Wafa Njima 
email: wafa.njima@ensea.fr
  
Marwa Chafii 
  
Arsenia Chorti 
  
Raed M Shubair 
  
H Vincent Poor 
  
Indoor Localization using Data Augmentation via Selective Generative Adversarial Networks

Keywords: Indoor localization, received signal strength indicator (RSSI), deep neural network (DNN), generative adversarial network

Several location-based services require accurate location information in indoor environments. Recently, it has been shown that deep neural network (DNN) based received signal strength indicator (RSSI) fingerprints achieve high localization performance with low online complexity. However, such methods require a very large amount of training data, in order to properly design and optimize the DNN model, which makes the data collection very costly. In this paper, we propose generative adversarial networks for RSSI data augmentation which generate fake RSSI data based on a small set of real collected labeled data. The developed model utilizes semi-supervised learning in order to predict the pseudo-labels of the generated RSSIs. A proper selection of the generated data is proposed in order to cover the entire considered indoor environment, and to reduce the data generation error by only selecting the most realistic fake RSSIs. Extensive numerical experiments show that the proposed data augmentation and selection scheme leads to a localization accuracy improvement of 21.69% for simulated data and 15.36% for experimental data.

I. INTRODUCTION

T HE proliferation of smart wireless devices leverag- ing ubiquitous connectivity, particularly the internet of things (IoT), has driven increased interest in a wide range of services including indoor localization [START_REF] Zafari | A Survey of Indoor Localization Systems and Technologies[END_REF] [START_REF] Yassin | Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications[END_REF]. In particular, the availability of location information has become a key factor in location-based services such as healthcare, homecare, monitoring, tracking, etc. [3] [4]. To provide user location information, different wireless and emerging technologies (e.g. Bluetooth [START_REF] Liu | Face-to-Face Proximity Estimation Using Bluetooth on Smartphones[END_REF], WiFi [START_REF] He | Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons[END_REF], ultra wide-band (UWB) [START_REF] Kempke | Surepoint: Exploiting Ultra Wideband Flooding and Diversity to Provide Robust, Scalable, High-Fidelity Indoor Localization[END_REF], visible light [START_REF] Rahman | Recent Advances in Indoor Localization via Visible Lights: A Survey[END_REF], magnetic field [START_REF] Shao | Indoor Positioning Based on Fingerprint-Image and Deep Learning[END_REF]) and signal parameters (e.g. time of arrival (ToA) [START_REF] Tadayon | Decimeter Ranging with Channel State Information[END_REF], angle of arrival (AoA) [START_REF] Chen | AoA-Aware Probabilistic Indoor Location Fingerprinting Using Channel State Information[END_REF], channel state information (CSI) [START_REF] Yang | From RSSI to CSI: Indoor Localization via Channel Response[END_REF], and received signal strength indicator (RSSI) [START_REF] Kumar | Distance Measurement and Error Estimation Scheme for RSSI Based Localization in Wireless Sensor Networks[END_REF]) have been investigated.

Traditional indoor localization systems are mainly based on geometric [START_REF] Yang | Quality of Trilateration: Confidence-Based Iterative Localization[END_REF] (e.g. trilateration and triangulation) and fingerprinting-based methods [START_REF] Yiu | Wireless RSSI Fingerprinting Localization[END_REF]. The performance of geometric mapping are heavily affected by multipath propagation effects which blur increasingly the relations between physical measurements and distances. Consequently, propa-gation modeling becomes complicated and localization accuracy is degenerated. As an alternative to geometric methods, fingerprinting-based methods have been proposed which adopt a pattern-matching process. Such methods begin by a site survey task collecting signal features at training positions in the area of interest to build a fingerprint database called also a radio map. Localization is then performed online calculating the similarity between the fingerprint at an unknown location and the fingerprint database. The estimated location corresponds to the best-fitted fingerprint applying different estimation algorithms. Classical similarity evaluation and estimation algorithms are very demanding in terms of energy and computation time, since the whole process is online and it requires to browse huge collected fingerprint databases. To overcome these issues, machine learning (ML) based indoor localization systems have been proposed [START_REF] Alhajri | Indoor localization for iot using adaptive feature selection: A cascaded machine learning approach[END_REF], in particular deep learning (DL) methods [START_REF] Njima | Deep CNN for Indoor Localization in IoT-Sensor Systems[END_REF]- [START_REF] Chen | A novel real-time deep learning approach for indoor localization based on rf environment identification[END_REF]. Using such methods, a saved DL model based on collected fingerprint database, trained offline, is used online for accurate information location prediction which minimizes the online complexity. A variety of localization systems based on DL methods (e.g. for collected data completion [START_REF] Wang | A robust Wi-Fi Fingerprint Positioning Algorithm Using Stacked Denoising Autoencoder and Multi-Layer Perceptron[END_REF], noise minimization [START_REF] Fan | Deep Learning Based Matrix Completion[END_REF], and location estimation [START_REF] Ayyalasomayajula | Deep Learning Based Wireless Localization for Indoor Navigation[END_REF]) have been proposed in the literature and provide good localization performance. However, in order to build an efficient DL model, these methods are data intensive, requiring very large amounts of training data, the acquisition of which is a time and energy consuming task. To address this issue, some recent approaches that leverage semi-supervised learning have been introduced, combining a small set of collected labeled data and a large set of collected unlabeled data [START_REF] Li | Pseudo Label-Driven Federated Learning-Based Decentralized Indoor Localization via Mobile Crowdsourcing[END_REF]- [START_REF] Zhou | GrassMA: Graph-Based Semi-Supervised Manifold Alignment for Indoor WLAN Localization[END_REF]. Nevertheless, collecting unlabelled data can still be expensive, and thus, in this paper we investigate using generative models [START_REF] Antoniou | Data Augmentation Generative Adversarial Networks[END_REF]- [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] for data augmentation without any extra data collection.

In the last few years, generative models have attracted significant interest in the research community due to their promising benefits in different fields. Generative models have shown a good ability to produce realistic supplement various types of data such as images, texts and sounds. In particular, generative adversarial networks (GANs) have been employed [START_REF] Odena | Semi-Supervised Learning with Generative Adversarial Networks[END_REF]- [START_REF] Belmonte-Hernández | Recurrent Model for Wireless Indoor Tracking and Positioning Recovering Using Generative Networks[END_REF] to generate additional measurements, which reduces collection time and saves human effort. Such networks generate samples with improved diversity and expand the training database in order to ensure a proper design of deep neural networks (DNNs) in different fields including localization. In [START_REF] Chen | Semi-Supervised Learning with GANs for Device-Free Fingerprinting Indoor Localization[END_REF], GANs are used with semi-supervised learning where GANs use both labeled and unlabeled data to share weights with a localization classifier in order to benefit from data contained in unlabeled information when labeled data are not sufficient. The authors in [START_REF] Zou | Adversarial Learning Enabled Automatic WiFi Indoor Radio Map Construction and Adaptation with Mobile Robot[END_REF] aim to construct an efficient radio map covering free space (e.g, open spaces and corridors) and constrained spaces. In this experiment, the data corresponding to the free space environment are measured, whereas the data for the constrained space are artificially generated. This is justified by the difficulties in performing measurement under space constraints. In the works described in [START_REF] Li | AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization Systems[END_REF], and [START_REF] Lei | Wavelet Feature Outdoor Fingerprint Localization Based on ResNet and Deep Convolution GAN[END_REF], the initial training fingerprint database is expanded increasing the amount of training data collected at each reference point based on GANs in order to enhance its richness. For this, a collection of signal measurements have been done at different reference points and GANs have been used in order to generate additional measurements at each reference point to enhance the diversity of collected data at each reference position.

In this paper, unlike [START_REF] Chen | Semi-Supervised Learning with GANs for Device-Free Fingerprinting Indoor Localization[END_REF], we do not assume the availability of unlabeled data to enhance the training of the generative model, and we do not assume having sufficient collected data for particular regions as assumed in [START_REF] Zou | Adversarial Learning Enabled Automatic WiFi Indoor Radio Map Construction and Adaptation with Mobile Robot[END_REF] for free space. We consider an extreme and realistic case where only a small amount of labeled data is available. We also do not use GANs to increase the diversity of the RSSI data for specific known reference positions as proposed in [START_REF] Li | AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization Systems[END_REF], but we generate RSSI data for new unknown positions to cover the whole environment. In addition, we propose in this work to apply a selection process of the generated fake data that considers constraints on both the coverage and the credibility of the generated data. The proposed algorithm is validated and tested on simulated environments using realistic propagation model parameters measured from experiments. To support simulation results, we apply our proposed system on real measurements from the public UJIndoorLoc database [START_REF] Torres-Sospedra | UJIIndoorLoc: A New Multi-Building and Multi-Floor Database for WLAN Fingerprint-Based Indoor Localization Problems[END_REF].

The remainder of this paper is organized as follows: Section II formulates the localization problem and describes the system model. The proposed selective semi-supervised GANs for data augmentation is presented in Section III. The environmental setting and obtained simulation results are provided and discussed in Section IV. Experimental results based on real measurements from the UJIndoorLoc database are presented in Section V. Finally, Section VI concludes our work.

II. INDOOR LOCALIZATION SCENARIOS AND FINGERPRINTING TECHNIQUE

In this section, we briefly describe the limitations of existing indoor localization systems based on RSSI fingerprints. And, we detail different steps of the proposed system model developed to address the problem of interest.

A. SYSTEM MODEL DESCRIPTION

We consider an indoor environment covering (L × W ) m 2 , where WiFi technology is deployed using M access points (APs). As depicted in Fig. 1, the system consists of two main parts: the central unit (CU) which performs all the data processing and localization, and the mobile sensor nodes. There are two types of mobile sensor nodes: those used during the training phase in order to collect RSSI measurements for the training database construction and those requesting online to be localized. To enhance the richness of the fingerprint RSSI database, GANs are used to generate fake RSSI fingerprints. Let p ij be the RSSI measured at the i-th position of the signal transmitted by the j-th AP.

B. FINGERPRINTING BASED LOCALIZATION

In this section, we present the standard fingerprinting technique when used with DNN models. Then, we detail briefly our system model steps including data collection and data training.

1) DNN-based Fingerprinting

RSSI-based positioning systems can be divided into two categories: geometric methods and fingerprints-based methods. Among them, fingerprinting is widely studied and adopted because of its localization accuracy and implementation simplicity. It consists of two main phases: an offline phase called also a training phase and an online phase called a test phase. During the offline phase, RSSI measurements are collected at each measurement location (training position) from different radio signal transmitters, essentially APs when considering WiFi signals. These collected RSSIs with their location coordinates are transferred to a CU and stored in a training database. In the online phase, RSSIs from different APs are measured and compared with the ones collected and stored in 
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Step output: Trained mixed model the training database to predict the location of the target. This prediction can be performed by a DNN model which can be trained offline and applied directly online. The use of DNN models for location prediction is recommended since most of the online complexity is shifted to the offline phase. DNN is recommended for accurate indoor localization due to the fact that it is able to learn signal fluctuations through time and environmental dynamicity because of its deeper functions that map the input to the output [37] [38]. In order to achieve good localization accuracy using an optimal trained DNN model, a large amount of expensively collected data is required during the offline phase which makes the fingerprinting method labor intensive and time/cost consuming. To solve this issue, a selective GAN indoor localization framework combined with semi-supervised learning is proposed and detailed in this paper, which performs location prediction based on collected labeled data and fake generated pseudo-labeled data. This system takes advantage of generating fake data and mixing it with labeled data in the training process in order to reduce the reliance on expensively collected data. However, generated data can be unrealistic and can create imbalanced classes when the generated data happens to be more dense for specific regions. Therefore, a proper data selection protocol should be developed to overcome these issues.

2) Data collection and data training

In this part, we present in details the collection of labeled data, as well as the whole process of collected data pre-processing and training.

a. Fingerprint database collection: In this paper, we consider a simulated noisy indoor environment as the area of interest in order to collect RSSI fingerprints during the offline phase including training and testing data. To model the propagation environment and to collect data, we proceed as described in II-A. b. Data augmentation: Data augmentation is used to supplement data when it is too expensive and rare. Thus, it aims to increase the size and the diversity of a dataset by generating new fake samples based on real ones.

• Data generation: Based on collected RSSI vectors, extra fake data are generated using a GAN in order to expand the dataset and ensure its diversity. • Data pseudo-labeling: Once fake RSSI vectors are generated, an artificial pseudo-label is associated with each vector using semi-supervised learning. c. Data selection: After data generation and pseudolabeling, we apply a data selection method. We first generate a very large number of fake samples to cover the whole environment, and then we eliminate unnecessary and inaccurate RSSI data in order to improve the localization accuracy. d. Localization based on DNNs: To localize a target, a trained DNN model is applied to estimate its coordinates based on the corresponding collected RSSI vector. During the training process, all of the RSSI vectors (e.g, real collected vectors and selected fake generated vectors)

are fitted to the model as inputs and the corresponding coordinates are considered as outputs.

III. PROPOSED SELECTIVE SEMI-SUPERVISED GAN FOR LOCATION DATA AUGMENTATION A. DATA GENERATION

In this section, we describe in detail different steps of the proposed localization system.

1) Intuition behind GANs

Generative models aim at learning the true data distribution of a training set in order to generate realistic new samples with some variations. Thus, we try to produce samples with a distribution that is as similar as possible to the true data distribution. GANs are generative models that include two components [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]: the generator and the discriminator, as shown in Fig. 2. The generator model takes random noise as input and learns how to produce a realistic output representation similar to the real data, while the discriminator learns how to distinguish between fake and real samples. These two models are trained together until the generator is able to generate realistic examples from input noise. GANs have achieved impressive performance across a multitude of tasks (e.g. face generation, 3D object generation, and image translation from one domain to another) and many companies are using them including Google for text generation, IBM for data augmentation, Adobe for next generation photoshop and Snapchat-Tiktok for image filters. GANs are used for data augmentation in our case, which means the generated data can be used to supplement real data to increase dataset size and diversity by using generated samples. The goal is to augment the dataset when real data are too expensive to collect.

2) GAN Training

GANs consist of two different neural networks: the generator and the discriminator. To train a GAN, we alternate the training of the DNN generator model G and the DNN discriminator model D. For each DNN model, we introduce an input vector i (0) ∈ R N0×1 and its associated output vector o ∈ R N H+1 ×1 . Let N h be the number of neurons for the h th layer, such that 0 ≤ h ≤ H + 1 where H is the number of hidden layers. b h ∈ R N h ×1 and W h ∈ R N h ×N h-1 denote the biases and the weights matrices, respectively. The output vector of the h th layer can be expressed as

o (h) = g h (b (h) + W (h) i (h-1) ), i (h) = o (h) , (1) 
where the input vector i • Training the generator: Let Z ∈ R M ×m f be the input dataset of the generator, such that each column

z (i) ∈ R M ×1 , i = 1, • • • , m f corresponds to a random
noise vector whose samples are uniformly distributed over [-1, 1[. At the output of the DNN generator, each input noise vector z (i) produces a fake RSSI vector G(z (i) ) ∈ R M ×1 . The fake output vector is generated following [START_REF] Zafari | A Survey of Indoor Localization Systems and Technologies[END_REF], where i

(0) = z (i) , N 0 = M , o (H+1) = G(z (i) ) and N H+1 = M . Then, G(z (i)
) is passed to the DNN discriminator D(•) which makes a prediction of how realistic G(z (i) ) is. The generator loss is then calculated by minimizing the loss function:

L G = ∇θ g - 1 m f m f i=1 log D G(z (i) ) . (2) 
Once the loss function is minimized, and the parameters θ g = (W g , b g ) do not change significantly after further iterations, we can save the generator DNN parameters.

• Training the discriminator: The discriminator learns to distinguish real from fake. At the beginning of the training, it does not know which vectors are real and which ones are fake. However, it has access to real data in order to compare them with input vectors and classify the input vectors as real or fake. Thus, the discriminator receives more and more realistic examples at each round from the generator till the examples are good enough to fill the discriminator. The discriminator acts as a binary classifier and computes a probability of an example being fake D(G(z (i) )), following (1), giving both fake generated samples G(Z), and the real dataset P ∈ R M ×mr of collected m r RSSIs vectors denoted as p (i) , i = 1, . . . , m r . This probability will be given to the generator to improve its performance as expressed in [START_REF] Yassin | Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications[END_REF]. The training of the discriminator is performed by minimizing the loss function derived from the binary cross-entropy (BCE) between the real and generated data [START_REF] Mescheder | Which training methods for GANs do actually converge?[END_REF]:

L d = ∇θ d - 1 m r mr i=1 log D(p (i) ) - 1 m f m f i=1 log 1 -D G(z (i) ) , (3) 
where ) would help the discriminator to correctly label the fake sample that comes from the generator.

θ d = (W d , b d )

3) Fake Data Generation Based on GANs

Given a small number of training labeled data samples, extra fake RSSI vectors are generated based on the GAN. The generator takes as inputs noise vectors that are going to be fitted to the discriminator with the real RSSI vectors.

Based on the discriminator's outputs, the generator and the discriminator models are updated in order to enhance its To train such a model, the collected and selected RSSI vectors are used as inputs, and the corresponding associated labels (real labels and artificial pseudo-labels) are used as outputs. During the fake data generation step, we produce unlabeled RSSI vectors. In order to be integrated into our localization process, these fake vectors are going to be pseudolabeled and selected. For this, collected RSSI vectors are used as inputs to a supervised DNN model that takes as outputs the corresponding labels, e.g. coordinates during training. Once trained, fake generated RSSI vectors are given to the model to predict the associated artificial pseudo-labels. Then, a general model used for localization is trained on real and selected data. The selection procedure is described in detail in subsection III-C.

C. SELECTION CRITERIA OF GENERATED FAKE DATA

Initially, the idea of this work was to generate RSSI vectors, to generate more data and cover the whole environment, and then to estimate their pseudo-labels to build a mixed and rich dataset. We have generated a large amount of fake data and tested the resulting system. However, when plotting the pseudo labels of the generated RSSIs, i.e. positions, we have noticed that (i) generated positions do not cover the whole area of the considered environment, (ii) these positions are sometimes condensed in a specific area, and (iii) generating a higher number of fake data does not necessarily lead to a better localization accuracy. Therefore, we introduce here selection criteria in order to choose only a useful subset of the generated fake data:

• Criterion 1: Environment coverage: Here, we consider that our environment E is uniformly divided into zones e j each one covering (l j × w j ) m 2 , such that j l j × w j = L × W m 2 . After randomly generating a large amount of data (RSSI vectors and the pseudo positions), we build a new dataset by selecting for each zone e j a number N j of data samples proportional to its surface area (l j × w j ) m 2 , i.e. the pseudo positions fall into the desired zone e j . Thus, redundant data are eliminated, and the whole environment E is covered and each zone e j is equally represented in the new dataset that contains m s = j N j selected sample. We have first tried to select randomly N j samples per zone e j , but we have realized that this random selection can be improved by selecting only the most realistic m s fake data, which leads us to Criterion 2.

• Criterion 2: Most realistic fake data: The selection of the N j most realistic fake data samples per zone e j is performed by comparing the score of each generated RSSI G(z (i) ) at the output of the discriminator D(G(z (i) )). Thus, in each zone e j , we select the N j positions that are most likely to be real, i.e. associated with the N j lowest loss function values:

L (i) d = ∇θ d - 1 m r mr j=1 log D(p (j) ) -log 1 -D G(z (i) ) , (4) 
where p (j) , j = 1, ..., m r is the j th real collected RSSI vector.

IV. RESULTS BASED ON SIMULATED DATA

In this section, we present the environmental setup and different used DNN architectures and hyper-parameters. We also present the localization performance of our proposed system based on selective GANs and compare it with other methods in order to showcase its usefulness in terms of localization accuracy and data collection cost on a simulated environment.

A. PROPAGATION ENVIRONMENT AND ENVIRONMENTAL SETUP

To model the propagation environment, we consider that signals can be degraded and blocked by the obstacles:

• Blockage: 40% of RSSI measured data are unknown.

We assign the value of -110 dBm to non-detected APs in order to have a weak signal that does not affect the calculation process. The choice of this value is based on several experiments in our simulated indoor environments.

• Degradation is considered combining pathloss and shadowing effects. Let p ij be the RSSI measured at the i-th position of the signal transmitted by the j-th AP. It can be expressed as

p ij = p t -p Lij + B σ [dBm], (5) 
where p t is a constant transmitted power, B σ is a zero-mean Gaussian distributed random variable with standard deviation σ representing the shadowing effects, and p Lij is the pathloss calculated as follows:

p Lij = p L0 + 20 log 10 (f ) + 10µ log 10 d ij d 0 , (6) 
where p L0 denotes the pathloss value at a reference distance d 0 , f the carrier frequency, µ the pathloss exponent whose value characterizes a specific environment and can be calculated empirically based on collected measurements and d ij is the distance between the j-th AP and the i-th position.

In this part, we consider a sensor network composed of M = 10 APs placed randomly in an indoor environment covering L × W = 400 m 2 . In order to evaluate the localization accuracy, we use a training database composed of m r = 1000 RSSI vectors collected at 100 positions labeled by their coordinates. At each labeled position, we collect 10 RSSI measurements which helps to minimize temporal RSSI fluctuations caused by shadowing and fading effects. These positions are distributed in a uniform way as illustrated in Fig. 3. We divide the indoor environment covering L×W m 2 into zones/classes e j of size l j ×w j such that ∀j, l j = w j = l and place a labeled position in the center of each zone in order to cover uniformly the whole area. RSSI vectors are constructed as described in Section II-A. We detail in Table 1 the parameters used for the propagation model and the simulation parameters. The test database is built using the same propagation model as the one used for training data construction, but with different trajectories. We consider m t = 8000 test labeled RSSI fingerprints collected at 800 test positions. In order to have a test dataset representative of the whole environment, we place randomly each two test positions in each zone of size 1 m 2 as presented with red crosses in Fig. 3. 

B. DATA GENERATION MODELS

In this section, we detail the architectures and training parameters used by different DNN models during the data generation process.

1) GAN Architectures and Parameters

Generating useful fake data is not straightforward. For example, when generating m f = 1000 fake RSSI vectors based on m r = 1000 real RSSI vectors, and predicting their pseudopositions, we have realized that the generated data do not cover the whole environment as depicted in Fig. 4. Thus, we generate a very large number of RSSI vectors in order to have pseudo-positions covering the whole area. Based on extensive simulations, generating m f = 40000 fake samples seems to cover our environment of 400 m 2 . For example, when generating m f = 10000 fake data samples, we cover only 362 zones of size 1 m 2 each while with m f = 40000, we cover 396 zones of size 1 m 2 as can be seen in Fig. 5a. In order to improve the diversity of the GAN, we do not generate 40000 RSSI vectors at once, but we generate 10 times 4000 fake samples based on the same real samples. In this paper, we introduce GANs based on a DNN optimized with adaptative moment estimation (ADAM) using 0.01 as the learning rate during 200 epochs. The activation function used by G is the rectified linear unit (ReLU) function used in one hidden layer having 10 neurons. The activation function of D is the ReLU function, while the last layer uses the sigmoid function. A-one-hidden-layer discriminator with 10 neurons is used. These choices are based on several experiments and tests.

2) Pseudo-labeling Architectures and Parameters

Once all of the data is generated, a DNN is trained based on labeled data. This model is then used to predict pseudolabels for generated RSSI vectors. We use ADAM as the optimization algorithm [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] for all DNN models used in this work whether for pseudo-labeling or localization. The intensive experiments have led to a DNN architecture of 2 hidden layers with 30 neurons in the first layer and 20 neurons in the second one using 200/250 epochs and a mini batch size equal to 50/100. Once generating and pseudolabeling m f = 40000, 1000 are selected, by selecting samples per covered zone of size 4m 2 . For each covered zone, the selected samples are associated with the most realistic fake RSSIs. Note that if we skip Criterion 1, and we select directly the 1000 most realistic fake data samples, we will end up with samples not uniformly distributed over the whole environment as presented in Fig. 5b.

C. DNN MODELS USED FOR LOCALIZATION: ARCHITECTURES AND TRAINING PARAMETERS

For evaluation purposes, we compare the localization accuracy combining labeled and selected fake generated data.

We called each algorithm depending on the nature and the number of used samples as follows:

• Supervised(m r ,m p ): when using a supervised method based on m r labeled data collected at m p different positions.

• Selective-SS-GAN(m r ,m p ,m s ) is the localization method where we combine m r labeled samples collected at m p different positions, and m s pseudo-labeled selected fake generated samples for localization.

To apply these algorithms for localization, we need to train a DNN model on labeled collected data and pseudo-labeled data. This model takes the RSSI vectors as inputs and the outputs are the corresponding labels which are the positions' coordinates. A learning rate equal to 0.01 has been selected using 250 epochs and a mini batch size equal to 100. The DNN architectures used are summarized in Table 2 where FC i (•) refers to the number of neurons in the i th fully connected layer.

D. LOCALIZATION ACCURACY

In this section, we present the localization accuracy of our proposed system based on augmented dataset and we compare it with the scheme where only m r = 1000 labeled collected data samples are used for localization. Results corresponding to these data are shown in Table 2. We compare the localization accuracy combining labeled and selected fake generated data.

In Table 2, we present the localization accuracy (i.e., localization mean error) for Selective-SS-GAN(m r , m p , m s ) trained over m r = 1000 labeled data samples and different numbers of selected fake data samples vs. supervised learning model trained only on m r = 1000 labeled samples. We select different numbers of fake data samples [100 -4000] from the set of m f = 40000 generated samples while satisfying Criterion 1 and Criterion 2. We notice that for all augmented datasets, the localization accuracy is improved compared to a dataset limited only to real data. The localization improvement varies between 17.92% and 21.96%. The best localization accuracy is obtained with m s = 1000 selected fake data samples, where we achieve 21.96% localization accuracy increase vs. the conventional supervised algorithm without any additional cost in collecting additional data. This improvement is explained by the consideration that the DNN has been trained over a larger dataset which covers new positions that are not observed in the limited dataset based on collected data. Moreover, we can see that generating more fake data does not necessarily improve the localization accuracy, which can be explained by the GAN generation error due to generating less realistic RSSI vectors. Note that starting from 2000 generated samples, the performance saturates and no improvement can be achieved by generating additional fake data. This can be explained by the fact that based on 1000 labeled vectors collected at 100 training positions, we cannot provide a higher measurement diversity to the GAN. Fig. 6 illustrates the cumulative distribution functions (CDFs) of three algorithms combining data subsets of different types (labeled and generated). We can easily notice that the supervised indoor localization system based on 1000 labeled samples collected at 100 known positions corresponds to the worst localization accuracy. For fair comparison, we use the same dataset of labeled positions to which we add (i) 1000 labeled measurements collected at 1000 different labeled positions placed randomly in the considered area i.e. Supervised(2000,1100), and (ii) based on these data, we generate and select 1000 fake positions i.e. Selective-SS-GAN(1000,100,1000). We notice that the localization performance is close with only 2 cm of difference, which means that we can achieve almost the same performance by only collecting half of the labeled data and artificially generating the other half. Thus, the proposed data generation and selection process provides an improvement of localization accuracy without additional collection cost.

V. RESULTS BASED ON EXPERIMENTAL DATA

In order to support the simulation results, we validate and test our system on real RSSI measurements from the public UJIndoorLoc database. This database covers the area of After data re-organisation and reduction, we are able to apply our algorithm. At first, we generate m f = 28000 fake RSSI vectors with GANs based on DNN, optimized using 0.01 as learning rate during 200 epochs. A one-hidden layer discriminator with 200 neurons and a one-hidden layer generator with 200 neurons are considered. For the optimization algorithm and the activation functions, we use the ones used during simulations. Secondly, a DNN is trained on labeled measurements during 200 epochs with 50 as a batch size for pseudo-labels estimation. The best achievable DNN is composed by three hidden layers containing 200 neurons, 100 neurons and 50 neurons, respectively. For data selection, we consider that we split the zone of interest into 625 classes with l = 6.4959 m and w = 5.9760 m. The data selection process is followed by location estimation applying a DNN trained offline. A learning rate equal to 0.01 has been selected using 150/250 epochs and a mini batch size equal to 50/100. The DNN architectures used for localization are presented in Table 3.

We evaluate the localization accuracy of different algorithms using both real and selected fake data i.e. Selective-SS-GAN (m r ,m s ). Table 3 presents the localization performance (e.g., mean localization error, min localization error and max localization error) and the localization improvement compared of to the localization system using only 1000 labeled data i.e. Supervised (1000). We select different numbers of fake positions [700 -2000] from the set of m f = 28000 generated positions. We notice that the localization improvement varies between 6.58% and 15.36%. The best localization accuracy is obtained with m s = 1000 selected generated positions, where we achieve 15.36% localization accuracy increase vs. the conventional supervised algorithm. Starting from 1500 selected generated positions, we notice that the performance is saturated and we cannot provide better accuracy based on training positions. Thus, experimental results strengthen results based on simulated data. Even when working in a realistic environment with high dynamic and heterogeneous devices, our proposed system achieves good localization accuracy.

VI. CONCLUSION

In this paper, we have seen that GANs can be used to produce synthetic data, outstandingly realistic, to complement a real dataset in order to enhance the training of a DNN used for localization. Thus, this technique is very useful in situations where data collection is expensive and time consuming such as indoor localization. In particular, we have presented a selective semi-supervised GAN system for indoor localization, where we have generated fake data based on real labeled collected data in order to boost localization performance. Our proposed solutions have been validated and tested based on several simulations which show that the combination of collected data and selected generated data is beneficial in terms of localization performance and data collection cost. The selection-generation process improves the localization accuracy by 21.69% compared to the standard supervised method based on the same subset of labeled data when considering 1000 labeled samples collected at 100 different positions. Our method works also for real data, from the public UJIndoorLoc database, leading to a localization accuracy improvement of 15.36%. The promising results of this paper motivate further extension of the developed model by exploring new methods for data augmentation.

FIGURE 1 :

 1 FIGURE 1: The pipeline of the proposed selective GANs based localization method during the training phase.

  (h) undergoes a linear transformation represented by W (h) , a bias vector b (h) , and then a nonlinear activation function g (h) is applied. During DNN training, the loss function L(θ) = L(W, b) is calculated in order to update iteratively the DNN parameters θ = (W, b).

  are the parameters of the discriminator DNN model D(.). log(D(p (i) )) refers to the log probability that the discriminator is correctly classifying the real examples while maximizing log 1 -D G(z(i) 

FIGURE 2 :

 2 FIGURE 2: GAN network for fake RSSI data generation during training.

FIGURE 3 :

 3 FIGURE 3: The location of training and test positions on the indoor environment covering 400 m².

FIGURE 4 :

 4 FIGURE 4: 1000 generated positions based on 100 training labeled positions.

FIGURE 5 :

 5 FIGURE 5: Generated positions and selected positions based on defined selection criterions 2: Obtained localization performance considering 1000 labeled data samples.

FIGURE 6 :

 6 FIGURE 6: Localization performance comparison.

TABLE 1 :

 1 Different parameters used during the simulation process.

	Parameter Definition	Value
	pt	Transmitted power	20 dBm
	f	Frequency	2.4 GHz
	µ	Pathloss exponent	3.23
	d 0	Reference distance	1 m
	Bσ ij	Shadowing value	∼ N (0, 4)
	L	Length of the indoor environment	20 m
	W	Width of the indoor environment	20 m
	l	Length of each zone	2 m
	M	Number of APs	10
	mr	Number of labeled training mea-	1000
		surements	
	m f	Number of generated fake posi-	40000
		tions	
	mt	Number of test measurements	8000

TABLE 3 :

 3 Obtained localization performance considering 1000 real fingerprints corresponding to Building1-Floor2 from UJIndoorLoc database. (200), FC 2 (100) and FC 3 (50) (300),FC 2 (150) and FC 3 (30) and 40 validation positions taken at different validation positions. For fair comparison and since we consider only 1000 training fingerprints as system input data during simulations, we choose randomly 1000 fingerprints from the training set and we add the 395 rest training positions to the 40 validation positions to be used for test. During UJIndoorLoc construction, 520 APs are used. However, only 18 APs are detected at each position and 91% of collected RSSI are unknown. Consequently, for implementation simplicity, we consider only APs detected at least once during data collection which are equal to 190.

		Localization	Localization min-	Localization mean error de-	Architecture of the DNN used for
		mean error	max errors	crease vs supervised(1000)	localization
	Supervised(1000) FC 1 Selective-SS-GAN (1000,700) 4.1 m 3.92 m -4.53 m -3.67 m 3.58 m -3.72 m 43 cm | 10.48 % FC 1 Selective-SS-GAN (1000,1000) 3.47 m 3.38 m -3.57 m 63 cm | 15.36 % FC 1 (300),FC 2 (150) and FC 3 (50)
	Selective-SS-GAN (1000,1500)	3.77 m	3.74 m -3.79 m	33 cm | 8.04 %	FC 1 (300),FC 2 (150) and FC 3 (30)
	Selective-SS-GAN (1000,2000)	3.83 m	3.76 m -3.94 m	27 cm | 6.58 %	FC 1 (300),FC 2 (150) and FC 3 (30)
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