
HAL Id: hal-03286760
https://hal.science/hal-03286760v1

Preprint submitted on 15 Jul 2021 (v1), last revised 20 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Credit scoring using neural networks and SURE
posterior probability calibration

Matthieu Garcin, Samuel Stéphan

To cite this version:
Matthieu Garcin, Samuel Stéphan. Credit scoring using neural networks and SURE posterior proba-
bility calibration. 2021. �hal-03286760v1�

https://hal.science/hal-03286760v1
https://hal.archives-ouvertes.fr

Credit scoring using neural networks and SURE posterior

probability calibration ∗

Matthieu Garcin1 and Samuel Stéphan †1,2

1Léonard de Vinci Pôle Universitaire, Research center, 92916 Paris La Défense,
France.

2SAMM, Université Paris 1 Panthéon-Sorbonne, 90 rue de Tolbiac, 75013 Paris
cedex 13, France.

July 15, 2021

Abstract

In this article we compare the performances of a logistic regression and a feed forward
neural network for credit scoring purposes. Our results show that the logistic regression gives
quite good results on the dataset and the neural network can improve a little the performance.
We also consider different sets of features in order to assess their importance in terms of
prediction accuracy. We found that temporal features (i.e. repeated measures over time) can
be an important source of information resulting in an increase in the overall model accuracy.
Finally, we introduce a new technique for the calibration of predicted probabilities based on
Stein’s unbiased risk estimate (SURE). This calibration technique can be applied to very
general calibration functions. In particular, we detail this method for the sigmoid function
as well as for the Kumaraswamy function, which includes the identity as a particular case.
We show that stacking the SURE calibration technique with the classical Platt method can
improve the calibration of predicted probabilities.

Keywords – Deep learning, credit scoring, calibration, SURE

1 Introduction

Credit scoring aims to measure the risk for a bank to grant a loan to an applicant. Depending
on the value of the returned score, the bank will accept or not to grant the loan. This score is
generally computed by a model which has been fitted on a database containing past information
of the consumer behavior and its corresponding credit profile. Typical descriptors of consumer
behavior include loan information (amount, maturity, type of interest rate, nature of the loan) and
the borrower characteristics (age, marital status, profession, monthly income, personal savings,
number of actual loans). The target, also known as dependent feature, corresponds to whether or
not the customer has defaulted on its loan. The default is subject to a formal definition given by
the Basel committee which states that the bank is facing a default event if the counterpart past

∗This work was supported by the Caisse des dépôts et consignations
†Corresponding author

1

due is more than 90 days. Thus, the feature to be predicted is coded as 1 if the borrower did
default and 0 otherwise.

Correct risk assessment is an important aspect of banking activities. To ensure robust estimation
of the risks, the regulator has framed several rules to follow. These rules are edited by the Basel
Committee on Banking Supervision (BCBS) which is the primary global standard setter for the
prudential regulation of banks. Several updates have been made by the regulator to fit the devel-
opment of banking activities over the years. Currently, banks are subject to Basel III agreements
that aim to ensure that banks have a rigorous approach to risk and capital management related
to their activities. The Basel framework lets the choice for each financial institution to manage
its credit risk assessment through standard or internal methods. In the latter case, the bank uses
a modeling framework for estimating the risk parameters. In the Internal Rating Based (IRB)
approach, the bank estimates only the probabilities of default (PD). In the advanced IRB, the
bank has to estimate the expected credit loss using the following parameters: the Loss Given De-
fault (LGD), Exposure at Default (EAD), Maturity of exposures (M), and the PDs. As its name
indicates, the PD risk parameter consists in estimating the likelihood that each loan is going to be
repaid. This is typically what is evaluated in credit scoring applications.

From a practical point of view, the estimation of the PDs corresponds to a classification problem.
The specificity of this problem is that we want the classifier to output a probability of the event
while in numerous other applications we only want the outcome. Traditional machine learning
models such as logistic regression and linear discriminant analysis are well suited for this task [54,
3]. Despite their simplicity, they are probably the most widespread models for credit scoring ap-
plications since they are very well understood tools and easy to use [4, 19]. Furthermore, they are
implemented in most statistical software and the computation of the final prediction is straight-
forward from the features coefficients. Today, a large area of research in credit scoring consists
in the development of new scoring techniques. This literature is motivated by the limitations of
the standard techniques. Indeed, in their simplest design, logistic regression and linear discrim-
inant analysis exploit only linear interactions. Thus, the rise of performances of credit scoring
models has been initiated by the use of ensemble methods that enable non-linearities and provide
high generalization capabilities [6, 22, 46, 62]. Other recent advances include the use of hybrid
methods [30, 39, 68] and deep learning which have first achieved promising results in the field of
computer vision [38, 60, 61, 58, 2, 37]. Nevertheless, credit scoring remains a field where deep
learning has trouble asserting itself because of strong regulatory requirements.

In this paper, we investigate how powerful are these deep neural networks through a feed-forward
architecture and we compare the results with a standard logistic regression. We show that the use
of a deep neural network leads, on our dataset, to a slight improvement in the forecast compared to
the logistic regression. We also investigate the properties of our dataset which has the particularity
to contain a mix of static features and temporal features. To the best of our knowledge, no
previous study on credit scoring has ever explored the ability of a model to provide accurate
results depending on the static/dynamic nature of the data. The procedure we use is as follows:
we split the dataset into static features set and dynamics features set. We then evaluate the models
on three sets: static, dynamic, and all features, and finally compare the results. We give evidence
that temporal data should not be neglected in credit scoring applications. In our dataset, dynamic
features drastically improved the results compare to feeding the model only with static features.

Another important aspect of credit scoring application is to ensure that the estimated probabilities
are close to the true probabilities. This can be analyzed in terms of cost. On one hand, machine
learning models assume all estimated probabilities to have the same cost. On the other hand, in
many decision-making applications, not having an accurate probability of belonging to the target
class can be costly. For instance, it can be the choice of a treatment for a patient in medicine, a
driving decision in a self-driving car application, or an investment decision in business. A common

2

approach consists in post-processing the probabilities of a classifier in order to get calibrated
outputs. Calibration can be performed using parametric and non-parametric techniques. Non-
parametric techniques include histogram binning [65], isotonic regression [66], similarity binning
averaging [7], and adaptive calibration of predictions [32]. All these techniques consist in binning
the samples and assigning them a calibrated probability. We argue that probabilities calibrated by
these techniques can be highly biased. Indeed, each bin requires a big enough number of instances
in order to have a low variance estimate of its average default rate, thus leading to a unique
estimated PD for all the instances in this bin. Choosing the optimal number of bins, balancing
bias and variance, is not obvious as well. Parametric methods include Platt scaling [48], beta
calibration [35], asymmetric Laplace method [9], and piecewise logistic regression [67]. Since these
parametric approaches rely on the assumption that the probabilities follow a particular distribution,
they are subject to model mismatch. In this paper, we propose a novel parametric approach for
probability calibration. We use Stein’s Unbiased Risk Estimate (SURE) as a proxy to minimize
the Mean Squared Error (MSE) between the estimated probability and the true probability. The
calibrated density is then the one minimizing the estimated MSE. This technique has been used
intensively in the field of signal processing for image denoising. One advantage of this approach
is that we do not rely on predefined bins which are biased by nature. Besides, our method offer
the possibility to use a custom calibration function to prevent from model mismatch. We show
empirically that combining this new technique with the standard Platt method can result in an
increase in the accuracy of the PDs.

The major contribution of this article to the credit scoring literature is the investigation of the
efficiency of models based on deep learning versus traditional models when estimating individual
PDs. We also evaluate the impact of using time series data in credit scoring models. Finally, we
propose a methodology to calibrate the predicted probability to the hidden true probabilities using
the SURE approach. The article is organized as follows. Section 2 describes the data used for
the application, exposes the evaluation of the models and the feature importance assessment, and
presents the models. In Section 3, we demonstrate the necessity of calibration in machine learning
and we propose a new framework to calibrate posterior predicted probabilities. Section 4 compares
empirically the models and assesses the efficiency of the proposed calibration approach.

2 Experimental setting

In this section, we describe how we design the experiment. First, we present the dataset on which
models have been fitted. We precise what preprocessing steps have been applied and how we split
the data in order to assess the performance of our model. Next, we explain how we organized the
features such that we were able to assess the importance of static and dynamic features in the
performance. Then, we discuss the choice of a proper evaluation metric in credit scoring. Indeed,
credit scoring is an area in which the event to predict is difficult because of class imbalance. This
characteristic should drive the choice of the measure to get an unbiased measure of performance.
Finally, we present the models we use for the application.

2.1 The dataset

In every machine learning application, the quality of data is of primary importance. Ideally, a
credit scoring application would include quantitative data such as financial ratios describing the
borrower’s financial health and its past credit history, including potential default information.
Indeed, defaults have been shown to be persistent over time with the reasoning that a borrower
who has already defaulted is more likely to stay in this current state [2]. Qualitative data are useful

3

as well, such as the education level, the type of product granted, or the presence of collateral to
secure the loan.

In this study, we use a Taiwanese credit dataset publicly available on the UCI machine learning
repository1 and already used in the machine learning literature [64]. This dataset consists of
anonymized default payments realized on revolving credit granted in Taiwan. It gathers information
of 30 000 credit card users among which 22% default next month. We can notice that the dataset
is imbalanced between defaulters and non-defaulters. This is a common characteristic of credit
scoring applications which makes the modeling difficult. The dataset includes classic features of
a credit scoring dataset such as age, sex, level of education, marital status, and the credit limit
of individuals. It also contains time series data observed from April 2005 to September 2005: the
monthly bill statement, the monthly paid amount, and an indicator of the revolving credit delay
payment. We expect these last dynamic features to be highly informative since it gives a trajectory
of the individual account which may reveal interesting patterns for defaulters. Our target is the
dummy variable indicating whether the client defaults next month (No = 0, Yes = 1). To complete
the dataset, we have created 6 additional features, one for each month of observation, consisting
of the ratio of the bill amount by the credit limit. We expect this set of new features to improve
the model’s ability to learn the default drivers, since a high bill statement relative to the credit
limit may imply payment difficulties.

We apply the classical preprocessing steps to the features in order to facilitate training. We
standardize the distribution of continuous data to have a mean value of 0 and a standard deviation
of 1. This typical operation is done in order to speed up the learning process. We then split the
dataset into a shuffled and stratified train, a validation, and a test set representing respectively
60% - 20% - 20% of the data available. We use the train and validation sets to train each model
and tune their hyperparameters while we use the test set only once to assess the out-of-sample
performance. This last set allows us to estimate an unbiased performance of the classifier.

2.2 Feature importance assessment

In this study, we are interested in assessing the importance of different sets of features instead
of each feature individually. Indeed, we want to assess the importance of the nature of data in
the model’s performance. In particular, we expect times series to be highly informative since
they reflect the behavior of the borrower. Thus, we defined three subsamples of features which
are detailed in Table 1. Note that all dynamic data are time series available from April 2005 to
September 2005.

Static features Amount of given credit (NT dollar), Gender, Marital status, Age (year).

Dynamic features History of past payment tracked via past monthly payment records, Re-
payment status, Amount on bill statement, Amount of previous payment,
Ratio of bill statement relative to the credit limit

All features Static features + Dynamic features

Table 1: Features sets

We expect time series data to be highly informative since it gives a dynamic view of the borrower’s
credit activity. Moreover, classical scoring models often incorporate an aggregated vision of the
borrower’s behavior instead of a detailed monthly vision. We think that the industry could benefit

1https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

4

from the use of time series data in their internal credit scoring models in terms of predictive
accuracy. Using this particular setting, we are able to train each model on different sets of features
and evaluate their inner performances on the corresponding independent testing sets. Then, we are
able to identify the most informative set of features by picking the one that achieves the highest
performance on the test set.

2.3 Choosing the right evaluation metric

Credit scoring is typically an area where class imbalance can be severe because risk management
aims to ensure that the number of defaulters stays much smaller than non-defaulters. Such charac-
teristics make learning difficult. This is why several techniques have been introduced. Data-level
techniques consist in resampling the dataset in order to balance the classes. These techniques
include random over-sampling, random under-sampling, and the creation of synthetic samples via
the SMOTE algorithm [27, 15]. Other strategies for balancing the classes consist in rendering the
model cost-sensitive by adding a cost to misclassified instances of both positive and negative class.
This improves the model’s ability to correctly classify positive samples. Such methods include
weighting and thresholding [56, 52]. In this article, our choice goes to weighting the loss function
as detailed in section 2.4.1. This choice is motivated by the fact that being a model-level tech-
nique, it doesn’t change the structure of the data. Therefore, the original statistical properties
of the dataset are preserved which is preferable from a regulatory point of view. We also applied
thresholding to the predicted probabilities as explained below.

The class imbalance also makes the choice of the appropriate evaluation metric quite challenging.
Indeed, standard measures can’t be applied because they tend to be biased toward the majority
class. Among these evaluation metrics, we can cite, for instance, the accuracy, which is defined as
the sum of true positives and true negatives over the whole dataset. The accuracy is not a good
choice of metric since a classifier biased toward the negative class will always reach a high accuracy.
In this study, we propose an evaluation based on the precision, the recall and the F1 score. Let’s
consider a classical binary classification problem with a model fitted on a training set. We want
to evaluate this model on a test set. We define yi ∈ {0, 1} as the true label of the ith instance.
The label yi equals 1 if the instance is tagged as positive and 0 if tagged as negative. The model
outputs a quantity p̂i ∈ [0, 1] which is often interpreted in the literature as the probability of a
given instance of belonging to the positive class. For a given threshold τ ∈ [0, 1], the predicted
label is defined as ŷi = 1 if p̂i > τ and ŷi = 0 otherwise. Given these notations, we can compute the
number of True Positives (TP =

∑N
i=1 1(yi=1∩ŷi=1)), True Negatives (TN =

∑N
i=1 1(yi=0∩ŷi=0)),

False Positives (FP =
∑N
i=1 1(yi=0∩ŷi=1)), and False Negatives (FN =

∑N
i=1 1(yi=1∩ŷi=0)). Then

we can compute the recall, the precision, and the F1 score:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2× Precision× Recall

Precision + Recall
.

The F1 score is a combination of the precision and the recall. Maximizing this metric thus leads
to balance the effect of false negative and false positive, giving an unbiased estimate of how the
model is performing.

Another well-known measure for model evaluation is the ROC curve. This curve is obtained by
computing the specificity and the corresponding sensitivity for various probability thresholds of the

5

classifier. We then plot the sensitivity against the specificity. One convenient measure associated
with the ROC curve is the area under the curve (AUC), with AUC > 0.5 meaning that the model is
performing better than a random classification. These metrics are also not good candidates for the
evaluation of imbalanced datasets classifiers. The reason is that the ROC curve is used to assess
the overall performance in discriminating the positive class and the negative class while most of the
time, in imbalanced learning, we are only focusing on the correct classification of positive samples.
This generally leads to an overconfident estimate of how well the classifier is performing because
it doesn’t take into account that the classifier is biased toward the negative class containing more
samples. Instead, we can rely on the Precision-Recall (PR) curve which focuses on the performance
of the model in classifying positive samples only [17, 51]. This curve is obtained by plotting the
precision and recall for various probability thresholds. As in the ROC case, we can compute the
corresponding AUC of the PR curve [12].

We consider the recall, the precision and, the F1 score to evaluate the performance of our classifiers
for two reasons. First, our dataset is imbalanced as it contains 22% of defaulters. Second, in
this imbalanced framework, our preference goes to a better classification of positive samples, in
order to diminish the risk for the lender. These measures being based on the confusion matrix,
the attribution of classes is ultimately done by applying a threshold value to all samples. Most
software considers a default probability threshold of 0.5 which is not recommended for imbalanced
datasets [50, 71, 41]. We choose to tune the threshold value such that we achieve the best F1 score
in a simple manner. The procedure is as follows: we move the decision threshold for the predicted
probabilities of the training set. For each of these thresholds, we assign a class to each sample and
compute the corresponding F1 score. We then apply this threshold to the test set to compute the
out-of-sample F1 score. We also consider a global measure of performance such as the AUC-PR
and display the AUC-ROC for comparison purposes.

2.4 Models

2.4.1 Logistic regression

The logistic regression will be our baseline model since it is still one of the most widely used in the
banking industry for credit scoring [4]. To take into account the slight imbalance of classes (i.e.
22/78), we trained the model using the balanced cross-entropy loss [63]. We consider the learning
set {(xi, yi) ∈ (X ×Y)|i = 1, ..., N} where yi are the labels, xi the inputs, and N the total number
of instances. We want to estimate a function f(x|θ) which maps the inputs xi to the output yi,
where θ is a set of parameters to be optimized on the training set. We denote p̂i = f(x|θ) the
model’s output and n+ the number of positives samples. We estimate θ by minimizing the loss
function over all the instances:

L(yi, p̂i) = −[αyi log(p̂i) + (1− α)(1− yi) log(1− p̂i)], (1)

where α = n+

N . Intuitively, the term α accounts for class imbalance insofar as mispredictions on
both the positive and the negative class are penalized.

2.4.2 Feed forward neural network

We specify a neural network with a feed forward architecture for predicting the occurrence of
defaults. The advantage of such a model over traditional methods is that we can easily modify

6

the network in order to perfectly scale the problem. This is stated in the universal approximation
theorem [29]:

”A single hidden layer neural network with a linear output unit can approximate any
continuous function arbitrarily well, given enough hidden units.”

Moreover, it has been shown that it is more efficient in terms of predictive performance to build a
multi-layer neural network since it is able to learn deeper representations [8]. Convolutional neural
networks for instance are able to learn complex concepts such as edges or geometric shapes of an
image. Also, multi-layer neural networks need exponentially fewer neurons than shallow networks
to learn data representations.

Our network architecture is composed of an input layer, three hidden layers of 60 hidden units
each, and an output unit which uses a sigmoid activation function in order to output a probability
estimate. We introduce nonlinearities in our network with the help of the ReLU activation function
defined by:

ReLU(x) = max(0, x).

This particular choice of activation function is motivated by the literature because it decreases the
training time and can approximate any continuous function [34]. We train the network using the
balanced cross-entropy loss presented in equation (1). This common framework makes it possible
to compare fairly the performance of the two models since their prediction abilities will come from
their intrinsic architecture.

The weights of the network have been optimized using the Adam algorithm with a batch size of
256 samples [33]. Based on the literature, we initialize carefully the weights using He initialization
scheme [24, 28]. This approach is widely used by practitioners to ensure that gradients don’t vanish
or explode during training.

3 Probability calibration

We first review the existing literature on calibration. We present the original use of SURE and
we connect this approach to the machine learning area. Then, we detail our SURE calibration
framework and we give a pseudo-code to enhance the comprehension and allow reproducibility.
We conclude this section by giving evidence of why our framework should be preferred to binning
and we report the evaluation measure we used to estimate the calibration error.

3.1 Literature review

Ideally, we would like machine learning models to output accurate probabilities in the sense that
they reflect the real unobserved probabilities. This is exactly the purpose of calibration techniques,
which aim to map the predicted probabilities to the true ones in order to reduce the probability
distribution error of the model. Probability calibration is very important in many real-world
classification tasks. Indeed, most of the time, classification models are evaluated globally, using
synthetic measures, without taking care of how the error is distributed. Thus, one can’t identify
the confidence of the predicted probabilities. Calibration is overriding for instance in medicine [16,
14], for self-driving cars [21], or in finance [10]. Indeed, reliable probabilities are preferable to take
accurate decisions and reduce the risks.

In credit scoring applications, having accurate probabilities is a matter of concern in the perspec-
tive of improving risk assessment. Good calibration can result in significant gains for financial

7

institutions since they will be able to correctly assess the risk related to each borrower [11]. Be-
sides, predicted probabilities that correctly match the empirical distribution lead to better risk
management and anticipation when it comes to model different portfolio scenarios and evaluate
expected losses [10].

Usually, calibration of predicted probabilities is performed using histogram binning [65], Platt
scaling [48], or isotonic regression [66]. Concretely, histogram binning consists in dividing the
samples into equal bins and assigning them a calibrated probability. In the case of Platt scaling
and isotonic regression, the method consists in fitting a model to regress the predicted probabilities
on the real labels. The calibration model is estimated on the validation set and is then used to
predict default probabilities on the test set. Recently, calibration has been rediscovered with
the deep learning booming trend. Indeed, deep learning models are no exception to the rule
and are even more than traditional methods subject to model uncertainty due to their complex
architectures [5]. That’s why measuring calibration error and develop calibration techniques for
deep neural networks have become an important research topic these recent years [44, 26, 47].

In this paper, we are introducing a new calibration method based on SURE. This method has
originally been developed to estimate the MSE2 of any nonlinear differentiable estimator whose
input observations are assumed to be Gaussian [55]. We think that this approach is well suited for
probabilities calibration since it allows to measure an unobserved error. In our case, this error is the
difference between the real unobserved probability and the estimated one. This technique has been
used intensively in signal processing, mostly as a denoising technique. One of the major applications
in this field was to select the optimal threshold of noisy wavelet coefficients in order to recover
a signal [18, 23]. The SURE method also appears in the machine learning literature for model
selection. Many modern machine learning algorithms require shrinkage through a regularization
parameter to get models that generalize well to new data. In this case, minimizing the SURE
can be an approach to find this optimal regularization parameter [1, 20, 70, 59, 40]. Currently,
most practitioners use cross-validation as an estimate of the model’s MSE because it doesn’t require
normality assumptions and it’s easy to implement. However, research has shown that both methods
give robust results [1].

In the deep learning area, the SURE method is used for neural network based denoising algorithms.
It has been proposed to train a deep denoiser network only on noisy training [53]. The model
outperformed the classical non-deep learning based denoisers. This approach has been extended
for learning with correlated pairs of noisy images and compressed sensing [69, 42].

In this work, we calibrate the output of our models using our SURE framework. This choice
is motivated by the fact that we want to minimize the error depending on the unobserved true
probabilities. Thus cross-validation cannot be applied since we never observe the true probabilities.
Furthermore, we argue that our SURE framework gives a better estimation of the calibration error
than histogram binning. Indeed, in histogram binning, the choice of the number of bins introduces
a bias due to the unequal number of samples falling in each bin. Finally, we compare our method
to Platt scaling which is a parametric method in the same vein as our SURE framework.

3.2 Platt scaling

In this subsection, we give a brief overview of the Platt scaling method which is the standard
approach for probabilities calibration. This approach consists in using the predicted probabilities
of a classifier as an input of a logistic regression. Thus, probabilities are modified by the sigmoid

2Called risk in the literature about signal processing, without any link with the finance-related notion of risk
introduced in this paper.

8

function below:

p̃i =
1

1 + e−(θ1p̂i+θ2)
, (2)

where p̂i is the predicted probability of observation i, p̃i is the calibrated probability and θ1, θ2
the parameters of the logistic regression. These parameters are to be estimated so as to make the
calibrated probability close to the true probability pi. However, pi is not observed and Platt’s
method puts forward the labels yi instead. Thus, we estimate θ1 and θ2 by maximizing the
likelihood, in the calibrated probability, of observed data, namely the labels. The labels can take
values 0 or 1. Thus, it can be interpreted as the realisation of a Bernoulli random variable Y such
that Y ∼ Ber(p̃i). Given this general framework, we can write the likelihood of the observations:

L(θ1, θ2) =

N∏
i=1

(
1

1 + e−(θ1p̂i+θ2)

)yi (
1− 1

1 + e−(θ1p̂i+θ2)

)1−yi
.

This equation is often transformed in log-likelihood for calculus convenience:

L(θ1, θ2) =

N∑
i=1

yi log

(
1

1 + e−(θ1p̂i+θ2)

)
+ (1− yi) log

(
1− 1

1 + e−(θ1p̂i+θ2)

)
.

The log-likelihood is also known as Binary Cross Entropy (BCE). We can maximize this quantity
by applying gradient-based algorithms such as steepest descent or quasi-Newton to find an estimate
of the parameters θ1 and θ2.

3.3 A SURE framework for calibration

3.3.1 General framework

In this framework, we consider the predicted probabilities p̂ = (p̂i)i∈J1,NK of a model to be noisy
measurements of the true probabilities. We make the assumption that the relation between the
corrupted probabilities and the true probabilities is as follows:

p̂ = p+ ε,

where p = (pi)i∈J1,NK denotes the true probabilities and ε = (εi)i∈J1,NK, the noise, is a vector of
i.i.d. Gaussian variables of mean 0 and variance σ2.

We also define the denoising function Gθ(.) parametrized by θ and weakly differentiable. This
function takes in input the noisy probabilities and output the denoised probabilities that is p̃i =
Gθ(p̂i). Besides, we restrict the number of parameters to two, that is θ = (θ1, θ2). This seems
reasonable since Platt method also consists in two parameters. The function Gθ(.) is increasing,
so that the order of the denoised probabilities is respected: if p̂i < p̂j , the calibration must not
change the classification and thus p̃i < p̃j .

Our goal is to select optimally the parameters θ in order to obtain an estimate p̃ = (p̃i)i∈J1,NK as
close as possible to p. This kind of problem is typically achieved by minimizing the MSE between
the estimated probability and the true probability:

r(p̃) =
1

N

N∑
i=1

(p̃i − pi)2.

9

However, in practice, we don’t have access to p. The SURE method proposed by Stein [55] allows
us to overcome this difficulty by providing an approximation of the MSE, defined by:

SURE(θ) = −Nσ2 +

N∑
i=1

(Gθ(p̂i)− p̂i)2 + 2σ2
N∑
i=1

∂Gθ(p̂i)

∂p̂i
. (3)

The SURE loss is an unbiased estimate of the MSE under the assumption of Gaussian noise.
Since we want an unbiased estimator, we expect the mean calibrated probability to be equal to
the empirical event frequency that is 1

N

∑N
i=1Gθ(p̂i) = 1

N

∑N
i=1 yi. This leads to the following

minimization program:

(P) =

{
min
θ

SURE(θ)

s.c. C(θ) = 0

with C(θ) = 1
N

∑N
i=1Gθ(p̂i)−

1
N

∑N
i=1 yi.

3.3.2 Choice of the calibration function

In this experiment, we tried the sigmoid and Kumaraswamy repartition functions as denoisers.
Both are increasing and differentiable functions on the interval [0, 1]. This properties make them
suitable for the calibration of probabilities.

The sigmoid function defined in equation (2) is the one we used in the experiment. This choice
seems natural since it is also the one used in Platt scaling. Thus, it makes sense to use it for
fair comparison of both methods. This distribution has the particularity to assume normally
distributed probabilities within each class with same variance. This strong property can reduce
the efficiency of the approach which motivates the choice of another function [35].

The Kumaraswamy distribution has been presented first for simulations purposes in hydrological
data modeling [36]. This function is of the same family of the beta law and it has the advantage
to be explicitly differentiable. We define the cumulative Kumaraswamy distribution function as:

Gθ(p̂i) = 1− (1− p̂iθ1)θ2 ,

with θ1 > 0, θ2 > 0.

This function is much more flexible than the sigmoid one because it can map the predicted proba-
bilities to the sigmoid, the inverse sigmoid, and the identity shapes. In particular, if probabilities
are already calibrated, the Kumaraswamy can recover the identity while the sigmoid does not,
independently to the method employed. The ability to recover different shapes makes the Ku-
maraswamy suitable for a large variety of models that output different uncalibrated probability
distributions.

3.3.3 Estimation of the noise variance

In the above framework we assumed the knowledge of σ2 which is not true in practice. We want
to estimate σ from the data such that it stays constant over the optimization. We have made the
assumption that p̂i = pi + εi, with εi ∼ N(0, σ2). Besides, the labels yi can be equal to 0 or 1.

10

Thus each observation yi can be interpreted as the realisation of a Bernoulli random variable such
that yi ∼ Ber(pi). Hence we have P(yi = 1) = pi and P(yi = 0) = 1− pi.

We want to minimize the spread between the estimated probability p̂i and the true one pi. Thus,
taking the expectation:

E[(p̂i − yi)2] = E[p̂i
2] + E[y2i]− 2E[p̂iyi],

where:

E[p̂i
2] = E[(pi + εi)

2] = p2i + σ2

E[y2i] = 02P(yi = 0) + 12P(yi = 1) = pi

E[p̂iyi] = E[(pi + εi)yi] = E[(pi + εi)]E[yi] = p2i .

In the last calculus, we assume the independence between pi and yi to conclude, which is obviously
not guaranteed. However, this strong assumption gives a simple expression of σ2 and leads to
satisfying empirical results.

We end up with:

E[(p̂i − yi)2] = p2i + σ2 + pi − 2p2i = pi(1− pi) + σ2 = V (yi) + σ2.

Rearranging the terms, we have the theoretical expression for σ2: σ2 = E[(p̂i−yi)2]−V (yi), which
can be estimated by the following equation:

σ̂2 =
1

N

N∑
i=1

(p̂i − yi)2 −
1

N

N∑
i=1

(yi − y)2,

where y is the mean of the labels yi.

We also note that, alternatively, σ2 can be cross-validated in order to optimize a criteria. This
technique has the advantage of giving a robust estimate of σ that will generalize well on the unseen
data. We made several trials that suggests that using the sigmoid function as a denoiser, we can
retrieve exactly the Platt calibration map by cross-validating σ2.

3.3.4 Numerical approximation framework

To solve the constrained optimization problem P, we can reformulate it as a problem of minimiza-
tion of a function Q composed of the original objective function and of the constraint. Hence, our
original constrained problem becomes a sequence of unconstrained optimization problems which
can be solved by classical numerical methods. The quadratic penalty function is a natural choice
for such a function because of its simplicity. We define it as follows:

Q(θ, µ) = SURE(θ) +
µ

2
C(θ)2,

where µ > 0 is the penalty parameter. This parameter becomes larger if the constraint is not
satisfied, such that the overall function is penalized more severely. This forces the minimizer of
the penalty function to be close to the feasibility region of the initial problem P.

One can find a numerical approximation of the solution using first order methods or second or-
der methods since Gθ(.) is a continuously differentiable function. However, even if second order

11

methods are known to be faster than first order ones, these approaches can fail when µ becomes
large because it causes numerical instabilities near to the minimizer [45]. Consequently, we used
the steepest descent algorithm to optimize the parameters θ. This algorithm requires to compute
the gradient which is used as a descent direction. The gradient of our function with respect to the
parameters corresponds to the following system:

∂Q
∂θ1

= 0

∂Q
∂θ2

= 0

that is

2

N∑
i=1

(Gθ(p̂i)− p̂i)
∂Gθ(p̂i)

∂θ1
+ 2σ2

N∑
i=1

∂Gθ(p̂i)

∂p̂i∂θ1
+ µC(θ)

∂C(θ)

∂θ1
= 0

2

N∑
i=1

(Gθ(p̂i)− p̂i)
∂Gθ(p̂i)

∂θ2
+ 2σ2

N∑
i=1

∂Gθ(p̂i)

∂p̂i∂θ2
+ µC(θ)

∂C(θ)

∂θ2
= 0.

The explicit calculus of the derivatives for the sigmoid and Kumaraswamy cumulative distribution
functions is given in appendix A and B.

The pseudo-code described in Algorithm 1 summarizes the procedure of the proposed SURE cali-
bration.

Algorithm 1 Quadratic penalty method

Initialization: K= 10, N= 15000, θ0 = (random, random), µ0 = 10, α = 0.0001, tol = 0.00001,
eps=0.1
σ̂2 = 1

N

∑N
i=1(p̂i − yi)2 − 1

N

∑N
i=1(yi − y)2

while k<K do
for j = 1 to N do
if ||∇θSURE|| ≤ tol then

break;
end if
θ(j+1) = θ(j) − α∇θSURE

end for
if C(θ) ≤ eps then

Save θ(j)

break;
else
µ(k+1) = 10× µ(k)

end if
end while

Beyond the SURE calibration technique, we also try a form of model stacking which consists in
combining two models in order to improve the overall accuracy. The rationale behind this approach
is that each model learns its own non-linearities such that we can benefit from combining models.
Here we combine the Platt method to our SURE approach in two ways. We build a first model
using Platt’s model output probabilities as an input of the SURE model. The second model is the
exact reverse: we feed the Platt model by the SURE output probabilities.

12

3.4 Calibration evaluation

Measuring the calibration error is important to get an estimate of the model uncertainty. In this
study, we want to compare the calibrated probabilities of the Platt method to our SURE method.
Most of the time, calibration models are evaluated using a reliability diagram that compares the
average predicted risk (confidence) to the observed proportion of events (accuracy) in each quantile.
Following the prevalent notations, we denote the accuracy of the sample Bm as acc(Bm) and the
corresponding average confidence as conf(Bm) [26]:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

where M is the total number of bins, Bm is the set of indices of samples whose predicted probabilities
falls into the interval Im = (m−1M , mM], for m ∈ J1, . . . ,MK.

The key idea of this representation is to visualize the quality of prediction for each quantile of risk.
First, predicted probabilities and their corresponding labels are sorted in ascending order. Then,
the sample is divided into M bins. Finally, the accuracy and average confidence are computed
on each bin and reported on the diagram. If the accuracy equals the average confidence (i.e. the
points are on the diagonal line) the model is considered to be perfectly calibrated. However, this
representation can be misleading since there exists a trade-off between the number of bins chosen
and the confidence estimated. Indeed, an insufficient number of samples in some bins can result
in an inefficient estimation. Even with a large number of observations, it is not always obvious to
assert the quality of the calibration. Figure 1 illustrates this point by showing a reliability diagram
with different values of M . The left plot shows the reliability diagram with 10 bins while the right
plot uses 50 bins.

Figure 1: Example of reliability diagrams.

Both plots are using the same data. The left plot would make us believe that the calibration is
almost perfect for the Platt method, whereas it is not so obvious in the right plot.

Synthetic measures of the calibration based on the reliability diagram also allow judging the quality
of calibrated probabilities. Recently, the Expected Calibration Error (ECE) has been proposed to
summarize the calibration benefits [43]. This measure is computed as the average of the difference

13

between the accuracy and the confidence over the bins:

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|,

where N is the total number of data points. Alternatively, one can also want to measure the worst
possible gap between the ideal calibration and the confidence estimated which is possible through
the Maximum Calibration Error (MCE) [43]. ECE and MCE suffer from the same limitations
as the reliability diagram [44]. For instance, the distribution of predicted probabilities is often
left-skewed. This has the effect to put more weight on certain bins densely populated which affects
the ECE. Therefore, choosing the number of bins amounts to a bias-variance tradeoff. Indeed,
when M is large, the number of points in each bins becomes small leading to an increase of the
variance while the bias tends to decrease.

Because of the above limitations, we decide to use another classical way to evaluate the calibration.
It consists in using the full distribution of the calibrated probabilities and comparing them to the
true output. This is the purpose of the Binary Cross-Entropy (BCE) and the Brier Score (BS) [13].
The BCE and the BS have been computed as follows:

BCE = − 1

N

N∑
i=1

yi log(p̃i) + (1− yi) log (1− p̃i),

BS =
1

N

N∑
i=1

(yi − p̃i)2.

As we can see, the BS is similar to the MSE often used to measure the error in regression problems.
In this particular setting, it can be interpreted as the mean prediction error. The BCE comes from
the specification of the likelihood in binary classification problems as stated in section 3.2. It is
also used as a loss function for training binary classifiers. Additionally, we compute the Mean
Default Rate (MDR) for each method:

MDR =

(
1

N

N∑
i=1

p̃i

)
× 100.

This last measure is useful to control the resulting bias of the calibrated probabilities. Indeed, a
perfectly calibrated classifier should produce probabilities that have the same mean default rate
as the true observed default rate.

4 Empirical results

In this section, we report the results obtained for the logistic regression and the neural network on
the different sets of features. The models are optimized by minimizing the BCE and the optimal
threshold τ? is chosen to maximize the F1 score. Both models are evaluated using the F1 score
and we also report the precision and the recall to diagnose the possible model weaknesses and
the ROC-AUC and PR-AUC to spot the effect of imbalanced learning. We then move on to the
calibration results. We compare the results of the Platt method to our SURE method.

14

4.1 Comparison of models

For both the logistic regression and the feed forward neural network, we use the same learning and
evaluation procedure. First, the model is trained on the learning set and at the same time evaluated
on the validation set. We implement the early stopping rule such that the model stops learning
when validation performance starts to diverge according to the performance on the training set.
Once the stopping rule is reached, the model’s parameters are saved [49]. The remaining model is
then used on the test set to assess its performance on unseen data.

As we can see in both Table 2 and Table 3, it seems that the two models do not suffer from
overfitting. Indeed, for all different sets of features, the training and testing results are very close
and even better when looking at the logistic regression testing results in Table 2. Thus, we can
infer that our early stopping procedure has been successful to prevent overfitting and both models
can generalize well with the data provided. As stated in Section 2.3, the AUC-ROC is not a
good choice for assessing the performance of our models. Indeed, since we are in an imbalanced
class problem, it produces good results for both models because it does not focus only on the
positive class. The AUC-PR and F1 score are more reliable indicators of the model performance
for predicting consumer default. On average, the observed gap between the AUC-ROC and the F1
score is 0.2, which is quite high. On the feature side, an interesting thing to remark is that the set
of dynamic features provides better results than the static ones. Indeed, the testing F1 scores (i.e.
results obtained on unseen data) are improved by around 0.10 if we consider the logistic regression
and by around 0.15 considering the feed forward neural network. Thus we can infer that dynamic
data contains more informative features for customer default prediction.

Static features Dynamic features All features

Training Validation Testing Training Validation Testing Training Validation Testing

F1 0.40 0.40 0.40 0.51 0.53 0.53 0.51 0.52 0.53

Recall 0.70 0.70 0.71 0.48 0.51 0.52 0.48 0.51 0.51

Precision 0.27 0.28 0.28 0.54 0.54 0.55 0.54 0.54 0.55

AUC-ROC 0.62 0.63 0.63 0.71 0.73 0.73 0.72 0.74 0.73

AUC-PR 0.30 0.32 0.31 0.49 0.50 0.51 0.50 0.51 0.51

Loss 0.23 0.23 0.23 0.21 0.21 0.21 0.21 0.21 0.21

Table 2: Logistic regression performance on the different sets.

Static features Dynamic features All features

Training Validation Testing Training Validation Testing Training Validation Testing

F1 0.40 0.38 0.39 0.56 0.53 0.54 0.56 0.52 0.55

Recall 0.82 0.81 0.81 0.62 0.53 0.55 0.61 0.51 0.54

Precision 0.27 0.25 0.25 0.53 0.53 0.53 0.53 0.53 0.55

AUC-ROC 0.59 0.60 0.60 0.77 0.77 0.77 0.78 0.76 0.77

AUC-PR 0.28 0.30 0.28 0.54 0.54 0.53 0.54 0.53 0.53

Loss 0.23 0.23 0.23 0.20 0.20 0.20 0.19 0.20 0.20

Table 3: Neural network performance on the different sets.

We can also notice that the feed forward neural net seems to be unstable on static data since its F1
score, AUC-ROC, AUC-PR values are worse than for the logistic regression. We suspect that the
difference is due to both the set of features and the model complexity. Indeed, on one hand, the

15

feed forward neural network learns complex data interactions on the static features which appear
to be uninformative for the given task. On the other hand, the logistic regression can be seen
as a feed forward neural network without hidden layers, thus leading to a simpler model with
fewer parameters. The resulting performance of the logistic regression is better because this model
doesn’t learn these complex interactions. This result can be connected to the adversarial attack
notion which exists in computer vision [57, 25]. The general idea is to fool the model by introducing
a little perturbation noise into the input data which doesn’t change the image perception for a
human. This perturbation causes the deep learning model to produce false predictions.

When we investigate the results for the dynamic and the whole feature sets, we can observe that
the feed forward neural network reaches better testing results than the logistic regression. This
improvement comes from the model architecture. With the hidden layers being fully connected
to each other, the network learns deeper representations of the inputs by automatically creating
feature interactions. These representations allow the network to learn more complex patterns than
the logistic regression, which explains why the results are improved. Even if there is an undeniable
improvement of the performance, we can notice that results are very close between Table 2 and
Table 3. For example, the F1 score is superior by only 0.02 for the neural network which is not
high. Here, we want to stress the fact that appropriate measures should be used to evaluate the
model depending on the use case. For the same dataset, several studies have shown that a neural
network is a more accurate model while our results suggest only little improvement [64, 31].

4.2 Evaluation of the calibration

We present the results obtained by the different calibration techniques. We used the same pro-
cedure for training and testing as standard papers on calibration. First, we fit the model on the
predicted probabilities of the validation set and use the learned parameters to calibrate the pre-
dicted probabilities of the test set [48, 26, 47]. The measures realized on the test set are unbiased
estimates of the calibration error. The first observation that can be done about the results gathered
in Tables 4 and 5 is that uncalibrated probabilities do not reflect the true probabilities. Indeed,
the mean probability goes from 45.26% for the Neural network to 47.04% for the logistic regres-
sion whereas the true empirical default rate is 22.13%. This emphasizes the need for probability
calibration.

Mean default rate BCE BS

Validation Testing Validation Testing Validation Testing

Uncalibrated 46.73 47.04 0.610 0.613 0.210 0.211

Platt 22.13 22.45 0.460 0.459 0.144 0.143

SURE (sigmoid) 24.82 25.10 0.464 0.464 0.146 0.145

SURE (Kumaraswamy) 24.81 25.10 0.467 0.468 0.147 0.146

Platt + SURE (sigmoid) 22.41 22.72 0.455 0.452 0.143 0.141

SURE (sigmoid) + Platt 22.13 22.47 0.454 0.452 0.142 0.141

Platt + SURE (Kumaraswamy) 21.95 22.26 0.460 0.459 0.144 0.143

SURE (Kumaraswamy) + Platt 22.13 22.47 0.456 0.454 0.143 0.141

Table 4: Logistic regression calibration.

Regarding the performance of the various calibration methods, we report that the Platt and SURE
methods lead to a sharp improvement of uncalibrated probabilities. When we investigate both
methods separately, Platt scaling appears to give slightly better results than SURE. Nevertheless,

16

Mean default rate BCE BS

Validation Testing Validation Testing Validation Testing

Uncalibrated 45.26 45.48 0.580 0.584 0.194 0.194

Platt 22.13 22.37 0.437 0.436 0.137 0.136

SURE (sigmoid) 24.69 24.93 0.440 0.439 0.138 0.137

SURE (Kumaraswamy) 24.70 24.96 0.441 0.442 0.138 0.138

Platt + SURE (sigmoid) 22.39 22.69 0.438 0.436 0.137 0.136

SURE (sigmoid) + Platt 22.13 22.43 0.438 0.435 0.137 0.136

Platt + SURE (Kumarswamy) 21.81 22.05 0.437 0.436 0.137 0.136

SURE (Kumarswamy) + Platt 22.13 22.45 0.438 0.436 0.137 0.137

Table 5: Neural network calibration.

this new approach achieves promising results. When we combine both methods that is we feed
calibrated probabilities by one method to the other method, we notice an improvement of the
BCE and BS measures for the probabilities predicted by logistic regression. We also emphasize
that there is little variance in the performance of the stacking models which indicates the stability
of the method.

5 Conclusion

In this paper, we have investigated classification models for determining the probability that a
consumer will default on its credit card. The obtained results give us some guidelines for this
kind of prediction problem. First, the class imbalance should be identified in order to choose an
appropriate measure of performance. In the case of a severe class imbalance, it is recommended
to use a measure that relies on positive class detection, such as the F1 score, to have an unbiased
estimate of the model’s true performance. Secondly, temporal features, if available, must be added
to the model as they can significantly improve its learning ability and performance. Depending
on the frequency of the data, it could be interesting to perform pre-processing steps in order to
extract useful information such as descriptive statistics of that series. This has been left for further
studies. On the contrary, one should take care of uninformative features which can lead to false
data representations and decreased performance when learning with a complex model such as a
neural network. Thirdly, we stress out the fact that real-world applications should output predicted
probabilities that reflect the true unobservable probabilities in order to diminish uncertainty. Our
results show that it can be done accurately and efficiently by using a staking of the Platt and
SURE calibration methods.

References

[1] A. Abadie and M. Kasy. “Choosing among regularized estimators in empirical economics”.
In: The review of economics and statistics 101.5 (2019), pp. 743–762.

[2] S. Albanesi and F. D. Vamossy. “Predicting consumer default: A deep learning approach”.
In: arXiv preprint (2019). doi: 10.2139/ssrn.3445152.

[3] E. I. Altman. “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy”.
In: The journal of finance 23.4 (1968), pp. 589–609.

17

https://doi.org/10.2139/ssrn.3445152

[4] R. Anderson. The credit scoring toolkit: theory and practice for retail credit risk management
and decision automation. Oxford university press, 2007.

[5] J. Antorán, J. Urquhart Allingham, and J. M. Hernández-Lobato. “Depth uncertainty in
neural networks”. In: arXiv preprint (2020). arXiv: 2006.08437.

[6] B. Baesens et al. “Benchmarking state-of-the-art classification algorithms for credit scoring”.
In: Journal of the operational research society 54.6 (2003), pp. 627–635.

[7] A. Bella et al. “Similarity-binning averaging: a generalisation of binning calibration.” In: In
International Conference on Intelligent Data Engineering and Automated Learning. 2009,
pp. 341–349.

[8] Y. Bengio and Y. LeCun. “Scaling learning algorithms towards AI”. In: Large-scale kernel
machines 34.5 (2007), pp. 1–41.

[9] P. N. Bennett. “Using asymmetric distributions to improve text classifier probability esti-
mates”. In: Proceedings of the 26th annual international ACM SIGIR conference on research
and development in information retrieval. 2003, pp. 111–118.

[10] A. Bequé et al. “Approaches for credit scorecard calibration: An empirical analysis”. In:
Knowledge-based systems 134 (2017), pp. 213–227.

[11] A. Blöchlinger and M. Leippold. “Economic benefit of powerful credit scoring”. In: Journal
of banking and finance 30.3 (2006), pp. 851–873.

[12] K. Boyd, K. H. Eng, and C. D. Page. “Area under the precision-recall curve: point estimates
and confidence intervals”. In: Joint European conference on machine learning and knowledge
discovery in databases. 2013, pp. 451–466.

[13] G. W. Brier. “Verification of forecasts expressed in terms of probability”. In: Monthly weather
review 78.1 (1950), pp. 1–3.

[14] M. Cearns et al. “Machine learning probability calibration for high-risk clinical decision-
making”. In: Australian and New Zealand journal of psychiatry 54 (2019), pp. 123–126.

[15] N. V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In: Journal of
artificial intelligence research 16 (2002), pp. 321–357.

[16] W. Chen et al. “Calibration of medical diagnostic classifier scores to the probability of dis-
ease”. In: Statistical methods in medical research 27.5 (2018), pp. 1394–1409.

[17] J. Davis and M. Goadrich. “The relationship between precision-recall and ROC Curves”. In:
Proceedings of the 23rd international conference on machine learning. 2006, pp. 233–240.

[18] D. L. Donoho and I. M. Johnstone. “Adapting to unknown smoothness via wavelet shrink-
age”. In: Journal of the American statistical association 90.432 (1995), pp. 1200–1244.

[19] E. I. Dumitrescu, S. Hué, and C. Hurlin. “Machine learning or econometrics for credit scoring:
let’s get the best of both worlds.” In: Expert systems with applications (2020).

[20] B. Efron et al. “Least angle regression”. In: The annals of statistics 32.2 (2004), pp. 407–499.

[21] D. Feng et al. “Can we trust you? on calibration of a probabilistic object detector for au-
tonomous driving”. In: arXiv preprint (2019). arXiv: 1909.12358.

[22] S. Finlay. “Multiple classifier architectures and their application to credit risk assessment”.
In: European journal of operational research 210.2 (2011), pp. 368–378.

[23] M. Garcin and D. Guégan. “Wavelet shrinkage of a noisy dynamical system with non-linear
noise impact”. In: Physica D: nonlinear phenomena 325 (2016), pp. 126–145.

[24] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neural
networks”. In: Proceedings of the 13th international conference on artificial intelligence and
statistics. Vol. 9. Proceedings of machine learning research. 2010, pp. 249–256.

18

https://arxiv.org/abs/2006.08437
https://arxiv.org/abs/1909.12358

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing adversarial exam-
ples”. In: arXiv preprint (2014). arXiv: 1412.6572.

[26] C. Guo et al. “On calibration of modern neural networks”. In: Proceedings of the 34th inter-
national conference on machine learning. Vol. 20. 2017, pp. 1321–1330.

[27] H. He and E. A. Garcia. “Learning from imbalanced data”. In: IEEE transactions on knowl-
edge and data engineering 21.9 (2009), pp. 1263–1284.

[28] K. He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[29] K. Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural net-
works 4.2 (1991), pp. 251–257.

[30] C. L. Huang, M. C. Chen, and C. J. Wang. “Credit scoring with a data mining approach based
on support vector machines”. In: Expert systems with applications 33.4 (2007), pp. 847–856.

[31] S. Imtiaz and A. J. Brimicombe. “A better comparison summary of credit scoring classifi-
cation”. In: International journal of advanced computer science and applications 8.7 (2017),
pp. 1–4.

[32] X. Jiang et al. “Calibrating predictive model estimates to support personalized medicine”.
In: Journal of the American medical informatics association 19.2 (2012), pp. 263–274.

[33] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: Proceedings of
international conference on learning representations. 2015.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolu-
tional neural networks”. In: Advances in neural information processing systems 25 (2012),
pp. 1097–1105.

[35] M. Kull, T. Silva Filho, and P. Flach. “Beta calibration: a well-founded and easily imple-
mented improvement on logistic calibration for binary classifiers”. In: Artificial intelligence
and statistics (2017), pp. 623–631.

[36] P. Kumaraswamy. “A generalized probability density function for double-bounded random
processes”. In: Journal of hydrology 46.1-2 (1980), pp. 79–88.

[37] H. Kvamme et al. “Predicting mortgage default using convolutional neural networks”. In:
Expert systems with applications 102 (2018), pp. 207–217.

[38] Y. LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings
of the IEEE. Vol. 86. 11. 1998, pp. 2278–2323.

[39] T. S. Lee et al. “Credit scoring using the hybrid neural discriminant technique”. In: Expert
systems with applications 23.3 (2002), pp. 245–254.

[40] Y. Li and J. Zhu. “L1-norm quantile regression”. In: Journal of computational and graphical
statistics 17.1 (2008), pp. 163–185.

[41] Z. C. Lipton, C. Elkan, and B. Naryanaswamy. “Optimal thresholding of classifiers to max-
imize F1 measure”. In: Machine learning and knowledge discovery in databases 8725 (2014),
pp. 225–239.

[42] C. A. Metzler et al. “Unsupervised learning with stein’s unbiased risk estimator”. In: arXiv
preprint (2020). arXiv: 1805.10531.

[43] M. P. Naeini, G. Cooper, and M. Hauskrecht. “Obtaining well calibrated probabilities using
bayesian binning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 29.
1. 2015.

19

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1805.10531

[44] J. Nixon et al. “Measuring calibration in deep learning”. In: arXiv preprint (2019). arXiv:
1904.01685.

[45] J. Nocedal and S. Wright. Numerical optimization. Springer Science and Business Media,
2006, pp. 501–502.

[46] G. Paleologo, A. Elisseeff, and G. Antonini. “Subagging for credit scoring models”. In: Eu-
ropean journal of operational research 201.2 (2010), pp. 490–499.

[47] F. Pan et al. “Field-aware calibration: a simple and empirically strong method for reliable
probabilistic predictions”. In: Proceedings of the web conference 2020. 2020, pp. 729–739.

[48] J. Platt. “Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods”. In: Advances in large margin classifiers 10.3 (1999), pp. 61–74.

[49] L. Prechelt. “Automatic early stopping using cross validation: quantifying the criteria”. In:
Neural networks 11.4 (1998), pp. 761–767.

[50] F. Provost. “Machine learning from imbalanced data sets 101”. In: Proceedings of the AAAI
2000 workshop on imbalanced data sets. Vol. 68. 2000. 2000, pp. 1–3.

[51] T. Saito and M. Rehmsmeier. “The precision-recall plot is more informative than the ROC
plot when evaluating binary classifiers on imbalanced datasets”. In: PLoS ONE 10 (2015),
p. 3.

[52] V. S. Sheng and C. X. Ling. “Thresholding for making classifiers cost-sensitive”. In: Proceed-
ings of the 21st national conference on artificial intelligence. Vol. 1. 2006, pp. 476–481.

[53] S. Soltanayev and S. Y. Chun. “Training and refining deep learning based denoisers without
ground truth data”. In: arXiv preprint (2018). arXiv: 1803.01314.

[54] A. Steenackers and M. Goovaerts. “A credit scoring model for personal loans”. In: Insurance:
mathematics and economics 8.1 (1989), pp. 31–34.

[55] C. M. Stein. “Estimation of the mean of a multivariate normal distribution”. In: The annals
of statistics 9.6 (1981), pp. 1135–1151.

[56] Y. Sun, A. K. Wong, and M. S. Kamel. “Classification of imbalanced data: A review”. In:
International journal of pattern recognition and artificial intelligence 23.4 (2009), pp. 687–
719.

[57] C. Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint (2014). arXiv:
1312.6199.

[58] L. Q. Tai and G. T. Huyen. “Deep learning techniques for credit scoring”. In: Journal of
economics, business and management 7.3 (2019), pp. 93–96.

[59] R. J. Tibshirani and J. Taylor. “The solution path of the generalized lasso”. In: The annals
of statistics 39.3 (2011), pp. 1335–1371.

[60] M. Tygert et al. “A mathematical motivation for complex-valued convolutional networks”.
In: Neural computation 28.5 (2016), pp. 815–825.

[61] A. Voulodimos et al. “Deep learning for computer vision: A brief review”. In: Computational
intelligence and neuroscience (2018). doi: 10.1155/2018/7068349.

[62] G. Wang et al. “A comparative assessment of ensemble learning for credit scoring”. In: Expert
systems with applications 38.1 (2011), pp. 223–230.

[63] S. Xie and Z. Tu. “Holistically-nested edge detection”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2015, pp. 1395–1403.

[64] I. C. Yeh and C. H. Lien. “The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients”. In: Expert systems with applications
36.2 (2009), pp. 2473–2480.

20

https://arxiv.org/abs/1904.01685
https://arxiv.org/abs/1803.01314
https://arxiv.org/abs/1312.6199
https://doi.org/10.1155/2018/7068349

[65] B. Zadrozny and C. Elkan. “Learning and making decisions when costs and probabilities
are both unknown”. In: Proceedings of the 7th ACM SIGKDD international conference on
knowledge discovery and data mining. 2001, pp. 204–213.

[66] B. Zadrozny and C. Elkan. “Transforming classifier scores into accurate multiclass probability
estimates”. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge
discovery and data mining. 2002, pp. 694–699.

[67] J. Zhang and Y. Yang. “Probabilistic score estimation with piecewise logistic regression”. In:
Proceedings of the 21st international conference on machine learning. 2004, p. 115.

[68] B. Zhu et al. “A hybrid deep learning model for consumer credit scoring”. In: 2018 Interna-
tional conference on artificial intelligence and big data. 2018, pp. 205–208.

[69] M. Zhussip, S. Soltanayev, and S. Young Chun. “Extending Stein’s unbiased risk estimator
to train deep denoisers with correlated pairs of noisy images”. In: arXiv preprint (2019).
arXiv: 1902.02452.

[70] H. Zou, T. Hastie, and R. Tibshirani. “On the “degrees of freedom” of the lasso”. In: The
annals of statistics 35.5 (2007), pp. 2173–2192.

[71] Q. Zou et al. “Finding the best classification threshold in imbalanced classification”. In: Big
data research 5 (2016), pp. 2–8.

A Derivatives of the sigmoid function

Gθ(p̂i) =
1

1 + eθ1p̂i+θ2

∂Gθ(p̂i)

∂p̂i
= θ1Gθ(p̂i)(1−Gθ(p̂i))

∂Gθ(p̂i)

∂θ1
= p̂iGθ(p̂i)(1−Gθ(p̂i))

∂Gθ(p̂i)

∂θ2
= Gθ(p̂i)(1−Gθ(p̂i))

∂Gθ(p̂i)

∂p̂i∂θ1
= Gθ(p̂i)(1−Gθ(p̂i)) + θ1p̂iGθ(p̂i)(1−Gθ(p̂i))(1− 2Gθ(p̂i))

∂Gθ(p̂i)

∂p̂i∂θ2
= θ1Gθ(p̂i)(1−Gθ(p̂i))(1− 2Gθ(p̂i))

21

https://arxiv.org/abs/1902.02452

B Derivatives of the Kumaraswamy cumulative distribution

Gθ(p̂i) = 1− (1− p̂iθ1)θ2

∂Gθ(p̂i)

∂p̂i
= θ1θ2p̂i

θ1−1(1− p̂iθ1)θ2−1

∂Gθ(p̂i)

∂θ1
= θ2 log (p̂i)p̂i

θ1(1− p̂iθ1)θ2−1

∂Gθ(p̂i)

∂θ2
= − log (1− p̂iθ1)(1− p̂iθ1)θ2

∂Gθ(p̂i)

∂p̂iθ1
= θ2(p̂i

θ1−1(1− p̂iθ1)θ2−1 (1 + θ1 log (p̂i))− θ1p̂i2θ1−1(θ2 − 1)(1− p̂iθ1)θ2−2 log (p̂i))

∂Gθ(p̂i)

∂p̂iθ2
= θ1p̂i

θ1−1(1− p̂iθ1)θ2−1(1 + θ2 log (1− p̂iθ1))

22

	Introduction
	Experimental setting
	The dataset
	Feature importance assessment
	Choosing the right evaluation metric
	Models
	Logistic regression
	Feed forward neural network

	Probability calibration
	Literature review
	Platt scaling
	A SURE framework for calibration
	General framework
	Choice of the calibration function
	Estimation of the noise variance
	Numerical approximation framework

	Calibration evaluation

	Empirical results
	Comparison of models
	Evaluation of the calibration

	Conclusion
	Derivatives of the sigmoid function
	Derivatives of the Kumaraswamy cumulative distribution

