the previous sections, where here we fixed 10 lineages in species C and one 653

lineage in the other species, m = 1, 000 sites and 20 replicates per each network. The 654

likelihood calculations were run on the true network. 655

The experiments were executed on a full quad socket machine with a total of 512GB 656

of RAM (4 * 2.3 GHz AMD Opteron 6376 with 16 Cores, each with a RDIMM 32Go 657

Quad Rank LV 1333MHz processor). The jobs that did not finish within two weeks, or 658

required more than 128 GB, were discarded. 659

The results are reported in Table 4. SnappNet managed to run for all the scenarios 660
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CPU time Memory

SnappNet MCMC BiMarkers SnappNet MCMC BiMarkers

(in minutes) (in hours) (max in GB) (max in GB)

Network C
without outgroup 2.62 ± 0.04 14.58 ± 0.50 1.67 ± 0.03 8.76 ± 0.02

Network C 5.63 ± 0.16 33.46 ± 1.31 2.00 ± 0.09 8.79 ± 0.02

Network C(3)
without outgroup 14.21 ± 0.56 ? 2.19 ± 0.01 < 64

Network C(3) 24.69 ± 0.64 ? 2.21 ± 0.06 < 64

Network C(4)
without outgroup 45.47 ± 1.44 ? 2.63 ± 0.60 > 128

Network C(4) 70.98 ± 3, 16 ? 3.17 ± 0.81 > 128

Table 4. Computational efficiency of calculating a single likelihood value in SnappNet
and MCMC BiMarkers for networks C, C(3) and C(4). 10 lineages are sampled in species
C and 1 lineage in other species. Average and standard deviation are reported.

within the two weeks limit: on average within 2.62 minutes and using 1.67 GB on 661

network C without outgroup, within 5.63 minutes and using 2 GB on network C with 662

outgroup, within 14.21 minutes and using 2.19 GB on network C(3) without outgroup, 663

within 24.69 minutes and using 2.21 GB on network C(3) with outgroup, within 45.47 664

minutes and using 2.63 GB on network C(4) without outgroup, and finally, within 70.98 665

minutes and using 3.17 GB on network C(4) with outgroup. 666

We were able to run MCMC BiMarkers for all replicates of the network C, and we can 667

thus compare its performance with that of SnappNet. From Table 4, we see that 668

SnappNet is remarkably faster that MCMC BiMarkers, needing on average only 0.29% 669

of the time and 21% of the memory required by MCMC BiMarkers. MCMC BiMarkers 670

needed more than 2 weeks for all scenarios on the C(3) network (requiring less than 64 671

GB), thus no run time is available for these scenarios. The same holds for the C(4) 672

network scenarios, but for a different reason: all runs needed more than 128 GB each, 673

and were discarded. 674

In Section 8 of S1 Text we provide the results of additional experiments on simulated 675

data. In Section 8.1, we assess whether SnappNet’s MCMC sampler can adequately 676

sample from network space. In Section 8.2 we assess how population size priors and 677

network priors influence SnappNet ’s inferences. 678

Real data analysis 679

Real data derived from recent studies on rice were used to illustrate the application of 680

SnappNet. 681

Diversity among Asian rice cultivars is structured around two major types which 682

display worldwide distributions, namely Japonica and Indica, and two types localised 683

around the Himalayas, namely circum Aus (cAus) and circum Basmati 684

(cBasmati) [73, 74]. Japonica and Indica each have several subgroups with geographical 685

contrast (see [73] as the most detailed description). Domestication scenarios that have 686

been put forwards since the availability of whole genome sequences propose one to three 687

domestications corresponding either to an early pivotal process in Japonica [72], or to 688

multiple parallel dynamics in Japonica, Indica and cAus [12,27], depending on whether 689
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Fig 15. The two networks obtained for data set 1 with only one variety per
subpopulation. Each network corresponds to the posterior mean of the distribution
sampled by SnappNet. Inheritance probabilities are reported above reticulation edges
and branch lengths are given in units of expected number of mutations per site (see the
scale at the top left).

they consider the contribution of domestication alleles by the Japonica origin as 690

predominant or as one among others. cBasmati has been posited as a specific lineage 691

within Japonica [72] or as a secondary derivative from admixture between Japonica and 692

a local wild rice close to cAus [75], or between Japonica and cAus with the contribution 693

of one or several additional cryptic sources [76]. 694

The most advanced studies of wild rice [72] recognize three populations designated 695

Or-I to Or-III (Or for Oryza rufipogon), of which Or-I and Or-III are closely related to 696

cultivars and Or-II is not. Using a data set constructed in [73], we compared wild rices 697

to cultivars on the basis of ca. 2.5 million SNPs (cf. Fig M in S1 Text) and we selected 698

representatives of Japonica, Indica, cAus and cBasmati as well as wild rices Or-III, 699

closer to Japonica and cBasmati, and Or-I, closer either to Indica (Or-Ii) or to cAus 700

(Or-Ia). For clarity in our subsequent use, we call the wild forms Or3, Or1I and Or1A, 701

respectively. We made data sets of different sample sizes, including either one or two 702

varieties per subpopulation. The studied subpopulations are the 4 groups of cultivars 703

(Japonica, Indica, cAus, cBasmati), and different types of wild rice (Or3, Or1A, Or1I) , 704

consistent with the classification by [72]. The 3 data sets we constructed are described 705

in the Materials and methods. 706
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Fig 16. The two networks obtained for data set 2 with two varieties per subpopulation.
Each network corresponds to the posterior mean of the distribution sampled by
SnappNet. Inheritance probabilities are reported above reticulation edges and branch
lengths are given in units of expected number of mutations per site (see the scale at the
top left).

In Fig 15, we report results for data set 1, which includes only one variety per 707

subpopulation (cf. Table D in S1 Text). We studied two different samplings of 12k 708

SNPs along the whole genome alignment. For each sampling, we ran two independent 709

Markov chains with different starting points, for 10 million iterations. To assess the 710

convergence of SnappNet on data set 1, (a) the ESS of the posterior distribution was 711

checked for each chain, (b) the trace plots of the different parameters and their 712
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associated ESS were examined and (c) the two posterior distributions corresponding to 713

the two independent chains were compared (see Fig N and Table F in S1 Text). In view 714

of these results, SnappNet reached stationarity. The ESS of the posterior distribution 715

took the values 844 (resp. 971), 1159 (resp. 535) for the two different chains of the first 716

(resp. second) sampling. All the networks sampled by the MCMC had the same 717

topology with one reticulation only. For both genome samplings the lineages associate 718

Or1I with Ind, Or1A with cAus and Or3 with Jap, respectively, while the reticulation 719

conjugates Jap with (Or1A/cAus), the common precursor of Or1-A/cAus, with a dosage 720

ratio close to 2:1, to yield cBas. 721

Next, we tackled a larger data set, data set 2, containing two varieties per 722

subpopulation (see Table E in S1 Text). Two different chains corresponding to two 723

different samplings of 12k SNPs along the whole genome alignment were run. The 724

number of reticulations was bounded by one in order to reach convergence in a 725

reasonable amount of time: after three months and half of computations, the ESS took 726

the values 227 and 201 for the first and the second chain, respectively. Fig 16 illustrates 727

the two networks obtained for the two different samplings. Each network corresponds to 728

the posterior mean of the sampled distribution. Note that in both cases, the posterior 729

distribution was concentrated on a single topology. The two genome samplings yield 730

networks very similar to one another and remarkably close to that revealed with data 731

set 1. The reticulation that was allowed again conjugates the Jap lineage with the 732

common precursor of subpopulations Or1A and cAus. In contrast, after 6 months of 733

calculations, SnappNet had still not reached the stationary regime for the two different 734

samplings, when a maximum of 2 reticulations was imposed. 735

We also investigated another data set, data set 3, including two varieties per 736

subpopulation and 12k SNPs for a different taxon sampling (see Table E in S1 Text). In 737

this case, large ESS values were observed when SnappNet was allowed to infer 738

networks with 2 reticulations: the ESS was estimated at 373 after having let SnappNet 739

run for 7 months. The maximum a posteriori (MAP) network is represented in Fig 17. 740

For this data set, the resulting topology again features a single reticulation, although 741

two were allowed. It also conjugates Jap with the precursor (Or1A/cAus) of Or1A and 742

cAus to produce cBas. Yet the composition is more unbalanced towards Jap (0.85) and 743

(Or1A/cAus) appears involved very close to the Or1A vs cAus initial divergence. Given 744

this proximity, it was useful to describe the three networks retained by SnappNet 745

during the MCMC process (Fig 18). The first one (67%) features a conjugation between 746

Jap and (Or1A/cAus), while the second one (23%) conjugates Jap with cAus and the 747

third one (10%) conjugates Jap with Or1A in the origin of cBas. 748

Altogether the various networks inferred by SnappNet reveal stable features: 749

� the correspondence between wild subpopulations and cultivated subpopulations 750

which point at three pillars for rice, namely Japonica, Indica and cAus 751

� the early divergence of Japonica, that predates the one between Indica and cAus 752

� the earlier divergence between wild and cultivated forms within the Japonica pillar 753

� the mobilisation of early Japonica cultivars to combine with the cAus pillar to 754

produce the fourth varietal type cBas 755

� the indication that this hybridization may have occured before the domestication 756

of cAus. 757

The latter item yet displays uneven strength levels between the various data sets. 758

The first four items confirm the latest interpretations of massive analyses among rice 759

specialists. Wild rice displays broad diversity and some of the wild subpopulations have 760
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Fig 17. The MAP phylogenetic network obtained for data set 3 with two varieties per
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branch lengths are given in units of expected number of mutations per site (see the scale
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Fig 18. The three topologies sampled by SnappNet when data set 3 was considered.
Reported inheritance probabilities for each topology are averages on sampled
observations.

been specifically involved in the emergence of cultivated forms. While the most ancient 761

domestication occurred in China to produce Japonica cultivars, two other important 762

foundations, namely Indica and cAus, contributed to the diversity of current rice 763

cultivars. Early hybridization between Japonica cultivars and an ancestor, presumably 764

wild, of current cAus cultivars and related wild forms resulted in the evolution of 765

cBasmati cultivars. 766

Discussion 767

In this paper, we introduced a new Bayesian method, SnappNet, dedicated to 768

phylogenetic network inference. SnappNet has similar goals as MCMC BiMarkers, a 769

method recently proposed by Zhu et al. [54], but differs from this method in two main 770

aspects. The first difference is due to the way the two methods handle the complexity of 771

the sampled networks. Unlike binary trees that have a fixed number of branches given 772

the number of considered species, network topologies can be of arbitrary complexity. 773

Their complexity directly depends on the number of reticulations they contain. In 774

MCMC processes, the complexity of sampled networks is regulated by the prior. 775

MCMC BiMarkers uses descriptive priors: more precisely, it assumes a Poisson 776
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distribution for the number of reticulation nodes and an exponential distribution for the 777

diameter of reticulation nodes [51,52,54]. In contrast, SnappNet’s prior is based on 778

that of Zhang et al., which explicitly relies on speciation and hybridization rates and is 779

extendable to account for extinction and incomplete sampling [53]. 780

Our simulation study may provide some insight on the influence of these different 781

priors. On two networks of moderate complexity (networks A and B), SnappNet and 782

MCMC BiMarkers presented globally similar results. Indeed, when we considered 783

numbers of sites that are largely achieved in current phylogenomic studies (i.e. 10,000 784

or 100,000 sites), both methods were able to recover the true networks under this 785

realistic framework. However, in presence of only a few sites (1,000 sites) which is 786

unusual nowadays but still can be the case for poorly sequenced organisms, 787

MCMC BiMarkers recovered the correct topology with higher posterior probability than 788

SnappNet. On the other hand, when focusing on a more complex network (network C) 789

containing reticulation nodes on top of one another, the converse appeared to be true. 790

With sufficiently large datasets, SnappNet recovered the correct scenario in 791

approximately 50% of samples whereas MCMC BiMarkers inferred this history in less 792

than 5% of cases. Although these differences may be due to the different network priors 793

used by the two methods, more work is needed to elucidate the reasons behind them. 794

To conclude the discussion on priors, we also observed that, on simulated data, 795

SnappNet’s accuracy did not really deteriorate with incorrect priors on population 796

sizes, although assuming a prior distribution skewed towards small population sizes has 797

a tendency to favor hybridization over ILS as an explanation for non tree-like signals. 798

Similar robustness properties were observed by [54] for MCMC BiMarkers. 799

The second major difference between MCMC BiMarkers and SnappNet lies in the 800

way they compute the likelihood of a network. This step is at the core of the Bayesian 801

analysis. According to the authors of MCMC BiMarkers, this remains a major 802

computational bottleneck and limits the applicability of their methods [59]. To 803

understand the origin of this bottleneck, recall that the MCMC process of a Bayesian 804

sampling explores a huge network space and that, at each exploration step, computing 805

the likelihood is by far the most time consuming operation. Moreover, we need 806

sometimes millions of runs before the chain converges. Thus, likelihood computation is 807

a key factor on which to operate to be able to process large data sets. 808

The likelihood computation of MCMC BiMarkers consists in a bottom-up traversal, 809

from the leaves to the root. Each time a reticulation node r is visited, the partial 810

likelihoods must be decomposed following all the possible ways the lineages reaching r 811

can be assigned to the two parent populations of r. These partial likelihoods will be 812

merged back only when the traversal reaches a lowest articulation node [54], or in other 813

words the root of the blob to which r belongs (a blob is a maximal biconnected 814

subgraph [65], see also S1 Text). For every other reticulation r′ reached before the root 815

of the blob, the decomposition above is applied again. As a result, the time required to 816

process a blob grows exponentially with the number of reticulations it contains. More 817

precisely, the time complexity of the likelihood computation in MCMC BiMarkers is in 818

O(sn4`+4), where ` is the level of the network and s is the size of the species network. 819

Similarly to MCMC BiMarkers, we compute the likelihood in a bottom-up traversal 820

and when reaching a reticulation node r, we also take into account the various ways 821

lineages could have split. But the originality of SnappNet is to compute joint 822

conditional probabilities for branches above a same reticulation node r (see the 823

Materials and methods). The set of branches jointly considered increases when crossing 824

other reticulation nodes in a same blob, but it can also decrease when crossing 825

tree-nodes in the blob (i.e. nodes having one ancestor and several children). Of course, 826

the time to compute each partial likelihood increases in proportion with the number of 827
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branches considered together. More precisely, SnappNet runs in O(sn2K+2), where K 828

is the maximum number of branches simultaneously considered in a partial likelihood. 829

The interest in depending on K instead of ` (the number of reticulations in a blob), is 830

that for some blobs, we can resort to a bottom-up traversal of the blob that limits K to 831

a small constant and process the blob in polynomial time in n, while MCMC BiMarkers 832

still requires an exponential time in `. 833

Our results from simulated data confirm the above theoretical discussion. For a 834

single likelihood evaluation, SnappNet was found to be orders of magnitude faster than 835

MCMC BiMarkers on networks containing reticulation nodes on top of one another. 836

Besides, SnappNet required substantially less memory than MCMC BiMarkers. These 837

gains enable us to consider complex evolution scenarios in our Bayesian analyses. 838

In practice, SnappNet is a very useful tool for analyzing complex genomic data, as 839

evidenced by our study about rice. Indeed, the most recent extensive genetic studies on 840

this crop confirm and document the extent of genetic exchanges in various directions. 841

Yet the same species consistently displays the reality of a simple classification scheme 842

with only a few predominant types. Thus rice appears as a chance and a challenge for 843

testing methods aiming to tackle phylogenetic resolution within a hybrid swarm. The 844

application of SnappNet proves very efficient in resolving the three main phylogenetic 845

pillars of current diversity in Asian rice [12,77] and revealing a hybrid origin for the 846

iconic varietal group cBasmati [75,76]. The various data sets treated here suggest a 847

contribution of Japonica cultivars at a high level, between 0.6 and 0.85. This rather 848

broad range is not surprising given that this hybrid origin probably reflects numerous 849

recent individual stories for very specific varieties rather than an old common story for 850

a homogeneous lineage. On the other side, the second component of cBasmati derived 851

from local sources in the North of the Indian subcontinent seems to date from before 852

the evolution of cAus varieties. Here again, it is likely that many diverse events 853

occurred resulting in a very rich diversity. Full resolution of the origin of cBasmati may 854

require further investigation given the vast diversity it encompasses [78, 79]. SnappNet 855

provides here a consistent and convincing set of results. Its integration in Beast may 856

provide easier applicability than previous methods, potentially making it a method of 857

choice to expand analysis of complex pictures generated by crop evolution and 858

adaptation. Further applicability advantages may come from the fact that SnappNet 859

can be used to compute the likelihoods of a set of networks of interest, and then to 860

penalize more complex models with the AIC [80] and BIC [81] criteria. 861

In the future, in order to handle more sites in practice, the MSNC model should be 862

extended to allow recombination events between loci. Recall that we have limited our 863

rice study to 12,000 markers sampled along the genome because our model assumes 864

independence between sampled sites, as does also Snapp’s model, from which we inherit. 865

As mentioned in the review of [38], in order to model recombination properly, the study 866

of gene networks within species networks is an area for future research. A possibility 867

would be to exploit previous work on Ancestral Recombination Graphs (see for 868

instance [82]). 869

Another important research topic for MCMC inference of phylogenetic networks is 870

the question of how to properly assess the autocorrelation between the topologies of the 871

sampled networks, or, in other words, how to estimate the effective sample size (ESS) of 872

the sampled topologies. Indeed, a large ESS for continuous parameters in a phylogenetic 873

model does not necessarily imply a large ESS for the sampled topologies. Methods to 874

estimate the ESS of a sample of tree topologies have been recently proposed [70]. They 875

rely on measures of the distance between pairs of trees in the sample—which enable to 876

assess autocorrelation—or on translating tree topologies into numbers (e.g., the distance 877

from a focal tree), which are then treated as continuous parameters—for which an ESS 878
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can then be computed using standard approaches. These methods to estimate 879

topological ESS can be in principle adapted to networks. However some research will be 880

needed for this, as standard tree metrics (e.g. the Robinson-Foulds distance [83] or the 881

path-lengths difference [84]) do not have unique, easy to compute, natural extensions for 882

networks (see [38] for a discussion on this). In the present work, different MCMC 883

replicates led to consistent results, but we have not attempted to evaluate 884

autocorrelation for the sampled topologies and/or their ESS. This is a limitation of all 885

Bayesian approaches for network inference proposed so far [51,53,54]. 886

Related to the issue above, it would be useful to conduct an in-depth investigation of 887

the efficiency of the MCMC operators for the exploration of network topology space. In 888

this work, we rely on the operators by Zhang et al. [53], who identified this as a major 889

bottleneck of their approach (but they also had operators to change the gene tree 890

embeddings, a feature that we do not need here). Although some important progress 891

has been made in the last 20 years [85], in 2004 Felsenstein aptly wrote (speaking about 892

trees): “At the moment the choice of a good proposal distribution involves the burning 893

of incense, casting of chicken bones, magical incantations and invoking the opinions of 894

more prestigious colleagues” [14]. Since network space is significantly more complex 895

than tree space, it is easy to predict that this topic will keep researchers busy for a long 896

time. A good starting point to address convergence issues in SnappNet would be to 897

integrate it to the new Beast 2 package coupled MCMC [86], which tackles local 898

optima issues thanks to heated chains. 899

Also note that in this work we limited our experiments to relatively simple networks, 900

with few reticulations and few species (leaves). While the number of reticulations 901

represents a strong limitation of all existing Bayesian approaches, the number of species 902

is a much weaker limiting factor. Networks over more species can already be inferred by 903

SnappNet and related approaches, but MCMC inference for such networks will then 904

necessitate much more complex downstream analyses than the ones used here. For 905

example, the posterior probability of any single network topology will be very small, and 906

thus it will be much more interesting to look at the probability of individual splits, or to 907

develop a network analog of consensus trees. These are not simple tasks, because all the 908

underlying algorithmic problems (checking the presence of a split/clade in a network, or 909

that of a subtree etc.) are computationally hard to solve on large networks [87]. 910

Last, it would be interesting to study the identifiability of the model underlying 911

SnappNet. For example, it is easy to see that if only one lineage is sampled from a 912

given species at each locus, then the population size θ of that species is non-identifiable 913

(because no coalescence can ever occur in it, and thus the likelihood does not depend on 914

θ). Similarly, if only one lineage is sampled below a reticulation node, then the height of 915

that node is non-identifiable [41,61]. Intuitively, the more lineages can co-exist in a part 916

of the species network, the more information there will be for the reconstruction of that 917

part of the network. These aspects should be further investigated in future works. 918

Many methodological questions on Bayesian inference of phylogenetic networks 919

remain open. The present work focused on the efficient calculation of likelihood for a 920

single network, which is the key component of any Bayesian approach. At the end of 921

their paper, the authors of MCMC BiMarkers [54] concluded by mentioning that “An 922

important direction for future research is improving the computational requirements of 923

the method to scale up to data sets with many taxa”. Our present work is a first answer 924

to this demand. 925
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Supporting information 926

S1 Text: Supplementary material for the manuscript 927

Fig A in S1 Text 928

Density probabilities for 5-tips networks, simulated with a prior corresponding to a 929

birth hybridization process with parameters d = 10, r = 1/2 and τ0 = 0.1, using the 930

SpeciesNetwork package [53]. The figure is obtained for 10,000 replicates. The 931

means are given by the dashed vertical lines. 932

Fig B in S1 Text 933

Density probabilities for 5-tips networks with at most two reticulations, simulated with 934

a prior corresponding to a birth hybridization process with parameters d = 10, r = 1/2 935

and τ0 = 0.1, using the SpeciesNetwork package [53]. Figures are drawn for the 4,377 936

cases in 10,000 where the network had at most two reticulations. The means are given 937

by the dashed vertical lines. 938

Fig C in S1 Text 939

Density probabilities regarding the 5-tips network with a maximum of 3 reticulations, 940

simulated under the birth hybridization process (d = 10, r = 1/2, τ0 = 0.1, 5,837 941

replicates), using the SpeciesNetwork package [53]. The means are given by the 942

dashed vertical lines. 943

Fig D in S1 Text 944

Estimated node heights of network B. 10,000 sites are considered and 2 lineages per 945

species. Constant sites are included in the analysis, and the estimated heights are based 946

on the 12 replicates (over 14 replicates) for which network B was recovered by 947

SnappNet (criterion ESS> 200 ; θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10) 948

for the priors, number of reticulations bounded by 3 when exploring the network space). 949

Heights are measured in units of expected number of mutations per site. True values are 950

given by the dashed horizontal lines. The initials MRCA stand for “Most Recent 951

Common Ancestor”. 952

Fig E in S1 Text 953

Estimated population sizes θ for each branch of network B. Same framework as Figure 954

D in S1 Text. True values are given by the dashed horizontal lines. The initials MRCA 955

stand for “Most Recent Common Ancestor”. 956

Fig F in S1 Text 957

Same framework as Figure E in S1 Text. 958

Fig G in S1 Text 959

Estimated node heights of network C as a function of the number of sites. Same 960

experiment as in Table 2 of the main manuscript: 1 lineage in species O, A and D, and 961

4 lineages in species B and C. The estimated heights are based on the replicates for 962

which network C was recovered by SnappNet. True values are given by the dashed 963

horizontal lines. The initials MRCA stand for “Most Recent Common Ancestor”. 964

Fig H in S1 Text 965

Estimated height and length for network A, as a function of the number of sites. 966

Heights and lengths are measured in units of expected number of mutations per site. 967

True values are given by the dashed horizontal lines. Two lineages per species were 968

simulated. Only polymorphic sites are included in the analysis, and 20 replicates are 969

considered for each simulation set up (criterion ESS> 200 for m=1,000 and m=10,000 , 970
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and criterion ESS> 100 for m=100,000; θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), 971

τ0 ∼ E(10) for the priors, number of reticulations bounded by 2 when exploring the 972

network space). Same framework as in Figure 10 of the main paper, except that only 973

polymorphic sites are taken into account. 974

Fig I in S1 Text 975

Estimated inheritance probability and instantaneous rates for network A, as a function 976

of the number of sites. True values are given by the dashed horizontal lines. Same 977

framework as in Figure 11 of the main paper, except that only polymorphic sites are 978

taken into account. 979

Fig J in S1 Text 980

Estimated node heights of network A, as a function of the number of sites. Heights are 981

measured in units of expected number of mutations per site. True values are given by 982

the dashed horizontal lines. Same framework as in Figure 12 of the main paper, except 983

that only polymorphic sites are taken into account. The initials MRCA stand for “Most 984

Recent Common Ancestor”. 985

Fig K in S1 Text 986

Estimated population sizes θ for each branch of network A, as a function of the number 987

of sites. True values are given by the dashed horizontal lines. Same framework as in 988

Figure 13 of the main paper, except that only polymorphic sites are taken into account. 989

The initials MRCA stand for “Most Recent Common Ancestor”. 990

Fig L in S1 Text 991

Experiments on Network A and based only on polymorphic sites. Same framework as in 992

Figures H and I in S1 Text, except that the correction factor is not used in the 993

calculations (criterion ESS> 200 in all cases). 994

Fig M in S1 Text 995

Summary of rice molecular diversity used for selecting our sample of rice cultivated 996

varieties and wild types. (A) unweighted neighbour joining (UWNJ) tree reflecting 997

dissimilarities among 899 accessions based on 2.48 million SNPs as described in [73]; the 998

accessions are colored according to their classification into wild population types or 999

cultivar groups. (B, C) UWNJ tree using the same data for the 24 accessions we 1000

selected for assessing SnappNet performance, and showing their accessions number (B) 1001

and their country of origin (C); the colors are as in A. 1002

Fig N in S1 Text 1003

Trace plots obtained according to the Tracer software when data set 1 was analyzed 1004

with SnappNet. (a) and (b) refer to the first sampling of 12 kSNPs along the whole 1005

genome, whereas (c) and (d) focus on the second sampling. Two chains were considered 1006

for each sampling. 1007

Fig O in S1 Text 1008

Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean 1009

number of reticulations close to zero) and a normal prior with mean 0.1 and standard 1010

deviation of 0.01 on the origin height. We plot the simulated networks (orange) against 1011

the sampled networks (blue) summarising the networks under: (a) Number of 1012

reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the 1013

network. 1014

Fig P in S1 Text 1015

Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean 1016

number of reticulations close to one) and normal prior with mean 0.1 and standard 1017

August 26, 2021 33/42



deviation of 0.01 on the origin height. We plot the simulated networks (orange) against 1018

the sampled networks (blue) summarising the networks under: (a) Number of 1019

reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the 1020

network. 1021

Figure Q in S1 Text 1022

Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean 1023

number of reticulations close to two) and normal prior with mean 0.1 and standard 1024

deviation of 0.01 on the origin height. We plot the simulated networks (orange) against 1025

the sampled networks (blue) summarising the networks under: (a) Number of 1026

reticulations (b) Time until first reticulation (c) Height of the network (d) Length of the 1027

network. 1028

Fig R in S1 Text 1029

Birth-hybridisation model with speciation rate 20 and hybridisation rate 1 (mean 1030

number of reticulations close to zero) and an exponential prior with mean 0.1 on the 1031

origin height. We plot the simulated networks (orange) against the sampled networks 1032

(blue) summarising the networks under: (a) Number of reticulations (b) Time until first 1033

reticulation (c) Height of the network (d) Length of the network. 1034

Fig S in S1 Text 1035

Birth-hybridisation model with speciation rate 20 and hybridisation rate 2 (mean 1036

number of reticulations close to one) and an exponential prior with mean 0.1 on the 1037

origin height. We plot the simulated networks (orange) against the sampled networks 1038

(blue) summarising the networks under: (a) Number of reticulations (b) Time until first 1039

reticulation (c) Height of the network (d) Length of the network. 1040

Fig T in S1 Text 1041

Birth-hybridisation model with speciation rate 20 and hybridisation rate 3 (mean 1042

number of reticulations close to two) and an exponential prior with mean 0.1 on the 1043

origin height. We plot the simulated networks (orange) against the sampled networks 1044

(blue) summarising the networks under: (a) Number of reticulations (b) Time until first 1045

reticulation (c) Height of the network (d) Length of the network. 1046

Fig U in S1 Text 1047

Summary distributions of all chains with correct population size priors (chain numbers 1048

1,2,9,10,17,18) given data simulated from network A. We summarize the MCMC chains 1049

by combining them, that is: Chains 1 and 2 are indicated by the blue line (mean 1050

reticulations close to zero); Chains 9 and 10 are indicated by the orange line (mean 1051

reticulations close to one); Chains 17 and 18 are indicated by the green line (mean 1052

reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior 1053

(c) Network height (d) Network length. Note that network height and network length 1054

used to simulate data are indicated by red lines. 1055

Fig V in S1 Text 1056

Summary distributions of all chains with incorrect population size priors Gamma(1,20) 1057

(chain numbers 3,4,11,12,19,20) given data simulated from network A. We summarize 1058

the MCMC chains by combining them, that is: Chains 3 and 4 are indicated by the blue 1059

line (mean reticulations close to zero); Chains 11 and 12 are indicated by the orange 1060

line (mean reticulations close to one); Chains 19 and 20 are indicated by the green line 1061

(mean reticulations close to two); We plot the following distributions (a) Likelihood (b) 1062

Prior (c) Network height (d) Network length. Note that network height and network 1063
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length used to simulate data are indicated by red lines. 1064

Fig W in S1 Text 1065

Summary distributions of all chains with correct population size priors (chain numbers 1066

1,2,9,10,17,18 given data simulated under network B. We summarize the MCMC chains 1067

by combining them, that is: Chains 1 and 2 are indicated by the blue line (mean 1068

reticulations close to zero); Chains 9 and 10 are indicated by the orange line (mean 1069

reticulations close to one); Chains 17 and 18 are indicated by the green line (mean 1070

reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior 1071

(c) Network height (d) Network length. Note that network height and network length 1072

used to simulate data are indicated by red lines. 1073

Fig X in S1 Text 1074

Summary distributions of all chains with incorrect population size priors (chain 1075

numbers 3,4,7,8,11,12) given data simulated from network B. We summarize the MCMC 1076

chains by combining them, that is: Chains 3 and 4 are indicated by blue line (mean 1077

reticulations close to zero); Chains 7 and 8 are indicated by orange line (mean 1078

reticulations close to one); Chains 11 and 12 are indicated by green line (mean 1079

reticulations close to two); We plot the following distributions (a) Likelihood (b) Prior 1080

(c) Network height (d) Network length. Note that network height and network length 1081

used to simulate data are indicated by red lines. 1082

Fig Y in S1 Text 1083

In this we figure we plot summary distributions of all chains with incorrect population 1084

size priors Gamma(1,20) (chain numbers 5,6,13,14,21,22) given data simulated from 1085

Network B. We summarize the MCMC chains by combining them, that is: Chains 5 and 1086

6 are indicated by blue line (mean reticulations close to zero); Chains 13 and 14 are 1087

indicated by orange line (mean reticulations close to one); Chains 21 and 22 are 1088

indicated by green line (mean reticulations close to two); We plot the following 1089

distributions (a) Likelihood (b) Prior (c) Network height (d) Network length. Note that 1090

network height and network length used to simulate data are indicated by red lines. 1091

Fig Z in S1 Text 1092

In this we figure we plot summary distributions of all chains with incorrect population 1093

size priors (chain numbers 7,8,15,16,23,24) given data simulated from network B. We 1094

summarize the MCMC chains by combining them, that is: Chain 7 and 8 are indicated 1095

by blue line (mean reticulations close to zero); Chain 15 and 16 is indicated by orange 1096

line (mean reticulations close to one); Chain 23 and 24 are indicated by green line 1097

(mean reticulations close to two); We plot the following distributions (a) Likelihood (b) 1098

Prior (c) Network height (d) Network length. Note that network height and network 1099

length used to simulate data are indicated by red lines. 1100

Table A in S1 Text 1101

Table linked to Table 1 of the main manuscript. Trees inferred by SnappNet when 1102

m=1,000 sites were considered. 1103

Table B in S1 Text 1104

Average posterior probability (PP) of the topology of network C obtained by running 1105

MCMC BiMarkers on data simulated from network C. Same as Table 3 of the main 1106

manuscript except that 12× 106 iterations are considered, and only one lineage is 1107

sampled in hybrid species B and C. ESS is the average ESS over the different replicates, 1108

and SE stands for the sampler efficiency. 1109

Table C in S1 Text 1110
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Description of the 24 rice varieties considered in our study. These varieties are either 1111

representative cultivars spanning the four main rice subpopulations (Indica, Japonica, 1112

circum Aus and circum Basmati), or wild types (Or1I, Or1A, Or3). 1113

Table D in S1 Text 1114

Data set 1, that includes only one variety per subpopulation. These varieties were 1115

chosen from Table C in S1 Text. 1116

Table E in S1 Text 1117

Data sets 2 and 3, that include two varieties per subpopulation. These varieties were 1118

chosen from Table C in S1 Text. 1119

Table F in S1 Text 1120

Informations obtained according to the Tracer software, when data set 1 was analyzed 1121

with SnappNet. Two different samplings of 12 kSNPs were considered, and also two 1122

chains for each sampling. 1123

Table G in S1 Text 1124

BH(birth rate, hybridisation rate) refers to the birth-hybridisation process of Zhang et 1125

al. with the specified birth and hybridisation rates. For data simulated with network A, 1126

only chains 1,2,3,4,9,10,11,12,17,18,19,20 were run. We indicate the mean number of 1127

reticulation for the Birth-Hybridization model given an exponential prior with mean 0.1 1128

on network origin. Note that we only used the exponential prior in the experiment in 1129

Section 8.2 of S1 Text. 1130

Table H in S1 Text 1131

MCMC summary statistics for network A (correct population size priors). 1132

Table I in S1 Text 1133

MCMC summary statistics for network A (incorrect priors). 1134

Table J in S1 Text 1135

MCMC summary statistics for Network B (correct population size priors). 1136

Table K in S1 Text 1137

MCMC summary statistics for Network B (incorrect population size priors 1138

Gamma(1,20)). 1139

Table L in S1 Text 1140

MCMC summary statistics for Network B (incorrect population size priors 1141

Gamma(1,1000)). 1142

Table M in S1 Text 1143

MCMC summary statistics for Network B (incorrect population size priors 1144

Gamma(1,2000)). 1145

Table N in S1 Text 1146

MCMC acceptance rates for Network B (correct population size priors). 1147

Table O in S1 Text 1148

MCMC acceptance rates for Network B (incorrect population size priors Γ(1, 1000)). 1149

Table P in S1 Text 1150

MCMC acceptance rates for Network B (incorrect population size priors Γ(1, 2000)). 1151
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1 A closer look at the rules

Here, we first provide proofs of correctness for the rules to compute the partial
likelihoods introduced in the main text (Sec. 1.1). Then we explain the rationale
behind the ranges used for the summation terms in Rules 2 and 4 (Sec. 1.2).

1.1 Correctness of the rules for partial likelihoods.

Recall the definition of the partial likelihoods, which will be used in each of the
proofs below:

Fx (nx; rx) = P
(
RL(x) = rL(x) | Nx = nx, Rx = rx

)
× P (Nx = nx) , (1)

where L(x) is a vector of population interfaces (VPI) containing exactly once
each leaf that descends from any element of x.

We will also use the following equation (proven by Bryant et al. [2, 3] and based
on [4]):

P
(
Rx = rx | Nx = nx, Nx = nx, Rx = rx

)
=

exp(Qxtx)(nx,rx);(nx,rx)

P(Nx = nx | Nx = nx)
(2)

where Qx = (q(n,r);(n′,r′)) denotes the matrix with the following entries:

q(n,r);(n,r−1) = (n− r + 1)v 0 < r ≤ n,
q(n,r);(n,r+1) = (r + 1)u 0 ≤ r < n,

q(n,r);(n−1,r) =
(n− 1− r)n

θx
0 ≤ r < n,

q(n,r);(n−1,r−1) =
(r − 1)n

θx
0 ≤ r ≤ n,

q(n,r);(n,r) = −n(n− 1)

θx
− (n− r)v − ru 0 ≤ r ≤ n,

q(n,r);(n′,r′) = 0 for all other entries.

Finally, we note that many statements of conditional independence that we re-
quire in our proofs depend on the fact that the involved VPIs are incomparable.

Rule 0. Let x be a branch incident to a leaf. Then,

F(x) ((n); (r)) = 1{n = nx} × 1{r = rx}

Proof. Recall that the number of lineages sampled from species x is known and
equal to nx. Then, applying definition (1) above with x = (x), we have:

F(x) ((n); (r)) = P
(
Rx = rx | Nx = n,Rx = r

)
× P

(
Nx = n

)
= 1{rx = r} × 1{nx = n}.

3



Rule 1. Let x, x be a vector of incomparable population interfaces. Then,

Fx,x (nx, nx; rx, rx) =

mx∑
n=nx

n∑
r=0

Fx,x (nx, n; rx, r) exp(Qxtx)(n,r);(nx,rx)

Proof. First, note that, because RL(x,x) is independent of Nx, Rx, when given
Nx, Rx, and because L(x, x) = L(x, x):

P
(
RL(x,x) = rL(x,x) | Nx = nx, Rx = rx, Nx = n,Rx = r,Nx = nx, Rx = rx

)
= P

(
RL(x,x) = rL(x,x) | Nx = nx, Rx = rx, Nx = n,Rx = r

)
Writing down the definition of Fx,x, then summing over all possible values of
Nx and Rx, and then using the identity above, we obtain:

Fx,x (nx, nx; rx, rx)

=

mx∑
n=nx

n∑
r=0

P
(
RL(x,x) = rL(x,x) | Nx = nx, Rx = rx, Nx = n,Rx = r

)
× P

(
Nx = n,Rx = r | Nx = nx, Rx = rx, Nx = nx, Rx = rx

)
× P (Nx = nx, Nx = nx)

Moreover,

P
(
Nx = n,Rx = r | Nx = nx, Rx = rx, Nx = nx, Rx = rx

)
= P

(
Rx = r | Nx = n,Nx = nx, Rx = rx

)
× P

(
Nx = n | Nx = nx, Nx = nx

)
,

where we have used thatRx is independent ofNx andRx, when givenNx, Nx, Rx.

We then have:

Fx,x (nx, nx; rx, rx)

=

mx∑
n=nx

n∑
r=0

P
(
RL(x,x) = rL(x,x) | Nx = nx, Rx = rx, Nx = n,Rx = r

)
× P

(
Rx = r | Nx = n,Nx = nx, Rx = rx

)
× P(Nx = n,Nx = nx, Nx = nx)

Using the fact that Nx is independent of Nx, when given Nx, the last term in
the product can be rewritten as follows:

P(Nx = n,Nx = nx, Nx = nx) = P(Nx = nx | Nx = n)× P(Nx = n,Nx = nx)

4



Using Equation (2), we finally obtain:

Fx,x (nx, nx; rx, rx)

=

mx∑
n=nx

n∑
r=0

P
(
RL(x,x) = rL(x,x) | Nx = nx, Rx = rx, Nx = n,Rx = r

)
× P(Nx = n,Nx = nx)× exp(Qxtx)(n,r);(nx,rx)

=

mx∑
n=nx

n∑
r=0

Fx,x(nx, n; rx, r)× exp(Qxtx)(n,r);(nx,rx)

In the following proofs, to make the mathematics more readable, we denote
each event A = a inside a probability simply as a, whenever the left-hand side
of A = a is unambiguously determined by the right-hand side. For example:

nx means Nx = nx,

rx means Rx = rx,

nx means Nx = nx,

rx means Rx = rx,

nx means Nx = nx,

rx means Rx = rx.

We will still write the full version in those cases where the left-hand side cannot
be inferred from the right-hand side.

Rule 2. Let x, x and y, y be two vectors of incomparable population interfaces,
such that L(x, x) and L(y, y) have no leaf in common. Let x, y be the immediate
descendants of branch z. Then,

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
=
∑
nx

∑
rx

Fx,x (nx, nx; rx, rx)Fy,y

(
ny, nz − nx; ry, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

The ranges of nx and rx in the summation terms are defined by
max(0, nz −my) ≤ nx ≤ min(mx, nz) and
max(0, nx + rz − nz) ≤ rx ≤ min(nx, rz).

Proof. By definition,

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
= P

(
rL(x,y,z) | nx,ny, nz, rx, ry, rz

)
× P

(
nx,ny, nz

)

5



We then sum over all possible realizations of Nx and Rx, and obtain:

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
=∑

nx

∑
rx

P
(
rL(x,y,z) | nx,ny, nz, rx, ry, rz, nx, rx

)
× P

(
nx, rx | nx,ny, nz, rx, ry, rz

)
× P

(
nx,ny, nz

)
,

where the ranges in the summation terms are the same as those in the statement.

Now recall that L(x, x) and L(y, y) are disjoint vectors and note that their
concatenation is equivalent to L(x,y, z). This means that rL(x,y,z) can also
be written as rL(x,x), rL(y,y). Moreover, Nz = nz and Nx = nx implies Ny =
nz −nx, and similarly Rz = rz and Rx = rx implies Ry = rz − rx. We can then
write:

P
(
rL(x,y,z) | nx,ny, nz, rx, ry, rz, nx, rx

)
= P

(
rL(x,x), rL(y,y) | nx,ny, nz, rx, ry, rz, nx, rx, Ny = nz − nx, Ry = rz − rx

)
= P

(
rL(x,x) | nx, rx, nx, rx

)
× P

(
rL(y,y) | ny, ry, Ny = nz − nx, Ry = rz − rx

)
.

In the last equality above, we used the fact that RL(x,x) and RL(y,y) are inde-
pendent random variables, given Nx,x, Rx,x and Ny,y, Ry,y, respectively.

Moreover,

P
(
nx, rx | nx,ny, nz, rx, ry, rz

)
= P

(
rx | nx,nx,ny, nz, rx, ry, rz

)
× P

(
nx | nx,ny, nz, rx, ry, rz

)
= P

(
rx | nx, nz, rz

)
× P

(
nx | nx,ny, nz

)
,

where in the last equality we have used the fact that Rx is independent of
Nx, Ny, Rx, Ry, when given Nx, Nz, Rz, and the fact that Nx is independent of
Rx, Ry, Rz, when given Nx, Ny, Nz.

Putting all this together, we get:

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
=∑

nx

∑
rx

P
(
rL(x,x) | nx, rx, nx, rx

)
× P

(
rL(y,y) | ny, ry, Ny = nz − nx, Ry = rz − rx

)
× P

(
rx | nx, nz, rz

)
× P

(
nx,nx,ny, nz

)
.

Now note that

P
(
nx,nx,ny, nz

)
= P

(
nx,ny, nx, Ny = nz − nx

)
= P (nx, nx)× P

(
ny, Ny = nz − nx

)
,

where the last equality is due to the independence between the lineages from
L(x, x) and those from L(y, y).
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Finally, Rx, given Nx = nx, Nz = nz, Rz = rz follows a hypergeometric distri-
bution:

P
(
rx | nx, nz, rz

)
=

(
nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

, (3)

which allows us to conclude:

Fx,y,z

(
nx,ny, nz; rx, ry, rz

)
=
∑
nx

∑
rx

P
(
rL(x,x) | nx, rx, nx, rx

)
× P (nx, nx)

× P
(
rL(y,y) | ny, ry, Ny = nz − nx, Ry = rz − rx

)
× P

(
ny, Ny = nz − nx

)
×
(
nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

=
∑
nx

∑
rx

Fx,x (nx, nx; rx, rx)Fy,y

(
ny, nz − nx; ry, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

.

Rule 3. Let x, x be a vector of incomparable population interfaces, such that
branch x’s top node is a reticulation node. Let y, z be the branches immediately
ancestral to x. Then,

Fx,y,z

(
nx, ny, nz; rx, ry, rz

)
= Fx,x

(
nx, ny + nz; rx, ry + rz

)(ny + nz
ny

)
γ
ny

y ·γnz
z

Proof. First note that

P
(
rL(x,y,z) | nx, ny, nz, rx, ry, rz

)
= P

(
rL(x,x) | nx, Nx = ny + nz, rx, Rx = ry + rz

)
.

Then, using the definitions of Fx,y,z and Fx,x:

Fx,y,z

(
nx, ny, nz; rx, ry, rz

)
Fx,x

(
nx, ny + nz; rx, ry + rz

) =
P
(
nx, ny, nz

)
P
(
nx, Nx = ny + nz

)
But

P
(
nx, ny, nz

)
P
(
nx, Nx = ny + nz

) = P
(
ny, nz | nx, Nx = ny + nz

)
=

(
ny + nz
ny

)
γ
ny

y · γnz
z ,

where the first equality applies the definition of conditional probability, and the
second equality uses the fact that Ny and Nz are binomially distributed, when
given Nx. The Rule trivially follows.
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Rule 4. Let z, x, y be a vector of incomparable population interfaces, and let
x, y be immediate descendants of branch z. Then,

Fz,z

(
nz, nz; rz, rz

)
=
∑
nx

∑
rx

Fz,x,y

(
nz, nx, nz − nx; rz, rx, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

The ranges of nx and rx in the sums are the same as those in Rule 2.

Proof. Use the definition of Fz,z and then sum over all possible realizations of
Nx and Rx:

Fz,z

(
nz, nz; rz, rz

)
= P

(
rL(z,z) | nz, nz, rz, rz

)
× P

(
nz, nz

)
=∑

nx

∑
rx

P
(
rL(z,z) | nz, nz, rz, rz, nx, rx

)
× P(nx, rx | nz, nz, rz, rz)× P(nz, nz)

Now note that L(z, z) = L(z, x, y), and that

Nz = nz, Rz = rz, Nx = nx, Rx = rx if and only if

Nx = nx, Rx = rx, Ny = nz − nx, Ry = nz − nx,

meaning that

P
(
rL(z,z) | nz, nz, rz, rz, nx, rx

)
= P

(
rL(z,x,y) | nz, rz, nx, rx, Ny = nz − nx, Ry = nz − nx

)
.

Moreover,

P(nx, rx | nz, nz, rz, rz)

= P(rx | nx,nz, nz, rz, rz)× P(nx | nz, nz, rz, rz)

= P(rx | nx, nz, rz) × P(nx | nz, nz),

where in the last equality we have used that rx is independent of nz, rz, when
given nx, nz, rz, and the fact that nx is independent of rz, rz, when given nz.

Now use again Equation (3) to express P(rx | nx, nz, rz) and conclude:

Fz,z

(
nz, nz; rz, rz

)
=
∑
nx

∑
rx

P
(
rL(z,x,y) | nz, rz, nx, rx, Ny = nz − nx, Ry = nz − nx

)
× P(nx | nz, nz)× P(nz, nz)×

(
nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1

=
∑
nx

∑
rx

Fz,x,y

(
nz, nx, nz − nx; rz, rx, rz − rx

)(nx
rx

)(
nz − nx
rz − rx

)(
nz
rz

)−1
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1.2 About ranges

We start this section with a general discussion about the values that the random
variables Nx, Nx, Rx, Rx can take for any population interface in the network.
As usual, we will use lower-case letters for their realizations, i.e. nx, nx, rx, rx.
Our remarks will allow us to derive the ranges used in our rules as simple
consequences of a few equations.

1.2.1 Observable number of lineages across the network

The number of lineages nx, nx, rx, rx observed at any population interface in the
network must satisfy a few simple and obvious constraints, which we list below:

• For any branch x, the number of lineages at the top of the branch is at
least 1, unless there were no lineages at the bottom of the branch, and at
most equal to the number of lineages at the bottom. That is,

1{nx > 0} ≤ nx ≤ nx (4)

• At any population interface, the number of red and green lineages cannot
exceed the total number of lineages. That is, for any branch x:

0 ≤ rx ≤ nx (5)

0 ≤ rx ≤ nx (6)

• For any internal node u, the numbers of red and green lineages entering u
are the same as the numbers of red and green lineages exiting u. That is,
if u is a tree node with ingoing branch z and outgoing branches x, y:

nz = nx + ny (7)

rz = rx + ry (8)

(Note that these two equations also imply that the numbers of green lin-
eages entering and exiting u are the same.)

If u is a reticulation with ingoing branches x, y and outgoing branch z:

nz = nx + ny (9)

rz = rx + ry (10)

• A simple consequence of Equations (4), (7) and (9) is that the number of
lineages in any branch x cannot exceed the total number of lineages at the
leaves that descend from x, that is:

nx, nx ≤ mx (11)

(This can easily be proven by induction on the height of x.)
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Constraints (4)-(10) above are not only necessary, but also sufficient to describe
all possible values of nx, nx, rx, rx across the network. In theory they could be
used to infer the precise ranges for these variables, starting from the leaves and
moving up the network.

In practice, however, this is unnecessary. SnappNet only ensures that for any
population interface x or x, the following two equations are satisfied:

0 ≤ rx ≤ nx ≤ mx (12)

0 ≤ rx ≤ nx ≤ mx (13)

These equations also specify the ranges for which Fx(nx; rx) is defined and
stored in memory.

Note that equations (12) and (13) permit a few more values for the n arguments
than are actually possible. For example nx is allowed to be 0, even when this is
not possible (e.g. when x lies on all paths from a leaf with sampled individuals to
the root). Whenever this occurs, the probability term within Fx(nx; rx) equals
0. As a result, the partial likelihood itself is 0 and does not contribute to the
calculation of any partial likelihood higher up in the network.

1.2.2 Ranges of the sums in Rules 2 and 4

It is now easy to justify the ranges in the sums in Rules 2 and 4. Recall that both
these rules describe the behavior of the algorithm when traversing a tree node
with ingoing branch z and outgoing branches x, y. Also recall that these rules
sum over the possible values for nx and rx. Note that, because conservation
constraints (7) and (8) must hold here, these values also determine the values
of ny = nz − nx and ry = rz − rx.

Let’s first consider the range for nx. By applying constraint (13) to nx and then
ny, we must ensure:

0 ≤ nx ≤ mx

0 ≤ nz − nx ≤ my

The second equation is equivalent to nz −my ≤ nx ≤ nz and therefore we get:

max(0, nz −my) ≤ nx ≤ min(mx, nz)

As for rx, by applying constraint (13) to rx and then ry, we must ensure:

0 ≤ rx ≤ nx
0 ≤ rz − rx ≤ nz − nx

The second equation is equivalent to nx + rz − nz ≤ rx ≤ rz and therefore we
get:

max(0, nx + rz − nz) ≤ rx ≤ min(nx, rz).
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2 Likelihood computation in detail

SnappNet uses Algorithm 1 to compute the full likelihood of a network Ψ
with respect to Di, the data from marker i. The algorithm starts by initializ-
ing the data structures that will subsequently be used and then processes all
nodes of the network Ψ using the rules presented in the main text. Rules 2, 3
and 4 are applied respectively in Algorithm 3, 4 and 5, together with suitable
modifications of data structures.

The data structures are the following: ReadyNodesQ, a queue storing the
nodes that are ready to be processed; Processed, which stores whether a node
has already been processed or not; and CurrF, a dictionary that associates any
branch x to the Fx having x in x. In this pseudocode, Fx represents a data
structure holding all the relevant values of Fx(nx, rx), as well as the vector
of population interfaces x. We also note that, to reduce memory usage, we
only store the Fx associated to branches that separate an unprocessed node
to a processed node, as these are the only ones that will be used in future
computations. Note that unlike in the main text, nodes are denoted u, u′ and
up in S1 Text.

Algorithm 1: Compute the likelihood for one marker

Input: Network Ψ, and the data Di for one marker
Output: The likelihood P(Di|Ψ)

// Defining global data structures shared by all algorithms

Let ReadyNodesQ be an empty queue
Let CurrF and Processed be empty dictionaries
Initialize Data Structures(Di)

while ReadyNodesQ 6= ∅ do
u← Dequeue(ReadyNodesQ)

if u has two outgoing branches e1 and e2 then // u is a tree node

if CurrF[e1] 6= CurrF[e2] then // comparing pointers

Apply Rule 2(u)
else Apply Rule 4(u)

else Apply Rule 3(u) // u is a reticulation node

end
Let ρ be the root branch in Ψ
Compute P(Di|Ψ) from F(ρ) using Equation (3)

return P(Di|Ψ)
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Algorithm 2: Initialize Data Structures(Di)

foreach leaf x in Ψ do
Compute nx and rx from Di

Compute F(x) using Rule 0
Compute F(x) using Rule 1
CurrF[x]← F(x)

Processed[x]← true
end
foreach internal node u in Ψ do

Processed[u]← false
if all children of u are leaves then Enqueue (ReadyNodesQ,u)

end

Algorithm 3: Apply Rule 2(u) // u is a tree node of Ψ

Let x, y be u’s outgoing branches and let z be u’s incoming branch
Fx,x ← CurrF[x]
Fy,y ← CurrF[y]
Apply Rule 2 to obtain Fx,y,z from Fx,x and Fy,y

if u is the root node of Ψ then return
Apply Rule 1 to obtain Fx,y,z from Fx,y,z

foreach branch w with an interface in x,y, z do
CurrF[w]← Fx,y,z // copying pointers only

Processed[u]← true
CheckParentIsReady(z)
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Algorithm 4: Apply Rule 3(u) // u is a reticulation node of Ψ

Let x be u’s outgoing branch and let y, z be u’s incoming branches
Fx,x ← CurrF[x]
Apply Rule 3 to obtain Fx,y,z from Fx,x

Apply Rule 1 twice to obtain Fx,y,z from Fx,y,z

foreach branch w with an interface in x, y, z do
CurrF[w]← Fx,y,z // copying pointers only

Processed[u]← true
CheckParentIsReady(y)
CheckParentIsReady(z)

Algorithm 5: Apply Rule 4(u) // u is a tree node of Ψ

Let x, y be u’s outgoing branches and let z be u’s incoming branch
// recall that here CurrF[x] = CurrF[y]

Fz,x,y ← CurrF[x]
Apply Rule 4 to obtain Fz,z from Fz,x,y

if u is the root node of Ψ then return
Apply Rule 1 to obtain Fz,z from Fz,z

foreach branch w with an interface in z, z do
CurrF[w]← Fz,z

Processed[u]← true
CheckParentIsReady(z)

Algorithm 6: CheckParentIsReady(xp) // xp is a branch of Ψ

Result: Updated data structures, where the origin of xp is added to
ReadyNodesQ if all its descendants have already been
processed

Let up and u be the nodes respectively at the origin and end of xp
if up has two parents then // up is a reticulation node

Enqueue(ReadyNodesQ,up)
else // up is a tree node

Let u′ be the child of up different from u
if Processed[u′] then

Enqueue (ReadyNodesQ, up)
end

end
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3 Other computational complexity results

In this section, we shall use the weak definition of connectivity in a directed
graph: we say that two nodes in Ψ are connected is there is an undirected path
between them in Ψ. The same holds for the notion of biconnected, see below.

3.1 Time complexity of the algorithm by Zhu et al. [1]

Although the time complexity stated by Zhu and coauthors is O(sn4r+4), where
r is the number of reticulation nodes in the network, they also note that all
labelled partial likelihoods (LPLs) at a lowest articulation node can be merged
into a single LPL, thus avoiding carrying forth all that information [1]. This
means that, as we stated in the main text, the time complexity to process a
node with their algorithm is actually O(n4ru+4), where ru is the number of
reticulation nodes which descend from u, and for which there exists a directed
path from u that does not pass via a lowest articulation node. Note that ru
is potentially much smaller than r. We refer to the original paper by Zhu and
coauthors for the definition of LPL and the full description of their algorithm [1].

Here we prove that, since the time complexity to process a node is O(n4ru+4),
then the whole algorithm runs in O(sn4`+4) time, where ` is the level of the
network [5, 6].

Let us first recall some definitions from the theory of phylogenetic networks that
are fundamental to analyse the complexity of the algorithm by Zhu et al. [1]. A
subgraph G of Ψ is biconnected if the removal of any one node in G leaves the
remainder of G connected. A biconnected component of Ψ is a maximal bicon-
nected subgraph of Ψ. The nodes of Ψ that belong to two or more biconnected
components are called articulation nodes. (Equivalently, articulation nodes are
the nodes in Ψ whose removal cause the network to become disconnected.) An
articulation node is said to be a lowest articulation node if all of its children
are not articulation nodes. The level of a phylogenetic network is the maximum
number of reticulation nodes in one of its biconnected components.

It is easy to see that a phylogenetic network has two kinds of biconnected
components: those that only consist of two adjacent nodes — which we call
trivial biconnected components — and more complex ones — which we call
nontrivial biconnected components or blobs. Every articulation node of Ψ is
found at the root of a biconnected component. The lowest articulation nodes
of a network coincide with the roots of the network’s blobs.

Recall that ru is defined as the number of reticulation nodes which descend
from u, and for which there exists a directed path from u that does not pass
via a lowest articulation node. Now note that every directed path that ends
in a reticulation node v and does not pass via a lowest articulation node can
only be from a node u in the same blob as v. Then, ru is at most equal to the
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number of reticulation nodes in the same biconnected component as u. In turn,
the number of reticulation nodes in the same biconnected component as u is at
most equal to `, the level of Ψ. We can then conclude that ru ≤ ` and that
each node is processed in at most O(n4`+4) time, giving a total running time of
O(sn4`+4).

3.2 SnappNet’s K and the level of the network

Here we prove that for any traversal of the network Ψ, we have K ≤ `+1, where
` is the level of Ψ (Proposition 1 below).

We let B(x) denote the set of branches x for which there exists a population
interface x or x in the VPI x. Moreover we let GΨ

x denote the subgraph of Ψ
induced by all the descendant nodes of the branches in B(x).

The intuition behind the proof is that, for any VPI activated by the traversal
algorithm, the branches in B(x) must all belong to the same biconnected com-
ponent of Ψ. Moreover, |B(x)| cannot exceed 1 + the number of reticulations
within that biconnected component, which implies K ≤ `+ 1.

Lemma 1. Let x be a VPI activated by any traversal algorithm using Rules
0-4. Then, GΨ

x is connected.

Proof. If x = (x) is activated by Rule 0, then GΨ
x consists of a single leaf

and is trivially connected. Thus, we just need to prove that every subsequent
application of Rules 1-4 can only activate a VPI x with connected GΨ

x , assuming
that this property is satisfied by the VPI or VPIs that the rule uses as input.

For Rule 1, this is trivially true as GΨ
x,x = GΨ

x,x. For Rule 2, let’s assume

that GΨ
x,x is connected and that GΨ

y,y is connected. This implies that GΨ
x,y,z is

connected, as x and y appear in GΨ
x,y,z and ensure that all nodes in GΨ

x,x are

connected to all nodes in GΨ
y,y. For Rule 3 and 4, the thesis is again trivial,

because GΨ
x for the newly active VPI only differs from the one for the input

VPI by inclusion of a single new vertex, which is easily seen to be connected to
the rest of GΨ

x .

Corollary 1. Let x be a VPI activated by any traversal algorithm using Rules
0-4. Then, all the branches in B(x) belong to the same biconnected component
of Ψ.

Proof. If |B(x)| = 1, this is trivial. If B(x) contains at least two branches x and
y, it is now easy to see that x and y belong to a cycle obtained by attaching the
following two disjoint paths: (1) the path within GΨ

x from the bottom of x to
the bottom of y — which exists because of Lemma 1 — and (2) the path from
the bottom of x to the bottom of y, going via x and y and only using branches
that are ancestral to x and y. The existence of this cycle implies the thesis.
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Lemma 2. Let x be a VPI activated by any traversal algorithm using Rules 0-4,
and let R(x) be the set of reticulation nodes that descend from any branch in
B(x) and belong to the same biconnected component as the one of B(x). Then,
|B(x)| ≤ |R(x)|+ 1.

Proof. To make notation light, let b(x) = |B(x)| and r(x) = |R(x)|. As in the
proof of Lemma 1, we start by noting that if x = (x) is activated by Rule 0,
then the thesis trivially holds, as b((x)) = 1 and r((x)) = 0.

We then consider the other rules, and show that if the thesis holds for the VPIs
that have already been activated, then it must hold for the newly activated
VPI. For Rule 1, b(x, x) = b(x, x) and r(x, x) = r(x, x), so b(x, x) ≤ r(x, x) + 1
trivially implies b(x, x) ≤ r(x, x) + 1.

For Rule 2, we assume b(x, x) ≤ r(x, x) + 1 and b(y, y) ≤ r(y, y) + 1. Now note
that b(x,y, z) = b(x, x) + b(y, y) − 1, and r(x,y, z) = r(x, x) + r(y, y) which
imply:

b(x,y, z) = b(x, x) + b(y, y)− 1

≤ (r(x, x) + 1) + (r(y, y) + 1)− 1

= r(x, x) + r(y, y) + 1

= r(x,y, z) + 1,

thus proving the thesis for VPI x,y, z.

For Rule 3, we assume b(x, x) ≤ r(x, x) + 1. Now note that

b(x, y, z) = b(x, x) + 1,

r(x, y, z) = r(x, x) + 1,

which implies b(x, y, z) ≤ r(x, y, z) + 1.

Finally, for Rule 4, we assume b(z, x, y) ≤ r(z, x, y)+1. Now distinguish between
two cases. Either (i) z is nonempty, in which case B(z, x, y) and B(z, z) are in
the same biconnected component and

b(z, z) = b(z, x, y)− 1,

r(z, z) = r(z, x, y).

In this case we therefore have b(z, z) ≤ r(z, z), which implies the thesis.

Alternatively, (ii) z is empty, in which case

b(z, z) = 1,

r(z, z) = 0.

Thus b(z, z) ≤ r(z, z) + 1 is again satisfied.

We now have all we need to prove the main result of this section:
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Proposition 1. For any traversal algorithm using Rules 0-4 to process a net-
work of level `, K ≤ `+ 1.

Proof. Note that

K = max{|B(x)| such that x is activated by the given traversal algorithm}.

Thus, using Lemma 2, and the definition of the level `:

K ≤ max{|R(x)|+ 1 such that x is activated by the given traversal algorithm}
≤ `+ 1.
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4 Newick representations

Network A:
((C:0.08,((R:0.007,(Q:0.004)#H1:0.003):0.035,((A:0.006,#H1:0.002):0.016,

L:0.022):0.02):0.038):0);

Network B:
((((R:0.014,(Q:0.004)#H1:0.01):0.028,(((A:0.003)#H2:0.003,#H1:0.002)

:0.016,L:0.022):0.02):0.038,(C:0.005,#H2:0.002):0.075):0);

Network C:
((O:0.08,((A:0.012,((B:0.002,(C:0.001)#H1:0.001):0.002)#H2:0.008):0.038,

((D:0.003,#H1:0.002):0.017,#H2:0.016):0.03):0.03):0);

Starting tree for networks A and B:
(((C:0.05,R:0.05):0.05,((A:0.05,L:0.05):0.025,Q:0.075):0.025):0);

Alternative starting trees for networks A and B (only used to check the influence
of the starting tree):
(((A:0.05,Q:0.05):0.05,((C:0.05,L:0.05):0.025,R:0.075):0.025):0);

((((C:0.05,A:0.05):0.05,((R:0.05,Q:0.05):0.025,L:0.075):0.025):0);

Starting tree for network C:
(((O:0.05,A:0.05):0.05,((C:0.05,D:0.05):0.025,B:0.075):0.025):0);

5 MCMCBiMarkers commands

For m=100,000 , data were generated in the following way:

SimBiMarkersinNetwork -pi0 0.5 -sd 17000 -num 100000

-tm <A:A_0;B:B_0,B_1,B_2,B_3;

C:C_0,C_1,C_2,C_3;D:D_0;O:O_0>

-truenet "[0.005](O:0.08:0.005,((A:0.012:0.005,((B:0.002:0.005,

(C:0.001:0.005)I1#H1:0.001:0.005:0.5)I2:0.002:0.005)I3#H2:0.008

:0.005:0.5)I4:0.038:0.005,((D:0.003:0.005,

I1#H1:0.002:0.005:0.5)I5:0.017:0.005,I3#H2:0.016:0.005:0.5)

I6:0.03:0.005)I7:0.03:0.005);"

;

Next, the following commands, were successively used to run MCMCBiMarkers.
The first step consists in a pre-burnin phase relying on 3 chains of different
temperatures.

MCMC_BiMarkers -cl 1500000 -sf 1000 -bl 200000 -prebl 10000

-premc3 (2.0,4.0) -premr 1 -pi0 0.5 -varytheta

-pp 2.0 -ee 2.0 -mr 2
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-pl 1

-esptheta -sd 12345678

-taxa (A_0,B_0,B_1,B_2,B_3,C_0,C_1,C_2,C_3,D_0,O_0)

-tm <A:A_0;B:B_0,B_1,B_2,B_3;C:C_0,C_1,C_2,C_3;D:D_0;O:O_0>

;

The second step consists in MCMC sampling during 1.5× 106 iterations.

MCMC_BiMarkers -cl 1500000 -sf 1000 -bl 200000

-pi0 0.5 -varytheta

-pp 2.0 -ee 2.0 -mr 2

-pl 1

-esptheta -sd 12345678

-taxa (A_0,B_0,B_1,B_2,B_3,C_0,C_1,C_2,C_3,D_0,O_0)

-tm <A:A_0;B:B_0,B_1,B_2,B_3;C:C_0,C_1,C_2,C_3;D:D_0;O:O_0>

-snet"..."

;

Note that the “-snet” option refers to the starting network obtained from the
pre-burnin phase. Besides, the options “-mr” and “-pp” allow to specify the
network prior: the maximum number of reticulations was set to 2, and the prior
Poisson distribution on the number of reticulation nodes was centered on 2.

6 Supplementary results for the simulation study

Table A. Table linked to Table 1 of the main manuscript. Trees inferred by
SnappNet when m=1,000 sites were considered.

Hyperparameters Network A Network B

True (α = 1, β = 200, α
β

= 0.005) 78.71% tree ((((Q,A),L),R),C)
35.28% tree (((Q,R),L),(A,C))
28.54% tree (((Q,L),R),(A,C))

True (α = 1, β = 1000, α
β

= 0.001) 82.82% tree ((((Q,A),L),R),C)
45.27% tree (((Q,R),L),(A,C))
40.35% tree (((Q,L),R),(A,C))

True (α = 1, β = 2000, α
β

= 5× 10−4) 82.92% tree ((((Q,A),L),R),C)
48.40% tree (((Q,R),L),(A,C))
38.16% tree (((Q,L),R),(A,C))
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Table B. Average posterior probability (PP) of the topology of network C
obtained by running MCMCBiMarkers on data simulated from network C. Same
as Table 3 of the main manuscript except that 12× 106 iterations are
considered, and only one lineage is sampled in hybrid species B and C. ESS is
the average ESS over the different replicates, and SE stands for the sampler
efficiency.

Number of sites
1,000 10,000 100,000

PP 5.5× 10−6 (20 replicates) 5.10% (19 replicates) 0% (16 replicates)
SE 2.32× 10−5 8.11× 10−6 1.96× 10−5

ESS 250.88 87.63 211.57
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Figure A. Density probabilities for 5-tips networks, simulated with a prior
corresponding to a birth hybridization process with parameters d = 10, r = 1/2
and τ0 = 0.1, using the SpeciesNetwork package [7]. The figure is obtained
for 10,000 replicates. The means are given by the dashed vertical lines.
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Figure B. Density probabilities for 5-tips networks with at most two
reticulations, simulated with a prior corresponding to a birth hybridization
process with parameters d = 10, r = 1/2 and τ0 = 0.1, using the
SpeciesNetwork package [7]. Figures are drawn for the 4,377 cases in 10,000
where the network had at most two reticulations. The means are given by the
dashed vertical lines.
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Figure C. Density probabilities regarding the 5-tips network with a
maximum of 3 reticulations, simulated under the birth hybridization process
(d = 10, r = 1/2, τ0 = 0.1, 5,837 replicates), using the SpeciesNetwork
package [7]. The means are given by the dashed vertical lines.
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Figure D. Estimated node heights of network B. 10,000 sites are considered
and 2 lineages per species. Constant sites are included in the analysis, and the
estimated heights are based on the 12 replicates (over 14 replicates) for which
network B was recovered by SnappNet (criterion ESS> 200 ; θ ∼ Γ(1, 200),
d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10) for the priors, number of reticulations
bounded by 3 when exploring the network space). Heights are measured in
units of expected number of mutations per site. True values are given by the
dashed horizontal lines. The initials MRCA stand for “Most Recent Common
Ancestor”.
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Figure G. Estimated node heights of network C as a function of the number
of sites. Same experiment as in Table 2 of the main manuscript: 1 lineage in
species O, A and D, and 4 lineages in species B and C. The estimated heights
are based on the replicates for which network C was recovered by SnappNet.
True values are given by the dashed horizontal lines. The initials MRCA stand
for “Most Recent Common Ancestor”.
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number of mutations per site. True values are given by the dashed horizontal
lines. Two lineages per species were simulated. Only polymorphic sites are
included in the analysis, and 20 replicates are considered for each simulation
set up (criterion ESS> 200 for m=1,000 and m=10,000 , and criterion
ESS> 100 for m=100,000; θ ∼ Γ(1, 200), d ∼ E(0.1), r ∼ Beta(1, 1), τ0 ∼ E(10)
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network space). Same framework as in Figure 10 of the main paper, except
that only polymorphic sites are taken into account.
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Figure I. Estimated inheritance probability and instantaneous rates for
network A, as a function of the number of sites. True values are given by the
dashed horizontal lines. Same framework as in Figure 11 of the main paper,
except that only polymorphic sites are taken into account.
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Figure J. Estimated node heights of network A, as a function of the number
of sites. Heights are measured in units of expected number of mutations per
site. True values are given by the dashed horizontal lines. Same framework as
in Figure 12 of the main paper, except that only polymorphic sites are taken
into account. The initials MRCA stand for “Most Recent Common Ancestor”.
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Figure K. Estimated population sizes θ for each branch of network A, as a
function of the number of sites. True values are given by the dashed horizontal
lines. Same framework as in Figure 13 of the main paper, except that only
polymorphic sites are taken into account. The initials MRCA stand for “Most
Recent Common Ancestor”.
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Figure L. Experiments on Network A and based only on polymorphic sites.
Same framework as in Figures H and I above, except that the correction factor
is not used in the calculations (criterion ESS> 200 in all cases).
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7 Supplementary informations on rice real data

Table C. Description of the 24 rice varieties considered in our study. These
varieties are either representative cultivars spanning the four main rice
subpopulations (Indica, Japonica, circum Aus and circum Basmati), or wild
types (Or1I, Or1A, Or3).

Subpopulation Variety ID Country Variety name

circum Aus

IRIS-313-11058 Bangladesh AUS 329
IRIS 313-11737 India CHUNDI
IRIS-313-10852 India ARC 7336
IRIS-313-11027 Pakistan JHONA 101

circum Basmati

IRIS-313-11062 Bangladesh BEGUNBICHI 33
IRIS-313-8326 India JC1
IRIS-313-11258 India ARC 13502
IRIS-313-12094 Bangladesh ARC KASHA

Indica

IRIS-313-11819 Myanmar PADINTHUMA
IRIS-313-11089 Cambodia SRAU THMOR
IS-313-11646 India NCS771 A

IRIS-313-11741 SriLanka HERATH BANDA

Japonica

B204 China LONGHUAMAOHU
IRIS-313-10577 Philippines IFUGAO RICE
IRIS-313-11691 Bhutan SHANGYIPA
IRIS-313-7883 Indonesia GANIGI

B269 China YUEFU

Or1I
W1117 India W1117
W1559 Thailand W1559

Or1A
W0574 Malaya W0574
W1747 India W1747

Or3

W3042 China W3042
W3073 China W3073
W3048 China W3048
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Table D. Data set 1, that includes only one variety per subpopulation.
These varieties were chosen from Table C.

Subpopulation Variety ID Country Variety name

circum Aus IRIS-313-10852 India ARC 7336
circum Basmati IRIS-313-12094 Bangladesh ARC KASHA

Indica IRIS-313-11741 SriLanka HERATH BANDA
Japonica B269 China YUEFU

Or1I W1559 Thailand W1559
Or1A W0574 Malaya W0574
Or3 W3073 China W3073

Table E. Data sets 2 and 3, that include two varieties per subpopulation.
These varieties were chosen from Table C.

Subpopulation Data set Variety ID Country Variety name

circum Aus
2

IRIS-313-11058 Bangladesh AUS 329
IRIS-313-10852 India ARC 7336

3
IRIS 313-11737 India CHUNDI
IRIS-313-11027 Pakistan JHONA 101

circum Basmati
2

IRIS-313-11062 Bangladesh BEGUNBICHI 33
IRIS-313-11258 India ARC 13502

3
IRIS-313-8326 India JC1
IRIS-313-12094 Bangladesh ARC KASHA

Indica
2

IRIS-313-11819 Myanmar PADINTHUMA
IS-313-11646 India NCS771 A

3
IRIS-313-11741 SriLanka HERATH BANDA
IRIS-313-11089 Cambodia SRAU THMOR

Japonica
2

B204 China LONGHUAMAOHU
IRIS-313-11691 Bhutan SHANGYIPA

3
IRIS-313-10577 Philippines IFUGAO RICE
IRIS-313-7883 Indonesia GANIGI

Or1I 2,3
W1117 India W1117
W1559 Thailand W1559

Or1A 2,3
W0574 Malaya W0574
W1747 India W1747

Or3
2

W3042 China W3042
W3073 China W3073

3
W3048 China W3048
W3073 China W3073
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Figure N. Trace plots obtained according to the Tracer software when data
set 1 was analyzed with SnappNet. (a) and (b) refer to the first sampling of
12 kSNPs along the whole genome, whereas (c) and (d) focus on the second
sampling. Two chains were considered for each sampling.
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Table F. Informations obtained according to the Tracer software, when data
set 1 was analyzed with SnappNet. Two different samplings of 12 kSNPs
were considered, and also two chains for each sampling.

First Sampling Second Sampling

Chain 1 Chain 2 Chain 1 Chain 2

LogPosterior

mean -23799.1709 -23798.9118 -24208.6649 -24208.8018
stdev 5.7064 5.5892 5.867 5.9986

median -23798.6288 -23798.4253 -24208.1221 -24208.2887
auto-correlation time 10667.9058 7764.256 9263.5725 16818.357
effective sample size 843.7 1159.3 971.7 535.2

LogLikelihood

mean -23610.9374 -23610.7083 -24021.9798 -24021.9297
stdev 4.1712 4.0226 3.9336 4.0567

median -23610.6061 -23610.3848 -24021.6408 -24021.5582
auto-correlation time 34252.7407 28373.4116 31661.3188 68782.4427
effective sample size 262.8 317.2 284.3 130.9

LogPrior

mean -188.2335 -188.2035 -186.6851 -186.8721
stdev 5.7941 5.4802 5.3762 5.4702

median -187.8239 -187.7722 -186.2485 -186.3268
auto-correlation time 17357.6687 11954.8279 9509.4182 15383.8939
effective sample size 518.6 752.9 946.5 585.1

u

mean 0.5567 0.5567 0.5583 0.5583
stdev 9.4491E-4 9.5177E-4 9.7888E-4 9.5855E-4

median 0.5567 0.5567 0.5583 0.5582
auto-correlation time 1898.9027 2043.8061 1913.3736 1932.747
effective sample size 4740.1 4404 4704.3 4657.1

v

mean 4.9094 4.9073 4.7922 4.7909
stdev 0.0734 0.0739 0.0721 0.0706

median 4.9072 4.9062 4.7903 4.7925
auto-correlation time 1896.7939 2044.0868 1944.4961 1936.7774
effective sample size 4745.4 4403.4 4629 4647.4

d

mean 10.7192 10.9194 9.8551 10.0755
stdev 5.2274 5.3009 4.7636 4.8326

median 10.0307 10.2443 9.2427 9.4077
auto-correlation time 3692.7762 2098.2587 5591.047 4875.9969
effective sample size 2437.5 4289.7 1609.9 1846

r

mean 0.2387 0.2349 0.2217 0.2159
stdev 0.1707 0.1667 0.1633 0.1558

median 0.1996 0.1952 0.1799 0.179
auto-correlation time 6276.9007 2088.925 1786.1765 1610.1668
effective sample size 1434 4308.9 5039.3 5590.1
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8 Additional experiments on SnappNet’s MCMC
sampler

In the following, we describe a few experiments that were conducted to better
understand the behavior of the MCMC sampler employed by SnappNet— in
particular its efficiency at sampling from network space, and how this efficiency
is affected by the priors on phylogenetic network and population sizes. The
prior on phylogenetic networks is specified in terms of the birth-hybridization
model by Zhang et al. [7].

8.1 Experiment with no data

8.1.1 Protocol

In the first experiment we assess whether the MCMC sampler employed by
SnappNet can adequately sample from network space. We specify a posterior
distribution over 5-taxon phylogenetic networks with high variance across multi-
ple number of reticulations. We ran the MCMC sampler so that it sampled from
a posterior distribution specified in terms of a birth-hybridization model prior,
origin height prior and a null likelihood function (always returns zero regard-
less of the input data). We then compared the sampled networks with 5-taxon
networks simulated directly from the birth-hybridization model. Theoretically
we expect the distributions of sampled and simulated networks to match.

We studied three different cases of the birth-hybridization model prior, for each
case we either specified a normal prior with mean 0.1 and standard deviation
of 0.01 on the origin height or an exponential prior with mean 0.1 on the ori-
gin height (that is a total of six different scenarios): In the first case we used
a birth-hybridization model with speciation rate 20 and hybridization rate 1
(mean number of reticulations close to zero). In the second case we used
a birth-hybridization model with speciation rate 20 and hybridization rate 2
(mean number of reticulations close to one). In the third case we used a birth-
hybridization model with speciation rate 20 and hybridization rate 3 (mean
number of reticulations close to two). We only kept simulated networks with 5
leaves.

In each case we simulated 1000 networks directly from the birth-hybridization
model and sampled 2,000,000 networks using the SnappNet sampler (burning
half the chain and logging every 1000th sample thereafter). Note that it is
possible to fix the birth and hybridization rates in the prior used by SnappNet
by fixing corresponding values for parameters d and r. We used Tracer to assess
convergence of the MCMC chain by visually inspecting the trace and computing
the ESS (effective sample size). Thereafter we compared the simulated networks
with sampled networks in terms of the number of reticulations, time until first
reticulation, network height and network length.
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Figure O. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 1 (mean number of reticulations close to zero) and a normal
prior with mean 0.1 and standard deviation of 0.01 on the origin height. We
plot the simulated networks (orange) against the sampled networks (blue)
summarising the networks under: (a) Number of reticulations (b) Time until
first reticulation (c) Height of the network (d) Length of the network.

8.1.2 Results

In the first experiment the sampler converged to the specified prior in all three
cases (for both origin height priors) based on the computed summary statistics
(see Figs O-Q and Figs R-T). The convergence of the sampler in all cases is a
good indication that the implemented moves worked well enough. The ESS for
the sampled networks given the normal prior on the network origin were: 1001
for the first case (mean number of reticulation close to zero); 844 for the second
case (mean number of reticulations close to one); 1001 for the third case (mean
number of reticulations close to two). The ESS for the sampled networks given
the exponential prior on the network origin were: 872 for the first case; 955 for
the second case; 838 for the third case.
Note that the normal and exponential priors on the origin height permit to
describe different knowledge on the expected number of reticulations, see Figs
Q(a) and T(a).
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Figure P. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 2 (mean number of reticulations close to one) and normal
prior with mean 0.1 and standard deviation of 0.01 on the origin height. We
plot the simulated networks (orange) against the sampled networks (blue)
summarising the networks under: (a) Number of reticulations (b) Time until
first reticulation (c) Height of the network (d) Length of the network.
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Figure Q. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 3 (mean number of reticulations close to two) and normal
prior with mean 0.1 and standard deviation of 0.01 on the origin height. We
plot the simulated networks (orange) against the sampled networks (blue)
summarising the networks under: (a) Number of reticulations (b) Time until
first reticulation (c) Height of the network (d) Length of the network.
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Figure R. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 1 (mean number of reticulations close to zero) and an
exponential prior with mean 0.1 on the origin height. We plot the simulated
networks (orange) against the sampled networks (blue) summarising the
networks under: (a) Number of reticulations (b) Time until first reticulation
(c) Height of the network (d) Length of the network.
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Figure S. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 2 (mean number of reticulations close to one) and an
exponential prior with mean 0.1 on the origin height. We plot the simulated
networks (orange) against the sampled networks (blue) summarising the
networks under: (a) Number of reticulations (b) Time until first reticulation
(c) Height of the network (d) Length of the network.
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Figure T. Birth-hybridisation model with speciation rate 20 and
hybridisation rate 3 (mean number of reticulations close to two) and an
exponential prior with mean 0.1 on the origin height. We plot the simulated
networks (orange) against the sampled networks (blue) summarising the
networks under: (a) Number of reticulations (b) Time until first reticulation
(c) Height of the network (d) Length of the network.

43



#Chain Network prior Mean reticulations Pop size prior
1,2 BH(20,1) 0.371 Γ(1, 200)
3,4 BH(20,1) 0.371 Γ(1, 20)
5,6 BH(20,1) 0.371 Γ(1, 1000)
7,8 BH(20,1) 0.371 Γ(1, 2000)
9,10 BH(20,2) 0.861 Γ(1, 200)
11,12 BH(20,2) 0.861 Γ(1, 20)
13,14 BH(20,2) 0.861 Γ(1, 1000)
15,16 BH(20,2) 0.861 Γ(1, 2000)
17,18 BH(20,3) 2.265 Γ(1, 200)
19,20 BH(20,3) 2.265 Γ(1, 20)
21,22 BH(20,3) 2.265 Γ(1, 1000)
23,24 BH(20,3) 2.265 Γ(1, 2000)

Table G. BH(birth rate, hybridisation rate) refers to the birth-hybridisation
process of Zhang et al. with the specified birth and hybridisation rates. For
data simulated with network A, only chains 1,2,3,4,9,10,11,12,17,18,19,20 were
run. We indicate the mean number of reticulation for the Birth-Hybridization
model given an exponential prior with mean 0.1 on network origin. Note that
we only used the exponential prior in the experiment in Section 8.2.

8.2 Experiments on 10,000 simulated sites

8.2.1 Protocol

In the second experiment we assess how population size priors and network
priors influence SnappNet’s inferences, in particular the rate of convergence
and sampling efficiency of the MCMC sampler. Recall that the network prior
specifies a hybridization rate, whereas the prior on population sizes affects the
probability of coalescence, and therefore that of ILS. Thus, these two priors
have an important role in determining the relative probability of hybridization
and ILS as causes of incongruent (non-tree-like) signals in the data.

We simulated 10,000 SNPs for network A and network B under the multispecies
network coalescent using SimSnappNet. For each of these two simulated SNP
datasets, we ran 12 (for network A) or 24 (for network B) MCMC chains, for
500,000 iterations each. See Table G for details on the priors specified for each
chain. In this experiment we only use the exponential prior with mean 0.1 on
the network origin.

Briefly, as in the experiment of Sec. 8.1, we specified a network prior using the
birth-hybridisation model of Zhang et al. [7]. Again, we fixed the birth rate
to 20 for all MCMC chains and chose a hybridisation rate so that the mean
number of reticulations is close to zero, one or two. Furthermore we specified
either a ‘correct’ or ‘incorrect’ prior on population size (‘correct’ implies the
mean of the prior distribution corresponds to the population size parameter
used to simulate the SNP dataset). The ‘correct’ population size prior on each
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branch was specified as Γ(1, 200). The ‘incorrect’ population size prior on each
branch was specified as Γ(1, 20). For network B we considered two additional
incorrect population size priors, namely Γ(1, 1000) and Γ(1, 2000). Note that
the rest of the priors of the model used the default SnappNet settings. In
order to assess convergence we ran two MCMC chains for each prior setting
(as specified in Table G). We randomly drew initial networks and population
sizes for each MCMC chain from the prior distribution. Also note that, here we
do not impose any upper bound on the number of reticulations in the sampled
networks.

8.2.2 Results for network A

We summarize results for data simulated under network A in Fig U (MCMC
chains with correct population size priors) and Fig V (MCMC chains with incor-
rect population size priors). We also give detailed summary statistics in Table H
(MCMC chains with correct population size priors) and Table I (MCMC chains
with incorrect population size priors). We note that all chains with correct
population size priors converged to the correct topology, network height and
network length (see Figs U(c) and U(d)). We assume convergence for network
topology since there was only one unique topology for each posterior distribu-
tion of the chains with correct population size priors. In each case the unique
topology matched up with the topology of network A. Furthermore in Fig U(b)
all chains have similar prior distributions. This could be due to the topology of
network A that is very unlikely under all the specified birth-hybridization model
priors (similar to sampling from a flat prior). We also note a much lower ESS
under the model prior with reticulation mean close to zero (see ESS in Table H).

Chains with incorrect population size priors also converged to the correct topol-
ogy. Similar to correct priors, there was only one unique topology for all chains.
However the chains did not converge to the correct network height or network
length. This is not unexpected since the length of a branch and its associated
population size are correlated (see Bryant et al. [2] for more detail). Further-
more the ESS for chains with incorrect population size priors is significantly
lower than chains with correct population size priors (see ESS in Table H and
Table I). There is also a difference in ESS between chains with different topol-
ogy priors. In this case ESS is highest when the mean number of reticulations
on the network topology prior is close to one and lowest when mean number
of reticulations for the network topology prior is close to two. This seems to
suggest that specifying a prior with correct mean number of reticulations can
improve sampling efficiency.

Table H. MCMC summary statistics for network A (correct population size priors)

Posterior 0 1 2
mean -16124.9199 -16123.2496 -16123.8596
stdev 4.7795 4.9024 5.0388
median -16124.601 -16122.7308 -16123.2257
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95% HPD Interval [-16134.1, -16116.4] [-16133.4, -16114.9] [-16133.0, -16114.7]
Auto-correlation time 4537.3247 1336.3834 1454.4489
Effective sample size 198.5752 674.2077 619.4786
Network height 0 1 2
mean 0.076 0.0769 0.0767
stdev 5.12E-03 4.09E-03 4.34E-03
median 0.0768 0.0772 0.0774
95% HPD Interval [0.0647, 0.0854] [0.0686, 0.0844] [0.0682, 0.0847]
Auto-correlation time 10376.3331 3552.1422 3800.8964
Effective sample size 86.8322 253.6498 237.0493
Network length 0 1 2
mean 0.213 0.2144 0.2137
stdev 0.0124 9.93E-03 0.0107
variance 1.54E-04 9.87E-05 1.14E-04
95% HPD Interval [0.1882, 0.2369] [0.1967, 0.2357] [0.1934, 0.2344]
Auto-correlation time 7533.4457 3113.3204 3818.75
Effective sample size 119.6 289.4016 235.9411

Table I. MCMC summary statistics for network A (incorrect priors)

Posterior 0 1 2
mean -15953.476 -15917.2941 -15917.7676
stdev 5.1764 7.0277 6.7969
median -15952.9488 -15916.1712 -15917.1603
95% HPD Interval [-15962.4, -15943.6] [-15932.0, -15905.4] [-15930.3, -15905.5]
Auto-correlation time 2395.3008 2164.8158 3002.7331
Effective sample size 167.4111 185.2352 133.545
Network height 0 1 2
mean 0.0548 0.0588 0.047
stdev 9.30E-03 0.0121 0.0112
median 0.0548 0.06 0.0476
95% HPD Interval [0.0394, 0.073] [0.0383, 0.0791] [0.025, 0.0662]
Auto-correlation time 16248.1423 1.00E+05 34725.0867
Effective sample size 24.6797 4.0042 11.5478
Network length 0 1 2
mean 0.1655 0.1783 0.156
stdev 0.0206 0.0252 0.0255
median 0.1649 0.1805 0.158
95% HPD Interval [0.1264, 0.2024] [0.1331, 0.2263] [0.1064, 0.201]
Auto-correlation time 11802.0222 74214.3724 27882.5047
Effective sample size 33.9772 5.4033 14.3818
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Figure U. Summary distributions of all chains with correct population size
priors (chain numbers 1,2,9,10,17,18) given data simulated from network A.
We summarize the MCMC chains by combining them, that is: Chains 1 and 2
are indicated by the blue line (mean reticulations close to zero); Chains 9 and
10 are indicated by the orange line (mean reticulations close to one); Chains
17 and 18 are indicated by the green line (mean reticulations close to two); We
plot the following distributions (a) Likelihood (b) Prior (c) Network height (d)
Network length. Note that network height and network length used to
simulate data are indicated by red lines.

47



15820 15815 15810 15805 15800 15795
0.00

0.05

0.10

0.15

0.20

De
ns

ity

0
1
2

(a)

180 160 140 120 100 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

0
1
2

(b)

0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

25

30

35

40

De
ns

ity

0
1
2

(c)

0.05 0.10 0.15 0.20 0.25 0.30
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

0
1
2

(d)

Figure V. Summary distributions of all chains with incorrect population size
priors Gamma(1,20) (chain numbers 3,4,11,12,19,20) given data simulated
from network A. We summarize the MCMC chains by combining them, that
is: Chains 3 and 4 are indicated by the blue line (mean reticulations close to
zero); Chains 11 and 12 are indicated by the orange line (mean reticulations
close to one); Chains 19 and 20 are indicated by the green line (mean
reticulations close to two); We plot the following distributions (a) Likelihood
(b) Prior (c) Network height (d) Network length. Note that network height
and network length used to simulate data are indicated by red lines.
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8.2.3 Results for network B

We summarize results for data simulated under network B in Fig W (MCMC
chains with correct population size priors), Fig X (MCMC chains with incorrect
population size priors Γ(1, 20)), Fig Y (MCMC chains with incorrect population
size priors Γ(1, 1000)) and Fig Z (MCMC chains with incorrect population size
priors Γ(1, 2000)). We also give detailed summary statistics in Table J (MCMC
chains with correct population size priors), Table K (MCMC chains with incor-
rect population size priors Γ(1, 20) ), Table L (MCMC chains with incorrect pop-
ulation size priors Γ(1, 1000)) and Table M (MCMC chains with incorrect pop-
ulation size priors Γ(1, 2000)). We note that all chains with correct population
size priors converged to the correct topology (posterior distribution contained
only one network topology), network height and network length (see Figs W(c)
and W(d)). Chains with incorrect population size priors also converged to the
correct topology in most cases except for two cases: {BH(20,1),Γ(1, 1000)} and
{BH(20,1),Γ(1, 2000)}. Therefore we were able to recover the correct topology
83.33% of the time. This is consistent with results in the simulation study of
the main text. There is also a difference in ESS between chains with different
topology priors. However in this case it is not clear how the prior affects the
sampling efficiency (see ESS of Posterior distribution in Table J, Table K, Table
L and Table M).

Table J. MCMC summary statistics for Network B (correct population size
priors)

Posterior 0 1 2
mean -16693.3667 -16692.247 -16690.8344
stdev 10.9267 11.2221 7.5266
median -16692.4881 -16691.493 -16690.2388
95% HPD Interval [-16706., -16678.2155] [-16705.0995, -1667389 [-16705., -16676.7232]
Auto-correlation time 1000 1032 1138.8635
Effective sample size 501 489 439.9122
Network height 0 1 2
mean 0.0793 0.0796 0.0797
stdev 4.08E-03 3.71E-03 3.37E-03
median 0.0799 0.0797 0.08
95% HPD Interval [0.0714, 0.086] [0.072, 0.0858] [0.0729, 0.0852]
Auto-correlation time 4047.2001 2842.2081 2047.1454
Effective sample size 123.7893 176.2714 244.731
Network length 0 1 2
mean 0.2421 0.2412 0.2412
stdev 0.0106 0.0106 9.82E-03
median 0.2431 0.2417 0.2418
95% HPD Interval [0.2223, 0.2621] [0.2229, 0.2625] [0.2193, 0.2588]
Auto-correlation time 3262.683 2788.3608 1948.3473
Effective sample size 153.5546 179.6755 257.141
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Figure W. Summary distributions of all chains with correct population size
priors (chain numbers 1,2,9,10,17,18 given data simulated under network B.
We summarize the MCMC chains by combining them, that is: Chains 1 and 2
are indicated by the blue line (mean reticulations close to zero); Chains 9 and
10 are indicated by the orange line (mean reticulations close to one); Chains
17 and 18 are indicated by the green line (mean reticulations close to two); We
plot the following distributions (a) Likelihood (b) Prior (c) Network height (d)
Network length. Note that network height and network length used to
simulate data are indicated by red lines.
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Figure X. Summary distributions of all chains with incorrect population size
priors (chain numbers 3,4,7,8,11,12) given data simulated from network B. We
summarize the MCMC chains by combining them, that is: Chains 3 and 4 are
indicated by blue line (mean reticulations close to zero); Chains 7 and 8 are
indicated by orange line (mean reticulations close to one); Chains 11 and 12
are indicated by green line (mean reticulations close to two); We plot the
following distributions (a) Likelihood (b) Prior (c) Network height (d)
Network length. Note that network height and network length used to
simulate data are indicated by red lines.
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Figure Y. In this figure we plot summary distributions of all chains with
incorrect population size priors Gamma(1,20) (chain numbers 5,6,13,14,21,22)
given data simulated from Network B. We summarize the MCMC chains by
combining them, that is: Chains 5 and 6 are indicated by blue line (mean
reticulations close to zero); Chains 13 and 14 are indicated by orange line
(mean reticulations close to one); Chains 21 and 22 are indicated by green line
(mean reticulations close to two); We plot the following distributions (a)
Likelihood (b) Prior (c) Network height (d) Network length. Note that network
height and network length used to simulate data are indicated by red lines.
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Figure Z. In this figure we plot summary distributions of all chains with
incorrect population size priors (chain numbers 7,8,15,16,23,24) given data
simulated from network B. We summarize the MCMC chains by combining
them, that is: Chain 7 and 8 are indicated by blue line (mean reticulations
close to zero); Chain 15 and 16 is indicated by orange line (mean reticulations
close to one); Chain 23 and 24 are indicated by green line (mean reticulations
close to two); We plot the following distributions (a) Likelihood (b) Prior (c)
Network height (d) Network length. Note that network height and network
length used to simulate data are indicated by red lines.
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Table K. MCMC summary statistics for Network B (incorrect population size
priors Gamma(1,20))

Posterior 0 1 2
mean -16632.0842 -16630.1919 -16629.0074
stdev 8.0517 8.0343 8.3013
median -16631.0958 -16629.7991 -16627.8702
95% HPD Interval [-16647.6, -16617.2] [-16646.3, -16615.2] [-16644.3, -16613.8]
Auto-correlation time 3035.0395 2302.8325 1819.3308
Effective sample size 132.1235 174.1334 220.4107
Network height 0 1 2
mean 0.0639 0.0568 0.0578
stdev 0.011 0.0119 0.0117
median 0.0645 0.0558 0.0571
95% HPD Interval [0.044, 0.0838] [0.039, 0.083] [0.0392, 0.0789]
Auto-correlation time 25480.1793 59294.2576 31555.2738
Effective sample size 15.7377 6.7629 12.7079
Network length 0 1 2
mean 0.1958 0.1826 0.1831
stdev 0.024 0.0253 0.0255
median 0.196 0.1836 0.1827
95% HPD Interval [0.1543, 0.2412] [0.1398, 0.2311] [0.1378, 0.2273]
Auto-correlation time 19208.3139 36324.2679 23849.9552
Effective sample size 20.8764 11.0395 16.8134

Table L. MCMC summary statistics for Network B (incorrect population size
priors Gamma(1,1000))

Posterior 0 1 2
mean -16836.9572 -16693.995 -16722.2755
stdev 6.9406 7.7519 7.5566
median -16836.2496 -16693.5673 -16722.1075
95% HPD Interval [-16850.7, -16824.8] [-16709.2, -16679.9] [-16738.3, -16709.7]
auto-correlation time (ACT) 1665.166 1018.3201 1230.9875
effective sample size (ESS) 240.8168 393.7858 325.7547
Network height 0 1 2
mean 0.0726 0.0807 0.0811
stdev 1.88E-03 2.13E-03 2.20E-03
median 0.0724 0.0808 0.0811
95% HPD Interval [0.0695, 0.0764] [0.0768, 0.0847] [0.0774, 0.0854]
auto-correlation time (ACT) 1000 1199.9843 1160.6579
effective sample size (ESS) 401 334.171 345.4937
Network length 0 1 2
mean 0.2375 0.2511 0.2781
stdev 5.38E-03 7.50E-03 7.67E-03
median 0.2371 0.2509 0.2784
95% HPD Interval [0.228, 0.2492] [0.2374, 0.2664] [0.2633, 0.2928]
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auto-correlation time (ACT) 1000 1221.2116 1413.5422
effective sample size (ESS) 401 328.3624 283.6845

Table M. MCMC summary statistics for Network B (incorrect population
size priors Gamma(1,2000))

Posterior 0 1 2
mean -16852.5586 -16715.134 -16713.4537
stdev 6.4594 7.6484 7.6353
95% HPD Interval [-16864.9, -16841.0] [-16731.4, -16701.6] [-16727.7, -16698.8]
auto-correlation time (ACT) 1216.2537 1762.3287 1120.84
effective sample size (ESS) 329.7009 227.5398 357.7674
Network height 0 1 2
mean 0.0729 0.0813 0.0811
stdev 1.92E-03 2.25E-03 2.10E-03
95% HPD Interval [0.0697, 0.0769] [0.0767, 0.0855] [0.0771, 0.0852]
auto-correlation time (ACT) 1455.1062 1073.7888 1425.0583
effective sample size (ESS) 275.5813 373.444 281.392
Network length 0 1 2
mean 0.2386 0.2539 0.2524
stdev 5.61E-03 7.39E-03 6.74E-03
variance 3.14E-05 5.46E-05 4.55E-05
95% HPD Interval [0.2284, 0.2493] [0.239, 0.2668] [0.239, 0.2653]
auto-correlation time (ACT) 1519.2302 1462.2703 1020.1866
effective sample size (ESS) 263.9495 274.2311 393.0654

55



8.2.4 Operator acceptance rates

To better understand the behavior of the MCMC sampler, we inspect the ac-
ceptance rates for the 5 operators acting on the network topology (AddRetic-
ulation, DeleteReticulation, FlipReticulation RelocateBranch, RelocateBranch-
Narrow), the 4 operators updating branch lengths (NodeSlider, NodeUniform,
NetworkMultiplier, OriginMultiplier) and the 2 operators updating population
sizes (ChangeGamma, ChangeAllGamma).

We summarize the acceptance rates for network B in Table N, Table O and
Table P. Each table focuses on a different population size prior, while averaging
across the topology priors.

We observe that MCMC moves that update topology have a much lower ac-
ceptance rate than MCMC moves that update branch lengths and population
sizes. FlipReticulation moves, which flip the direction of a reticulation branch,
are the least likely to be accepted. There is no clear difference in the acceptance
rates between different population size priors. More work is needed to deter-
mine what the proposal weights should be in order to optimally sample from
the posterior distribution.

Table N. MCMC acceptance rates for Network B (correct population size
priors).

Id Pr accept
∣∣Pr proposed Pr proposed Pr accept

Topology moves
AddReticulation 1.43E-04 2.32E-02 3.31E-06
DeleteReticulation 4.55E-05 2.32E-02 1.06E-06
FlipReticulation 8.05E-06 2.35E-02 1.89E-07
RelocateBranch 3.07E-02 2.34E-02 7.20E-04
RelocateBranchNarrow 1.81E-03 2.33E-02 4.21E-05
Branch length
NodeSlider 5.29E-01 2.32E-02 1.23E-02
NodeUniform 2.73E-01 2.32E-02 6.33E-03
NetworkMultiplier 2.92E-01 1.15E-02 3.36E-03
OriginMultiplier 7.50E-01 1.18E-02 8.86E-03
Population size
ChangeGamma 3.16E-01 3.49E-01 1.10E-01
ChangeAllGamma 2.80E-01 3.48E-01 9.75E-02

Table O. MCMC acceptance rates for Network B (incorrect population size
priors Γ(1, 1000)).

Id Pr accept
∣∣Pr proposed Pr proposed Pr accept

Topology moves
AddReticulation 1.52E-04 2.33E-02 3.55E-06
DeleteReticulation 6.72E-05 2.32E-02 1.56E-06
FlipReticulation 1.44E-05 2.33E-02 3.33E-07

56



RelocateBranch 2.59E-02 2.33E-02 6.02E-04
RelocateBranchNarrow 6.01E-04 2.34E-02 1.41E-05
Branch length
NodeSlider 5.20E-01 2.33E-02 1.21E-02
NodeUniform 2.68E-01 2.32E-02 6.22E-03
NetworkMultiplier 2.58E-01 1.15E-02 2.97E-03
OriginMultiplier 7.42E-01 1.17E-02 8.67E-03
Population size
ChangeGamma 3.36E-01 3.49E-01 1.17E-01
ChangeAllGamma 3.15E-01 3.49E-01 1.10E-01

Table P. MCMC acceptance rates for Network B (incorrect population size
priors Γ(1, 2000)).

Id Pr accept
∣∣Pr proposed Pr proposed Pr accept

Topology moves
AddReticulation 1.14E-04 2.32E-02 2.64E-06
DeleteReticulation 3.25E-05 2.32E-02 7.54E-07
FlipReticulation 2.43E-05 2.33E-02 5.68E-07
RelocateBranch 2.71E-02 2.33E-02 6.31E-04
RelocateBranchNarrow 5.49E-04 2.33E-02 1.28E-05
Branch length
NodeSlider 5.11E-01 2.33E-02 1.19E-02
NodeUniform 2.53E-01 2.32E-02 5.86E-03
NetworkMultiplier 2.65E-01 1.15E-02 3.04E-03
OriginMultiplier 7.46E-01 1.18E-02 8.77E-03
Population size
ChangeGamma 3.69E-01 3.49E-01 1.29E-01
ChangeAllGamma 3.80E-01 3.49E-01 1.32E-01
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