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Chapter X:   

Anti-influenza drug discovery and development: targeting the virus and its host by all 

possible means 

 

Olivier Terrier1, Anny Slama-Schwok2 

 

Abstract 

Influenza infections remain a major and recurrent source of public health concern. Together with 

vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and 

disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively 

limited and their use is threatened by the emergence of viral strains with resistance mutations. There is 

therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the 

state of the art in drug discovery and development for the treatment of influenza virus infections, with a 

focus on both virus-targeting and host-cell-targeting strategies. Novel antiviral strategies targeting other 

viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in 

combination to strengthen our therapeutic arsenal against this major pathogen. 
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Abbreviations:   

CoV: Coronavirus  

COX: cyclo-oxygenase 

HA: hemagglutinin,  

IAV: Influenza A virus,  

IFN: Interferon 

M2: Matrix 2  

NA: neuraminidase,  

NOX: NADPH oxydase 
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NP: nucleoprotein,  

p09: H1N1 2009-pandemic strain  

PA: polymerase acidic subunit,  

PB1: polymerase basic subunit 1,  

PB2: polymerase basic subunit 2,  

PPI: protein–protein interaction  

RdRP: RNA-dependent ribonucleoprotein complex 

RIG-I: retinoic acid inducible gene–I 

TNF- a: Tumor necrosis factor- a 

vRNP: viral ribonucleoproteins 
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1. Introduction 1 

Influenza infections remain a major and recurrent source of public health concern. Influenza viruses are 2 

the causative agents of annual flu epidemics, marked by up to 1 billion infections and 300,000-650,000 3 

deaths worldwide, with a huge economic burden in terms of hospitalization costs and work/school 4 

absenteeism (WHO, 2018; [56]). In addition, Influenza A viruses (IAV) have been the cause of several 5 

pandemics in recent human history, from the Spanish Flu H1N1 in 1918 to the more recent H1N1 2009 6 

pandemic [71].  7 

Together with vaccines, antiviral drugs play a vital part in the prevention and treatment of influenza 8 

virus infection and disease. During a normal influenza season, antiviral drugs are mainly used to treat 9 

critically ill patients, such as those hospitalized in intensive care. In a pandemic context, pending the 10 

availability of a vaccine, antiviral drugs are essential both to treat patients who have been infected and 11 

to prevent infection in those exposed, including healthcare workers. Today, the number of antiviral 12 

molecules approved for the treatment of influenza, based on the targeting of viral proteins, is relatively 13 

reduced and threatened by the emergence of strains with resistance mutations. There is therefore a real 14 

need to expand the prophylactic and reinforce the current therapeutic arsenal. This chapter summarizes 15 

the state of the art in drug discovery and development for the treatment of influenza virus infections, 16 

with a focus on both virus-targeting and host-cell-targeting strategies (Figure 1). Novel antiviral 17 

strategies targeting other viral proteins or targeting the host cell, some of which are based on drug 18 

repurposing, may be used in combination to strengthen our therapeutic arsenal against this major 19 

pathogen. 20 

 21 

2- From existing classic antiviral drugs to new pre-clinical candidates  22 
 23 

2.1 M2 ion channel blockers (amantadine/rimantadine)  24 

Influenza A M2 is a multifunctional viral homo-tetramer protein [57]. Its transmembrane (TM) domain 25 

forms a proton channel. This channel is required for acidification of the viral endosome formed after 26 

fusion and endocytosis of the virus within the host cell. This process allows viral ribonucleoproteins 27 

(vRNPs) to dissociate from the matrix 1 (M1) protein. The proton conductance mechanism relies on the 28 

conserved H37XXXW41 sequence which is responsible for selectively gating H+ ions [89, 132], [52, 29 
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121]. Channel blockers interfere with the proton conductance mechanism by binding to the 30 

transmembrane pore [137] (Figure 2). When proton conductance through M2 is blocked by the 31 

adamantane drug, this dissociation is prevented and the virus is no longer able to replicate. In recent 32 

years, adamantane drug-resistant mutants have become prevalent in circulating viruses. The two most 33 

prevalent drug-resistant mutants are S31N, L26F and V27A, all of which are located in the 34 

transmembrane region of M2 [138].	Figure 2A shows the strong interaction of amantadine with V27 in 35 

the upper part of the pore. Upon drug-resistance V27A mutation, this interaction is lost. Recently-36 

developed spiro-amantadyl amine effectively binds to A27 of the pore (Figure 2B) [136].  Recently, 37 

new amantadine derivatives effective against double mutants M2-S31N/L26I and M2-S31N/V27A viral 38 

strains have been developed by Musharrafieh et al	[91].	The antiviral efficacy of such compounds is 39 

summarized In Table 1.  M2 resistance mutations in H1N1/H3N2 circulating strains prompted the WHO 40 

to remove both amantadine and rimantadine from the list of recommended anti-influenza agents for 41 

clinical use in 2009 [34]. 42 

 43 
2.2 Neuraminidase (NA) and hemagglutinin (HA) inhibitors 44 
 45 
2.2.1 NA inhibitors  46 

NA inhibitors competitively inhibit and prevent cleavage of the terminal sialic acid residues from 47 

glycoproteins and carbohydrates displayed on the surface of mammalian cells and influenza virus 48 

particles. Binding of virions to uncleaved sialic acid then impairs virion release and dissemination. 49 

Among these NA inhibitors, peramivir, zanamivir, oseltamivir carboxylate are the most frequently 50 

prescribed drugs and considered standard-of-care for influenza management (Table 1 and Figure 3). 51 

Resistance to oseltamivir can develop rapidly in both experimental settings and the clinic, and typically 52 

originates from substitutions at signature resistance sites in the viral NA protein such as H274Y and 53 

I223R (predominant in H1N1 and H5N1 viruses), and E119V, R292K, or N294S (predominant in H3N2 54 

viruses). These three NA inhibitors are currently licensed worldwide for the treatment of influenza A 55 

and B infections, oseltamivir being the most widely used. There is still a lot of debate about the 56 

effectiveness and real impact of inhibitors on the prevention and treatment of influenza. New oseltamivir 57 
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derivatives, targeting either multiple sites or different NA cavities (as the “430” or the “150” cavity) 58 

have been recently developed. Some of these derivatives are very potent against multiple IAV and IBV 59 

strains, including oseltamivir-resistant ones (Table 1).   60 

  61 

2.2.2 Hemagglutinin inhibitors  62 

The surface glycoprotein HA enables viral entry into host cells by binding to cell-surface, sialic-acid-63 

containing glycans and mediating fusion between the viral and host membranes in endosomal 64 

compartments. HA is composed of head (HA1) and stem (HA2/HA1) domains. As the regions on HA 65 

involved in binding and fusion are highly conserved, they are attractive sites for the design of new 66 

antivirals (Table 2). The broad-spectrum antiviral drug arbidol shows efficacy against influenza viruses 67 

by targeting the hemagglutinin (HA) stem region [63]. This molecule is currently licensed in Russia and 68 

China for the treatment of influenza and other infections [8].   A challenging strategy aiming at 69 

mimicking antibodies binding sites was successfully developed by Wilson et al, targeting the conserved 70 

stem region and more recently at the interface of the trimeric head region [4, 141, 155] (Figure 4A). 71 

The binding sites of the binding sites for CBS1117 and JNJ4796 were both found in the stem region 72 

close to the fusion peptide, highlighting the possibility of further structure-based designed compounds 73 

[2].  De novo design of high-affinity trimeric proteins called “HA mini-binders” that bind influenza A 74 

hemagglutinin trimer at a conserved region binding site (Figure 4B) [129]. These molecules were 75 

developed as alternative to antibodies. These and other compounds are summarized in Table 2. 76 

 77 

2.3 Polymerase – nucleoprotein- RNA inhibitors 78 
 79 
2.3.1 Polymerase/endonuclease inhibitor (favipiravir, Baloxavir marboxil)  80 
 81 
Influenza virus transcribe and replicate their genome in the nucleus of infected cells by the 82 

means of a hetero-trimeric polymerase, PA, PB1 and PB2. The polymerase complex function requires 83 

the nucleoprotein NP, a protein associated with- and protecting the segmented genomic RNA. Therefore, 84 

all four proteins are essential for replication. Whereas replication requires the generation of 85 

complementary positive polarity RNA intermediates (cRNA) that are then copied into progeny negative 86 
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polarity segments (vRNPs), viral message is directly synthesized from vRNPs. Since the influenza virus 87 

RdRP lacks enzymatic activity to form 5′ mRNA cap structures, endonuclease activity of the PA subunit 88 

is necessary for the generation of viral mRNAs through transfer of 5′-capped RNA primers derived from 89 

host mRNAs in a cap-snatching mechanism. The endonuclease active site of PA-N terminal comprises 90 

a histidine and a cluster of three strictly conserved acidic residues (Glu80, Asp108, Glu119), which 91 

coordinate (together with Ile120) one or two manganese or magnesium ions [32] (Figure 5A). PB2 is 92 

involved in binding of the capped primers, whereas the PB1 subunit harbors enzymatic activity for 93 

phosphodiester bond formation. 94 

Several classes of inhibitors are in the clinics (Figure 6): baloxavir (PA), favipiravir (PB1) 95 

and pimodivir (PB2, Figure 5B).  96 

 97 
2.3.2 Pre-clinical compounds targeting the polymerase PA-PB1 and PA subunits; escape mutations 98 
and resistance.  99 
 100 
Pre-clinical candidates, some of them being listed in Tables 3 and 4, are in development, benefiting from 101 

the recent insight provided by the structures of PA-PB1, PB1-PB2 and 102 

whole polymerase complex with or without RNA by X-ray crystallography [26, 48, 95, 102, 110, 130, 103 

146]  and cryo-electron microscopy [23, 42, 44, 111, 144].  The error-prone nature of influenza viral 104 

replication can rapidly generate point mutants for the selection of resistance that have seriously 105 

compromised the efficacy of influenza therapeutics. Escape mutations were identified under the pressure 106 

selection of PA inhibitors: the signature hotspot for escape from baloxavir marboxil is PA residue 38, 107 

for which several substitutions (PA I38T/M/F) have been described [96]. Similarly, escape mutations 108 

from L-742.001[127] and RO-7 [70] treatments were also characterized although in laboratory 109 

resistance-assays, escape mutants were not detected after multiple passages for L-742.001. While very 110 

tight affinities have been achieved by designing metal binding inhibitors to block the active site of the 111 

endonuclease activity in PA N-terminal (Table 2), the appearance of escape mutants often rapidly 112 

decrease their efficacy. Several recent reviews focus on the development of PA and polymerase 113 

inhibitors [61, 62, 87, 170].  114 

 115 
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Different strategies have been undertaken to attempt overcoming induced resistance. Interfering with its 116 

proper assembly of the RdRP polymerase to inhibit function is pursued using protein–protein interaction 117 

(PPI) inhibitors. The advantage of such an approach is the relatively large interacting surface between 118 

the two proteins as compared to the binding site of an active-site ligand. Indeed, inducing simultaneous 119 

mutation of at least one residue on both proteins while maintaining their interaction is less likely to 120 

develop resistance and suggests that PPI inhibitors could be less prone to drug resistance than inhibitors 121 

of enzyme active sites. The recent identification of a single- domain antibody (nanobody) allowing to 122 

disrupt dimerization of FluA polymerase is among these lines [42]. PPI inhibitors have been developed 123 

based on the structural insight given by PA–PB1 crystal structures in 2012 [81]. The inhibition of the 124 

polymerase PA–PB1 subunit interface has become an active field of research with the goal of remaining 125 

active against resistant strains to amantadine and to oseltamivir (Table 3). Recently, compound 12 was 126 

identified by structure-based screening of compounds targeting the PA-PB1 structure. No resistant virus 127 

was selected in vitro under drug selection pressure of compound 12a [164]. Moreover, derivatives of 128 

cyclothiophene and R151785 were found active against multiple strains of Influenza A and B [31, 94, 129 

165].   130 

Based on the ability of PA-PB1 to bind viral RNA, it is likely that novel types of inhibitors could be 131 

developed by structure-based design [131]. Additionally, inhibitors targeting PA C-terminal [78] and its 132 

interactions with vRNA or with PolII could be effective targets, based on the accumulating wealth of 133 

structural data [42, 102, 110, 144] and deeper insight in the multi-protein assembly required for during 134 

replication / transcription.  135 

 136 

2.3.4 Broad-spectrum inhibitors 137 

Favipavir is a drug with broad-spectrum antiviral activity in cell culture, inhibiting RNA viruses of the 138 

arenavirus, bunyavirus, flavivirus, alphavirus, norovirus, picornavirus, paramyxovirus, and rhabdovirus 139 

families, in addition to influenza viruses [160]. This drug is incorporated into newly synthesized RNA 140 

by the viral polymerase in place of purines but not pyrimidines, resulting in increased frequencies of C-141 

to-U and G-to-A transition mutations. Although the barrier for resistance is relatively high, this drug 142 

seems to present toxicity issues.   N 4-hydroxycytidine (NHC) is also a broad-spectrum antiviral 143 
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candidate, which showed oral efficacy against RSV and both highly-pathogenic avian and seasonal 144 

influenza viruses as well as SARS-CoV-2 virus [140]. 145 

2.3.5 Pre-clinical compounds targeting the polymerase PB2 subunit  146 

Crystal structure of the PB2 cap-binding domain have been exploited to develop different 7-147 

methylguanine derivatives [100]. Pimodivir (VX-787) is an inhibitor targeting the polymerase PB2 148 

subunit at the m7 GTP-binding site, forming extensive stacking interactions with several aromatic 149 

residues His (Figures 5B and 6). It inhibits influenza virus replication and reduced viral load in animal 150 

infection models of H3N2 and H1N1 viruses, although potency was highest against H1N1 strains [9, 151 

20]. Phase-2 clinical studies indicated that this drug is well-tolerated, reduced viral load, and resulted in 152 

slightly faster resolve of clinical signs. Further derivatives of pimodivir have been designed [84]. 153 

Targeting the PB1-PB2 interface by PPI inhibitors has been challenging:  although PP7 exhibited 154 

antiviral activities against influenza virus subtypes A pandemic H1N1, H7N9 and H9N2, resistances 155 

have been unexpectedly detected in laboratory assays [162].   156 

2.3.6 Pre-clinical compounds targeting the nucleoprotein or the nucleoprotein-RNA interactions   157 

The nucleoprotein associated with viral RNA and the polymerase complex is essential for transcription 158 

and replication [22, 145, 146].  The assembly of NP-RNA oligomers into RNP has been determined by 159 

cryo-electron microscopy studies [3, 22, 23, 146]. In the X-rays structures of the NP [156], the protein 160 

adopts a trimeric structure. NP self-association to achieve trimer formation is mediated by a flexible 161 

tail-loop that protrudes into a pocket of the adjacent subunit, via the formation of a critical interaction 162 

between R416 of one subunit and E339 of the adjacent subunit. The R416A mutant lacking this 163 

interaction adopts a monomeric structure [16].  The native protein can also be purified in a monomeric 164 

form at low salt and concentration conditions [15, 16, 133].   The ability to modify the oligomeric state 165 

of NP is the structural basis of most NP inhibitors presently developed. Nucleozin was the first NP 166 

inhibitor developed as a molecule impeding nuclear accumulation. Nucleozin enhanced higher order 167 

structures [64],[46]. Figure 5C shows the interactions of one of the nucleozin ligands found in the X-168 
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ray structure (PDB ID 5B7B) stabilizing the interface between two NP subunits [98]. Escape mutants to 169 

nucleozin have been identified in laboratory assays. The opposite approach to impede nucleoprotein 170 

self-association has also been pursued by disrupting the important salt bridge R416-E339 mediating NP 171 

oligomerization [123]. Recently, new compounds with high affinity for NP were designed stabilizing 172 

monomeric NP [150]. Impeding NP binding to viral RNA has been achieved by naproxen drug 173 

repurposing, naproxen being a known inhibitor of cyclo-oxygenase (COX)[73]. As NP oligomerization 174 

is enhanced by the presence of RNA, naproxen binding to NP reduced NP oligomers and favored 175 

monomeric NP. Docking and single mutations studies identified Tyr148, the only aromatic residue 176 

within the RNA binding groove and residues of the C-terminal part of NP R355, R361, Phe489 being 177 

involved in the interaction of naproxen with NP. Laboratory assays showed no resistance after 8 cell 178 

passages infected with Influenza A. Naproxen exhibited antiviral effects in mice models of Influenza A 179 

infection [33, 73] as well as Influenza B virus [168]. Further structure-based design yielded new 180 

naproxen derivatives with improved antiviral effects and selectivity for NP without COX inhibition 181 

(Figures 5D and 6) [33, 134] (Table 4). Some of these derivatives were found inhibiting NP-PA 182 

interactions [33, 143]. Naproxen derivatives also present antiviral properties against oseltamivir-183 

resistant strains [33]. Additional compounds with some similarity of their hydroxyquinoline scaffold to 184 

the methoxy naphthalene scaffold of naproxen called NUD were designed and were also found to be 185 

resistant in escape mutation laboratory assays [79].  186 

2.4 Drugs targeting the non-structural protein-1 (NS1)  187 

NS1 has a plethora of strategies to inhibit the host immune response due to its ability to establish 188 

multiple protein–protein and protein–RNA interactions. NS1 hampers different pathways both in the 189 

cytoplasm and in the nucleus of infected cells. NS1 antagonizes interferon-mediated antiviral host 190 

response by binding to double-stranded (ds) viral RNA, thus protecting it from cellular factors, by 191 

blocking retinoic acid inducible gene–I (RIG-I) and NF-kB activation. One pathway by which NS1 192 

increases virulence is through the activation of phosphoinositide 3-kinase (PI3K) by binding to its p85β 193 

subunit [17]. NS1 has two structural domains—RNA-binding domain (RBD) and the effector domain 194 
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(ED)—connected by a short linker (LR), and a disordered C-terminal tail.  New drugs binding to NS1 195 

effector domain have been designed with low micromolar antiviral efficacy [68] (Table 4).  196 

3. Host-targeting & drug repurposing approaches for the treatment of influenza 197 

Considerable progress has been made in understanding the interactions between influenza viruses and 198 

the host cell in recent years. In this context, and in light of the emerging problem of resistance to 199 

available classical antivirals, many studies have focused on targeting host factors to limit virus 200 

replication, but also to modulate host immune response. The targeting of host-factors and/or signaling 201 

pathways makes sense in the context of virally-induced hypercytokinemia (also known as “cytokine 202 

storm”), which is directly correlated with tissue injury and an unfavorable prognosis of severe influenza 203 

[76]. Indeed, approaches to control or attenuate this disproportionate immune response are of particular 204 

interest and are the subject of numerous pre-clinical and clinical studies. As with all viruses, influenza 205 

viruses depend on cellular machinery for their replication and propagation. Many cellular factors 206 

essential for the replication of influenza viruses have been uncovered through genome-wide RNA 207 

interference approaches [65, 69, 86, 128] but also more broadly through different integrated cell biology 208 

approaches using interactome and transcriptome data, for example [109, 148]. In order to list the 209 

different host-targeting strategies developed, a distinction can be made between molecules with a mode 210 

of action associated with a relatively well-defined stage of the viral cycle, and molecules associated with 211 

the modulation of signaling pathways. It is these two main classes that will be described in the following 212 

sections. 213 

 214 

3.1 Drugs targeting host cell component at different stages of influenza replication cycle 215 

The replication cycle of influenza viruses can be divided into several distinct phases, 1) entry 2) nuclear 216 

import of viral genome (viral ribonucleoprotein; vRNPs) 2) genome replication and protein synthesis, 217 

3) Nucleo-cytoplasmic export of vRNPs, and 4) plasma membrane transport and budding of neo-virions 218 

(Figure 1). A number of molecules targeting host factors in these different steps, at different 219 

preclinical/clinical development stages, are known today. 220 
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Viral entry is a target of great interest, as it is likely to allow prophylactic approaches, by blocking the 221 

infection in its early stages. One of the most advanced strategy consists to target the viral receptor. 222 

DAS181 (Table 5) (Fludase, Ansun BioPharma) is a sialidase fusion protein that cleaves both the 223 

Neu5Ac α(2,3)- and Neu5Ac α(2,6)-Gal linkages of sialic acid on host cells. DAS181 is administered 224 

as an inhalable dry powder to deliver sialidase to the pulmonary epithelium for cleavage of sialic acids, 225 

which renders the cells inaccessible to infection by virus [80]. DAS181 was demonstrated to have broad-226 

spectrum activity, given the conserved nature of influenza and parainfluenza viruses binding to 227 

respiratory epithelium. Preclinical in vitro and in vivo studies demonstrated that DAS181 has activity 228 

against a number of seasonal influenza strains including those containing the H274Y mutation 229 

(conferring resistance to oseltamivir), highly pathogenic avian influenza strains (H5N1), and pandemic 230 

2009 influenza A (H1N1). This compound was assessed in different Phase I and Phase II clinical trials 231 

(NCT 00527865, NCT 01651494, NCT01037205) with results indicating a significant reduction of viral 232 

load in treated influenza patients [88] but with identification of respiratory adverse events and rapid 233 

clearance of the drug being consistent with the induction of antibodies against DAS-181 - this could be 234 

a limitation in the duration and dosages of such treatment [163]. Other approaches targeting viral entry 235 

have also been described (Table 5), e.g. targeting the endosome acidification step by inhibition of V-236 

ATPase (ex: bafilomycin A1, concanamycin), or inhibition of the internalization (ex: Dynasore) or 237 

cleavage steps of haemagglutinin (ex: camostat). Most of these strategies were primarily evaluated at 238 

the preclinical stage and have not been further evaluated as their efficacy was either limited or 239 

accompanied by cytotoxicity. One exception is the protease inhibitor aprotinin, which was approved as 240 

anti-influenza drug in Russia [169]. 241 

The step of nuclear import of vRNPs is a crucial one, for which there are today very few molecules 242 

with antiviral potential described in literature. Interestingly, it has been shown in vitro that ivermectin 243 

(Table 5), a well-known anti-parasite drug, was able to inhibit viral replication via inhibition of 244 

importins (IMPa/b), and therefore the nuclear import of vRNPs [47]. 245 

 246 

Targeting the replication stage of the virus is one of the earliest host-targeting strategies, with pioneer 247 

works on the antiviral efficacy of ribavirin in the 1970s [38]. However, this nucleoside analogue or its 248 
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prodrug, less toxic, do not appear to be options being considered for the treatment of influenza virus 249 

infections. of influenza viruses, despite interesting preliminary in vitro and in vivo results [125]. (Table 250 

5). Other, more recent strategies propose to target mRNA splicing. Influenza viruses are known to 251 

hijack cellular splicing machinery to their benefit, making them extremely dependent on it [36, 37]. 252 

Several studies show that the inhibition of Cdc2-like kinase 1 (CLK1), involved in the alternative 253 

splicing of M2 gene of influenza, appears to be an interesting antiviral option, with several molecules 254 

available (TG003, Clypearin, Corilagin, Table 5). Of all its molecules, Clypearin has relatively low 255 

EC50s and very low toxicity, making it an attractive potential antiviral candidate. [65, 171].  256 

While strategies to prevent the nuclear import of vRNPs are relatively uncommon, paradoxically there 257 

are many more therapeutic approaches to block the nuclear-cytoplasmic transport of vRNPs.  Indeed, 258 

in contrast to the inhibition of importins, the inhibition of exportin 1 (XPO1) by Verdinexor (XPO1 259 

antagonist KPT-335) allows to significantly reduce viral production in vitro and in vivo [101]. Another 260 

compound, DP2392-E10, inhibits nuclear export of both viral NP and nuclear export protein (NEP). 261 

More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, 262 

which mediates nuclear export of NP and NEP – highlighting CRM1 as a target of interest [19]. With 263 

the same objective, other strategies consist to target the Raf/MEK/ERK signaling pathway, known to be 264 

involved in the export of vRNPs [120]. Several MEK inhibitor molecules have been studied for their 265 

ability to inhibit the replication of influenza viruses, such as CI-1040 or U0126 [24, 108]. Interestingly, 266 

Schräder and colleagues have demonstrated that Trametinib (GSK-1120212), a licensed MEK inhibitor 267 

used for the treatment of malignant melanoma, efficiently blocks influenza viral replication of different 268 

subtypes in vitro and in vivo [119] (Table 5).  269 

Apical transport and budding, the last part of the last major step of the replication cycle is also the 270 

object of several antiviral strategies, notably by blocking the transport of viral proteins to the plasma 271 

membrane (ex: Clonidine; [82]), or the cholesterol pathway, which would reduce virion egress. 272 

(U18666A; [92]). One of the most advanced strategies is Nitazoxanide, initially licensed for the 273 

treatment of parasitic infections, for which anti- influenza properties were first documented by 274 

Rossignol et al. [113].  Interestingly, the proposed mode of action of nitazoxanide toward influenza is 275 

clearly distinct to that for which it was designed in its initial indication, acting at the post-translational 276 
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level by selectively blocking the maturation of the viral glycoprotein HA, with a consecutive impact on 277 

its intracellular trafficking and insertion into the host plasma membrane [112]. This drug presents potent 278 

antiviral activity against a large panel of circulating strains [139]. The effectiveness of nitazoxanide in 279 

treating patients with non-complicated influenza was successful in a Phase IIb/III trial [50] and is 280 

currently being assessed in a Phase III clinical trial (NCT01610245). 281 

 282 

3.2 Drugs targeting host cell signaling pathways and host-response that are crucial for influenza 283 

replication cycle. 284 

Our increased knowledge of signaling pathways that are crucial in the response to infection and/or those 285 

hijacked by the virus has allowed many research teams to explore complementary antiviral strategies 286 

that can be described here (Table 6). The targeting of the ref/MEK/ERK channel, mentioned above, 287 

could of course also have been listed here.  At the crossroads of the regulatory pathways of the immune 288 

response and the stress response, the NF-kB pathway was one of the first to be studied (Table 6). In 289 

the context of cell biology approaches, it was initially shown that the anti-inflammatory drug 290 

acetylsalicylic acid (ASA) had interesting antiviral effect against influenza viruses in vitro and in vivo, 291 

via inhibition of the NF-kB activating IkkB kinase [83, 153, 159]. Several drugs targeting the NF-kB 292 

pathway have been evaluated since then, such as pyrrolidine dithiocarbamate or SC7574; with 293 

encouraging in vivo results [39, 49, 149]. BAY81-8781/LASAG (D, L-Lysine acetylsalicylate-glycine) 294 

(Table 6), a modified version of ASA demonstrates antiviral activity against several human and avian 295 

influenza viruses in vitro. In a mouse infection model, inhalation of LASAG resulted in reduced lung 296 

viral titers and protection of mice from lethal infection [35]. More recently, a Phase II proof-of-concept 297 

study comparing LASAG versus placebo in patients with severe influenza demonstrated that aerosolized 298 

LASAG improved the time to symptom alleviation compared to placebo, despite the absence of a 299 

statistically significant reduction of viral load in LASAG-treated group [116]. 300 

Based on clinical observations, hydroxyl methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors 301 

such as statins (Table 6), approved for their use as cholesterol metabolism regulators, have demonstrated 302 

pleiotropic anti-inflammatory and immunomodulatory properties, which could be of benefit to improve 303 

survival of patients with severe influenza [43, 85].  However, most in vivo studies reported so far failed 304 
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to clearly demonstrate such a beneficial effect in the specific context of influenza infection [6, 72, 115]. 305 

On the other hand, a few observational studies highlighted an association between statin treatment with 306 

a reduction of mortality in patients hospitalized with laboratory-confirmed seasonal influenza [40, 142]. 307 

A randomized placebo-controlled Phase II clinical trial (NCT02056340) aimed at evaluating the 308 

potential effect of atorvastatin to reduce the severity of illness in influenza-infected patients is currently 309 

undergoing. The combination of naproxen with clarithromycin and oseltamivir twice daily reduced the 310 

both 30- and 90-day mortality and length of hospital stay of patients hospitalized for A(H3N2) influenza 311 

[54]. Other approaches, at the preclinical validation stages, propose to target the TNF-alpha 312 

(Etanercept);) or NOX2 (Apocynin/Ebselen) or lipoxygenase/COX pathway (Celecoxib/Mesalazine) 313 

pathways [12, 28, 74, 97, 124, 157, 167]. A phase III clinical trial is currently investigating the benefit 314 

of celecoxib for the treatment of severe influenza (NCT02108366). These molecules could be of interest 315 

to better control the inflammatory response, which is a very important aspect of the pathology.  316 

Modulation of immune and inflammatory responses is a therapeutic avenue that has been much 317 

explored, but which may present risks given the ambivalent aspect of these pathways in relation to viral 318 

replication and the evolution of the pathology. Indeed, such treatment should stimulate induction of 319 

antiviral genes to control IAV spread, without driving immunopathology. In this context, IFN-lambda 320 

(Table 6) appears as a potent anti-influenza therapeutic, without the inflammatory side effects of IFN-321 

alpha treatment [29]. Intranasal administration of IFN-λ2/3 was shown to significantly suppress 322 

infection of various influenza strains, including WS/33 (H1N1), PR (H1N1), and H5N1 in the mouse 323 

lung, and was accompanied by greater up-regulation of ISGs [67]. More recently, using a transcriptome-324 

based screening approaches, we identified and validated diltiazem, a calcium channel blocker used as 325 

an anti-hypertensive drug, as a very promising host-targeted inhibitor of influenza infection. 326 

Interestingly, the study of the mode of action revealed that diltiazem was a strong induced or type III 327 

IFN [107]. An ongoing French multicenter randomized clinical trial is investigating the effect of 328 

diltiazem- oseltamivir bi-therapy compared with standard oseltamivir monotherapy for the treatment of 329 

severe influenza infections in intensive care units (FLUNEXT trial NCT03212716).  330 

 331 

 332 



	 15	

4. Perspectives and concluding remarks 333 

Among all the molecules listed in this chapter, some are already available on the market for other 334 

therapeutic indications and fall within the scope of drug repurposing. This is the case for naproxen, 335 

diltiazem, LASAG or Nitazoxanide, for example. The basis of drug repurposing relies on bypassing the 336 

long, risky and expensive preclinical an early clinical evaluation stage conventionally used for de novo 337 

drug development and exploiting available extensive human clinical, pharmacokinetics and safety data 338 

as the starting point for the development [106] All these aspects make the repositioning of drugs a very 339 

interesting approach, in particular to enable a rapid response to the need for new antiviral strategies in 340 

the context of the emergence of a virus with pandemic potential. 341 

Another very interesting perspective is the interest in combining different antiviral approaches with each 342 

other, including classical approaches targeting the virus with those targeting the host cell. The concept 343 

of combining therapies has already been used successfully, notably in the design of antiretroviral 344 

treatments [13]. Combination therapy can have several objectives, such as reducing the risk of the 345 

emergence of resistance by simultaneously targeting several viral proteins and/or key host factors, but 346 

also increasing the effectiveness of the treatments by obtaining additive or synergistic effects.  347 

While there is relatively little convincing evidence to support the use of conventional virus-targeting 348 

antivirals in combination [41, 103], there are interestingly a growing number of examples of 349 

combinations of combination host-targeted approaches with oseltamivir. For example, we have shown 350 

that the combination of diltiazem and oseltamivir provides a much greater reduction in viral titers in a 351 

reconstructed human epithelium model compared to single treatments [107]. More recently Schloer and 352 

colleagues have shown that a combination treatment of an antifungal molecule, itraconazole, with 353 

oseltamivir, achieves much greater antiviral activity compared to monotherapy, making it possible to 354 

consider reducing the concentrations of drugs used, and thus possibly reducing the problems of adverse 355 

effects and emergence of resistance mutations [117]. These results open up interesting prospects for the 356 

development of future therapeutic strategies, particularly for the treatment of severe forms of influenza. 357 

The potential arsenal for fighting influenza virus infections is potentially very extensive, in particular 358 

thanks to the combination of new molecules targeting the virus, resulting from docking and structure-359 

based design strategies, with approaches targeting cellular factors and signaling pathways. In this 360 
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context, the quality and relevance of the preclinical models, as well as the quality of the tools for 361 

evaluating combinations of molecules, are important critical elements. 362 

Beyond influenza viruses, many of the antiviral molecules described in this chapter have the potential 363 

for broader-spectrum use. Indeed, some virus-targeted strategies can target viral determinants with very 364 

strong similarities between different viruses. This is particularly the case with Naproxen for which we 365 

have previously demonstrated antiviral activity against both influenza viruses and SARS-CoV-2 [73, 366 

135]. This property is explained by the fact that the nucleoproteins N of enveloped, positive-sense, 367 

single-stranded viruses Coronavirus (CoV) share with negative-sense single-stranded viruses such as 368 

Influenza A virus the ability to bind to- and protect genomic viral RNA without sequence specificity 369 

and to form self-associated oligomers. Despite their differences, viruses induce and divert many 370 

common cellular pathways. As a result, host-targeted approaches can identify molecules with a broad 371 

spectrum of antiviral activity. An example is diltiazem, for which we have shown antiviral activity 372 

against influenza viruses [107], but which has been shown to be effective against other respiratory 373 

viruses, such as SARS-CoV-2 [104, 105], due to its mode of action involving the type III interferon 374 

response. Efforts to identify anti-influenza molecules therefore open up very interesting prospects for 375 

the broader development of antivirals. In many ways, antiviral research on influenza viruses is 376 

pioneering in this area and provides a starting point for the study of other emerging viruses. 377 

  378 
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Figure legends  827 
Figure 1. Influenza viral particle and viral cycle; current state of anti-influenza drug discovery 828 
and development. (A) Influenza A virus (IAV) particle. The IAV genome is composed of eight 829 
ribonucleoprotein complexes (vRNPs). Each one consists of single-stranded negative-sense viral RNA 830 
(vRNA) encapsidated by viral nucleoprotein (NP) and a viral polymerase complex (PA, PB1, and PB2) 831 
positioned at the extremity of the vRNA segment. Three viral proteins are embedded within the viral 832 
membrane, hemagglutinin (HA), neuraminidase (NA), and ion channel protein (M2). Matrix protein 1 833 
(M1) underlies the viral envelope and holds the vRNPs inside the virion. (B) The viral particle binds to 834 
sialic acid receptors and enters the cell via receptor-mediated endocytosis. Acidification of the endocytic 835 
vesicles leads to virus uncoating mediated by the M2 ion channel. vRNPs are then released into the 836 
cytoplasm and transported into the nucleus. There, the viral RNA-dependent RNA polymerase complex 837 
snatches the host mRNA caps to initiate the negative vRNA transcription. Transcribed vRNAs then need 838 
to undergo an mRNA maturation phase, including the pre-mRNA splicing, before export to the 839 
cytoplasm to be translated. vRNAs are also replicated in the nucleus to generate new vRNPs in 840 
association with neosynthesized viral proteins. Progeny vRNPs are transported toward the cytoplasmic 841 
membrane with viral components to be packaged into new infectious particles which are formed by 842 
cellular envelope budding. Classic virus-targeting strategies are highlighted in red, and virus-host-843 
targeted strategies in blue. Figure created by BioRender.com 844 
 845 
Figure 2: Looking down the M2 channel in the presence of inhibitors: Structure of M2 WT and VA27 846 
mutant in complex with amantadine and spiroamantadine. View down the pore channel in A- WT-847 
amantadine (V27 is colored in yellow, PDB ID 6BKK[137]) and B- V27A-spiroamantadine complexes 848 
(A27 is colored in yellow, PDB ID 6NV1[136])  849 

 850 
Figure 3: Structures of the approved NA inhibitors 851 
 852 
Figure 4: Structure of some of the pre-clinical candidates targeting HA: A: Structure of HA in 853 
complex with JNJ4796 shown in orange (PDB ID 6CF7)[141] B: Structure of trimeric HA in complex 854 
with mini-binder highlighted in yellow (PDB ID 6KUY)[129]. 855 

Figure 5: Structure of some of the pre-clinical candidates targeting the polymerase A: Active-site 856 
PA N-terminal inhibitor compound 22[25]; B: PB2 inhibitor Pimodivir [20] (the numbering are 857 
associated with this structure corresponding to the full-length PB2, C: nucleozin-NP oligomeric 858 
complex PDB ID 5B7B, monomers A and B are in cyan and yellow, respectively; D: Naproxen F1-NP 859 
monomeric complex from docking studies[33].  860 

Figure 6: Structures of the approved polymerase inhibitors and some pre-clinical candidates  861 
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Tables  
 
Table 1. Summary of the activity and structures of the main antiviral compounds bound to their 

target, the proton channel M2 of Influenza A or the neuraminidase NA of Influenza A and B.  

 

Target Compound IC50 PDB ID 
Stage 

(year approval) 
references 

M2 

 

Amantadine 

100 µM (H1N1 WT) 

> 500µM (S31N) 

15.7 µM (WT channel a,) [155] 

6BKK 
Approved 

(1976) 
[137], [10] 

Rimantadine 
0.1 µM (H1N1 WT) 

> 200µM (S31N) 
2RLF 

Approved 

(1994) 
[118] 

Spiro-adamantyl amine 

 

18.7 µM (WT channela) 

0.2 µM (V27A a) 

 

6BMZ 

6NV1 

6OUG 

Pre-clinical [136, 137] 

NA 

 

Oseltamivir (Tamiflu) 

 

0.8 nM (N5 NA) 

 

2HT7 

 

Approved 

(1999) 
[114] 

Peramivir 3.4 nM 2HTU 
Approved 

(2014) 
[114] 

Zanamivir 0.6 nM (N5 NA) 3CKZ 
Approved 

(1999) 
[21] 

Chebulinic acid 

Chebulagic Acid 

1.36 ± 0.36 µM (H1N1 PR8) 

(Oseltamivir resistant and H1N1 

pdm09 viruses) 

CC50 > 100µM 

 Pre-clinical [75] 

Oseltamivir derivatives 0.66 µM (H5N1) 

Docking 

150/430 

cavity 

Pre-clinical 
[1, 58, 

166] 

Triazol oseltamivir derivatives 

 

C1-modified oseltamivir 

derivatives 

0.05-0.15 µM (H5N1, H5N2 

and H5N6) 

0.1 µM (H5N1, H5N6) 

0.7 µM (Oseltamivir resistant 

virus) 

Docking 

430 cavity 
Pre-clinical [60] 

 

a: Patch clamp assays [136] 
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Table 2: Recent antiviral candidates targeting HA, their activity and structures of their complexes 

with HA 

 
Target Compound / binding site IC50/ CC50 PDB ID Stage references 

HA 

 

Arbidol / Stem region 4-12 µM  

 

CC50 = 59µM 

5T6S, 5T6N 

Pre-clinical and 

clinical 

NCT03787459 

[63, 147, 

151] 

 

F0045(S) / Stem region 0.5-2 µM  

(H1 HA) 
6WCR Pre-clinical [155] 

JNJ4795 / Stem region 0.01-0.07 µM  

(H1 HA) 
6CF7 Pre-clinical [141] 

IY7640 / Stem region 0.5-7 µM 

(H1 HA) 

CC50 > 800µM 

Docking 

studies 
Pre-clinical [66] 

CBS1117 / Stem region 3µM 

For H5 HA 
6VMZ Pre-clinical [2, 45, 55] 

MB2746 / Stem region 0.3µM 

(H1 HA) 

CC50 >100µM 

Docking 

studies 
Pre-clinical [5] 

De novo design of “Mini-

binder” proteins 

0.15-0.19 nM 

(H3 and H1 HA) 
6KUY  [129] 

Peninddone  HA1 and HA2 Pre-clinical [152] 
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Table 3: Inhibitors of PA, PA-PB1 interactions and PB1 
 

Target Compound IC50/ CC50 PDB ID Stage References 

PA 

 Baloxavir marboxil 0.3-1 µM 

(H1N1/H3N2) 

 

6FS6 

6FS9 

Approved (2019) 

NCT02954354 
NCT0294901 

[96] 

  L-742,001 
3 µM (WT H1N1) 

24µM (WT H1N1 

pdm09)  

236µM (H1N1 pdm09 

PA F105S) 

5CGV 

5D9J 

Clinical trial 

NCT01526785 
[127] 

  RO7  16 nM (WT H1N1) 

3 nM (H1N1 pdm09) 
5VPX Pre-Clinical [59, 70] 

Ana-0 0.8µM Docking Pre-clinical [161] 

Compound 22 110 pM 6E6W Pre-clinical [25] 

N-acylhydrazone derivatives 11 µM 5EGA Pre-clinical [11] 

”312” 37 µM 

(H1N1, H2N2 and 

H3N2) 

PA –C-

terminal 
Pre-Clinical [78] 

PA-PB1 

 

Compound 12a 0.9-2.7 µM  

(FluA  amantadine-& 

oseltamivir resistant, 

FluB) 

Docking Pre-clinical [164] 

Amino-acids adducts of diphenyl-

pyridine derivatives 

39 ± 2 µM 

(H1N1) 
Docking Pre-clinical [27] 

Cycloheptathiophene-3-

carboxamide 

0.2µM-0.7µM  H1N1 

pdm09, H1N1 

oseltamivir-resistant, 

H3N2, Influenza B 

Docking Pre-clinical [31],[94] 

R151785 2.5, 5.0 µM 

p09, H1N1 

oseltamivir- & 

amantadine resistant 

Influenza B 

Docking Pre-clinical [165] 

PB1 

Favipiravir Broad-spectrum  Approved (2014) [160] 

β-d-N4-Hydroxycytidine/ EIDD-

2801 

Broad-spectrum 

Influenza, SARS-

CoV2 

 
Clinical trial 

NCT04405739 

[140], 

[122] 
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Table 4. Inhibitors of PB2 cap-binding, PB1-PB2, NP and NS1 
 

Target Compound / binding site IC50/ CC50 PDB ID Stage References 

PB2 

 

 Pimodividir (VX787) 2.6 nM 4P1U Approved (2017) [9, 20] 

 5,7-difluoroindole derivative 
of pimodivir 

11 nM 6S5V Pre-clinical [84] 

 D 715-2441 3.6-4.4 µM 

(H1N1, H3N2, H5N1, 

H7N9) 

Docking Pre-clinical [77] 

Cap analogs 7.5 µM 

H3N2 
4CB5 Pre-clinical [100] 

PB1-

PB2 

PP7 1.4-9.5 µM 

(Strain-specific) 
Docking Pre-clinical [162] 

NP 

 

Nucleozin 

 

0.07 µM (H1N1) 

0.16 µM (H3N2) 

0.33µM (H5N1Y287H) 

5B7B Pre-clinical [64, 98] 

Compound 3 0.1 µM 

(H1N1 and H5N1) 
3RO5 Pre-clinical [46] 

2-(4-chloro-3,5-

difluorophenylamino)thiazole-

4-carboxamide derivatives  

 

0.11µM Docking Pre-clinical [123], [150] 

Naproxen 

 

 

 

 

Naproxen C0 (Naproxen 

derivative 2) 

 

 

 

Naproxen F1 (Naproxen 

derivative 4) 

Broad-spectrum FluA & 

Sars-CoV2 

16±5 µM (H1N) 

2.9±0.3µM (H1N1) 

1.8µM (H1N1 pdm09) 

 

1.3±0.2µM (H1N1) 

0.7µM (H1N1 pdm09, 

H3N2, resistant to 

oseltamivir) 

 

Docking Pre-clinical 
[33, 73, 

134] 

Hydroquinolinone derivatives 

(NUD) 

1.8-7.0 µM 

(H1N1) 

 

 

Docking Pre-clinical [79] 

NS1 

 

A22 ≅ 1 µM (H1N1 PR8) Docking Pre-clinical [68] 

ML303 0.7-17 µM 

(H1N1 pdm09, H3N2) 
HTS Pre-clinical [99] 
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Table 5. Drugs targeting host-cell component at different level of viral cycle stages. 

Viral cycle stage Drug name Mode of action Research phase References 

Viral entry 

DAS181 Sialidase – removes sialic 
acid receptors Phase I/II 

Moss et al. 2012[88] 
Zenilman et al. 

2015[163] 

Bafilomycin A1 
V-ATPase inhibitors – 

inhibits endosomal 
acidification 

preclinical 
 

Yeganeh et al. 
2015[158] 

Concanamycin Müller et al. 2011[90] 
Diphyllin Chen et al. 2013[14] 

Saliphenylhalamide Bimbo et al. 2013[7] 

Aprotinin Protease inhibitors – inhibit 
HA0 cleavage 

Approved (2011) Zhirnov et al. 
2011[169] 

Camostat 

Preclinical 

Yamaya et al. 
2015[154] 

Dynasore 
Inhibition of internalization 

de Vries et al. 
2011[30] EIPA 

Fattiviracin Harada et al. 2007[51] 
Nuclear import of 

vRNP Ivermectin Inhibits importin-α/β Gotz et al. 2016[47] 

Genomic 
replication & 

protein synthesis 

TG003 CLK1 inhibitors -Regulation 
of splicing – decrease in M2 

mRNA expression  

Karlas et al. 2010[65] 
Clypearin Zu et al. 2015[171] Corilagin 
Sylvestrol eIF4A inhibitors – inhibit 

viral protein synthesis Slaine et al. 2017[126] Pateamine 
Ribavirin 

Nucleoside analogue 
Approved (1986) Durr et al. 1975[38] 

Viramidine (ribavirin 
prodrug) Phase III (HCV) Sidwell et al. 

2005[125] 

Cyclosporin A 

Inhibits host RNA 
polymerase II 

preclinical 
 

Liu et al. 2012[77] 

vRNP nuclear 
export 

Inhibits nuclear export of 
vRNPs 

Verdinexor 
Exportin 1 inhibitors 

Perwitasari et al. [101] 
2014 

DP2392-E10 Chutiwitoonchai et al. 
2017[19] 

CI-1040 MEK inhibitor – nuclear 
retention of VRNP complex 

Haasbach et al. 
2017[49] 

UO126 Pleschka et al. 
2001[108] 

PBP10/BOC2 
Formyl peptide receptor 2 

antagonists – Raf/MEK/ERK 
inhibition 

Courtin et al. 2017[24] 

Trametinib MEK1/2 inhibitor – inhibition 
of vRNP export 

Approved 
(cancer) 

Schräder et al. 
2018[119] 

Dapivirine 
Reverse transcriptase 

inhibitor - inhibition of vRNP 
export 

Phase III (HIV) Hu et al. 2017[53] 

Apical transport 
and budding 

Nitazoxanide Anti-parasitic – Inhibition of 
HA maturation & transport Phase III Rossignol et al. 

2009[113] 

Ruxolitinib Virion formation & vRNA 
incorporation inhibition 

Approved 
(myelofibrosis) 

Watanabe et al. 
2015 [148] 

U18666A 

Hydrophobic polyamine - 
Reduces plasma membrane 

cholesterol level and 
decreases virion egress preclinical 

 

Musiol et al. 2013[92] 

Clonidine 

alpha2-adrenergic receptors 
inhibitor - Inhibits transport 
of HA transport to plasma 

membrane 

Matsui et al. 2018[82] 
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Table 6. Drugs targeting host-cell signaling pathway and host-responses that are crucial for 

influenza replication cycle. 

Host signalling 
pathway/response Drug name Mode of action Research phase References 

NF-kB pathway 

Acetylsalicylic acid 

Immune dysregulation 
Inhibition of caspase/vRNP 

export inhibition 

Approved Mazur et al. 
2007[83] 

pyrrolidine 
dithiocarbamate preclinical Wiesener et al. 

2011[149] 

SC75741 preclinical 
Ehrhardt et al. 

2013[39] 
Haasbach et al. 

2013[49] 

LASAG Phase II 
Droebner et al. 

2017[35] 
Scheuch et al. 

2018[116] 

C-Jun-N-terminal-
kinase SP600125 

C-Jun N-Terminal kinase 
inhibitor – Immune 

dysregulation 
preclinical Nacken et al. 

2012[93] 

p38 MAPK NJK14047 Immune dysregulation preclinical Choi et al. 2016[18] 

HMG-CoA Statins Immunomodulation Phase II 

Fedson et al. 
2013[43] 

Mehrbod et al. 
2014[85] 

Fedson et al. 
2018[43] 

TNF-alpha Etanercept 
Anti-inflammatory drug - 

Prevents TNF-mediated lung 
injury and edema 

preclinical Shi et al. 2013[124] 

Nox2 

Apocynin ROS scavenger, inhibits 
Nox2 activity preclinical 

Ye et al. 2015[157] 
Oostwoud et al. 

2016 Ebselen 
ROS scavenger and 

glutathione peroxidase 
mimetic, inhibits Nox2  

preclinical 

Lipoxygenase & 
COX pathways 

Celecoxib Immune dysregulation Phase III Davidson et al. 
2018[28] 

Carey et al. 
2010[12] 

Zheng et al. 
2008[167] 

Mesalazine Immune dysregulation preclinical 

Type III IFN 
response 

Type III IFN Induction of type III IFN 
response 

preclinical 
Davidson et al. 

2016[29] 
Kim et al. 2017[67] 

Diltiazem Phase II Pizzorno et al. 
2019[106, 107] 
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