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1 Introduction

AdS/CFT or holographic duality [1–3] reduces the study of certain strongly-coupled quan-
tum systems to (semi)classical equations in gravity. The duality has been mainly tested
and exploited at, or near thermal equilibrium, where a hydrodynamic description applies.
For far-from-equilibrium processes our understanding is poorer.1 Indeed, although semi-
classical gravity seems more tractable, highly-distorted horizons raise a host of unsolved
technical and conceptual issues. To make progress, simple analytic models can be valuable.
We will study one such model here.

1See [4] for a recent review and references.
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A simple class of real-time processes are the non-equilibrium steady states (NESS)
characterised only by persistent currents. These are particularly simple in critical (1+1)
dimensional ballistic systems thanks to the power of conformal symmetry, see [5] for a
review. On the gravity side the basic equilibrium states are the Banados-Teitelboim-Zanelli
(BTZ) black strings [6, 7]. We deform the system by introducing a thin, but strongly back-
reacting, domain wall anchored at a conformal defect or interface on the boundary.2 Our
goal is to compute its stationary states.

Some properties of this thin-brane holographic model which will be useful later have
been derived recently in refs. [10–12]. We rederive in particular the energy-transmission
coefficients obtained from a scattering calculation in [10]. We also revisit the Hawking-Page,
or deconfinement transition for a theory contained between a pair of interfaces [11, 12], and
show that at the critical temperature the thermal conductivity undergoes a classical-to-
quantum phase transition.

One phenomenon not discussed in these earlier works is the production of entropy.
This is due to scattering at the interface, which entangles the outgoing excitations thereby
mixing the reflected and transmitted fluids. A counter-intuitive feature of the thin-brane
model is that the interfaces are perfect scramblers — the quantum fluids exit, as we will
argue, thermalised.3 Whether this feature survives in top-down solutions with microscopic
CFT duals is a question left for future work.

This scrambling behaviour is reminiscent of flowing black funnels [14–18], where a
non-dynamical black hole acts as a source or sink of heat in the CFT. There are however
important differences between the two setups. The non-back-reacting 1+1 dimensional
black hole is a spacetime boundary that can absorb or emit arbitrary amounts of energy
and entropy. Conformal interfaces, on the other hand, conserve energy and have a finite-
dimensional Hilbert space. So even though one could mimic their energy and entropy flows
by a two-sided boundary black hole whose (disconnected) horizon consists of two points
with appropriately tuned temperatures, the rational, if any, behind such tuning is unclear.

The non-Killing event horizon of our solution is distorted far beyond the hydrodynamic
regime.4 It lies behind the apparent horizon which is the union of the BTZ horizons on the
two sides of the brane. At the point where the brane enters the event horizon this latter
has discontinuous generators. Note that the event horizon is non-compact, thus evading
theorems that exclude stationary non-Killing black holes [20–22]. The apparent horizon
is also not compact, both far from the brane and at the brane-entry point. This prevents
a clash with theorems [23] which show that event horizons always lie outside apparent
(trapped-surface) ones.

The plan of the paper is as follows: in section 2 we review some well-known facts about
the BTZ black string and its holographic interpretation (savvy readers can skim rapidly

2The wall is a Randall-Sundrum-Karch brane [8, 9], but crucially it is not an End-of-the World brane:
since we are interested in heat flowing across the interface, there should be degrees of freedom on both
sides of it.

3A similar phenomenon is the instant thermalisation of a holographic CFT forced out of its vacuum, as
discussed in [13]. We thank E. Kiritsis for pointing this out.

4For a review of the fluid/gravity correspondence see for instance [19].
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through this section). The black string is a rotating black hole with unwrapped angle
variable and spin J equal to twice the flow of heat in the dual CFT. For non-zero J there
is an ergoregion that plays a crucial role in our analysis.

In section 3 we explain, using the results of refs. [24, 25], why the flow of heat across
a 2d conformal interface is proportional to the energy-transmission coefficient(s) of the
interface. It is a special feature of two dimensions that these transport coefficients are
universal, that is independent of the nature of incident excitations [25].

By contrast, the entropy of the outgoing fluids depends a priori on details of the
interface scattering matrix. If however the fluids are thermalised, as in our holographic
model, their energy determines their (microcanonical) entropy.

Sections 4 to 7 contain the main results of our paper. In section 4 and in appendix A
we solve the equations for a thin stationary brane between two arbitrary BTZ backgrounds.
This generalizes the results of refs. [11, 12] to non-vanishing BTZ spin J . In section 5 we
show that the brane penetrates the ergoregion if and only if the heat flow on the boundary
agrees with the prediction from CFT and with the transmission coefficients computed
by a scattering calculation in ref. [10]. We also show that once inside the ergoregion the
brane cannot exit towards the AdS boundary, but crosses both outer BTZ horizons, hitting
eventually either a Cauchy horizon or the singularity in one of the two regions.

Such a brane is dual to an isolated interface, and its non-Killing horizon is computed in
section 6. We show that it coincides with the (local) BTZ horizon on the colder side of the
interface, and lies behind but approaches it asymptotically on the hotter side. This is the
evidence for perfect scrambling mentioned above. In section 7 we consider the system of
an interface pair which is known to have an equilibrium Hawking-Page transition [11, 12].
We show that thermal conductivity jumps discontinuously at the transition point, from a
classical regime of stochastic scattering to a deeply quantum regime in which heat flows
unobstructed.

Section 8 contains closing remarks. In order to not interrupt the flow of the paper we
have relegated the proof of some inequalities in appendix B, and background material on
flowing black funnels in appendix C .

2 The boosted AdS3 black string

The boosted black-string metric of three-dimensional gravity with negative cosmological
constant reads

ds2 = `2dr2

(r2 −M`2 + J2`2/4r2) − (r2 −M`2)dt2 + r2dx2 − J` dxdt , (2.1)

where x ∈ R is non-compact. If x were an angle variable, (2.1) would be the metric of the
rotating BTZ black hole [6, 7] with M and J its mass and spin5 and ` the radius of AdS3.

The metric (2.1) has an outer and an inner horizon located at

r2
± = 1

2M`2 ± 1
2
√
M2`4 − J2`2 . (2.2)

5Strictly speaking these are defined with respect to the rescaled time t′ = t`. We will work throughout
in units 8πG = 1.
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To avoid a naked singularity at r = 0, one must require that r+ be real which implies
M` ≥ |J |. In terms of r± the metric reads

ds2 = `2dr2

h(r) − h(r) dt2 +
(
r dx− J`

2r dt
)2

,

with h(r) = 1
r2 (r2 − r2

+)(r2 − r2
−) and |J | = 2r+r−

`
.

(2.3)

Besides r±, another special radius is rergo =
√
M ` ≥ r+. It delimits the ergoregion inside

which no observer (powered by any engine) can stay at a fixed position x.
Many properties of the metric (2.3) are familiar from the Kerr black hole. See [26] for a

nice review. The outer horizon is a Killing horizon, while the inner one is a Cauchy horizon.
Frame dragging forces ingoing matter to cross the outer horizon at infinity along the string,
x ∼ J` t/2r2

+ → ∞. One can define ingoing Eddington-Finkelstein (EF) coordinates,

dv = dt+ `dr

h(r) and dy = dx+ J`2dr

2r2h(r) , (2.4)

in which the metric

ds2 = −h(r) dv 2 + 2` dv dr + r2
(
dy − J`

2r2 dv

)2
(2.5)

is non-singular at the (future) horizon. Outgoing coordinates can be defined similarly by
changing (x, t)→ (−x,−t) in (2.4).

2.1 Dual CFT2 state

In the context of AdS/CFT, (2.1) describes a non-equilibrium steady state (NESS) of the
CFT. This has been discussed in many places, see e.g. [27–31]. It can be seen explicitly
from the general asymptotically-AdS solution of the vacuum Einstein equations, whose
Fefferman-Graham expansion in three dimensions terminates [32]

ds2 = `2dz2

z2 + 1
z2

(
dx+ + `z2〈T−−〉dx−

)(
dx− + `z2〈T++〉dx+

)
. (2.6)

Here 〈T±±〉 are the expectation values of the left-moving and right-moving energy densities
in the dual CFT2 state. The two metrics, (2.1) and (2.6), can be related by the change of
coordinates

x± = x± t , r2 = 1
z2

(
1 + `z2〈T−−〉

)(
1 + `z2〈T++〉

)
, (2.7)

and the identification

1
2 J = 〈T−−〉 − 〈T++〉 and 1

2 M` = 〈T−−〉+ 〈T++〉 . (2.8)

It follows that the dual state has constant fluxes of energy in both directions, with a net
flow 〈T tx〉 = J/2. To abide with the standard notation for heat flow we will sometimes
write J/2 = dQ/dt.

– 4 –
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Generic NESS are characterised by operators other than Tαβ , for instance by persistent
U(1) currents. To describe them one must switch on non-trivial matter fields, and the above
simple analysis must be modified. The vacuum solutions (2.1) describe, nevertheless, a
universal class of NESS that exist in all holographic conformal theories.

There are many ways of preparing these universal NESS. One can couple the endpoints
x ∼ ±∞ to heat baths so that left- and right-moving excitations thermalise at different
temperatures Θ±.6 An alternative protocol (which avoids the complications of reservoirs
and leads) is the partitioning protocol. Here one prepares two semi-infinite systems at
temperatures Θ±, and joins them at some initial time t = 0.7

The steady state will then form inside a linearly-expanding interval in the middle [5].
In both cases, after transients have died out one expects

〈T±±〉 = πc

12 Θ2
± = π2`Θ2

± =⇒ 〈T tx〉 = πc

12 (Θ2
− −Θ2

+) , (2.9)

where c = 12π` is the central charge of the CFT. Equation (2.9) for the flow of heat is
a (generalized) Stefan-Boltzmann law with Stefan-Boltzmann constant πc/12. Compar-
ing (2.9) to (2.8) relates the temperatures Θ± to the parameters M and J of the black
string. This idealized CFT calculation is, of course, only relevant for systems in which the
transport of energy is predominantly ballistic. Eq. (2.9) implies in particular the existence
of a quantum of thermal conductance, see the review [5] and references therein.

It is interesting to also consider the flow of entropy. This is illustrated in figure 1
which shows the entropy density s ≡ st in the three spacetime regions of the partitioning
protocol. Inside the NESS region there is constant flow of entropy from the hotter towards
the colder side

s± = ±πc6 Θ± . (2.10)

[Here s± are the entropy densities of the chiral fluids defined through the first law δ〈T±±〉 =
Θ±δs±]. The passage of the right-moving shock wave increases the local entropy at a rate
πc(Θ− − Θ+)/6, while the left-moving wave reduces it at an equal rate. Total entropy is
therefore conserved, not surprisingly since there are no interactions in this simple conformal
2D fluid.

One can compute the entropy on the gravity side with the help of the Hubeny-
Rangamani-Ryu-Takayanagi formula [33, 34]. For a boundary region of size ∆x the entan-
glement entropy reads [34]

Sq ent = c

6 log
[
β+β−
π2ε2

sinh
(
π∆x
β+

)
sinh

(
π∆x
β−

)]
, (2.11)

6We use Θ for temperature to avoid confusion with the energy-momentum tensor. In gravity the heat
baths can be replaced by non-dynamical boundary black holes, see below.

7To implement the partitioning protocol on the gravity side one should replace the constant 〈T++〉 in
eq. (2.6) by θ(x−)Θ2

− + θ(−x−)Θ2
+, where θ(x) is the step function, and similarly for 〈T−−〉. This only

reproduces the flow of energy for t > 0, while for the discontinuity at t = 0 one would most likely need
external sources. Analysing such non-stationary geometries is beyond our scope here.
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Figure 1. When two identical semi-infinite quantum wires at temperatures Θ± are joined at t = 0,
a NESS forms inside an interval that expands at constant speed in both directions [5]. The entropy
density s(t, x) is shown in the three regions of the protocol. The energy density profile is identical,
except for the replacement Θ± → 1

2 Θ2
±.

where β± = Θ−1
± and ε is a short-distance cutoff. From this one computes the entropy

density in the steady state

sNESS = lim
∆x→∞

Sq ent
∆x = πc

6 (Θ− + Θ+) = 2π r+ . (2.12)

The last equality, obtained with the help of eqs. (2.9), (2.8) and (2.2), recasts sNESS as the
Bekenstein-Hawking entropy of the boosted black string (recall that our units are 8πG =
~ = 1). This agreement was one of the earliest tests [35] of the AdS/CFT correspondence

3 NESS of interfaces

Although formally out-of-equilibrium, the state of the previous section is a rather trivial
example of a NESS. It can be obtained from the thermal state by a Lorentz boost, and
is therefore a Gibbs state with chemical potential for the (conserved) momentum in the x
direction.

More interesting steady states can be found when left- and right-moving excitations
interact, for instance at impurities [24, 36, 37] or when the CFT lives in a non-trivial
background metric [14, 15, 17]. Such interactions lead to long-range entanglement and
decoherence, giving NESS that are not just thermal states in disguise.8

The case of a conformal defect, in particular, has been analyzed in ref. [24]. As ex-
plained in this reference the heat current is still given by eq. (2.9) but the Stefan-Boltzmann

8Chiral separation also fails when the CFT is deformed by (ir)relevant interactions. The special
case of the T T̄ deformation was studied, using both integrability and holography, in refs. [38, 39].
Interestingly, the persistent energy current takes again the form (2.9) with a deformation-dependent
Stefan-Boltzmann constant.

– 6 –
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Figure 2. The energy fluxes given in (3.1). The two half wires are coloured red and green, and
space is folded at the interface (black dot). The incoming excitations are thermal while the state
of the outgoing ones, consisting of both reflected and transmitted fluids, depends on the nature of
the junction as discussed in the main text.

constant is multiplied by T , the energy-transmission coefficient of the defect. The relevant
setup is shown in figure 2. The fluids entering the NESS region from opposite directions
are thermal at different temperatures Θ1 6= Θ2. The difference, compared to the discussion
of the previous section, is that the two half wires (j = 1, 2) need not be identical, or (even
when they are) their junction is a scattering impurity.

3.1 Energy currents

If Rj and Tj are the reflection and transmission coefficients for energy incident on the
interface from the jth side, then the energy currents in the NESS read9

〈T (1)
−−〉 = πc1

12 Θ2
1 , 〈T (1)

++〉 = R1
πc1
12 Θ2

1 + T2
πc2
12 Θ2

2 ,

〈T (2)
−−〉 = πc2

12 Θ2
2 , 〈T (2)

++〉 = T1
πc1
12 Θ2

1 +R2
πc2
12 Θ2

2 .
(3.1)

We have used here the key fact that the energy-transport coefficients across a conformal
interface in 2d are universal, i.e independent of the nature of the incident excitations. The
proof [25] assumes that the Virasoro symmetry is not extended by extra spin-2 generators,
which is true in our holographic model. We have also used that the incoming and outgoing
excitations do not interact away from the interface.

Conservation of energy and the detailed-balance condition (which ensures that when
Θ1 = Θ2 the heat flow stops) imply the following relations among the reflection and
transmission coefficients:

Rj + Tj = 1 and c1T1 = c2T2 . (3.2)
9The currents are given in the folded picture in which the interface is a boundary of the tensor-product

theory CFT1⊗CFT2, and both incoming waves depend on x−.
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Hence, only one of the four transport coefficients is independent. Without loss of generality
we assume that c2 ≥ c1, i.e. that CFT2 is the theory with more degrees of freedom. The
average-null-energy condition requires 0 ≤ Rj , Tj ≤ 1, so from (3.2) we conclude

0 ≤ T2 ≤
c1
c2

or equivalently 1 ≥ R2 ≥ 1− c1
c2

. (3.3)

As noticed in [25], reflection positivity of the Euclidean theory gives a weaker bound [40]
than this Lorentzian bound. Note also that in the asymmetric case (c2 strictly bigger than
c1) part of the energy incident from side 2 is necessarily reflected.

Let dQ/dt = 〈T (1) tx〉 = −〈T (2) tx〉 be the heat current across the interface. From
eqs. (3.1) and (3.2) we find

dQ

dt
= π

12c1T1
(
Θ2

1 −Θ2
2
)
. (3.4)

Since in a unitary theory c1T1 is non-negative, heat flows as expected from the hotter to
the colder side. The heat flow only stops for perfectly-reflecting interfaces (T1 = T2 = 0),
or when the two baths are at equal temperatures. For small temperature difference, the
heat conductance reads

dQ

dt
= πΘ

6 cjTj δΘ . (3.5)

The conductance per degree of freedom, πΘ/6, is thus multiplied by the transmission
coefficient of the defect [24]. Note finally that the interface is subject to a radiation force
given by the discontinuity of pressure,

Frad = 〈T (1)xx〉 − 〈T (2)xx〉 = π

6
(
c1R1Θ2

1 − c2R2Θ2
2
)
, (3.6)

where we used eqs. (3.1) and (3.2). The force is proportional to the reflection coefficients,
as expected.

3.2 Entropy production

There is a crucial difference between the NESS of section 2.1, and the NESS in the presence
of the interface. In both cases the incoming fluids are in a thermal state. But while for a
homogeneous wire they exit the system intact, in the presence of an interface they interact
and become entangled. The state of the outgoing excitations depends therefore on the
nature of these interface interactions.

Let us consider the entropy density of the outgoing fluids, defined as the von Neumann
entropy density for an interval [x, x + ∆x]. We parametrise it by effective temperatures,
so that the entropy currents read

s
(1)
− = −πc1

6 Θ1 , s
(1)
+ = πc1

6 Θeff
1 ,

s
(2)
− = −πc2

6 Θ2 , s
(2)
+ = πc2

6 Θeff
2 .

(3.7)

We stress that (3.7) is just a parametrisation, the outgoing fluids need not be in a thermal
state. In principle Θeff

j may vary as a function of x, but we expect them to approach

– 8 –
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Figure 3. The entropy densities in the four regions of the partitioning protocol discussed in the
text (space is here unfolded). The entropies of the outgoing fluids, which depend a priori on details
of the scatterer, have been parametrized by two effective temperatures.

constant values in the limit t � |x| � ∆x → ∞. Figure 3 is a cartoon of the entropy-
density profile st in various spacetime regions of the partitioning protocol. Entanglement
at the interface produces thermodynamic entropy that is carried away by the two shock
waves. The total thermodynamic entropy on a full constant-time slice obeys

dStot
dt

= πc1
6 (Θeff

1 −Θ1) + πc2
6 (Θeff

2 −Θ2) + dSdef
dt

(3.8)

where Sdef denotes the entropy of the interface. Since this is bounded by the logarithm of
the g-factor, Sdef cannot grow indefinitely and the last term of (3.8) can be neglected in a
steady state.10

The entanglement between outgoing excitations is encoded in a scattering matrix,
which we may write schematically as

S(ψin
1 , ψ

in
2 , ψ

in
def |ψout

1 , ψout
2 , ψout

def ) . (3.9)

Here ψin/out
j are the incoming and outgoing excitations, and ψin/out

def is the state of the defect
before/after the scattering. Strictly speaking there is no genuine S-matrix in conformal
field theory. What describes the conformal interface is a formal operator I, obtained by
unfolding the associated boundary state [9, 42]. The above S is an appropriate Wick
rotation of I, as explained in ref. [24].11 The density matrix of the outgoing fluids depends
a priori on the entire S-matrix, not just on the transport coefficients Tj and Rj .

10Defects with an infinite-dimensional Hilbert space may evade this argument. But in the holographic
model studied in this paper, log g ∼ O(cj) [11, 41] and the last term in (3.8) can be again neglected at
leading semiclassical order.

11The (closed-string channel) operator I evolves the system across a quench, whereas S should be defined
in real time in the open-string channel. A careful discussion of ‘collider experiments’ in CFT2 is also given
in ref. [25].

– 9 –
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The second law of thermodynamics bounds the effective temperatures from below since
the entropy production (3.8) cannot be negative. The Θeff

j are also bounded from above
because the entropy density cannot exceed the microcanonical one, s = (πc u/3)1/2 with
u the energy density of the chiral fluid. Using (3.1) and the detailed-balance condition
this gives

Θeff
1 ≤

√
R1Θ2

1 + T1Θ2
2 and Θeff

2 ≤
√
R2Θ2

2 + T2Θ2
1 . (3.10)

The bounds are saturated by perfectly-reflecting or transmitting interfaces, i.e. when either
Rj = 1 or Tj = 1. This is trivial, because in such cases there is no entanglement between
the outgoing fluids.

Partially reflecting/transmitting interfaces that saturate the bounds (3.10) act as per-
fect scramblers. Their existence at weak coupling seems unlikely, but strongly-coupled holo-
graphic interfaces could be of this kind. We will later argue that the thin-brane holographic
interfaces are perfect scramblers. This is supported by the fact (shown in section 6.2) that
far from the brane the event horizon approaches the equilibrium BTZ horizons, and hence
the outgoing chiral fluids are thermalised.

Any domain-wall solution interpolating between two BTZ geometries, with no other
non-trivial asymptotic backgrounds should be likewise dual to a NESS of a perfectly-
scrambling interface. We suspect that many top down solutions of this kind exist, but they
are hard to find. Indeed, although many BPS domain walls are known in the supergravity
literature, their finite-temperature counterparts are rare. The one example that we are
aware of is the Janus AdS3 black brane [43]. But even for this computationally-friendly
example the far-from-equilibrium stationary solutions are not known.

4 Stationary branes

To simplify the problem we will here resort to the more tractable thin-brane approximation,
hoping that it captures some of the essential physics of the stationary states. This thin-
brane holographic model is also the one studied in the related papers [10–12].

4.1 General setup

Consider two BTZ metrics (2.1) glued along a thin brane whose worldvolume is
parametrised by τ and σ. Its embedding in the two coordinate patches (j = 1, 2) is
given by six functions {rj(τ, σ), tj(τ, σ), xj(τ, σ)}. The most general stationary ansatz,
such that the induced metric is τ -independent, is of the form

xj(σ), rj(σ), tj = τ + fj(σ) . (4.1)

In principle one can multiply τ on the right-hand side by constants a−1
j . But the met-

ric (2.1) is invariant under rescaling of the coordinates r → ar, (t, x) → a−1(t, x), and
of the parameters (M,J) → a2(M,J), so we may absorb the aj into a redefinition of the
parameters Mj , Jj . Hence, without loss of generality, we set aj = 1.

– 10 –
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Following ref. [12] we choose the parameter σ to be the redshift factor squared12 for a
stationary observer

σ = r2
1 −M1`

2
1 = r2

2 −M2`
2
2 . (4.2)

With this choice ĝττ = −σ is the same on the two sides of the domain wall, and the
functions rj(σ) are determined. Of the remaining embedding functions, the sum f1 + f2
is pure gauge (it can be absorbed by a redefinition of τ) whereas the time delay across
the wall, ∆t(σ) ≡ f2(σ) − f1(σ), is a physical quantity. This and the two functions xj(σ)
should be determined by solving the three remaining equations: (i) the continuity of the
induced-metric components ĝτσ and ĝσσ, and (ii) one of the (trace-reversed) Israel-Lanczos
conditions13

[Kαβ ] = −λ ĝαβ . (4.3)

Here Kαβ is the extrinsic curvature (with α, β ∈ {τ, σ}), the brackets denote the disconti-
nuity across the wall, and λ is the brane tension.

4.2 Solution of the equations

The general local solution of the matching equations is derived in appendix A. The solution
is given in the ‘folded setup’ where the interface is a conformal boundary for the product
theory CFT1⊗CFT2. Unfolding side j amounts to sending xj → −xj and Jj → −Jj .

The results of appendix A can be summarised as follows. First, from (4.2)

rj(σ) =
√
σ +Mj` 2

j . (4.4)

Secondly, consistency of the extrinsic-curvature equations imposes

J1 = −J2 . (4.5)

This ensures conservation of energy in the CFT, as seen from the holographic dictio-
nary (2.8). Thirdly, matching ĝτσ from the two sides determines the time delay in terms
of the embedding functions xj ,

∆t′ ≡ f ′2 − f ′1 = J1
2σ (`1x′1 + `2x

′
2) , (4.6)

where primes denote derivatives with respect to σ. What remains is thus to find the
functions xj(σ).

To this end we use the continuity of ĝσσ and the ττ component of (4.3). It is useful
and convenient to first solve these two equations for the determinant of the induced metric,
with the result

−det ĝ = λ2σ

Aσ2 + 2Bσ + C
= λ2σ

A(σ − σ+)(σ − σ−) , (4.7)

12This is a slight misnomer, since σ becomes negative in the ergoregion.
13Two of the three Israel conditions are automatically satisfied, modulo integration constants, by virtue

of the momentum constraints DαKαβ −DβK = 0. Our conventions are the same as in ref. [12]: Kαβ is the
covariant derivative of the inward-pointing unit normal vector, and the orientation is chosen so that as σ
increases one encircles clockwise the interior in the (xj , r−1

j ) plane, in both charts.
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where

σ± = −B ±
√
B2 −AC
A

(4.8)

and the coefficients A,B,C read

A = (λ2
max − λ2)(λ2 − λ2

min), B = λ2(M1 +M2)− λ2
0(M1 −M2),

C = −(M1 −M2)2 + λ2J2
1 .

(4.9)

The three critical tensions entering in the above coefficients have been defined previously
in refs. [10, 12],

λmin =
∣∣∣∣ 1
`1
− 1
`2

∣∣∣∣ , λmax = 1
`1

+ 1
`2
, λ0 =

√
λmaxλmin . (4.10)

Without loss of generality we assume, as earlier, that `1 ≤ `2, so the absolute value in λmin
is superfluous. Note that the expressions (4.7) to (4.9) are the same as the ones for static
branes [12] except for the extra term λ2J2

1 in the coefficient C.
The determinant of the induced metric can be expressed in terms of xj and σ in each

chart, j = 1 and j = 2. It does not depend on the time-shift functions fj , which could
be absorbed by a reparametrisation of the metric with unit Jacobian. Having already
extracted det ĝ, one can now invert these relations to find the x′j ,

x′1
`1

= −
sgn(σ)

[
(λ2 + λ2

0)σ2 + (M1 −M2)σ
]

2(σ − σH1
+ )(σ − σH1

− )
√
Aσ(σ − σ+)(σ − σ−)

, (4.11)

x′2
`2

= −
sgn(σ)

[
(λ2 − λ2

0)σ2 − (M1 −M2)σ
]

2(σ − σH2
+ )(σ − σH2

− )
√
Aσ(σ − σ+)(σ − σ−)

, (4.12)

where here

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2
j `

4
j − J2

j `
2
j (4.13)

are the points where the outer and inner horizons of the jth BTZ metric intersect the
domain wall.

Eqs. (4.4) to (4.13) give the general stationary solution of the thin-brane equations for
any Lagrangian parameters `j and λ, and geometric parameters Mj and J1 = −J2. The
Lagrangian parameters are part of the basic data of the interface CFT, while the geometric
parameters determine the CFT state. When J1 = J2 = 0, all these expressions reduce to
the static solutions found in ref. [12].

5 Inside the ergoregion

The qualitative behaviour of the domain wall is governed by the singularities
of (4.11), (4.12), as one moves from the AdS boundary at σ ∼ ∞ inwards. In addition to
the BTZ horizons at σHj

± , other potential singularities arise at σ± and at the entrance of
the ergoregion σ = 0. From (4.7) we see that the brane worldvolume would become space-
like beyond σ = 0, if σ± are both either negative or complex. To avoid such pathological
behaviour one of the following two conditions must be met:
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Figure 4. The two kinds of stationary-wall geometries: (i) The wall avoids the ergoregion, turns
around and intersects the AdS boundary twice; or (ii) it enters the ergoregion and does not come
out again. The broken line is the ergoplane, the two outer BTZ regions are coloured in green and
pink, and the region behind the horizon in grey. The horizon in case (ii) will be described in detail
in the coming section.

• σ+ > 0 : The singularity at σ+ is in this case a turning point, and the wall does not
extend to lower values of σ. Indeed, as seen from (4.11) and (4.12), drj/dxj |σ+ = 0
and the σ+ singularity is integrable, i.e. the wall turns around at finite xj =

∫
x′j .

• 0 = σ+ > σ− : In this case the worldvolume remains timelike as the wall enters
the ergoregion. The reader can verify from eqs. (4.7), (4.11) and (4.12) that the
embedding near σ = 0 is smooth.

These two possibilities are illustrated in figure 4. Branes entering the ergoregion are
dual, as will become clear, to steady states of an isolated interface, while those that avoid
the ergoregion are dual to steady states of an interface-antiinterface pair. We will return
to the second case in section 7, here we focus on the isolated interface.

The condition σ+ = 0 implies C = 0 and B ≥ 0. Using eqs. (4.8) and (4.9), and the
fact that the coefficient A is positive for tensions in the allowed range (λmin < λ < λmax)
we obtain

M1 −M2 = ±λJ1 = ∓λJ2 and λ2(M1 +M2) ≥ λ 2
0 (M1 −M2) . (5.1)

Furthermore, cosmic censorship requires that `jMj > |Jj | unless the bulk singularity at rj =
0 is excised (this is the case in the pink region of the left figure 4). If none of the singularities
is excised, the inequality in (5.1) is automatically satisfied and hence redundant.

With the help of the holographic dictionary (2.8) one can translate the expression (5.1)
forM1−M2 to the language of ICFT. Since the incoming fluxes are thermal, T (j)

−− = π2`jΘ2
j

and (2.8) gives

Mj = 4π2Θ2
j −

Jj
`j

=⇒ M1 −M2 = 4π2(Θ2
1 −Θ2

2)− J1

( 1
`1

+ 1
`2

)
. (5.2)

Combining with eq. (5.1) gives the heat-flow rate

J1 = 2〈T (1) tx〉 = 4π2
[ 1
`1

+ 1
`2
± λ

]−1
(Θ2

1 −Θ2
2) . (5.3)
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This agrees with the ICFT expression (3.4) if we identify the transmission coefficients as
follows (recall that cj = 12π`j)

Tj = 2
`j

[ 1
`1

+ 1
`2
± λ

]−1
. (5.4)

It is gratifying to find that, for the choice of plus sign, (5.4) are precisely the coefficients Tj
computed in the linearized approximation in ref. [10]. The choice of sign will be justified
in a minute.

Let us pause here to take stock of the situation. We found that (i) the dual of an
isolated interface must correspond to a brane that enters the ergoregion, and (ii) that the
brane equations determine in this case the flow of heat in accordance with the CFT result
of [24, 25] and the transmission coefficients found in [10].14 To complete the story, we must
make sure that once inside the ergoregion the brane does not come out again. If it did, it
would intersect the AdS boundary at a second point, so the solution would not be dual to
an isolated interface as claimed.

Inserting σ+ = 0 in the embedding functions (4.11, 4.12) we find

x′1
`1

= − (λ2 + λ2
0)σ + (M1 −M2)

2(σ − σH1
+ )(σ − σH1

− )
√
A(σ − σ−)

,

x′2
`2

= − (λ2 − λ2
0)σ − (M1 −M2)

2(σ − σH2
+ )(σ − σH2

− )
√
A(σ − σ−)

,

(5.5)

where the σHj
± are given by eq. (4.13) and

σ− = − 2λ
A

[
λ(M1 +M2)± 2λ2

0J1
]
. (5.6)

As already said, the embedding is regular at σ = 0, i.e. the brane enters the ergoregion
smoothly. What it does next depends on which singularity it encounters first. If this were
the square-root singularity at σ−, the wall would turn around (just like it does for positive
σ+), exit the ergoregion and intersect the AdS boundary at another anchor point. This is
the possibility that we want to exclude.

Consider for starters the simpler case `1 = `2 ≡ `. In this case λ0 = 0 and A =
λ2(4/`2 − λ2), so (5.6) reduces to

σ− = −2`2 (M1 +M2)
4− λ2`2

≤ −min(Mj) `2 . (5.7)

In the last step we used the fact that bothMj are positive, otherwise the conical singularity
at rj = 0⇐⇒ σ = −Mj`

2 would be naked. What (5.7) shows is that the putative turning
point σ− lies behind the bulk singularity in at least one of the two BTZ regions, where our
solution cannot be extended. Thus this turning point is never reached.

For general `1 6= `2 a weaker statement is true, namely that σ− is shielded by an inner
horizon for at least one j. The proof requires maximising σ− with respect to the brane

14The fact that our non-linear analysis agrees with the linearized-wave treatment of [10] is an indirect
confirmation of the fact that the transport coefficients are universal.
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tension λ. We have performed this calculation with Mathematica, but do not find it useful
to reproduce the nitty gritty details here. The key point for our purposes is that there
are no solutions in which the brane enters the ergoregion, turns around before an inner
horizon, and exits towards the AdS boundary. Since as argued by Penrose [44], Cauchy
(inner) horizons are classically unstable,15 solutions in which the turning point lies behind
one of them cannot be trusted.

One last remark is in order concerning the induced brane metric ĝαβ . By redefining the
worldvolume time, τ̃ = τ+J`1

∫
x′1(σ)dσ/2σ, we can bring this metric to the diagonal form

dŝ2 = −σdτ̃2 + |det ĝ| dσ
2

σ
with det ĝ = λ2

A(σ− − σ) . (5.8)

The worldvolume is timelike for all σ > σ−, as already advertised. More interestingly, the
metric (felt by signals that propagate on the brane) is that of a two-dimensional black-
hole with horizon at the ergoplane σ = 0. This lies outside the bulk horizons σHj

+ , in
agreement with arguments showing that the causal structure is always set by the Einstein
metric [50]. Similar remarks in a closely-related context were made before in ref. [51]. The
brane-horizon (bH) temperature,

4πΘbH =
(
− det ĝ|σ=0

)−1/2
, (5.9)

is intermediate between Θ1 and Θ2 as can be easily checked. For `1 = `2 for example one
finds 2 Θ2

bH = Θ2
1 + Θ2

2.

6 The non-Killing horizon

Since σ− lies behind an inner horizon, the first singularities of the embedding functions (5.5)
are at σHj

+ . A key feature of the non-static solutions is that these outer BTZ horizons, which
are apparent horizons as will become clear, do not meet at the same point on the brane.
For Jj 6= 0 the following strict inequalities indeed hold

σH1
+ > σH2

+ if M1 > M2 ; σH2
+ < σH1

+ if M1 < M2 . (6.1)

For small Jj these inequalities are manifest by Taylor expanding (4.13),

σHj
+ = −

J2
j

Mj
+O(J 4

j ) . (6.2)

We show that they hold for all Jj in appendix B.
The meaning of these inequalities becomes clear if we use the holographic dictio-

nary (2.8), the energy currents (3.1) and the detailed-balance condition (3.2) to write
the Mj as follows

M1 = 2π2
[
Θ2

1(1 +R1) + Θ2
2(1−R1)

]
;

M2 = 2π2
[
Θ2

1(1−R2) + Θ2
2(1 +R2)

]
.

(6.3)

Assuming 0 ≤ Rj ≤ 1, we see that the hotter side of the interface has the larger Mj .
What (6.1) therefore says is that the brane hits the BTZ horizon of the hotter side first.

15For recent discussions of strong cosmic censorship in the BTZ black hole see [45–49].
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Figure 5. A brane (thick black curve) entering the local outer horizons H1 and H2 (the boundaries
of the grey regions in the figure) at two different points E1 and E2. The piece [E1,E2] of the wall is
behind the horizon of slice 1 but outside the horizon of slice 2. The thick orange arrows show the
direction of heat flow. The white curve is the worldline of an observer entering H1, crossing the
brane and emerging outside H2.

6.1 The arrow of time

Assume for concreteness M1 > M2, the case M2 > M1 being similar.16 From eq. (5.1)
we have M1 = M2 + λ|J1|. We do not commit yet on the sign of J1, nor on the sign in
eq. (5.1), but the product of the two should be positive. Figure 5 shows the behaviour of the
brane past the ergoplane. The vertical axis is parameterised by σ (increasing downwards),
and the horizontal axes by the ingoing Eddington-Finkelstein coordinates yj defined in
eq. (2.4). These coordinates are regular at the future horizons, and reduce to the flat
ICFT coordinates xj at the AdS boundary.

Let us take a closer look at the wall embedding in Eddington-Finkelstein (EF) coordi-
nates. From eqs. (5.5) and the identities r′j = 1/2rj we get

y′1 = `1
2(σ − σH1

+ )(σ − σH1
− )

 J1`1

2
√
σ +M1`21

− (λ2 + λ2
0)σ + λ|J1|√

A(σ − σ−)

 ,
y′2 = `2

2(σ − σH2
+ )(σ − σH2

− )

 J2`2

2
√
σ +M2`22

− (λ2 − λ2
0)σ − λ|J2|√

A(σ − σ−)

 .

(6.4)

A little algebra shows that the square brackets in the above expression vanish at the
16Strictly speaking we also ask that the brane hits both outer horizons before the inner (Cauchy) horizons,

since we cannot trust our classical solutions beyond the latter. As explained in appendix B, this condition
is automatic when M2 > M1, but not when M1 > M2, where it is possible for some range of parameters to
have σH2

+ < σH1
− .
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corresponding horizons σ = σHj
+ if J1 = −J2 > 0. The functions yj are in this case

analytic at the horizons. By contrast, if J1 = −J2 < 0 these functions are singular:
y1 → +∞ at σH1

+ , and y2 → −∞ at σH2
+ . We interpret this as evidence that J1 must be

positive, as expected from the arrow of heat flow in the boundary ICFT. This means that
M1 = M2 +λJ1, and hence the sign in the expression (5.4) for the transmission coefficients
is also plus, in agreement with the result of ref. [10].

Note that time reversal flips the sign of the Jj and leaves Mj unchanged. Since time
reversal is a symmetry of the equations, both signs of J1 give therefore solutions — one
diverging in the past and the other in the future horizons. One can check for consistency
that choosing the minus sign in the expressions (5.4) interchanges the incoming and out-
going energy currents in (3.1). Similarly to a white hole, which solves Einstein’s equations
but cannot be produced by gravitational collapse, we expect that no physical protocol can
prepare the J1 < 0 solution.

6.2 Event versus apparent horizon

Denote by H1 and H2 the horizons of the two BTZ regions of the stationary geometry, and
by E1 and E2 their intersections with the brane worldvolume. We can foliate spacetime
by Cauchy slices vj = v̄ + εj(rj , xj), where v̄ is a uniform foliation parameter.17 We use
the same symbols for the projections of Hj and Ej on a Cauchy slice. Since simultaneous
translations of vj are Killing isometries, the projections do not depend on v̄.

Both H1 and H2 are local (or apparent) horizons, i.e. future-directed light rays can
only traverse them in one direction. But it is clear from figure 5 that H1 cannot be part of
the event horizon of global spacetime. Indeed, after entering H1 an observer moving to the
right can traverse the [E1, E2] part of the wall, emerge outside H2 in region 2, and from
there continue her journey to the boundary. Such journeys are only forbidden if E1= E2,
i.e. for the static equilibrium solutions.

In order to analyse the problem systematically, we define an everywhere-timelike unit
vector field that distinguishes the past from future,

tµ∂µ = ∂

∂vj
+ hj(rj)− 1

2`j
∂

∂rj
+ Jj`j

2r2
j

∂

∂yj
in the j-th region. (6.5)

Using the metric (2.5) the reader can check that tµtµ = −1. To avoid charging the formulae
we drop temporarily the index j. A future-directed null curve has tangent vector

ẋµ = (v̇, ṙ, ẏ) where ẋµẋµ = 0 and ẋµtµ < 0 . (6.6)

The dots denote derivatives with respect to a parameter on the curve. Solving the condi-
tions (6.6) gives

ṙ = h

2` v̇ −
r2

2`v̇

(
ẏ − J`

2r2 v̇

)2
and v̇ > 0 . (6.7)

17The non-trivial radial dependence in the definition of the Cauchy slice is necessary because constant vj
curves are lightlike behind the jth horizon.
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Figure 6. The event and apparent horizons, H̃1 ∪H2 and H1 ∪H2, as described in the text. The
event horizon is connected but it is not Killing. Projections of the local light-cone on a Cauchy slice
are shown in yellow. The light grey region behind H1 is outside the event horizon because signals
can escape towards the right.

We see that the arrow of time is defined by increasing v, and that behind the horizon,
where h(r) is negative, r is monotone decreasing with time. This suffices to show that
H2 is part of the event horizon — an observer crossing it will never make it out to the
boundary again.

As explained above, the story differs in region 1. Here the event horizon consists of a
lightlike surface H̃1 such that no future-directed causal curve starting from a point behind
it can reach the [E1,E2] part of the wall. Clearly, the global event horizon

Hevent = H̃1 ∪ H2 (6.8)

must be continuous and lie behind the apparent horizon H1 in region 1. This is illustrated
in figure 6. General theorems [23] actually show that a local horizon which is part of a
trapped compact surface cannot lie outside the event horizon. But there is no clash with
these theorems here because H1 fails to be compact, both at infinity and at E1.

To compute the projection of H̃1 on a Cauchy slice, note that it is a curve through the
point E2 that is everywhere tangent to the projection of the local light cone, as shown in
the figure. Put differently, at every point on the curve we must minimise the angle between
(the projection of) light-like vectors and the positive-y1 axis. This will guarantee that an
observer starting behind H̃1 will not be able to move fast enough towards the right in order
to hit the wall before the point E2.

Parametrising the curve by y1, using eq. (6.7) and dropping again for simplicity the
j = 1 index we find

−dy
dr

∣∣∣∣
H̃1

= max vy>0

[
r2

2`vy

(
1− J`

2r2 vy

)2
− h

2`vy
]−1

, (6.9)

where vy ≡ dv/dy. The extrema of this expression are vy = ±r/
√
M`2 − r2. Recall that

we are interested in the region behind the BTZ horizon and in future-directed light rays for
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Figure 7. A two-sided flowing funnel that can mimic the energy and entropy flows of the holo-
graphic interface. Tuning the horizon temperatures so that the boundary black hole does not absorb
any energy is, however, an adhoc condition.

which v is monotone increasing (whereas r is monotone decreasing). For null rays moving
to the right we should thus pick the positive vy extremum. Inserting in (6.9) gives the
differential equation obeyed by H̃1,

dy

dr

∣∣∣∣
H̃1

= 2`
J`− 2r

√
M`2 − r2

. (6.10)

The (projected) event horizon in region j = 1 is the integral of (6.10) with the constant of
integration fixed so that the curve passes through E2.

Here now comes the important point. The reader can check that near the BTZ horizon,
r = rH1

+ (1 + ε) with ε � 1, the denominator in (6.10) vanishes like ε. This is a non-
integrable singularity, so y(r) diverges at rH1

+ and hence H̃1 approaches asymptotically H1
as announced in section 3.2. The holographic entropy will therefore asymptote to that of
the equilibrium BTZ horizon, given by eqs. (2.11) and (2.12). This shows that the chiral
outgoing fluid is thermal, not only in the cold region 2 but also in the hotter region 1.

6.3 Remark on flowing funnels

The fact that outgoing fluxes are thermalised means that, in what concerns the entropy
and energy flows, the interface behaves like a black cavity. This latter can be modelled by
a non-dynamical, two-sided boundary black hole whose (disconnected) horizon consists of
two points. To mimic the behaviour of the interface, the two horizon temperatures should
be equal to the Θeff

j that saturate the bounds (3.10). This is illustrated in figure 7.
The precise shape of the flowing horizon(s) depends on the boundary black hole(s) and

is not important for our purposes here. For completeness, following ref. [15], we outline
how to derive it in appendix C. Like the thin-brane horizon of figure 6, it approaches the
BTZ horizons at infinity but differs in the central region (notably with a delta-function
peak in the entropy density at x = 0, see appendix C).
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The key difference is however elsewhere. The two halves of the flowing funnel of figure 7
are a priori separate solutions, with the temperatures Θj and Θeff

j chosen at will. But to
mimic the conformal interface one must impose continuity of the heat flow,

dQ1
dt

= πc1
12 (Θ2

1 − (Θeff
1 )2) = πc2

12 ((Θeff
2 )2 −Θ2

2) = dQ2
dt

. (6.11)

This relates the horizon temperatures to each other and to those of the distant heat baths.
It is however unclear whether any local condition behind the event horizons can impose
the condition (6.11).

7 Pair of interfaces

In this last section we consider a pair of identical interfaces between two theories, CFT1
and CFT2.18 The interface separation is ∆x. Let the theory that lives in the finite interval
be CFT2 and the theory outside be CFT1 (recall that we are assuming `2 ≥ `1). At thermal
equilibrium the system undergoes a first-order phase transition at a critical temperature
Θcr = b/∆x where b depends on the classical Lagrangian parameters λ`j [11, 12]. Below
Θcr the brane avoids the horizon and is connected, while above Θcr it breaks into two
disjoint pieces that hit separately the singularity of the black hole. This is a variant of
the Hawking-Page phase transition [52] that can be interpreted [53] as a deconfinement
transition of CFT2.

We would like to understand what happens when this system is coupled to reservoirs
with slightly different temperatures Θ± = Θ±dΘ at x = ±∞. Because of the temperature
gradient the branes are now stationary, but they conserve the topology of their static
ancestors. In the low-Θ phase the brane avoids the ergoregion (which is displaced from
the horizon infinitesimally) and stays connected, while in the high-Θ phase it splits in two
disjoint branes that enter the ergoregion and hit separately a Cauchy horizon or a bulk
singularity. The two phases are illustrated in figure 8.

Consider the high-Θ phase first. The isolated-brane solution of sections 5 and 6 is here
juxtaposed to a solution in which the roles of CFT1 and CFT2 are inverted. The mass
parameter of the three BTZ regions decreases in the direction of heat flow, jumping by
λJ across each brane. This is indeed the ‘ticket of entry’ to the ergoregion, as explained
in eq. (5.1) and section 6.1. The total change of BTZ mass across the pair is the same
as if the two branes had merged into a single one with twice the tension. Using the
holographic dictionary (2.8) and the fact that incoming fluxes at x = ±∞ are thermal with
temperatures Θ± one indeed computes

high Θ : dQ

dt
= π2`1

1 + λ`1
(Θ2
− −Θ2

+) ≡ π2`1Tpair(Θ2
− −Θ2

+) . (7.1)

where the effective transmission coefficient Tpair is that of a CFT1 defect whose dual brane
has tension 2λ. Note in passing that this effective brane tension can exceed the upper

18Our branes are not oriented, so there is no difference between an interface and anti-interface. More
general setups could include several different CFTs and triple junctions of branes, but such systems are
beyond the scope of the present work.
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Figure 8. The two types of NESS for an interface pair. In the ‘quantum phase’ (left) heat conducts
as if there was no scatterer, while in the ‘classical phase’ (right) the conductance is the same as for
an isolated CFT1 defect dual to a brane of tension 2λ. Also given in the figure is the BTZ mass
parameter in different regions of the geometry. The yellow arrows show the direction of heat flow.

bound (4.10) above which an individual brane inflates, and that an array of widely-spaced
branes can make the transmission coefficient arbitrarily small.

The heat flow (7.1) is what one would obtain from classical scatterers.19 To understand
why, think of Tj and Rj as classical transmission and reflection probabilities for quasi-
particles incident on the interface from the side j. The probability of passing through both
interfaces is the sum of probabilities of trajectories with any number of double reflections
in between,

Tpair = T1 (1 +R2
2 +R4

2 + · · · ) T2 = T1T2
1−R2

2
= 1

1 + `1λ
, (7.2)

where in the last step we used the holographic relations (5.4). This gives precisely the
result (7.1) as advertised.

The low-Θ case is drastically different. The solution is now obtained by gluing a brane
with a turning point (i.e. σ+ > 0, see section 4.2) to its mirror image, so that the brane
has reflection symmetry. The bulk metric, however, is not Z2 symmetric because in the
mirror image we do not flip the sign of the BTZ ‘spin’ J . This is required for continuity of
the dxdt component of the bulk metric, and it is allowed because when the brane avoids
the ergoregion there is no regularity condition to fix the sign of J , as in section 6.2. The
BTZ mass is thus the same at x = ±∞, while its value in the CFT2 region depends on
the interface separation ∆x. It follows from the holographic dictionary (2.8) that the heat
flow is in this case unobstructed,

low Θ : dQ

dt
= π2`1(Θ2

− −Θ2
+) , (7.3)

i.e. the effective transmission coefficient is Tpair = 1. Superficially, it looks as if two branes
with equal and opposite tensions have merged into a tensionless one.

19The argument grew out of a conversation with Giuseppe Policastro who noticed that the tensions of
two juxtaposed branes effectively add up in the calculation of ref. [10].
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In reality, however, the above phenomenon is deeply quantum. What the calculation
says is that when a characteristic thermal wavelength becomes larger than the interface
separation, coherent scattering results in all incident energy being transmitted. This is
all the more surprising since CFT2 is in the confined phase, and one could have expected
that fewer degrees of freedom are available to conduct heat. The microscopic mechanism
behind this surprising phenomenon deserves to be studied further.

The above discussion stays valid for finite temperature difference Θ+ − Θ−, but the
dominant phase cannot in this case be found by comparing free energies. Nevertheless, as
∆x→ 0 we expect from the dual ICFT that the interface-antiinterface pair fuses into the
trivial (identity) defect20 [42], whereas at very large ∆x the connected solution ceases to
exist. A transition is therefore bound to occur between these extreme separations.

Let us comment finally on what happens if the interval theory is CFT1, the theory
with fewer degrees of freedom, and the outside theory is CFT2. Here the low-temperature
phase only exists for sufficiently-large tension if c1 < c2 < 3c1, and does not exist if
c2 > 3c1 [11, 12]. The (sparse) degrees of freedom of the interval theory in this latter
case are always in the high-temperature phase, and there can be no quantum-coherent
conduction of heat. Reassuringly, this includes the limit c2/c1 → 0 in which the CFT1
interval is effectively void.

Note also that in the low-temperature phase the wire can be compactified to a circle
and the heat current can be sustained without external reservoirs. This is not possible in
the high-temperature phase.

8 Closing remarks

The study of far-from-equilibrium quantum systems is an exciting frontier both in
condensed-matter physics and in quantum gravity. Holography is a bridge between these
two areas of research, and has led to many new insights. Much remains however to be
understood, and simple tractable models can help as testing grounds for new ideas. The
holographic NESS of this paper are tractable thanks to several simplifying factors: 2d con-
formal symmetry, isolated impurities and the assumption of a thin brane. If the first two
can be justified in (very) pure ballistic systems, the thin-brane approximation is an adhoc
assumption of convenience. Extending our results to top-down dual pairs is one urgent
open question.

Another obvious question concerns the structure of entanglement and the Hubeny-
Rangamani-Ryu-Takayanagi curves [33, 34] in the above steady states. While it is known
that geodesics cannot probe the region behind equilibrium horizons [54], they can reach
behind both apparent and event horizons in time-dependent backgrounds, see e.g. [55–57].
In the framework of the fluid/gravity correspondence the entropy current associated to
the event horizon is a local functional of the boundary data [58]. It would be interesting
to examine this question in the present far-from-equilibrium context. Note also that the

20In some range of parameters (λ ≥ λ0, `2 < 3`1), the pair fuses into a non-trivial defect [12], although
this configuration is at best metastable.
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particularly simple form of matter in our problem (a thin fluctuating brane) may allow
analytic calculations of the quantum-corrected extremal surfaces [59, 60].

Another interesting question is how the deconfinement transition of the interval CFT
in section 7 relates to the sudden jump in thermal conductivity of the system. Last but
not least, it would be nice to relate the production of entropy to the scattering matrix of
microscopic interfaces, e.g. for the simplest free-field interfaces of [9, 42, 61].

We hope to return to some of these questions in the near future.
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A Solving the thin-brane equations

From the form (2.1) of the bulk metric and the embedding ansatz (4.1) of a stationary
brane, we derive the following continuity equations for the induced metric

ĝττ =M1`
2
1 − r2

1 = M2`
2
2 − r2

2 , (A.1)

ĝτσ = (M1`
2
1 − r2

1)f ′1 −
J1`1

2 x′1 = (M2`
2
2 − r2

2)f ′2 −
J2`2

2 x′2 , (A.2)

ĝσσ = `21 r
′2
1

h1(r1) + r2
1x
′2
1 − J1`1x

′
1f
′
1 + (M1`

2
1 − r2

1)f ′21

= `22 r
′2
2

h2(r2) + r2
2x
′2
2 − J2`2x

′
2f
′
2 + (M2`

2
2 − r2

2)f ′22 . (A.3)

The primes denote derivatives with respect to σ, and the function h(r) has been defined
in eq. (2.3),

h(r) = r2 −M`2 + J2`2

4r2 = 1
r2 (r2 − r2

+)(r2 − r2
−) . (A.4)
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Following ref. [12] we choose the convenient parametrization σ = −ĝττ , so that r2
j =

σ + Mj`
2
j and r′j = 1/2rj . This parametrization need not be one-to-one, it actually only

covers half of the wall when this latter has a turning point. With this choice the ergoplane
is located at r2

j = Mj`
2
j =⇒ σ = 0, and the functions hj can be written as

hj(σ) =
σ2 + σMj`

2
j + J2

j `
2
j/4

σ +Mj`2j
= (σ − σHj

+ )(σ − σHj
− )

σ +Mj`2j
, (A.5)

where

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2
j `

4
j − J2

j `
2
j (A.6)

are the locations of the horizons in the jth chart.
From (A.1)–(A.3) one computes the determinant of the induced metric

− det(ĝ) =
σ`2j

4r2
jhj

+ hjr
2
jx
′ 2
j . (A.7)

Note that it does not depend on the time-delay functions fj(σ), because these can be
absorbed by the unit-Jacobian reparametrization

τ̃ = τ + fj(σ), σ̃ = σ .

Eq. (A.7) can be used to express the x′j (up to a sign) in terms of det ĝ. A combination of
eqs. (A.1) and (A.2) expresses, in turn, the time delay across the wall in terms of the x′j ,

σ(f ′2 − f ′1) = 1
2(J1`1x

′
1 − J2`2x

′
2) . (A.8)

To complete the calculation we need therefore to find det ĝ and then solve the equa-
tions (A.7) for x′j .

The Israel-Lanczos conditions. This is done with the help of the Israel-Lanczos con-
ditions [65, 66] (see also [67]) which express the discontinuity of the extrinsic curvature
across the wall, eqs. (4.3). We follow the conventions of ref. [12]: Kαβ is the covariant
derivative of the inward-pointing unit normal vector, and the orientation is such that for
inceasing σ the wall encircles clockwise the interior of both charts in the (xj , r−1) planes.21

A somewhat tedious but straightforward calculation gives

Kττ = −hr
2x′

`
√
|ĝ|

and Kτσ = hr2x′

σ`
√
|ĝ|

ĝτσ + J
√
|ĝ|

2σ , (A.9)

where ĝ is a shorthand notation for det(ĝ). The Israel-Lanczos equations (4.3) thus read

1√
|ĝ|

(
h1r

2
1x
′
1

`1
+ h2r

2
2x
′
2

`2

)
= −λσ , (A.10)

1√
|ĝ|

(
h1r

2
1x
′
1

`1
+ h2r

2
2x
′
2

`2

)
ĝτσ +

√
|ĝ|
2 (J1 + J2) = −λσ ĝτσ . (A.11)

21In these conventions the boundary ICFT is folded, with both CFT1 and CFT2 living on the same side
of the interface.
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These are compatible if and only if

J1 + J2 = 0 , (A.12)

which translates to energy conservation in the boundary CFT. We have checked that the
third equation, [Kσσ] = −λĝσσ, is automatically obeyed and thus redundant. As expected,
by virtue of the momentum constraints the three Israel-Lanczos equations (4.3) reduce to
a single independent one plus the “constant-of-integration” condition (A.12).

The general solution. Squaring twice (A.10) and using (A.7) to eliminate the x′ 2j leads
to a quadratic equation for the determinant. This has a singular solution det(ĝ) = 0, and
a non-pathological one

− det(ĝ) = λ2σ3
[4h1h2r

2
1r

2
2

`21`
2
2

−
(
h1r

2
1

`21
+ h2r

2
2

`22
− λ2σ2

)2]−1
. (A.13)

Inserting the expressions for rj(σ) and hj(σ) leads after some algebra to

− det(ĝ) = λ2σ

Aσ2 + 2Bσ + C
(A.14)

with coefficients

A = (λ2
max − λ2)(λ2 − λ2

min) ,

B = λ2(M1 +M2)− λ2
0(M1 −M2) ,

C = −(M1 −M2)2 + λ2J2
1 .

(A.15)

The critical tensions in these expressions are

λmin =
∣∣∣∣ 1
`1
− 1
`2

∣∣∣∣ , λmax = 1
`1

+ 1
`2
, λ0 =

√
λmaxλmin . (A.16)

For a static wall, i.e. when J1 = J2 = 0, the above formulae reduce, as they should, to
the ones obtained in ref. [12].22 The only effect of the non-zero Jj is actually to shift the
coefficient C in (A.15).

The roots of the quadratic polynomial in the denominator of (A.14),

σ± = −B ±
√
B2 −AC
A

, (A.17)

determine the behaviour of the solution. If σ+ is either complex or negative (part of)
the brane worldvolume has det ĝ > 0 in the ergoregion, so it is spacelike and physically
unacceptable. Acceptable solutions have σ+ > 0 or σ+ = 0, and describe walls that avoid,
respectively enter the ergoregion as explained in the main text, see section 5.

22When comparing with this reference beware that it uses the (slightly confusing) notation ĝσσ ≡ g(σ)
so that, since the metric is diagonal in the static case, det ĝ = −σg(σ).
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The actual shape of the wall is found by inserting (A.14) in (A.7) and solving for x′ 2j .
After some rearrangements this gives

ε1
x′1
`1

= (λ2 + λ2
0)σ + (M1 −M2)

2(σ +M1`21 + J2`21/4σ)
√
Aσ(σ − σ+)(σ − σ−)

, (A.18)

ε2
x′2
`2

= (λ2 − λ2
0)σ − (M1 −M2)

2(σ +M2`22 + J2`22/4σ)
√
Aσ(σ − σ+)(σ − σ−)

, (A.19)

where εj = ± are signs. They are fixed by the linear equation (A.10) with the result

εj(σ) = − σ

|σ|
. (A.20)

These signs agree with the known universal solution [12, 68] near the AdS boundary, at
σ → ∞, and they ensure that walls entering the ergoregion have no kink. Expressing the
denominators in terms of the horizon locations (A.6) gives the equations (4.11) and (4.12)
of the main text.

It is worth noting that the tensionless (λ→ 0) limit of our solution is singular. Indeed,
on one hand extremising the brane action and ignoring its back-reaction gives a geodesic
worldvolume, but on the other hand for λ = 0 fluctuations of the string are unsuppressed.
In fact, when λ is small the wall starts as a geodesic near the AdS boundary but always
departs significantly in the interior. In particular, a geodesic never enters the equilibrium
horizon, whereas a tensile string can, even if it is very light.

B Horizon inequalities

In section 6 we asserted that BTZ geometries whose ergoregions can be glued together by
a thin brane obey the inequalities

σH1
+ > σH2

+ if M1 > M2 ; σH2
+ < σH1

+ if M1 < M2 , (B.1)

where the horizon locations are

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2
j `

4
j − J2`2j (B.2)

and J ≡ |J1| = |J2| > 0. This ordering of the outer horizons is manifest if one expands at
the leading order for small J . We want to show that it is valid for all values of J .

If as J is cranked up the ordering was at some point reversed, then at this point we
would have σH1

+ = σH2
+ , or equivalently

M2`
2
2 −M1`

2
1 =

√
M2

2 `
4
2 − J2`22 −

√
M2

1 `
4
1 − J2`21 . (B.3)

Squaring twice to eliminate the square roots gives

J 2 = 4`21`22(M1 −M2)(M2`
2
2 −M1`

2
1)

(`22 − `21)2 . (B.4)

Without loss of generality we assume, as elsewhere in the text, that `1 ≤ `2. If M2 > M1,
then automatically M2`

2
2 > M1`

2
1 and (B.4) has no solution for real J . In this case the

ordering (B.1) cannot be reversed.
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If on the other handM1 > M2 andM2`
2
2−M1`

2
1 > 0 we need to work harder. Inserting

J2 from (B.4) back in the original equation (B.3) gives after rearrangements

(`22 − `21)(M2`
2
2 −M1`

2
1) = `22

∣∣(M2`
2
2 −M1`

2
1)− `21(M1 −M2)

∣∣
− `21

∣∣∣(M2`
2
2 −M1`

2
1)− `22(M1 −M2)

∣∣∣ , (B.5)

where the absolute values come from the square roots. This equation is not automatically
obeyed whenever its doubly-squared version is. A solution only exists if

M1 −M2 ≤
`22M2 − `21M1

`22
⇔ M1

M2
≤ 2`22

`22 + `21
. (B.6)

Remember now that we only care about solutions with walls in the ergoregion, for which
M1 −M2 = λJ , see eq. (5.1). Plugging in (B.4) this gives

M2 =
[
1− 4λ2

0 λ
2

λ 4
0 + 4λ2/`21

]
M1 (B.7)

with λ2
0 = (`22 − `21)/`21`22, see eq. (4.10). Consistency with the bound (B.6) for a brane

tension in the allowed range then requires

λmin < λ ≤ `1λ
2
0

2 , (B.8)

where λmin = (`2−`1)/`1`2. As one can easily check, this implies `1 > `2 which contradicits
our initial assumption. We conclude that (B.3) has no solutiion, and the ordering (B.1)
holds for all J , QED.

For completeness, let us also consider the ordering of the inner horizons. Clearly
σHj

+ > σHj
− always, and for small J also σH1

+ > σH2
− and σH2

+ > σH1
− . To violate these last

inequalities we need σH1
+ = σH2

− or σH2
+ = σH1

− for some finite J , or equivalently

M2`
2
2 −M1`

2
1 = ∓

(√
M2

2 `
4
2 − J2`22 +

√
M2

1 `
4
1 − J2`21

)
. (B.9)

Squaring twice gives back eq. (B.4) which has no solution if M2 > M1. But if M1 > M2
and M2`

2
2 −M1`

2
1 > 0, solutions to σH2

+ = σH1
− cannot be ruled out. Indeed, inserting J

from (B.4) in (B.9) with the + sign gives

(`22 − `21)(M2`
2
2 −M1`

2
1) = `22

∣∣(M2`
2
2 −M1`

2
1)− `21(M1 −M2)

∣∣
+ `21

∣∣∣(M2`
2
2 −M1`

2
1)− `22(M1 −M2)

∣∣∣ , (B.10)

which requires that

`22M2 − `21M1
`22

≤ M1 −M2 ≤
`22M2 − `21M1

`21
. (B.11)

These conditions are compatible with M1 −M2 = λJ and λ in the allowed range, so the
outer horizon of slice 2 need not always come before the Cauchy horizon of slice 1.

Finally one may ask if the inner (Cauchy) horizons can join continuously, i.e. if σH1
− =

σH2
− is allowed. A simple calculation shows that this is indeed possible for `2/`1 < 3, a

critical ratio of central charges that also arose in references [11, 12]. We don’t know if this
is a coincidence, or if some deeper reason lurks behind.

– 27 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
5

C Background on flowing funnels

In this appendix we collect some formulae on the flowing funnels discussed in section 6.3.
We start with the most general asymptotically-locally-AdS3 solution in Fefferman-Graham
coordinates, generalising the Banados geometries (2.6) to arbitrary boundary metric [69]

ds2 = `2dz2

z2 + 1
z2 gαβ(x, z) dxαdxβ , (C.1)

where gαβ is a quartic polynomial in z (written here as a matrix)

g(x, z) = g(0) + z2g(2) + z4

4 g(2) g
−1
(0) g(2) . (C.2)

In this equation g(0) is the boundary metric and g(2) is given by

g(2)αβ = −`
2

2 R(0) g(0)αβ + ` 〈Tαβ〉 , (C.3)

where R(0) is the Ricci scalar of g(0), and 〈Tαβ〉 the expectation value of the energy-
momentum tensor. This must be conserved, ∇a(0)〈Tab〉 = 0, and should obey the trace
equation gab(0)〈Tab〉 = (c/24π)R(0).

We may take the boundary metric to be that of the Schwarzschild black hole (this
differs from the metric in [15], but since it is not dynamical we are free to choose our
preferred boundary metric),

ds2
(0) = −f(x) dt2 + dx2

f(x) with f(x) = x

x+ a
. (C.4)

The horizon at x = 0 has temperature ΘS = (4πa)−1. Using the familiar tortoise coordi-
nates we can write

ds2
(0) = f(x)(−dt2 + dx2

∗) where x∗ = x+ a log x . (C.5)

Let w± = x∗ ± t. The expectation value of the energy-momentum tensor in the black-hole
metric can be expressed in terms of φ = log f(x) as follows

〈T±±〉 = `

2

[
∂2
±φ−

1
2(∂±φ)2

]
+ k±(w±) , 〈T+−〉 = − `2 ∂+∂−φ , (C.6)

with k± arbitrary functions of w± that depend on the choice of state. At x� a where the
metric is flat, k± determine the incoming and outgoing fluxes of energy. In a stationary
solution these must be constant. If a heat bath at temperature Θ+ is placed at infinity,
k+ = π2`Θ2

+. The function k−, on the other hand, is fixed by requiring that there is no
outgoing flux at the Schwarzschild horizon. From

`

2

[
∂2
±φ−

1
2(∂±φ)2

]
= −` (a2 + 4ax)

16(x+ a)4 (C.7)

we deduce 〈T−−〉|x=0 = 0 =⇒ k− = `/16a2 = π2`Θ2
S . The outgoing flux at infinity is

thermalised at the black hole temperature, as expected.
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Inserting the expressions (C.3)–(C.7) in eqs. (C.1) and (C.2) gives the flowing-funnel
metric in Fefferman-Graham coordinates. These are however singular coordinates, not well
adapted for calculating the event horizon as shown in [15]. Following this reference, one can
compute the horizon by going to BTZ coordinates — this is possible because all solutions
are locally equivalent in three dimensions. The change from any metric (C.1)–(C.2) to
local BTZ coordinates has been worked out in ref. [70] (see also [71]) and can be used to
compute the black-funnel shapes. A noteworthy feature is that the funnels start vertically
inwards at x = 0 [15] making a delta-function contribution to the area density. Note that
figure 7 shows two independent flowing funnels with Schwarzschild temperatures ΘS = Θeff

1
and Θeff

2 .
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