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France. E-mail address: matthieu.garcin@m4x.org
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Abstract

In this article we compare the performances of a logistic regression and a feed forward

neural network for credit scoring purposes. Our results show that the logistic regression gives

quite good results on the dataset and the neural network can improve a little the performance.

We also consider different sets of features in order to assess their importance in terms of

prediction accuracy. We find that temporal features (i.e. repeated measures over time) can

be an important source of information resulting in an increase in the overall model accuracy.

Finally, we introduce a new technique for the calibration of predicted probabilities based on

Stein’s unbiased risk estimate (SURE). This calibration technique can be applied to very

general calibration functions. In particular, we detail this method for the sigmoid function as

well as for the Kumaraswamy function, which includes the identity as a particular case. We

show that the SURE calibration technique is able to calibrate the predicted probabilities as

well as the classical Platt method.

Keywords – Deep learning, credit scoring, calibration, SURE

1 Introduction

Credit scoring aims to measure the risk for a bank to grant a loan to an applicant. Depending

on the value of the returned score, the bank will accept or not to grant the loan. This score is

generally computed by a model which has been fitted on a database containing past information

of the consumer behavior and its corresponding credit profile. Typical descriptors of consumer

behavior include loan information (amount, maturity, type of interest rate, nature of the loan) and

the borrower characteristics (age, marital status, profession, monthly income, personal savings,

number of actual loans). The target, also known as dependent feature, corresponds to whether or

not the customer has defaulted on its loan. The default is subject to a formal definition given by

the Basel committee which states that the bank is facing a default event if the counterpart past

due is more than 90 days. Thus, the feature to be predicted is coded as 1 if the borrower did

default and 0 otherwise.

Correct risk assessment is an important aspect of banking activities. To ensure robust estimation

of the risks, the regulator has framed several rules to follow. These rules are edited by the Basel

Committee on Banking Supervision (BCBS) which is the primary global standard setter for the

prudential regulation of banks. Several updates have been made by the regulator to fit the devel-

opment of banking activities over the years. Currently, banks are subject to Basel III agreements

that aim to ensure that banks have a rigorous approach to risk and capital management related

to their activities. The Basel framework lets the choice for each financial institution to manage

its credit risk assessment through standard or internal methods. In the latter case, the bank uses

a modeling framework for estimating the risk parameters. In the Internal Rating Based (IRB)

approach, the bank estimates only the probabilities of default (PD). In the advanced IRB, the

bank has to estimate the expected credit loss using the following parameters: the Loss Given De-

fault (LGD), Exposure at Default (EAD), Maturity of exposures (M), and the PDs. As its name
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indicates, the PD risk parameter consists in estimating the likelihood that each loan is going to be

repaid. This is typically what is evaluated in credit scoring applications.

From a practical point of view, the estimation of the PDs corresponds to a classification prob-

lem. The specificity of this problem is that we want the classifier to output a probability of

the event while in numerous other applications we only want the outcome. Traditional machine

learning models such as logistic regression and linear discriminant analysis are well suited for this

task (Altman, 1968; Steenackers & Goovaerts, 1989). Despite their simplicity, they are probably

the most widespread models for credit scoring applications since they are very well understood

tools and easy to use (Anderson, 2007; Dumitrescu et al., 2020). Furthermore, they are imple-

mented in most statistical software and the computation of the final prediction is straightforward

from the features coefficients. Today, a large area of research in credit scoring consists in the devel-

opment of new scoring techniques. This literature is motivated by the limitations of the standard

techniques. Indeed, in their simplest design, logistic regression and linear discriminant analysis

exploit only linear interactions. Thus, the rise of performances of credit scoring models has been

initiated by the use of ensemble methods that enable nonlinearities and provide high generaliza-

tion capabilities (Baesens et al., 2003; Finlay, 2011; Paleologo et al., 2010; Wang et al., 2011).

Other recent advances include the use of hybrid methods (Huang et al., 2007; Lee et al., 2002;

Zhu et al., 2018) and deep learning which have first achieved promising results in the field of com-

puter vision (Albanesi & Vamossy, 2019; Kvamme et al., 2018; LeCun et al., 1998; Tai & Huyen,

2019; Tygert et al., 2016; Voulodimos et al., 2018). Nevertheless, credit scoring remains a field

where deep learning has trouble asserting itself because of strong regulatory requirements (Alonso

& Carbó, 2020; Bücker et al., 2022; Gunnarsson et al., 2021; Hjelkrem & Lange, 2023; Lessmann

et al., 2015).

In this paper, we investigate how powerful are these deep neural networks through a feed-forward

architecture and we compare the results with a standard logistic regression. We show that the use

of a deep neural network leads, on our dataset, to a slight improvement in the forecast compared to

the logistic regression. We also investigate the properties of our dataset which has the particularity

to contain a mix of static features and temporal features. To the best of our knowledge, no

previous study on credit scoring has ever explored the ability of a model to provide accurate

results depending on the static/dynamic nature of the data. The procedure we use is as follows:

we split the dataset into static features set and dynamics features set. We then evaluate the models

on three sets: static, dynamic, and all features, and finally compare the results. We give evidence

that temporal data should not be neglected in credit scoring applications. In our dataset, dynamic

features drastically improved the results compare to feeding the model only with static features.

Another important aspect of credit scoring application is to ensure that the estimated probabil-

ities are close to the true probabilities. This can be analyzed in terms of cost. On one hand,

machine learning models assume all estimated probabilities to have the same cost. On the other

hand, in many decision-making applications, not having an accurate probability of belonging to

the target class can be costly. For instance, it can be the choice of a treatment for a patient in
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medicine, a driving decision in a self-driving car application, or an investment decision in busi-

ness. A common approach consists in post-processing the probabilities of a classifier in order to

get calibrated outputs. Calibration can be performed using parametric and non-parametric tech-

niques. Non-parametric techniques include histogram binning (Zadrozny & Elkan, 2001), isotonic

regression (Zadrozny & Elkan, 2002), similarity binning averaging (Bella et al., 2009), and adap-

tive calibration of predictions (X. Jiang et al., 2012). All these techniques consist in binning the

samples and assigning them a calibrated probability. We argue that probabilities calibrated by

these techniques can be highly biased. Indeed, each bin requires a big enough number of instances

in order to have a low variance estimate of its average default rate, thus leading to a unique esti-

mated PD for all the instances in this bin. Choosing the optimal number of bins, balancing bias

and variance, is not obvious as well. Parametric methods include Platt scaling (Platt, 1999), beta

calibration (Kull et al., 2017), asymmetric Laplace method (Bennett, 2003), and piecewise logistic

regression (Zhang & Yang, 2004). Since these parametric approaches rely on the assumption that

the probabilities follow a particular distribution, they are subject to model mismatch. In this pa-

per, we propose a novel parametric approach for probability calibration. We use Stein’s Unbiased

Risk Estimate (SURE) as a proxy to minimize the Mean Squared Error (MSE) between the esti-

mated probability and the true probability. The calibrated density is then the one minimizing the

estimated MSE. This technique has been used intensively in the field of signal processing for image

denoising. One advantage of this approach is that we do not rely on predefined bins which are

biased by nature. Besides, our method offers the possibility to use a custom calibration function

to prevent from model mismatch. We empirically show that this new technique is as accurate as

the standard Platt method for the calibration of the PDs.

The major contribution of this article to the credit scoring literature is the introduction of a

new methodology to calibrate the predicted probability to the hidden true probabilities using the

SURE approach. In addition, we investigate the efficiency of models based on deep learning versus

traditional models when estimating individual PDs. We also evaluate the impact of using time

series data in credit scoring models.

The article is organized as follows. Section 2 describes the data used for the application, exposes

the evaluation of the models and the feature importance assessment, and presents the models.

In Section 3, we demonstrate the necessity of calibration in machine learning and we propose a

new framework to calibrate posterior predicted probabilities. Section 4 compares empirically the

models and assesses the efficiency of the proposed calibration approach.

2 Experimental setting

In this section, we describe how we design the experiment. First, we present the dataset on which

models have been fitted. We precise what preprocessing steps have been applied and how we split

the data in order to assess the performance of our model. Next, we explain how we organized the

features such that we were able to assess the importance of static and dynamic features in the

4



performance. Then, we discuss the choice of a proper evaluation metric in credit scoring. Indeed,

credit scoring is an area in which the event to predict is difficult because of class imbalance. This

characteristic should drive the choice of the measure to get an unbiased measure of performance.

Finally, we present the models we use for the application.

2.1 The dataset

In every machine learning application, the quality of data is of primary importance. Ideally, a

credit scoring application would include quantitative data such as financial ratios describing the

borrower’s financial health and its past credit history, including potential default information.

Indeed, defaults have been shown to be persistent over time with the reasoning that a borrower

who has already defaulted is more likely to stay in this current state (Albanesi & Vamossy, 2019).

Qualitative data are useful as well, such as the education level, the type of product granted, or the

presence of collateral to secure the loan.

In this study, we use a Taiwanese credit dataset publicly available on the UCI machine learning

repository1 and already used in the machine learning literature (C. Jiang et al., 2023; Yeh & Lien,

2009). This dataset consists of anonymized default payments realized on revolving credit granted

in Taiwan. It gathers information of 30 000 credit card users among which 22% default next

month. We can notice that the dataset is imbalanced between defaulters and non-defaulters with

an imbalance ratio of 3.51%. This is a common characteristic of credit scoring applications which

makes the modeling difficult. The dataset includes classic features of a credit scoring dataset such

as age, sex, level of education, marital status, and the credit limit of individuals. It also contains

time series data observed from April 2005 to September 2005: the monthly bill statement, the

monthly paid amount, and an indicator of the revolving credit delay payment. We expect these

last dynamic features to be highly informative since it gives a trajectory of the individual account

which may reveal interesting patterns for defaulters. Our target is the dummy variable indicating

whether the client defaults next month (No = 0, Yes = 1). To complete the dataset, we have

created 6 additional features, one for each month of observation, consisting of the ratio of the bill

amount by the credit limit. We expect this set of new features to improve the model’s ability to

learn the default drivers, since a high bill statement relative to the credit limit may imply payment

difficulties.

We apply the classical preprocessing steps to the features in order to facilitate training. We

standardize the distribution of continuous data to have a mean value of 0 and a standard deviation

of 1. This typical operation is done in order to speed up the learning process. We then split the

dataset into a shuffled and stratified train, a validation, and a test set representing respectively

60% - 20% - 20% of the data available. We use the train and validation sets to train each model

and tune their hyperparameters while we use the test set only once to assess the out-of-sample

performance. This last set allows us to estimate an unbiased performance of the classifier.

1https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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2.2 Feature importance assessment

In this study, we are interested in assessing the importance of different sets of features instead

of each feature individually. Indeed, we want to assess the importance of the nature of data in

the model’s performance. In particular, we expect times series to be highly informative since

they reflect the behavior of the borrower. Thus, we defined three subsamples of features which

are detailed in Table 1. Note that all dynamic data are time series available from April 2005 to

September 2005.

Static features Amount of given credit (NT dollar), Gender, Marital status, Age (year).

Dynamic features History of past payment tracked via past monthly payment records, Re-
payment status, Amount on bill statement, Amount of previous payment,
Ratio of bill statement relative to the credit limit

All features Static features + Dynamic features

Table 1: Features sets

We expect time series data to be highly informative since it gives a dynamic view of the borrower’s

credit activity. Moreover, classical scoring models often incorporate an aggregated vision of the

borrower’s behavior instead of a detailed monthly vision. We think that the industry could benefit

from the use of time series data in their internal credit scoring models in terms of predictive

accuracy. Using this particular setting, we are able to train each model on different sets of features

and evaluate their inner performances on the corresponding independent testing sets. Then, we are

able to identify the most informative set of features by picking the one that achieves the highest

performance on the test set.

2.3 Choosing the right evaluation metric

Credit scoring is typically an area where class imbalance can be severe because risk management

aims to ensure that the number of defaulters stays much smaller than non-defaulters. Such charac-

teristics make learning difficult. This is why several techniques have been introduced. Data-level

techniques consist in resampling the dataset in order to balance the classes. These techniques

include random over-sampling, random under-sampling, and the creation of synthetic samples via

the SMOTE algorithm (Chawla et al., 2002; H. He & Garcia, 2009). However, a recent comparison

of oversamplers tends to demonstrate that oversampling doesn’t improve the performance of clas-

sifiers on imbalanced datasets (Kovács, 2019). Therefore we choose not to use these techniques in

this study. Other strategies for balancing the classes consist in rendering the model cost-sensitive

by adding a cost to misclassified instances of both positive and negative class. This improves the

model’s ability to correctly classify positive samples. Such methods include weighting and thresh-

olding (Sheng & Ling, 2006; Sun et al., 2009). In this article, our choice goes to weighting the loss

function as detailed in section 2.4.1. This choice is motivated by the fact that being a model-level
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technique, it doesn’t change the structure of the data. Therefore, the original statistical properties

of the dataset are preserved which is preferable from a regulatory point of view. We also applied

thresholding to the predicted probabilities as explained below.

The class imbalance also makes the choice of the appropriate evaluation metric quite challenging.

Indeed, standard measures can’t be applied because they tend to be biased toward the majority

class. Among these evaluation metrics, we can cite, for instance, the accuracy, which is defined as

the sum of true positives and true negatives over the whole dataset. The accuracy is not a good

choice of metric since a classifier biased toward the negative class will always reach a high accuracy.

In this study, we propose an evaluation based on the precision, the recall and the F1 score. Let’s

consider a classical binary classification problem with a model fitted on a training set. We want

to evaluate this model on a test set. We define yi ∈ {0, 1} as the true label of the ith instance.

The label yi equals 1 if the instance is tagged as positive and 0 if tagged as negative. The model

outputs a quantity p̂i ∈ [0, 1] which is often interpreted in the literature as the probability of a

given instance of belonging to the positive class. For a given threshold τ ∈ [0, 1], the predicted

label is defined as ŷi = 1 if p̂i > τ and ŷi = 0 otherwise. Given these notations, we can compute the

number of True Positives (TP =
∑N
i=1 1(yi=1∩ŷi=1)), True Negatives (TN =

∑N
i=1 1(yi=0∩ŷi=0)),

False Positives (FP =
∑N
i=1 1(yi=0∩ŷi=1)), and False Negatives (FN =

∑N
i=1 1(yi=1∩ŷi=0)). Then

we can compute the recall, the precision, and the F1 score:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2× Precision× Recall

Precision + Recall
.

The F1 score is a combination of the precision and the recall. Maximizing this metric thus leads

to balance the effect of false negative and false positive, giving an unbiased estimate of how the

model is performing.

Another well-known measure for model evaluation is the ROC curve. This curve is obtained by

computing the specificity and the corresponding sensitivity for various probability thresholds of the

classifier. We then plot the sensitivity against the specificity. One convenient measure associated

with the ROC curve is the area under the curve (AUC), with AUC > 0.5 meaning that the model is

performing better than a random classification. These metrics are also not good candidates for the

evaluation of imbalanced datasets classifiers. The reason is that the ROC curve is used to assess

the overall performance in discriminating the positive class and the negative class while most of the

time, in imbalanced learning, we are only focusing on the correct classification of positive samples.

This generally leads to an overconfident estimate of how well the classifier is performing because

it doesn’t take into account that the classifier is biased toward the negative class containing more

samples. Instead, we can rely on the Precision-Recall (PR) curve which focuses on the performance

of the model in classifying positive samples only (Davis & Goadrich, 2006; Saito & Rehmsmeier,
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2015). This curve is obtained by plotting the precision and recall for various probability thresholds.

As in the ROC case, we can compute the corresponding AUC of the PR curve (Boyd et al., 2013).

We consider the recall, the precision and, the F1 score to evaluate the performance of our classifiers

for two reasons. First, our dataset is imbalanced as it contains 22% of defaulters. Second, in

this imbalanced framework, our preference goes to a better classification of positive samples, in

order to diminish the risk for the lender. These measures being based on the confusion matrix,

the attribution of classes is ultimately done by applying a threshold value to all samples. Most

software considers a default probability threshold of 0.5 which is not recommended for imbalanced

datasets (Lipton et al., 2014; Provost, 2000; Q. Zou et al., 2016). We choose to tune the threshold

value such that we achieve the best F1 score in a simple manner. The procedure is as follows: we

move the decision threshold for the predicted probabilities of the training set. For each of these

thresholds, we assign a class to each sample and compute the corresponding F1 score. We then

apply this threshold to the test set to compute the out-of-sample F1 score. We also consider a

global measure of performance such as the AUC-PR and display the AUC-ROC for comparison

purposes.

2.4 Models

2.4.1 Logistic regression

The logistic regression will be our baseline model since it is still one of the most widely used in the

banking industry for credit scoring (Anderson, 2007). To take into account the slight imbalance of

classes (i.e. 22/78), we trained the model using the balanced cross-entropy loss (Xie & Tu, 2015).

We consider the learning set {(xi, yi) ∈ (X ×Y)|i = 1, ..., N} where yi are the labels, xi the inputs,

and N the total number of instances. We want to estimate a function f(x|θ) which maps the

inputs xi to the output yi, where θ is a set of parameters to be optimized on the training set. We

denote p̂i = f(x|θ) the model’s output and n+ the number of positives samples. We estimate θ by

minimizing the loss function over all the instances:

L(yi, p̂i) = −[αyi log(p̂i) + (1− α)(1− yi) log(1− p̂i)], (1)

where α = n+

N . Intuitively, the term α accounts for class imbalance insofar as mispredictions on

both the positive and the negative class are penalized.

2.4.2 Feed forward neural network

We specify a neural network with a feed forward architecture for predicting the occurrence of

defaults. The advantage of such a model over traditional methods is that we can easily modify

the network in order to perfectly scale the problem. This is stated in the universal approximation

theorem (Hornik, 1991):
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”A single hidden layer neural network with a linear output unit can approximate any

continuous function arbitrarily well, given enough hidden units.”

Moreover, it has been shown that it is more efficient in terms of predictive performance to build a

multi-layer neural network since it is able to learn deeper representations (Bengio & LeCun, 2007).

Convolutional neural networks for instance are able to learn complex concepts such as edges or

geometric shapes of an image. Also, multi-layer neural networks need exponentially fewer neurons

than shallow networks to learn data representations.

Our network architecture is composed of an input layer, three hidden layers of 60 hidden units

each, and an output unit which uses a sigmoid activation function in order to output a probability

estimate. We introduce nonlinearities in our network with the help of the ReLU activation function

defined by:

ReLU(x) = max(0, x).

We used the ReLU activation function for several reasons. First, because the ReLU is fast to

compute compared to other activation functions such as the hyperbolic tangent or the sigmoid. Its

gradient computation is very simple (either 0 or 1) which helps backpropagating the signal through

each layer and has the effect of speeding up the training. Therefore, in a ReLU feed forward

network, not all neurons are activated at the same time. Indeed, a proportion of the neurons

output zero so that the network is less complex than its full architecture and the computations

are more time efficient than in a neural network using tanh or sigmoid activations. This particular

choice of activation function is also motivated by the literature because it decreases the training

time and can approximate any continuous function (Krizhevsky et al., 2012).

We train the network using the balanced cross-entropy loss presented in equation (1). This common

framework makes it possible to compare fairly the performance of the two models since their

prediction abilities will come from their intrinsic architecture.

The weights of the network have been optimized using the Adam algorithm with a batch size of 256

samples (Kingma & Ba, 2015). Indeed, a recent study comparing various optimization methods

has shown that using Adam optimizer, in the context of training a neural network, improves the

performance compared to classical optimizers like SGD or Nesterov (Choi et al., 2019). Based on

the literature, we initialize carefully the weights using He initialization scheme (Glorot & Bengio,

2010; K. He et al., 2015). This approach is widely used by practitioners to ensure that gradients

don’t vanish or explode during training.

3 Probability calibration

We first review the existing literature on calibration. We present the original use of SURE and

we connect this approach to the machine learning area. Then, we detail our SURE calibration

framework and we give a pseudo-code to enhance the comprehension and allow reproducibility.

9



We conclude this section by giving evidence of why our framework should be preferred to binning

and we report the evaluation measure we used to estimate the calibration error.

3.1 Literature review

Ideally, we would like machine learning models to output accurate probabilities in the sense that

they reflect the real unobserved probabilities, that is P(Ŷ = 1) = p, where Ŷ is a class prediction,

and p ∈ [0, 1] is the true probability. This is exactly the purpose of calibration techniques, which

aim to map the predicted probabilities to the true ones in order to reduce the probability distribu-

tion error of the model. Probability calibration is very important in many real-world classification

tasks. Indeed, most of the time, classification models are evaluated globally, using synthetic mea-

sures, without taking care of how the error is distributed. Thus, one can’t identify the confidence

of the predicted probabilities. Calibration is overriding for instance in medicine (Cearns et al.,

2019; Chen et al., 2018), for self-driving cars (Feng et al., 2019), or in finance (Bequé et al., 2017).

Indeed, reliable probabilities are preferable to take accurate decisions and reduce the risks.

In credit scoring applications, having accurate probabilities is a matter of concern in the per-

spective of improving risk assessment. Good calibration can result in significant gains for financial

institutions since they will be able to correctly assess the risk related to each borrower (Blöchlinger

& Leippold, 2006). Besides, predicted probabilities that correctly match the empirical distribu-

tion lead to better risk management and anticipation when it comes to model different portfolio

scenarios and evaluate expected losses (Bequé et al., 2017).

Usually, calibration of predicted probabilities is performed using histogram binning (Zadrozny &

Elkan, 2001), Platt scaling (Platt, 1999), or isotonic regression (Zadrozny & Elkan, 2002). Con-

cretely, histogram binning consists in dividing the samples into equal bins and assigning them a

calibrated probability. But due to the fact that P̂ is a continuous random variable, the calibration

cannot be computed using finitely many samples without introducing a bias. In the case of Platt

scaling and isotonic regression, the method consists in fitting a model to regress the predicted

probabilities on the real labels. This way, we obtain a continuous estimation of the true probabil-

ity. We can also mention the quasi-moment-matching methods based on the cumulative accuracy

profile (CAP) that consists in minimising the MSE of the errors defined as the difference between

the empirical CAP curve and its equivalent parameter (Tasche, 2009). The calibration model is

estimated on the validation set and is then used to predict default probabilities on the test set.

Recently, calibration has been rediscovered with the deep learning booming trend. Indeed, deep

learning models are no exception to the rule and are even more than traditional methods subject to

model uncertainty due to their complex architectures (Antorán et al., 2020). That’s why measuring

calibration errors and developing calibration techniques for deep neural networks have become an

important research topic these recent years (Guo et al., 2017; Nixon et al., 2019; Pan et al., 2020).

In this paper, we are introducing a new calibration method based on SURE. This method has
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originally been developed to estimate the MSE2 of any nonlinear differentiable estimator whose

input observations are assumed to be Gaussian (Stein, 1981). We think that this approach is

well suited for probabilities calibration since it allows to measure an unobserved error. In our

case, this error is the difference between the real unobserved probability and the estimated one.

This technique has been used intensively in signal processing, mostly as a denoising technique.

One of the major applications in this field was to select the optimal threshold of noisy wavelet

coefficients in order to recover a signal (Donoho & Johnstone, 1995; Garcin & Guégan, 2016). The

SURE method also appears in the machine learning literature for model selection. Many modern

machine learning algorithms require shrinkage through a regularization parameter to get models

that generalize well to new data. In this case, minimizing the SURE can be an approach to find

this optimal regularization parameter (Abadie & Kasy, 2019; Efron et al., 2004; Li & Zhu, 2008;

Tibshirani & Taylor, 2011; H. Zou et al., 2007). Currently, most practitioners use cross-validation

as an estimate of the model’s MSE because it doesn’t require normality assumptions and it’s easy

to implement. However, research has shown that both methods give robust results (Abadie &

Kasy, 2019).

In the deep learning area, the SURE method is used for neural network based denoising algorithms.

It has been proposed to train a deep denoiser network only on noisy training (Soltanayev & Chun,

2018). The model outperformed the classical non-deep learning based denoisers. This approach has

been extended for learning with correlated pairs of noisy images and compressed sensing (Metzler

et al., 2020; Zhussip et al., 2019).

In this work, we calibrate the output of our models using our SURE framework. This choice

is motivated by the fact that we want to minimize the error depending on the unobserved true

probabilities. Thus cross-validation cannot be applied since we never observe the true probabilities.

Furthermore, we argue that our SURE framework gives a better estimation of the calibration error

than histogram binning. Indeed, in histogram binning, the choice of the number of bins introduces

a bias due to the unequal number of samples falling in each bin. Finally, we compare our method

to Platt scaling which is a parametric method in the same vein as our SURE framework.

3.2 Platt scaling

In this subsection, we give a brief overview of the Platt scaling method which is the standard

approach for probabilities calibration. This approach consists in using the predicted probabilities

of a classifier as an input of a logistic regression. Thus, probabilities are modified by the sigmoid

function below:

p̃i =
1

1 + e−(θ1p̂i+θ2)
, (2)

where p̂i is the predicted probability of observation i, p̃i is the calibrated probability and θ1, θ2

the parameters of the logistic regression. These parameters are to be estimated so as to make the

2Called risk in the literature about signal processing, without any link with the finance-related notion of risk
introduced in this paper.
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calibrated probability close to the true probability pi. However, pi is not observed and Platt’s

method puts forward the labels yi instead. Thus, we estimate θ1 and θ2 by maximizing the

likelihood, in the calibrated probability, of observed data, namely the labels. The labels can take

values 0 or 1. Thus, it can be interpreted as the realisation of a Bernoulli random variable Y such

that Y ∼ Ber(p̃i). Given this general framework, we can write the likelihood of the observations:

L(θ1, θ2) =

N∏
i=1

(
1

1 + e−(θ1p̂i+θ2)

)yi (
1− 1

1 + e−(θ1p̂i+θ2)

)1−yi
.

This equation is often transformed in log-likelihood for calculus convenience:

L(θ1, θ2) =

N∑
i=1

yi log

(
1

1 + e−(θ1p̂i+θ2)

)
+ (1− yi) log

(
1− 1

1 + e−(θ1p̂i+θ2)

)
.

The log-likelihood is also known as Binary Cross Entropy (BCE). We can maximize this quantity

by applying gradient-based algorithms such as steepest descent or quasi-Newton to find an estimate

of the parameters θ1 and θ2.

3.3 A SURE framework for calibration

3.3.1 General framework

In this framework, we consider the predicted probabilities p̂ = (p̂i)i∈J1,NK of a model to be noisy

measurements of the true probabilities. We make the assumption that the relation between the

corrupted probabilities and the true probabilities is as follows:

p̂ = p+ ε,

where p = (pi)i∈J1,NK denotes the true probabilities and ε = (εi)i∈J1,NK, the noise, is a vector of

i.i.d. Gaussian variables of mean 0 and variance σ2.

We also define the denoising function Gθ(.) parametrized by θ and differentiable. This function

takes in input the noisy probabilities and output the denoised probabilities that is p̃i = Gθ(p̂i).

Besides, we restrict the number of parameters to two, that is θ = (θ1, θ2). This seems reasonable

since Platt method also consists in two parameters. The function Gθ(.) is increasing, so that the

order of the denoised probabilities is respected: if p̂i < p̂j , the calibration must not change the

classification and thus p̃i < p̃j .

Our goal is to select optimally the parameters θ in order to obtain an estimate p̃ = (p̃i)i∈J1,NK as

close as possible to p. This kind of problem is typically achieved by minimizing the MSE between
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the estimated probability and the true probability:

r(p̃) =
1

N

N∑
i=1

(p̃i − pi)2.

However, in practice, we don’t have access to p. The SURE method proposed by Stein (Stein,

1981) allows us to overcome this difficulty by providing an approximation of the MSE, defined by:

SURE(θ) = −Nσ2 +

N∑
i=1

(Gθ(p̂i)− p̂i)2 + 2σ2
N∑
i=1

∂Gθ(p̂i)

∂p̂i
. (3)

The SURE loss is an unbiased estimate of the MSE under the assumption of Gaussian noise.

Since we want an unbiased estimator, we expect the mean calibrated probability to be equal to

the empirical event frequency that is 1
N

∑N
i=1Gθ(p̂i) = 1

N

∑N
i=1 yi. This leads to the following

minimization program:

(P) =

min
θ

SURE(θ)

s.t. C(θ) = 0

with C(θ) = 1
N

∑N
i=1Gθ(p̂i)−

1
N

∑N
i=1 yi.

3.3.2 Choice of the calibration function

In this experiment, we tried the sigmoid and Kumaraswamy repartition functions as denoisers.

Both are increasing and differentiable functions on the interval [0, 1]. This properties make them

suitable for the calibration of probabilities.

The sigmoid function defined in equation (2) is the one we used in the experiment. This choice

seems natural since it is also the one used in Platt scaling. Thus, it makes sense to use it for

fair comparison of both methods. This distribution has the particularity to assume normally

distributed probabilities within each class with same variance. This strong property can reduce

the efficiency of the approach which motivates the choice of another function (Kull et al., 2017).

The Kumaraswamy distribution has been presented first for simulations purposes in hydrological

data modeling (Kumaraswamy, 1980). This function is of the same family of the beta law and it has

the advantage to be explicitly differentiable. We define the cumulative Kumaraswamy distribution

function as:

Gθ(p̂i) = 1− (1− p̂iθ1)θ2 ,

with θ1 > 0, θ2 > 0.
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This function is much more flexible than the sigmoid one because it can map the predicted proba-

bilities to the sigmoid, the inverse sigmoid, and the identity shapes. In particular, if probabilities

are already calibrated, the Kumaraswamy can recover the identity while the sigmoid does not,

independently to the method employed. The ability to recover different shapes makes the Ku-

maraswamy suitable for a large variety of models that output different uncalibrated probability

distributions.

3.3.3 Estimation of the noise variance

In the above framework we assumed the knowledge of σ2 which is not true in practice. We want

to estimate σ from the data such that it stays constant over the optimization. We have made the

assumption that p̂i = pi + εi, with εi ∼ N(0, σ2). Besides, the labels yi can be equal to 0 or 1.

Thus each observation yi can be interpreted as the realisation of a Bernoulli random variable such

that yi ∼ Ber(pi). Hence we have P(yi = 1) = pi and P(yi = 0) = 1− pi.

We want to minimize the spread between the estimated probability p̂i and the true one pi. Thus,

taking the expectation:

E[(p̂i − yi)2] = E[p̂i
2] + E[y2i ]− 2E[p̂iyi],

where:

E[p̂i
2] = E[(pi + εi)

2] = p2i + σ2

E[y2i ] = 02P(yi = 0) + 12P(yi = 1) = pi

E[p̂iyi] = E[(pi + εi)yi] = E[(pi + εi)]E[yi] = p2i .

In the last calculus, we assume the independence between p̂i and yi to conclude, which is obviously

not guaranteed. However, this strong assumption gives a simple expression of σ2 and leads to

satisfying empirical results. We end up with:

E[(p̂i − yi)2] = p2i + σ2 + pi − 2p2i = pi(1− pi) + σ2 = V (yi) + σ2.

Rearranging the terms, we have the theoretical expression for σ2: σ2 = E[(p̂i−yi)2]−V (yi), which

can be estimated by the following equation:

σ̂2 =
1

N

N∑
i=1

(p̂i − yi)2 −
1

N

N∑
i=1

(yi − y)2,

where y is the mean of the labels yi.

We also note that, alternatively, σ2 can be cross-validated in order to optimize a criterion. This
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technique has the advantage of giving a robust estimate of σ that will generalize well on the unseen

data. We made several trials that suggests that using the sigmoid function as a denoiser, we can

retrieve exactly the Platt calibration map by cross-validating σ2.

3.3.4 Numerical approximation framework

A popular practice for solving constrained nonlinear optimization problems is to use the Sequential

Quadratic Programming (SQP) approach. This method consists in approximating the solution of

the original problem by a quadratic subproblem, solving it and using the solution to compute the

next iterate. From the original system (P) describing our problem, we can derive the Lagrangian

of that function which is composed of the original objective function and the constraint. We define

the Lagrangian of the SURE function as follows:

L(θ, λ) = SURE(θ) + λC(θ),

where λ ∈ R is the Lagrange multiplier. We also define the quadratic approximation of the

Lagrangian near θ for the current iterates θk employing a second-order Taylor expansion as follows:

L(θ, λk) ≈ L(θk, λk) +∇θkL(θk, λk)T (θ − θk) +
1

2
(θ − θk)T∇2

θk
L(θk, λk)(θ − θk)

where ∇L(.) is the gradient of the Lagrangian and ∇2L(.) is the Hessian of the Lagrangian. In

order to simplify the notations, we set dθ = (θ − θk). We also linearize the constraint as follows:

C(θ) ≈ C(θk) +∇θkC(θk)T dθ

where ∇C(.) is the gradient of the constraint. The challenge is now to define the quadratic

subproblem such that it approximates well the original problem (P). The SQP method consists

in using directly the Lagrangian of the initial problem as objective function of the subproblem

subject to the constraint (Bonnans et al., 2006; Gill et al., 1981; Wright & Nocedal, 1999). The

quadratic subproblem is thus:

(P2) =

min
dθ

∇θkL(θk, λk)T dθ +
1

2
dTθ∇2

θk
L(θk, λk)dθ

s.t. C(θk) +∇θkC(θk)T dθ = 0.

The advantage of this new formulation (P2) of the initial problem (P) is that it takes into account

the nonlinearity of the constraint in the Lagrangian while at the same time the constraint is

linearized. We can now write the KKT conditions for the quadratic subproblem. We denote the

optimal multiplier of (P2) by dλ (that is dλ is the multiplier associated to the Lagrangian formed by

the quadratic objective function and the constraint approximation) (Bonnans et al., 2006). Then

we apply the first order conditions to this new function which gives the following system:
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(
∇2
θk
L(θk, λk) ∇θkC(θk)

∇θkC(θk)T 0

)(
dθ

dλ

)
= −

(
∇θkL(θk, λk)

C(θk)

)
, (4)

where ∇2
θk
L(θk, λk) is supposed to be positive definite on the tangent space of the constraints, and

∇θkC(θk) has full row rank. Solving this system for each iteration k allows us to realize simul-

taneously our two-sided objective: minimizing the objective function and satisfying the constraint

which is important to ensure the convergence of the algorithm. The most straightforward approach

for finding the solution (dθ, dλ) of the system (4) is to invert the first matrix also known as KKT

matrix. We finally end up with the following Newton step of the parameters for the next iterate:

{
θk+1 = θk + dθ

λk+1 = λk + dλ.

The explicit form of the gradient of SURE and of the constraint is given in appendix A and B. The

Hessian of SURE is given in appendix C. Finally, for completeness of this framework, we provide

the explicit calculus of the derivatives for the sigmoid and Kumaraswamy cumulative distribution

functions in appendix D and E.

Any practical implementation of Newton’s algorithm requires safeguards to ensure the convergence

of the algorithm. To ensure that the Newton-SQP method produces iterates that converge to the

optimum, it is recommended to initialize the starting values (θ0, λ0) so that they are feasible i.e.

starting values for which the constraint is saturated. In this framework, we initialize the starting

values of θ using the Newton-Raphson algorithm directly applied to the constraint. We then use

these feasible points to find a good starting value for λ0. Indeed, if θ0 is close enough to the

optimum θ?, then we can infer from the first-order conditions applied to the Lagrangian that the

optimal value λ? is:

∇θ?SURE(θ?) + λ?∇θ?C(θ?) = 0

⇔ λ? = −
[
∇θ?C(θ?)T∇θ?C(θ?)

]−1∇θ?C(θ?)T∇θ?SURE(θ?).

Hence, a good starting value for λ0 is λ0 = −
[
∇θ0C(θ0)T∇θ0C(θ0)

]−1∇θ0C(θ0)T∇θ0SURE(θ0).

Another important safeguard concerns the Hessian matrix. A sufficient condition for the Newton-

Lagrange method to find a local minimizer is that the Hessian of Lagrangian is positive definite.

Indeed, if this assumption is satisfied, then the Newton step is a descent direction and the algo-

rithm converges to the optimum. If the Hessian is not positive definite a popular method consists

in defining H = ∇2
θk
L(θk, λk) + Ek where H is an approximation of the Hessian and Ek is a

general diagonal matrix being equal to zero if ∇2
θk
L(θk, λk) is positive definite and chosen to make

H positive definite if not. Different strategies can be used to find the diagonal matrix Ek. In

this framework we used (Gill & Murray, 1974) approach which is based on a modified Cholesky

factorization. Finally, we stress that one can improve the method by using a line-search to ensure

the stability of the algorithm (Bonnans et al., 2006). This common practice consists in applying
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an adaptative step length α to the descent direction instead of the pure Newton step where α is

implicitly set to 1. The update formula of the parameters now becomes θk+1 = θk +αkdθ. In this

article, we haven’t implemented this technique since our algorithm is fast and give precise enough

results.

The pseudo-code described in Algorithm 1 summarizes the procedure of the proposed SURE cali-

bration.

Algorithm 1 Newton’s method for equality constraint

Initialization: K=20, θ0 = (random, random), tol = 1e-4

σ̂2 = 1
N

∑N
i=1(p̂i − yi)2 − 1

N

∑N
i=1(yi − y)2

Find a feasible point θ0 using Newton-Raphson algorithm
for k = 0 to K do
if ||∇θkL(θk, λk)|| ≤ tol then

break;
end if
if all the eigen values of ∇2

θk
L(θk, λk) are non-negative then

H = ∇2
θk
L(θk, λk)

else
H = ∇2

θk
L(θk, λk) + Ek

end if
Solve the linear system (4) replacing ∇2

θk
L(θk, λk) by H

θk+1 = θk + dθ
λk+1 = λk + dλ

end for

3.4 Calibration evaluation

Measuring the calibration error is important to get an estimate of the model uncertainty. In this

study, we want to compare the calibrated probabilities of the Platt method to our SURE method.

Most of the time, calibration models are evaluated using a reliability diagram that compares the

average predicted probability to the observed proportion of events in each quantile. We denote

the average predicted probability of the sample Bm as APP(Bm) and the corresponding observed

event frequency as OEF(Bm):

OEF(Bm) =
1

|Bm|
∑
i∈Bm

1(yi = 1),

APP(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

where Bm is the set of indices of samples whose predicted probabilities fall into the interval Im =

(m−1M , mM ], for m ∈ J1, . . . ,MK and M is the total number of bins. Note that these two measures

are similar to the accuracy and the confidence introduced in the multiclass context (Guo et al.,

2017).
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The key idea of this representation is to visualize the quality of prediction for each quantile of

risk. First, predicted probabilities and their corresponding labels are sorted in ascending order.

Then, the sample is divided into M bins. Finally, the OEF and APP are computed on each bin

and reported on the diagram. If the OEF equals the APP (i.e. the points are on the diagonal line)

the model is considered to be perfectly calibrated. However, this representation can be misleading

since there exists a trade-off between the number of bins chosen and the APP estimated. Indeed,

an insufficient number of samples in some bins can result in an inefficient estimation. Even with

a large number of observations, it is not always obvious to assert the quality of the calibration.

Figure 1 illustrates this point by showing a reliability diagram with different values of M . The left

plot shows the reliability diagram with 10 bins while the right plot uses 50 bins.

Figure 1: Example of reliability diagrams using the predicted probabilities of the logistic regression
on the Taiwan credit dataset.

Both plots are using the same data. The left plot would make us believe that the calibration is

almost perfect for the Platt method, whereas it is not so obvious in the right plot.

Synthetic measures of the calibration based on the reliability diagram also allow judging the quality

of calibrated probabilities. Recently, the Expected Calibration Error (ECE) has been proposed to

summarize the calibration benefits (Naeini et al., 2015). This measure is computed as the average

of the difference between the OEF and the APP over the bins:

ECE =

M∑
m=1

|Bm|
N
|OEF(Bm)−APP(Bm)|,

where N is the total number of data points. Alternatively, one may also want to measure the worst

possible gap between the ideal calibration and the estimated confidence which is possible through

the Maximum Calibration Error (MCE):

MCE = max
m∈1,...,M

|OEF(Bm)−APP(Bm)|,

(Naeini et al., 2015). ECE and MCE suffer from the same limitations as the reliability dia-

gram (Nixon et al., 2019). For instance, the distribution of predicted probabilities is often left-
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skewed. This has the effect of putting more weight on certain bins densely populated which affects

the ECE. Therefore, choosing the number of bins amounts to a bias-variance tradeoff. Indeed,

when M is large, the number of points in each bin becomes small leading to an increase in the

variance while the bias tends to decrease.

Because of the above limitations, we decided to use another classical way to evaluate the calibration.

It consists in using the full distribution of the calibrated probabilities and comparing them to

the true output. This is the purpose of the Binary Cross-Entropy (BCE) and the Brier Score

(BS) (Brier, 1950). The BCE and the BS have been computed as follows:

BCE = − 1

N

N∑
i=1

yi log(p̃i) + (1− yi) log (1− p̃i),

BS =
1

N

N∑
i=1

(yi − p̃i)2.

As we can see, the BS is similar to the MSE often used to measure the error in regression problems.

In this particular setting, it can be interpreted as the mean prediction error. The BCE comes from

the specification of the likelihood in binary classification problems as stated in section 3.2. It is

also used as a loss function for training binary classifiers. Additionally, we compute the Mean

Default Rate (MDR) for each method:

MDR =

(
1

N

N∑
i=1

p̃i

)
× 100.

This last measure is useful to control the resulting bias of the calibrated probabilities. Indeed, a

perfectly calibrated classifier should produce probabilities that have the same mean default rate

as the true observed default rate.

4 Empirical results

In this section, we report the results obtained for the logistic regression and the neural network on

the different sets of features. The models are optimized by minimizing the BCE and the optimal

threshold τ? is chosen to maximize the F1 score. Both models are evaluated using the F1 score

and we also report the precision and the recall to diagnose the possible model weaknesses and

the ROC-AUC and PR-AUC to spot the effect of imbalanced learning. We then move on to the

calibration results. We compare the results of the Platt method to our SURE method.
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4.1 Comparison of models

For both the logistic regression and the feed forward neural network, we use the same learning

and evaluation procedure. First, the model is trained on the learning set and at the same time

evaluated on the validation set. We implement the early stopping rule such that the model stops

learning when validation performance starts to diverge according to the performance on the training

set. Once the stopping rule is reached, the model’s parameters are saved (Prechelt, 1998). The

remaining model is then used on the test set to assess its performance on unseen data.

As we can see in both Table 2 and Table 3, it seems that the two models do not suffer from

overfitting. Indeed, for all different sets of features, the training and testing results are very close

and even better when looking at the logistic regression testing results in Table 2. Thus, we can

infer that our early stopping procedure has been successful to prevent overfitting and both models

can generalize well with the data provided. As stated in Section 2.3, the AUC-ROC is not a

good choice for assessing the performance of our models. Indeed, since we are in an imbalanced

class problem, it produces good results for both models because it does not focus only on the

positive class. The AUC-PR and F1 score are more reliable indicators of the model performance

for predicting consumer default. On average, the observed gap between the AUC-ROC and the F1

score is 0.2, which is quite high. On the feature side, an interesting thing to remark is that the set

of dynamic features provides better results than the static ones. Indeed, the testing F1 scores (i.e.

results obtained on unseen data) are improved by around 0.10 if we consider the logistic regression

and by around 0.15 considering the feed forward neural network. Thus we can infer that dynamic

data contains more informative features for customer default prediction.

Static features Dynamic features All features

Training Validation Testing Training Validation Testing Training Validation Testing

F1 0.40 0.40 0.40 0.51 0.53 0.53 0.51 0.52 0.53

Recall 0.70 0.70 0.71 0.48 0.51 0.52 0.48 0.51 0.51

Precision 0.27 0.28 0.28 0.54 0.54 0.55 0.54 0.54 0.55

AUC-ROC 0.62 0.63 0.63 0.71 0.73 0.73 0.72 0.74 0.73

AUC-PR 0.30 0.32 0.31 0.49 0.50 0.51 0.50 0.51 0.51

Loss 0.23 0.23 0.23 0.21 0.21 0.21 0.21 0.21 0.21

Table 2: Logistic regression performance on the different sets.

We can also notice that the feed forward neural net seems to be unstable on static data since its F1

score, AUC-ROC, AUC-PR values are worse than for the logistic regression. We suspect that the

difference is due to both the set of features and the model complexity. Indeed, on one hand, the

feed forward neural network learns complex data interactions on the static features which appear

to be uninformative for the given task. On the other hand, the logistic regression can be seen

as a feed forward neural network without hidden layers, thus leading to a simpler model with

fewer parameters. The resulting performance of the logistic regression is better because this model

doesn’t learn these complex interactions. This result can be connected to the adversarial attack
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Static features Dynamic features All features

Training Validation Testing Training Validation Testing Training Validation Testing

F1 0.40 0.38 0.39 0.56 0.53 0.54 0.56 0.52 0.55

Recall 0.82 0.81 0.81 0.62 0.53 0.55 0.61 0.51 0.54

Precision 0.27 0.25 0.25 0.53 0.53 0.53 0.53 0.53 0.55

AUC-ROC 0.59 0.60 0.60 0.77 0.77 0.77 0.78 0.76 0.77

AUC-PR 0.28 0.30 0.28 0.54 0.54 0.53 0.54 0.53 0.53

Loss 0.23 0.23 0.23 0.20 0.20 0.20 0.19 0.20 0.20

Table 3: Neural network performance on the different sets.

notion which exists in computer vision (Goodfellow et al., 2014; Szegedy et al., 2014). The general

idea is to fool the model by introducing a little perturbation noise into the input data which doesn’t

change the image perception for a human. This perturbation causes the deep learning model to

produce false predictions.

When we investigate the results for the dynamic and the whole feature sets, we can observe that

the feed forward neural network reaches better testing results than the logistic regression. This

improvement comes from the model architecture. With the hidden layers being fully connected

to each other, the network learns deeper representations of the inputs by automatically creating

feature interactions. These representations allow the network to learn more complex patterns than

the logistic regression, which explains why the results are improved. Even if there is an undeniable

improvement of the performance, we can notice that results are very close between Table 2 and

Table 3. For example, the F1 score is superior by only 0.02 for the neural network which is not

high. Here, we want to stress the fact that appropriate measures should be used to evaluate the

model depending on the use case. For the same dataset, several studies have shown that a neural

network is a more accurate model while our results suggest only little improvement (Imtiaz &

Brimicombe, 2017; Yeh & Lien, 2009). However, other studies in the field of credit scoring tend

to confirm our results. Indeed, other authors found that deep neural networks do not outperform

their shallower counterparts while they are computationally considerably more expensive to build

and train (Alonso & Carbó, 2020; Gunnarsson et al., 2021; Lessmann et al., 2015).

4.2 Evaluation of the calibration

We present the results obtained by the different calibration techniques. We used the same pro-

cedure for training and testing as standard papers on calibration. First, we fit the model on the

predicted probabilities of the validation set and use the learned parameters to calibrate the pre-

dicted probabilities of the test set (Guo et al., 2017; Pan et al., 2020; Platt, 1999). The measures

realized on the test set are thus considered unbiased estimates of the calibration error. Beyond

the SURE calibration technique, we also try a form of model stacking which consists in combining

two models in order to improve the overall accuracy. The rationale behind this approach is that

each model learns its own nonlinearities such that we can benefit from combining models. Here
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we combine the Platt method to our SURE approach in two ways. We build a first model using

Platt’s model output probabilities as an input of the SURE model. The second model is the exact

reverse: we feed the Platt model by the SURE output probabilities. The first observation that

can be done about the results gathered in Tables 4 and 5 is that uncalibrated probabilities do

not reflect the true probabilities. Indeed, the mean probability goes from 45.26% for the Neural

network to 47.04% for the logistic regression whereas the true empirical default rate is 22.13%.

This emphasizes the need for probability calibration.

Mean default rate BCE BS

Validation Testing Validation Testing Validation Testing

Uncalibrated 0.4673 0.4704 0.610 0.613 0.210 0.211

Platt 0.2213 0.2244 0.460 0.459 0.144 0.143

SURE (sigmoid) 0.2213 0.2240 0.461 0.461 0.145 0.144

SURE (Kumaraswamy) 0.2213 0.2241 0.465 0.465 0.146 0.145

Platt + SURE (sigmoid) 0.2213 0.2243 0.455 0.451 0.143 0.141

SURE (sigmoid) + Platt 0.2213 0.2248 0.454 0.451 0.142 0.140

Platt + SURE (Kumaraswamy) 0.2213 0.2244 0.460 0.459 0.144 0.143

SURE (Kumaraswamy) + Platt 0.2213 0.2247 0.456 0.453 0.143 0.141

Table 4: Logistic regression calibration.

Mean default rate BCE BS

Validation Testing Validation Testing Validation Testing

Uncalibrated 0.4526 0.4548 0.580 0.584 0.194 0.194

Platt 0.2213 0.2237 0.437 0.436 0.137 0.136

SURE (sigmoid) 0.2213 0.2237 0.437 0.436 0.137 0.136

SURE (Kumaraswamy) 0.2213 0.2240 0.439 0.439 0.138 0.137

Platt + SURE (sigmoid) 0.2213 0.2243 0.438 0.436 0.137 0.136

SURE (sigmoid) + Platt 0.2213 0.2245 0.438 0.436 0.137 0.136

Platt + SURE (Kumaraswamy) 0.2213 0.2236 0.437 0.436 0.137 0.136

SURE (Kumaraswamy) + Platt 0.2214 0.2247 0.438 0.437 0.137 0.137

Table 5: Neural network calibration.

Regarding the performance of the various calibration methods, we report that the Platt and SURE

methods lead to a sharp improvement of uncalibrated probabilities. When we investigate both

methods separately, our SURE method appears to be as good as Platt scaling. The good perfor-

mance of the SURE method remains valid if we replace the sigmoid function by the Kumaraswamy

one. Finally, when we combine both methods trough stacking, the results stay stable.
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5 Conclusion

In this paper, we have investigated classification models for determining the probability that a

consumer will default on its credit card. The obtained results give us some guidelines for this

kind of prediction problem. First, the class imbalance should be identified in order to choose an

appropriate measure of performance. In the case of a severe class imbalance, it is recommended

to use a measure that relies on positive class detection, such as the F1 score, to have an unbiased

estimate of the model’s true performance. Secondly, temporal features, if available, must be added

to the model as they can significantly improve its learning ability and performance. Depending

on the frequency of the data, it could be interesting to perform pre-processing steps in order to

extract useful information such as descriptive statistics of that series. This has been left for further

studies. On the contrary, one should take care of uninformative features which can lead to false

data representations and decreased performance when learning with a complex model such as a

neural network. Thirdly, we stress out the fact that real-world applications should output predicted

probabilities that reflect the true unobservable probabilities in order to diminish uncertainty. Our

results show that it can be done accurately and efficiently by using our SURE calibration method.
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E Derivatives of the Kumaraswamy cumulative distribution
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