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Abstract
This article focuses on a passive self-management of the umbilical of a Removed Operated Vehicle (ROV) for
underwater exploration. The objective is to give a predictable shape to the umbilical using moving ballast and buoys to
stretch the umbilical and so to avoid knots on the cable itself or with environmental obstacles. The ballast and buoys
move by themselves to maintain the cable taut without a motorized system. A model of the umbilical is proposed. Case
with and without currents are considered. Three configurations of umbilical are proposed, each one to be the most
adapted for ROV exploration missions: close-surface, sea exploration, and diving with presence of large obstacles.
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1 Introduction

The underwater umbilicals are used to link a submarine
Remotely Operated Vehicle (ROV) to a control unit
or a Human-Machine interface usually placed on boat.
This umbilical, or tether, can have three objectives: first
the transmission of data in real time in both directions,
i.e. real-time video feedback, control orders, instrument
measurements... (see [5]), second provide energy for the
ROV to supply it completely or to increase its autonomy,
third not loose the robot during the exploration [17].
Umbilicals have however many problems like collision
with obstacle, umbilical inertia and drag forces impacting
the maneuverability of the ROV, knot formation, cable
breakage due to its own mass or vehicle mass, etc... .
Umbilical is therefore a trade-offs between the umbilical
constraint, battery power and real-time feedback in the ROV
performance [6].

To solve these constraints, the umbilical have been
modeled, equipped and instrumented to provide a feedback
on its position and form. Two main categories of methods can
be observed in the literature: the detection of the umbilical
using vision [15, 14, 16] and/or sensor placed directly on/in
the umbilical to obtain a feedback on its shape [10, 7], or a
direct modeling of the umbilical using only boat and ROV
position [11, 12, 9], sometimes with an a-prior knowledge
of underwater current. The main advantage of the first
category is the accuracy of the model obtained, often in real
time. However, these strategies requires specific umbilical
equipment often expensive with a complex installation of
the sensors. The second category have the advantage to be
implementable for all kind of umbilical, but are often less
accurate and can not always provide results in real-time.

Several methods exist to model the cable shape and
dynamic, from the simplest geometrical model like catenary
curve [19] or the chain of segments with geometrical
constraints like in [11]. These methods are perfect to

simulate a large number of segments in real-time and
are memory efficient when an accurate physical model
is not necessary. When an accurate knowledge of the
cable dynamic is required, Lumped-mass-spring method
[4, 12, 13] and segmental method [8, 9, 2] are the most
used methods. The first method models the umbilical as
mass points joined together by massless elastic elements,
the second describes the cable as a continuous system and
numerically solves resulting partial differential equations.

The umbilical can also be equipped. A TMS (Tether
Management System), a system of winches controlled by
a human operator and attached to the ROV housing cage
[1], can so be used to regulate the amount of tether cable
and so keep the umbilical taut. This system is however
heavy for the cable when it is operating underwater, and
its operation can be a complex task. Some works try to
automate or replace it by an other vehicle like a USV
[20], secondary ROV or several ROVs [16] or a motorized
plug/float assembly [3]. However, all these systems required
to be managed automatically by an operator in real time,
using the knowledge of several current ROV’s parameters
like its position.

This paper proposes a passive self-management of the
umbilical of a ROV for underwater exploration using moving
ballasts and buoys without motorization. Since the shape of
the umbilical can be complex to predict when it can move
freely, we propose to add ballasts and buoys to introduce
tension inside the cable and stretch it, and so make its shape
assimilated to straight lines predictable. In this perspective,
this paper proposes

• three equipment of the umbilical for three ROV
missions : exploration of hull boat and close-surface,
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exploration of sea-ground, and diving exploration with
presence of large obstacles.

• to use ballasts and buoys to tend the umbilical and so
obtain a model of the umbilical simple to compute,

• the delimitation of areas where the ROV can evolve
without risk of knot on the cable itself,

• a passive self-management of the umbilical without
motorization nor TMS.

In opposite with [3], the ballast and buoys are not
motorized and move by themselves to maintain the cable taut
using only weight and Archimedes strength. The umbilical
is modeled using geometrical relations and fundamental
principle of static for an approach faster and lighter to
compute than lumped-mass-spring method or segmental
methods studied in [4, 12, 9, 8]. In absence of current, the
only required feedback is the ROV position and a limitation
of its acceleration in some directions. Case with currents
will require knowledge of their strength and orientation to
evaluate the shape of the umbilical, but are not required to
evaluate areas where absence of knots in the umbilical is
guaranteed.

The Section 2 exposes the related work. The problematic
and the hypotheses taken in this paper are described in
Section 3. The management of the umbilical for surface
exploration is presented in Section 4. The management of
the umbilical for sea exploration without horizontal currents
is exposed in Section 5. The subsections 5.2 and 5.4
described its geometrical and dynamical model. Restricted
areas guaranteeing the umbilical is always taut are described
in Section 5.4, and the rigidity of the umbilical is studied
in Section 5.6. The two-dimensional case with horizontal
current is exposed in Section 6, following by the three-
dimensional case with horizontal current in Section 7. The
last management of the umbilical for diving exploration with
presence of large obstacles is described in Section 8. The
Section 9 and 11 discuss of the validity of the previous
models and hypotheses taken, based on experimentation.
Finally, the Section 12 concludes this work.

2 Related work

2.1 Cable modeling
Several methods exist to model the cable shape and dynamic.
The simplest model is catenary curve [19], referring to a non-
rigid flexible cable whose weight in water is greater than
the buoyancy force. Nevertheless, when the cable are very
long or heavy, more parameters like bending stiffness must
be taken into account. In other methods like [11], neutrally
buoyant cables are considering, allowing to ignore gravity
and buoyancy strength. The umbilical is represented as a
long chain of segments with geometrical constraints between
them to take into account rigidity inside the umbilical.
When it is not necessarily be physically accurate neither
considering dynamic of the cable, these geometrical models
allow a fast calculation and are memory efficient.

To obtain a dynamical and physically accurate cable
model, two main kind of methods exist [2]: lumped-mass-
spring method [4, 12, 13] and segmental method [8, 9].
First method models the umbilical as mass points joined
together by massless elastic elements. This approach is very

useful for elastic cables but requires large computational
resources. The segmental method describes the cable as
a continuous system and numerically solves resulting
partial differential equations. These two methods focus
on the cable dynamics in simple environments with few
forces: gravity, buoyancy, hydrodynamic drag, environment
inertial force, axial tension, twisting force and bending
force. In [9], a three-dimensional ROV-cable model is
presented using Euler-Bernoulli beam theory, modified
to allow the compression of the cable. The model is
verified experimentally and shows good agreement with the
experimental results.

2.2 Cable instrumentation
The umbilical can be equipped and instrumented to provide
a feedback on its position and shape. Two main categories
exist in the literature: the detection of the umbilical using
vision [15, 14, 16], and sensors placed directly on/in the
umbilical [10, 7]. These methods allow an accurate model,
often in real time, but requires specific umbilical equipment
often expensive and complex to install.

In [10], a method named “Smart Tether” gives the shape
and the motion of the cable in real time using IMU
sensor nodes embedded in the umbilical itself. The main
inconvenient of this method, in addition to the difficulty of
setting up the sensors and their price, is these nodes induce
an irregular shape along the cable, causing problems for
winding. In [7], optic fibers are braided within the umbilical
and use the interferometry properties to monitor the curve of
the whole cable in 3D in real time. Again, this solution has a
very high cost again (about 200 000 euros for 50 m length).

For exploring shallow waters, [16] proposes an umbilical
composed of mini-ROVs following each other. The shape of
cable is controlled by i) the detection of the cable shape using
cameras behind the ROV through a color segmentation,
see [15, 14], ii) the regulation of the distance between
the successive ROVs. Umbilical 3-D shape parameters are
estimated in real-time thanks to a curve fitting procedure
based on the Gauss-Newton algorithm and then regulated on
the cable model based on catenary model or straight line.

Additional components such as TMS, ballasts, buoys or
intermediate cables can also be used as dampers to avoid
undesired forces on the ROV due to waves/currents or the
umbilical weigh. For deep and ultra-deep-water operation
for example, [18] proposes alternative configurations for
minimizing the tension in the umbilical and reduce the risk of
snap, like installing a series of floaters along the umbilical.
Three different configurations are numerically investigated
and compared. However, the floaters increase the offset of
the ROV by making the cable more sensible to currents. The
most classic equipment is the TMS, a system of winches
attached to the ROV housing cage which regulates the
amount of cable [1]. It allows to the robot to move in the
working area while keeping the umbilical taut. When the
TMS is placed underwater, it acts as a ballast to reduce the
ROV offset due to current and wave. However, during ROV
operation in deep and ultra-deep waters where total self-
weight of the umbilical and ROV is close to the cable limit
of the resistance, the elimination of the TMS is a reasonable
alternative. TMS can also be set up on the boat to avoid this
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problem, but its influence on the cable is much more limited.
Finally, TMS is problematic to wind when the umbilical is
equipped with buoys or ballasts.

Since the operation of a TMS is a complex task which can
be similar to control a secondary ROV, some works try to
automate it or replace it by an other vehiche (USV, secondary
ROV... see [16, 3, 20]). In [3], a motorized plug/float
assembly moves on the umbilical to change the buoyancy
of this one, even drop the ROV to become temporary an
AUV. A TMS on the boat regulates the cable length. If this
system is efficient and allows an important adaptation, it is
huge, expensive and can not be adapted for all kind of ROV
or exploration. In [20], the system is composed of an USV
with an embedded winch, an umbilical and a ROV to offer
several ways to manage the cable. The distance between the
USV and the ROV is adapted to stretch or loose the umbilical
and so avoid collision between the umbilical and underwater
obstacle. A method to model its mechanical behavior is
proposed, based on a segmental method.

3 Problematic and hypothesis
Let define the referentialR of origin O = (0, 0) correspond-
ing to the coordinate of the boat where the first extremity of
the umbilical is attached. R = (x, y) are the coordinates of
the ROV, corresponding to the second extremity of umbilical.
The vertical axis is oriented to the ground, so for two
(y1, y2), y1 > y2 means y1 is deeper than y2 and y = 0
corresponds to the sea level.

In absence of tension between its two extremities, a cable
takes an irregular shape only limited by its length and its
rigidity. In the most shallower dives, a ballast is hung on
the umbilical at a defined length to stretch the cable between
the boat and the ballast. When the ROV is too close to the
ballast, the cable between them floats/falls freely, taking the
shape of a bell, subject to entanglement. To pull the cable
taut independently of the ROV position, we propose to add
an other item on the umbilical.

Since the buoys and ballasts move in opposite direction,
alternating the attachment of buoy and ballast on the cable is
a good solution to stretch it. However, a ballast/buoy linked
to several cables (two parts of the same umbilical in our
case) at fixed distances can only taut one of them in most
cases, several only in particular configuration. In opposite,
a ballast/buoy which can move freely along the cable will
always stop its position at the lower/higher point where it
stretches the both parts of the cable simultaneously.

This paper proposes several configurations alternating
ballasts and buoys, fixed or moving freely along the
umbilical to stretch it. Its shape can so be assimilated to
configurations of predictable straight lines, where the rigidity
of the cable can be modeled by minimal angles between
lines. The main advantage of this method is the umbilical
is self-managed without motorization and without TMS,
using only gravity and Archimedes strength, with a shape
predictable at the equilibrium.

Some parameters and particular configurations must
however be considered. A ballast heavier than a buoy can
makes it dives, and opposite. The action of the ballast on the
umbilical becomes equal to a pulley if it is in contact with the
sea-ground, same remark with the buoy reaching the surface.

Since a large number of configurations exist (different
number of ballasts, buoys, distances fixed between them or
sliding, difference of weight...) and most do not guarantee
to stretch the umbilical satisfactorily, this paper focus on
three chosen configurations with good performances for
three different missions: hull boat exploration and close-
surface exploration, sea exploration, and diving exploration
with presence of large obstacles. Theses configurations will
be exposed in the next sections and are briefly illustrated in
Figure 1.

The following assumption are considered in all the study:

A1) The ratio mass/buoyancy of the umbilical is negligible
compare to the ballasts’ weight and the buoys’ buoyancy
used in the configuration.

A2) The length of the cable is such that it is reasonable
to neglect the length variation of umbilical, considered as
constant.

A3) When the umbilical is taut, its geometry can be
assimilated to straight lines between defined points, here the
ballasts, the buoys, the boat and the ROV. The rigidity of
the cable can be modeled by a minimal angle θmin between
them, described in Section 5.6.

A4) Consider the ROV is enough strong and controllable
to compensate action of the ballasts and buoys and so (x, y)
is perfectly fixed when ROV is not moving.

A5) Let P = mmg − Fcy,m be the strength of the ballast
m used in our system, with mm the mass of the ballast,
g is the gravity constant, and Fcy,m be the strength of the
vertical current apply on the ballast M where Fcy,m < 0
pushes down to the seafloor and Fcy,m > 0 pushes up to the
surface. One assumes that P > 0, i.e. the ballast’s weight is
stronger than the vertical current.

A6) Let Fbi = (ρwaterVbi −mbi) g + Fcy,bi be the
strength of the buoy bi used in our system, with mbi the
mass of the buoy, Vbi its volume, ρwater the volumetric mass
of the water, and Fcy,bi the vertical current applied at the
buoy position where Fcy,bi < 0 pushes down to the seafloor
and Fcy,bi > 0 pushes up to the surface. One assumes that
∀i ∈ [1 . . . N ], Fbi > 0, i.e. the buoy’s buoyancy is stronger
than its weight and the vertical current strengths.

A7) When a ballast/buoy is considered to move freely on
the umbilical, one assumes that there is no friction between
the umbilical and the ballast/buoy.

The validity of these hypotheses in practical cases,
specifically Assumption A4 and A7, will be discussed in
Section 11. Remark if hypothesis A5 or A6 are not respected,
the ballast/buoy can not have an action on the umbilical.

4 Umbilical for surface exploration
This section exposes a simple strategy of self-management
of the umbilical to explore close to the surface, such as
inspection of boat hull, navigation under uniform ice floe,
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(a) Surface Exploration (b) Sea Exploration (c) Diving exploration

Figure 1. Methods exposed in this works. Square: ballast.
Circle: buoy. ”x”: fixed ballast/buoy. ”o”: slidding ballast/buoy.
Other parameters will be exposed in futur sections.

Figure 2. Parameters for Surface Exploration. M : sliding
ballast. Black dash line: area where the ROV can move with its
umbilical of length L. Black line: ellipse of centers O and R.
Green dash line: longest diameter of the ellipse.

etc... . In this configuration, the umbilical remains taut and
below the ROV to not disturb it. This configuration is not
adapted for seafloor exploration: next sections will proposed
strategies for these cases.

Consider in this configuration an umbilical of length L
with a sliding ballast M which can move freely between
the two extremity of the umbilical, i.e. the ROV and the
boat, as illustrated in Figure 2. Let α and β be respectively
the oriented angle between the sliding ballast and the boat,
and between the sliding ballast and the ROV. The parameters
are illustrated on the Figure 2. In a configuration where the
ballast is not in contact with the sea-ground or an obstacle,
the umbilical is taut and the system can be expressed such

x = l1 sin (α)− l2 sin (β) (1)
y = l1 cos (α)− l2 cos (β) (2)

with L = l1 + l2 where l1 = ||OM || and l2 = ||MR||.
If the environment is free of obstacles, the ROV can

move in the area corresponding to the half circle C (O,L) of
radium L and center O, so x ∈ [−L,L] and y ∈ [0, L]. The
ROV must however pass through the position (0, L) to switch
from the areas [−L, 0] and [0, L] without creating a knot
around the ballast M which would block its displacement.

4.1 Configuration without horizontal current
Consider in a first time there is no horizontal current, vertical
current being considered by Assumption A5.

The ballast M is sliding freely on the umbilical of
fixed length L, link to the boat and the ROV: due to
the umbilical limitation, the ballast can be only inside the
ellipse E1 of centers O and R and radius r1 = L

2 and

r2 =

√(
L
2

)2 − x2+y2

4 , and the umbilical is stretched only
when the ballast is on the ellipse periphery, as illustrated in
Figure 2. Considering Assumption A5 and A7, in absence of
horizontal current and since the ballast is sinking, the ballast
position is the lowest position and ellipse properties show
that

α = −β (3)

Using (3), (1)-(2) becomes

x = L sin (α) (4)
y = (l1 − l2) cos (α) . (5)

Since x ∈ [−L,L] and y ∈ [0, L], one can deduce from
(4)-(5) that

α = asin
( x
L

)
(6)

l1 =
1

2

L+
y√

1−
(
x
L

)2
 (7)

l2 = L− l1 (8)

Proofs of (6)-(8) are provided in Appendix A.1.
Minimum seafloor depth or ROV diving

Let note yfloor the minimum depth inside the circle C (O,L)
due to the environment, in most case the seafloor or a rock
put on the sea floor. The system (4)-(5) is valid only if the
ballast stretches the umbilical, so if the ballast has no contact
with the sea-ground or with an obstacle. This condition is
always satisfied if yfloor ≥ L. In other case, since the ballast
is always lower than the ROV level, let define the limit depth
ylim (x) for a given position x which guarantee the ballast is
always higher than yfloor if y ≤ ylim (x).

In absence of current, following steps exposed in
Appendix A.2, ylim (x) can be expressed such

ylim (x) = 2yfloor − L
√

1−
( x
L

)2

. (9)

(9) is illustrated in Figure 3. Remark (9) doesn’t take into
account the geometries of the ballast which hangs below the
umbilical in practice, as illustrated in Figure 3. The limit
ylim (x) must therefore be raised such that

ylim (x) = 2 (yfloor − hM )− L
√

1−
( x
L

)2

(10)

where hM is the ballast height. Remark also if the position x
is unknown, a simple condition to guarantee its hypothesis is
to take ylim = 2 (yfloor − hM )− L.

4.2 Configuration with horizontal current
Consider now the presence of horizontal current. Let Fcx,m
be the strength of the horizontal current applied on the ballast
M of mass m on the axis Ox, where Fcx,m > 0 corresponds
to a current in the direction ~Ox. Consider P the strength of
the ballast respecting Assumption A5. Finally, let Ftp be the
sum of strength P and Fcx,m with ψP,x its orientation such

Ftp =
√
P 2 + F 2

cx,m (11)

ψP,x = atan
(
Fcx,m
P

)
. (12)
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Figure 3. Limit depth ylim which guarantee the ballast is not in
contact with the seafloor for Surface Exploration. M : sliding
ballast. The dash magenta line: ylim. Large black line: seafloor
yfloor. Red line: l1. Blue line: l2.

Figure 4. Parameters for Surface Exploration with horizontal
current. M : sliding ballast. Black dash line: area where the ROV
can move due to the umbilical length. Solid black line: ellipse of

centers O and R and radius L
2

and
√(

L
2

)2 − x2+y2

4
.

Since the ballast M is still sliding on the umbilical, its
position is on the ellipse E1 defined in Section 4.1 and so Ftp
creates in the umbilical two angles ᾱ identical as illustrated
in Figure 4 such

ᾱ = α− ψP,x (13)
ᾱ = ψP,x − β (14)

leading to
α = 2ψP,x − β. (15)

Remark (15) is equal to (3) when Fcx,m = 0. Using
(15) and a rotation of the referential R as described
in Appendix A.3, one gets the new expression of the
parameters:

α = asin
(
x cos (ψP,x)− y sin (ψP,x)

L

)
+ ψP,x (16)

l1 =
1

2

L+
y cos (ψP,x) + x sin (ψP,x)√
1−

(
x cos(ψP,x)−y sin(ψP,x)

L

)2

 (17)

and l2 = L− l1, β = 2ψP,x − α.
A new limit depth ylim noted ȳlim can be defined in

this configuration. However, since the current pushes the
sliding ballast upward, the new limit depth ȳlim is higher
than ylim described for case without current, i.e. ȳlim ≤ ylim.

Since the current can be irregular making the position of M
varying between its positions with and without current, it is
recommend to use only ylim as limit depth.

The same comment can be made for the 3 dimensions case.
The presence of a current Fcz,m perpendicular to the plan
(O, x, y) pushes the sliding ballast upwards: the limit ylim

is so still a sufficient requirement to guarantee the sliding
ballast will not touch the seafloor and so the umbilical will
stay taut. Note the 3D model is not trivial to solve even
for this simple configuration, but this sufficient requirement
avoids to solve it. Note also 2D model is applicable for
3D case in absence of horizontal current by choosing the
referential such ~Ox corresponding to the projection of ~OR
on the surface, the ballastM being always inside (O, x, y) at
the equilibrium.

5 Umbilical for Sea exploration without
horizontal current

This section exposes a simple strategy of self-management
of the umbilical to explore the sea and the seafloor. The
proposed configuration for this strategy is the following one:
a ballast fixed on the umbilical at a constant distance of the
boat, and a buoy which can move freely between the ballast
and the ROV. The umbilical remains taut as long as the ROV
does not enter in a defined forbidden area. In opposite with
the strategy proposed in Section 4, the ROV can evolve close
to the seafloor in a large area, but its movements are restricted
when it is close to the surface. In this section, the problem
is studied only for the two dimensional case (2D case) and
without horizontal current. The presence of current will be
added in Section 6 and three dimensional case (3D case) will
be studied in Section 7.

5.1 Introduction of the geometrical model and
restricted areas

Consider in this configuration an umbilical of length l divides
in two parts: a first part of length l1 betweenO and the ballast
M fixed on the umbilical, i.e. ‖OM‖ = l1, and a second
part of length L where the buoy B can move freely between
the ballast and the ROV. Similarly to the problem studied
in Section 4, L can be divided in two lengths l2 = ‖MB‖
and l3 = ‖BR‖ corresponding to the lengths of the left side
and right side of the buoy, where L = l2 + l3. Let γ be
the oriented angle between the boat and the ballast M . The
oriented angles α and β are respectively the angle between
the ballast and the buoy, and between the buoy and the ROV.
Parameters are illustrated in Figure 5.

Since the ROV can not go higher than the sea level and
to avoid node between l1 and L, the ROV can move in the
area corresponding to the quarter of the circle C (O, l) of
radium l = l1 + L and center O, so x ∈ [0, l] and y ∈ [0, l]
(the area [−x, 0] will be discussed later in the section). In a
configuration where the umbilical is taut, the system can be
expressed such

x = l1 sin (γ)− l2 sin (α) + l3 sin (β) (18)
y = l1 cos (γ)− l2 cos (α) + l3 cos (β) (19)
L = l2 + l3. (20)
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Figure 5. Parameters for Sea Exploration. M is the fixed
ballast and B the sliding buoys. In the example here, P = 3Fb.
The blue, magenta, red lines correspond to l1, l2, l3. Black dash
line: area where the ROV can move with its umbilical length.

where l1 and L are fixed and known, L ≥ l2 ≥ 0 and L ≥
l3 ≥ 0.

Similarly to the problem studied in Section 4, the buoy
finds its position on the ellipse E2 as long as it does not
touch the surface (this condition will be studied below).
M and R are the centers of E2, with the two radius L

2

and
√(

L
2

)2 − (x−xM )2+(y−yM )2

4 where (xM , yM ) are the
coordinates of the ballast M . In absence of horizontal
current, ellipse properties show that

α = −β. (21)

In function of the ROV position, six areas corresponding to
specific umbilical configurations can be observed, illustrated
in Figure 6:

• Area A: standard behavior of the system. The
umbilical is perfectly taut by the action of the ballast
and the buoy with γ > 0, l2 > 0, l3 > 0.

• Area B: the buoy is on the surface but the ballast
can still taut the cables l1 and L, with γ ≥ 0, l2 > 0,
l3 > 0. Note Area B does not exist if L < l1.

• Area C: two cases are possibles

– if L ≥ l1, the buoy is on the surface and ballast
can not taut the cable L,

– if L < l1, the cable l1 is not taut because the
ROV is too close to the surface for the ballast can
stretch l1 and L (the only solution of the system
(18)-(20) is γ < 0 for x > 0, impossible in
practice without horizontal current). Moreover,
the buoy is in contact with the ROV.

This configuration must be avoid by the ROV.
• Area D1: the umbilical is taut and the buoys is in

contact with the ROV, so l2 = L and l3 = 0.
• Area D2: the umbilical is taut and the buoys is in

contact with the ballast M : l2 = 0 and l3 = L.
• Area E: area inaccessible due to the length l.

The system is considered to be inside an area if the ROV
coordinate (x, y) is inside this area. The ROV must not
enter in the area C because the umbilical cannot be taut
inside, making the model (18)-(20) invalid and allowing the
appearance of knots. In case where this strategy of self-
management of the umbilical is used without need to model

(a) Classic configuration of the
umbilical for L = 2l1

(b) Classic configuration of the
umbilical for l1 = 10L

(c) Buoy on the surface with l1 still
stretch (γ > 0).

(d) Buoy in contact with the ballast
(l2 = 0, l3 = L) or the ROV
(l2 = L, l3 = 0)

Figure 6. Different areas for Sea Exploration. Green dash line:
area C. Red dash line: area B. Blue dash lines : areas D1 and
D2. Black dash line: area E. Note the area B does not exist in
sub-figure b.

the umbilical in real time, the operator only need to know
the areas C and E. All areas are required only to model the
umbilical, its shape being different in each area. The shape of
the areas depends on different parameters, as it will be shown
in Section 5.4.

5.2 Dynamic model
In this section, the ROV is supposed to be inside the area A.
Results exposed are not valid in others areas, which will be
studied in next sections.

To solve the system (18)-(20), the dynamic of the system
is studied at its equilibrium. Let define P and Fb the
strength applied on the umbilical by the ballast and the buoy,
following assumptions A5 and A6. Moreover, suppose the
ballast and the buoy are chosen respecting the following
Assumption A8:

Assumption A8) The masses and buoyancy of the ballast
and the buoy are chosen such

P ≥ Fb max

([
1,

1

2

(
l1
L

+ 1

)])
. (22)

This constraint will be shown and used in the appendices,
and are only used in this section and Section 6 (case with
horizontal current).

In system (18)-(21), the unknown parameters are l2, l3, α,
β and γ. Since the system (18)-(21) provides 4 equations, a
last one must be found. Considering Assumptions A1 to A8,
let perform the fundamental principle of static on M and B,
as illustrates in Figure 5:

ΣM ~F = P~y + ~T1 + ~T2 (23)

ΣB ~F = −Fb~y − ~T3 − ~T2 (24)
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where ~T1, ~T2 and ~T3 are the tension of the umbilical applied
on the ballast and the buoy.

Following steps described in Appendix B.2, one can show
that

tan (β) = Λ tan (γ) . (25)

where Λ = 2 P
Fb
− 1 and remark Λ ≥ 1 because P ≥ Fb.

Adding (25) to (18)-(21), One now has enough equations
to solve the system (18)-(20) inside the area A.

5.3 Umbilical model solved in area A
In this section, let’s consider the ROV is inside the area A.
The Theorem 1 describes the value of parameters γ, α, β,
l2 and l3. For this section and the following ones, let not
γA the evaluation of γ inside the area A, as described in the
following theorem.

Theorem 1. Consider the system (18)-(20) with (x, y) ∈
[0, l]

2 and where (x, y) is inside the area A, i.e. l2 > 0,
l3 > 0. Considering also the Assumption A8 and the absence
of horizontal current, i.e. (25) and (21). The angle γ can be
expressed γ = γA such

a) if x = 0, the only geometrical solution without current
is γA = 0,

b) if P = Fb, one has Λ = 1 and γA can be expressed as

sin (γA) =
x

l
. (26)

c) if P > Fb and x > 0, γA can be expressed as

sin (γA) = min
i∈[1,2,3,4]

(|Xi|) (27)

where{
X1 =

√
U− 2

3
A−
√

∆Y 1

2
, X2 =

√
U− 2

3
A+
√

∆Y 1

2
if ∆Y 1 ≥ 0,

X1 =∞, X2 =∞ else,
(28){

X3 =
−
√
U− 2

3
A−
√

∆Y 2

2
, X4 =

−
√
U− 2

3
A+
√

∆Y 2

2
if ∆Y 2 ≥ 0,

X3 =∞ X4 =∞ else,
(29)

with ∆Y 1 = −
(
U + 4

3
A+ 2B√

U− 2
3
A

)
,

∆Y 2 = −
(
U + 4

3
A− 2B√

U− 2
3
A

)
and

A = − x
2

2l21
−
(
L2Λ2 − l21

)
l21 (Λ2 − 1)

(30)

B = − l
2
1 + L2Λ2

l31 (Λ2 − 1)
x (31)

C =
x4

16l41
+
x2
(
l21 − L2Λ2

)
4l41 (Λ2 − 1)

(32)

U =

(
− q

2
+
√

q2

4
+ p3

27

)1/3

+

(
− q

2
−
√

q2

4
+ p3

27

)1/3

if ∆U > 0,

2 cos

 1
3

acos

− q

2

√
− p

3

27

√− p
3

if ∆U < 0,

−
√
− p

3
if ∆U = 0

(33)

and ∆U = q2

4 + p3

27 , p = −4C − A2

3 and q = 2A3

27 +(
4AC −B2

)
+ −4CA

3 . Moreover, other parameters can be
expressed such

β = atan (Λ tan (γA)) (34)

l2 =
L

2
− y − l1 cos (γA)

2 cos (β)
, (35)

and l3 = L− l2, α = −β.

The proofs of Theorem 1 are described in Appendix B.3
and B.4. If several configurations must be considered to
evaluate γ in Theorem 1, a solution always exists and the
solution is analytic, so can be evaluated quickly.

The Theorem 1 is evaluated for x ≥ 0. Since the
system (18)-(20) is symmetric for [0, x] and [−x, 0] in
absence of horizontal current, the following corollary can be
made.

Corollary 1. In absence of horizontal current, the
system (18)-(20) is symmetric for [0, x] and [−x, 0], and
the Theorem 1 can be extended to the case x < 0 by taking
|x| instead of x inside the Theorem 1 and take the solution
sin (γA) = mini∈[1,2,3,4] (|Xi|) sgn (x).

If Corollary gives a solution for areas (x, y) ∈ [0, l]×
[0, l] and (x, y) ∈ [−l, 0]× [0, l], the ROV must however
pass through the position (0, L) to switch from the two areas
to not create a knot around the buoy B, which would block
its displacement.

5.4 Evaluation of the areas
To solve completely the geometrical model (18)-(20), the
different areas must be considered because they represent
particular geometrical configurations. This section present
the boundaries of areas B, C, D1, D2 and E, area A
corresponding to the default configuration. The calculation
of these boundaries is described in Appendix B.6.

The boundary yareaB (x) between the areas A and B
correspond to the depth where the buoy is in contact with
the surface y = l3 cos (β), with l3 ≥ 0. The area B does not
exist if L < l1 because the buoy can not reach the surface
without let the cable l1 becomes loose (area C) or come
in contact with the ROV (area D1). Following step from
Appendix B.6.1, yareaB (x) can be expressed as

yareaB (x)

=

 max

(
L−l1
√

1+(Λ2−1) sin(γA(x))2√
1+Λ2 tan(γA(x))2

, 0

)
0

if L ≥ l1,
else.

(36)

The area C is in contact with 1) the areas B if L ≥ l1, when
the buoy is on the surface but ballast can not taut the cable L,
2) the areas A or D1 if L < l1, when the cable l1 is not taut
because the ROV is too close to the surface. Following step
from Appendix B.6.2, yareaC (x) can be expressed as

yareaC (x)

=


√
l21 − x2 − L√
L2 − x2 − l1

0

if
(
|x| <

√
l21 − L2

)
& (l1 > L) ,

if
(
|x| <

√
L2 − l21

)
& (L > l1) ,

else.
(37)
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In area D1, the buoy is in contact with the ROV, so l3 = 0 and
l2 = L. Following step from Appendix B.6.3, yareaD1 (x)
can be expressed as

yareaD1 (x) = max

 l1
√

1 + (Λ2 − 1) sin (γA (x))2 − L√
1 + Λ2 tan (γA (x))2

, 0

 .

(38)
In area D2, the buoy is in contact with the ballast, so
l3 = L and l2 = 0. Following step from Appendix F.4.3,
yareaD2 (x) can be expressed as

yareaD2 (x) = max

 l1
√

1 + (Λ2 − 1) sin (γA (x))2 + L√
1 + Λ2 tan (γA (x))2

, 0

 .

(39)

Finally, since the area E corresponds to the limit of the
umbilical length, yareaE (x) can be expressed as described
in Appendix B.6.5 such

yareaE (x) =
√
l2 − x2. (40)

Note limits yareaB (x) and yareaC (x) between areas B
and C described above don’t take into account the geometries
of the buoy which, in practice, hang above the umbilical as
illustrated in Figure (3). For a given x, the area B and C must
so be lowered such

yareaB (x) =ȳareaB (x) + hB (41)
yareaC (x) =ȳareaC (x) + hB , (42)

where hB is the height of the submerged part of the
buoy when the buoy floats freely on the surface without
constraints, ȳareaB and ȳareaC are evaluated using (36) and
(37).

As shown in (36)-(40) and illustrated on Figure 23 in the
Appendix, areas C and E depend of l1, L and x, and areas
B, D1 and D2 depend of l1, L, x, γA,P and Fb. The area B
converges to area C when the ration P

Fb
increases, and area C

increases with the discrepancy between l1 and L, and do not
exist if l1 = L. Note areas C and E depend only of l1, L and
x, so can be modelled easily. Since the umbilical is stretched
when, the ROV stays outside the area C, area C is a sufficient
information for an operator to avoid knot.

Minimum seafloor depth
The previous areas show the minimum depth where the

ROV must dive to guarantee the umbilical stay taut due to the
presence of the buoy, but assumes that the depth is sufficient
in all cases. In practice, conditions on the minimum deep
yfloor must also be respected.

Let note yfloor the minimum depth inside the circle C (O, l),
in most cases the seafloor or a rock put on the sea floor.The
system (18)-(19) is valid only if the two following conditions
are respected

1. The ballast has no contact with the sea-ground or with
an obstacle during its displacement, so yfloor must be
lower than the circle of center O and radius l1,

2. The ROV does not go inside the area C defined
previously, so yfloor (x) ≥ yareaC (x).

Thus, for a given position x, the minimum seafloor depth
yfloor (x) can be expressed as

yfloor (x) ≥max ([yareaC (x) , yballast (x)]) (43)

where
yballast (x) = hM +

√
l21 − x2 (44)

with hM is the ballast height. Note (43) is always satisfied if
the seafloor respects the following condition

yfloor ≥hM + max ([l1, L− l1]) . (45)

5.5 Umbilical model solved for all areas
As exposed in Section 5.4, the different areas must be
considered because they represent particular geometrical
configurations. In areas D1 or D2 for example, angle β or
α does not exist because the distances l2 or l3 are equal to
zero. Let first define γD the value of γ outside the area A:

1) If y 6= 0, γD can be expressed as

sin (γD) =
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(46)

with aD =
x2+y2+l21−L

2

2yl1
and bD = x

y .
2) else, y = 0, γD can be expressed as

sin (γD) =
x2 + l21 − L2

−2l1x
. (47)

Note one has x 6= 0 because the ROV can only be inside the
area A or C if x = 0, so γD does not exist if x = 0.

The following Theorem 2 exposes the evaluation of the
parameters γ, α, β, l2 and l3 in function of the area where
the ROV is located.

Theorem 2. Consider the system (18)-(20) for (x, y) ∈
[0, l]

2 and y < yareaE (x). Considering the assumption A8
and the absence of current, i.e. (25) and (21), one gets

(1) if y < yareaC (x), the model is not valid and the
system (18)-(20) cannot be solved.

(2) else if yareaB (x) 6= 0 and yareaC (x) ≤ y ≤
yareaB (x), then (x, y) is in the area B and one has
γ = γD (x), l2 = L− l3 and

cos (β) =
y + l1 cos (γD)

L
(48)

l3 =
Ly

l1 cos (γD) + y
. (49)

(3) else if yareaD1 (x) 6= 0 and yareaC (x) ≤ y ≤
yareaD1 (x), then (x, y) is in the area D1 and one has
l2 = L, l3 = 0, β = 0, γ = γD (x) and

α = −acos
(
−y + l1 cos (γD)

L

)
. (50)

(4) else if yareaD2 (x) ≤ y, then (x, y) is in the area D2
and one has l2 = 0, l3 = L, α = 0, γ = γD (x) and

cos (β) =
y − l1 cos (γD)

L
. (51)

(5) else, then (x, y) is in the area A and one has the
parameters defined in Theorem 1 such γ = γA (x), α =
−β, l3 = L− l2 with tan (β) = Λ tan (γA) and l2 = L

2 −
y−l1 cos(γA)

2 cos(β) .
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Figure 7. Characterization of umbilical rigidity

The proofs of previous results are described in
Appendix B.7. Note if Theorem 2 (1) is true, the ROV
must dive to y = yareaC (x) to make the system valid.
Remark also case y > yareaE (x) is not physically possible
due to the umbilical length.

The Theorem 2 is evaluated for x ≥ 0. Again, since
the system (18)-(20) is symmetric for [0, x] and [−x, 0] in
absence of horizontal current, the following corollary can be
made.

Corollary 2. In absence of horizontal current, the
system (18)-(20) is symmetric for [0, x] and [−x, 0], and the
Theorem 2 can be extended to the case x < 0 by doing the
following changes :

1) take |x| instead of x in Theorem 1 and (46) for the
evaluation of γA and γD,

2) take the solution sin (γA) =
mini∈[1,2,3,4] (|Xi|) sgn (x) in Theorem 1 and

sin(γD) =
aDbD−

√
a2Db

2
D−(1+b2D)(a2D−1)

(1+b2D)
sgn (x) in (46),

3) take the value β = βsgn (x) for cases (2)-(4) in
Theorem 2.

5.6 Model of umbilical rigidity and security
angle

In practice, the umbilical has a rigidity which does not allow
angles |α|+ |γ| and |α|+ |β| to become smaller than a
minimum value. This rigidity can lead to collisions between
the different part of the umbilical, as illustrated in Figure 8.
To guarantee the absence of collision with the cable itself,
this rigidity can be taken into consideration by introducing
conditions |α|+ |β| ≥ θmin and |α|+ |γ| ≥ θmin, or a
minimum distance xmin to respect such x > xmin.

Let define Rcurve the cable rigidity, such D = 2πRcurve
is the perimeter of the smallest circle which can be performed
with the umbilical, see Figure 7. To guarantee the absence
of collision in the umbilical, the distance x must allow the
cable to perform two half circles around the ballast and
the buoy, and a quarter of circle at the connection between
the ROV and the umbilical, as illustrated in Figure 8. It is
considered the umbilical drops straight without problem of
rigidity problem at the boat level. Thus, the distance x must
be larger than

xmin = 5Rcurve. (52)

From (25) and Theorem 2, one has |γ| ≤ |β| in all cases.
The minimum angle θmin = |α|+ |β| = 2 |β| guaranteeing

(a) Collision due to umbilical rigidity (b) Absence of collision

Figure 8. Umbilical shape considering its rigidity. Black line:
shape of the umbilical due to cable rigidity. Blue: l1. Magenta:
l2. Red: l3. In the example here, Rcurve = 0.4m and l = 15m.

the absence of collision can so be defined such that

θmin = 2asin
(

4Rcurve
L

)
. (53)

(53) is shown in Appendix B.1 and θmin is respected if
x ≥ xmin. Note the value of θmin can be oversize for safety
or for taking into account some other constraint, for example
the presence of an optical fiber inside the umbilical requiring
a larger curve to not break.

The parameter θmin will be more used in future sections
with presence of horizontal currents.

5.7 3-Dimensionnal case in absence of
horizontal current

In absence of horizontal current, the three dimensions case
can be simply solved using the two dimensions case. Let
define the 3D referential R3D = (x, y, z) of origin O =
(0, 0, 0), where y is the vertical axis oriented to the ground.
(x, 0, z) is the horizontal plan at the sea level. (x, y, 0) is
the vertical plan such ~OR.~z = 0, where ~OR is the vector
between the boat and the ROV. One observes the umbilical
is always at the equilibrium inside (x, y, 0), so the solution
of the 3D case without current is the solution of the 2D-case
performed inside (x, y, 0).

5.8 Practical case: Forces applied on the ROV
This section exposes the strengths applied by the umbilical
on the ROV, to choose the ballast and the buoy in
the capabilities of the ROV. Let ~Fcable→ROV be the
strength applied by the umbilical on the ROV and ~T3 =
−~Fcable→ROV where ~T3 is exposed in Section 5.2. Then, one
has from (24)

ΣB ~F .~x = 0 (54)
−T2 cos (α) + T3 cos (β) = 0 (55)

T3 cos (β) = T2 cos (α) . (56)

Since α = −β, one has T3 = T2. Moreover, since
Fcable→ROV = T3 and T2 = Fb

sin(β)
sin(2β) = Fb

2 tan (β)

from (179) in Appendix B.2, one gets

Fcable→ROV =
Fb
2

tan (β) . (57)

Deduce from (57) and Theorem 2 that Fcable→ROV
increases with the distance d =

√
x2 + y2. Since β is
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Figure 9. Fcable→ROV in function of the distance x, inside the
area A. P = 2Fb, Fb = 1N, L = 10m and l1 = 5m.

independent of y in area A (see Theorem 2), one deduces
that Fcable→ROV increases only with x in area A. Figure 9
shows the evolution of Fcable→ROV in function of x. An
observation made for different values of P and Fb is that
Fcable→ROV stays relatively low for x ≤ L, because the boat
carries most of the ballast’s weight when the length L is fold.

5.9 Practical case: choice of umbilical length
Previous sections describe the umbilical shape and areas
in function of predefined parameters like the umbilical
length l. In practice, an operator searches the best umbilical
length to explore an area approximately known. This section
proposes a simple method to choose the parameters l, L
and l1 in function of several environmental constraints. More
elaborate algorithms are proposed in Appendix H, and others
choices can be made.

Remind yfloor is the dept of the seafloor. Let’s define
[ymin, ymax] the desired minimum depth and maximum
depths for the ROV exploration, where ymax ≤ yfloor − hM .
Let’s also define [xmin, xmax] the desired minimum and
maximum horizontal distances for the ROV exploration,
where xmin has been defined in Section 5.6. Compromises
must be made because not all the parameters xmax, ymin,
ymax will be respected simultaneously. In this perspective,
since the boat can move on the surface, the respect of
parameters [ymin, ymax] is favored over [xmin, xmax].

To go the deepest possible without the ballast touching the
seafloor, take l1 = yfloor − hB . Then,

• if ymin is favored over ymax, take L = l1 + ymin,
and l = L+ l1. To respect ymin for all x ≤ xmax,
one takes xmax =

√
l2 − y2

min and has ymax(x) =√
l2 − x2.

• if ymax is favored over ymin and respected for
all x ≤ xmax, takes L ∈

[√
y2

max + x2
max − l1, 2l1

]
with xmax =

√
9l21 − y2

max. One has ymin(x) =
yareaC(x).

The umbilical respected simultaneously ymin and ymax for
x ∈ [xmin, xmax] if there exist L such√

y2
max + x2

max − l1 ≤ L ≤ l1 + ymin, (58)

which is possible iff

xmax ≤
√

(2l1 + ymin)
2 − y2

max (59)

where xmax ≥ 0 because here l1 = yfloor − hB ≥ ymax.

6 Umbilical for Sea exploration with
horizontal current

This section extends results of the configuration studied
in Section (5) by adding presence of horizontal current.
The presence of currents makes the system asymmetric and
changes the position of the ballast and buoy, as well as the
shape of areas exposed in the previous section.

6.1 Influence of current on the geometrical
model and restricted areas

Consider the same configuration exposed in Section 5 with
the geometrical model (18)-(20) and constraint on P and Fb.
The presence of a vertical current is considering inside P and
Fb, see Assumption A5 and A6.

Let Fcx,m and Fcx,b be the strengths of the current
horizontal applied on the ballast M and buoy B on the axis
~Ox such Fcx,m > 0 corresponds to a current in the direction
~Ox, same for Fcx,b, as illustrated on Figure 10. Let also

define the sums of strengths Ftm,x and Ftb,x such

Ftm,x =
√
P 2 + F 2

cx,m (60)

Ftb,x =
√
F 2
b + F 2

cx,b (61)

with their incidence angles

tan (ψP,x) =
Fcx,m
P

(62)

tan (ψB,x) = −Fcx,b
Fb

. (63)

Since the buoy is still moving freely on the umbilical and
does not touch the surface (not inside areas B and C), its
position is still on the ellipse E2 described in Section 5. In
presence of horizontal current, ellipse properties shows that
two angles ᾱ identical are created by the strength Ftb,x such
ᾱ = α− ψB,x and ᾱ = ψB,x − β, illustrated on Figure 10.
This property leads to

α = 2ψB,x − β. (64)

Remark (64) becomes equal to (3) when Fcx,b = 0.
As illustrated in Figure 11, the six areas defined in

previous Section 5 still exist. However, since the ballast and
the buoy are pushed in the same direction than the current,
the areas are not symmetric, and area C does not exist
theoretically when L > l1 because the umbilical can always
be taut by the current. The disappearance of area C must
however be carefully considered in practice if the current
is weak: it can be recommend to use the area C without
horizontal current described in Section 5.

An additional area F can be defined in presence of
horizontal current, corresponding to the area where cables
l2 and l3 or l1 and l3 are crossed, i.e. lines associated to
α = β and α = γ. The crossing of cables can lead to a
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(a) Fcx,m > 0 and Fcx,b > 0

(b) Fcx,m < 0 and Fcx,b < 0

Figure 10. Parameters for Sea Exploration with current. M is
the fixed ballast, B is the sliding buoys, such P = 3.4Fb and
Fcx,m = Fcx,b = 0.5Fb. The blue, magenta, red lines
correspond to l1, l2, l3. Black dash line: area where the ROV
can move due to the umbilical length.

knot in the umbilical, or simply obstruct the displacement
of the buoy on the umbilical, making the umbilical self-
management strategy invalid. Area F must therefore be avoid
by the ROV like area C. As illustrated in Figure 11, area F
is superposed with the other areas A, B, C, and D2: the area
F has priority over the other areas to avoid cables crossing,
except the area D2 where l2 = 0 and so no knot can happen.

Figure 24 in Appendix illustrates the evolution of the areas
with the current strength.

6.2 Dynamic model with horizontal current
In this section, the ROV is supposed to be inside the area A.
Results exposed here are not valid in others areas, which will
be studied in next sections.

Let add the presence of horizontal current Fcx,m and
Fcx,b to the strengths studying in Section 5.2. The unknown
parameters are still l2, l3, α, β and γ, with 4 equations
provided by (18)-(21), one equation missing to solve the
system. Let perform the fundamental principle of static on
M and B illustrated in Figure 10 (a):

ΣM ~F = P~y + ~T1 + ~T2 + ~Fcx,m (65)

ΣB ~F = −Fb~y − ~T3 − ~T2 + ~Fcx,b (66)

which can be rewritten such as

ΣM ~F = ~Ftm,x + ~T1 + ~T2 (67)

ΣB ~F = ~Ftb,x − ~T3 − ~T2 (68)

Following Appendix C.1, one gets

Ftm,x
sin (Γ)

sin (Γ +B + ∆ψx)
= Ftb,x

sin (B)

sin (2B)
. (69)

(a) Classic configuration, L = 2l1 (b) Classic configuration, l1 = 10L

(c) Buoys on the surface with l1 still
taut.

(d) Buoys in contact with ballast M :
l2 = 0 and l3 = L.

(e) Buoys in contact with ROV:
l2 = L and l3 = 0.

(f) Cables l1 and l3 crossed. and
action of the current.

Figure 11. The different areas for Sea Exploration with current.
M : fixed ballast, B: sliding buoys. P = 3Fb, and
Fcx,m = Fcx,b = 0.5Fb. Black dash line: area where the ROV
can move due to the umbilical length. Note the area B does not
exist in sub-figure b where L < l1 and area C does not exist in
sub-figure where L > l1.

and

tan (B) =

(
2
Ftm,x
Ftb,x

− cos (∆ψx)
)

tan (Γ)− sin (∆ψx)

cos (∆ψx)− tan (Γ) sin (∆ψx)
.

(70)

with Γ = γ − ψP,x, B = β − ψB,x and ∆ψx = ψP,x −
ψB,x. Note if Fcx,m = 0 and Fcx,b = 0, one has ψP,x = 0
and ψB,x = 0, so (70) is equal to (25).

6.3 Evaluation of the areas in presence of
current

The presence of currents changes the shape of areas exposed
in previous Section 5.4. This section presents the new
boundaries of areas B, C, D1, D2 and E, solved analytically
when it is possible, numerically else. Let note αA, βA,γA,
l2A, l3A the value of α, β, γ, l2, l3 inside the area A, which
will be evaluated in Section 6.4.

6.3.1 Boundaries of areas B, D1 and D2: numerical
approach

Due to the strong non-linearity of the relation (70), only
a numerical approach has been found to find a boundary
of areas B, D1 and D2. However, since these areas are not
required for the ROV control but only for the umbilical
model, the numerical approach is less constraining than for
the areas C and F.
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The proposed method is similar for the three areas. Several
values of γ are chosen to scan the entire interval Iγ =]
−π2 + ψP,x,

π
2 − ψP,x

[
. Since areas B, D1 and D2 are at

the boundary of area A, the value of β and α are evaluated
using (64) and (70) for each value of γ chosen inside Iγ .
Using the obtained values of α, β and γ , one deduces the
value of l2 and l3 such

• Area B: the buoy is in contact with the surface, so
y = l3 cos (β),
l2 = min

(
L, max

(
l1

cos(γ)
cos(α) , 0

))
and l3 = L− l2.

• Area D1: the buoy is in contact with the ROV, so
l2 = L and l3 = 0.

• Area D2: the buoy is in contact with the ballast, so
l2 = 0 and l3 = L.

Using the parameters α, β, γ, l2 and l3, one gets the boundary
yareaB , yareaD1 and yareaD2 using (19), associated to a
value of x evaluated using (18). By storing the couple (x, y)
in a tabular, the boundaries can be found and drawn as
illustrated in Figures 11 and 12.

Note the evaluation of boundaries of area B, D1 and D2 are
not necessary to consider their influence in the model (18)-
(20). Indeed, using αA, βA and l3A which will be evaluated
with Theorem 3 in Section 6.4, one can deduce

• if y ≥ l3A cos (βA), the ROV is inside the area B,
• if y ≤ l1 cos (γA)− L cos (αA), The ROV is inside

the area D1 Then, the current value of α and γ can
be evaluated using Theorem 2 (3),

• if y ≥ l1 cos (γA)− L cos (βA), the ROV is inside the
area D2. Then, the current value of β and γ can be
evaluated using Theorem 2 (4).

6.3.2 Boundary of area C
Since the ballast and the buoy are pushed in the same

direction than the current, the area C does not exist
theoretically when L > l1 because the umbilical can always
be stretched by the current. In opposite, the case L < l1
stay unchanged because the buoy cannot reach the surface
while stretch the both part of the umbilical. Following step
from Appendix C.2.1 and in presence of horizontal current,
yareaC (x) can be expressed as

yareaC (x) ={√
l21 − x2 − L if

(
|x| <

√
l21 − L2

)
& (l1 > L) ,

0 else
(71)

It is however recommended to use the area C described in
Section 5 for the case without horizontal current in practice.

6.3.3 Boundary of area F
The area F can be defined in presence of horizontal current,

corresponding to area where cables l1 and l3 are crossed.
There are two boundaries between the areas A-F, the first
corresponding to |α− β| = 0, the second |α− γ| = 0. To
take into account the rigidity of the umbilical and consider
a safety margin, the area F is evaluated for |α− β| = θmin

and |α− γ| = θmin, where θmin ≥ 0 is the value defined
in (53) in Section 5.6. Figure 12 illustrates the area F for
θmin = 10◦.

(a) Fcx,m = Fcx,b = 0.5Fb (b) Fcx,m = Fcx,b = 0

Figure 12. Area F with θmin = 10◦. The plain magenta line
corresponds to the area F with θmin = 10◦ and the dash
magenta line to the area F with θmin = 0.

Following step from Appendix C.2.2, the ROV is inside
the area F if yareaF1 ≤ y ≤ yareaF2 where yareaF1 and
yareaF2 can be expressed such

yareaF1 (x) =
l1 cos (γF )− (L− l33) cos

(
ψB,x + θmin

2 s
)

+l33 cos
(
ψB,x − θmin

2 s
)

if 0 ≤ l33 ≤ L
l if l33 > L

0 else,
(72)

yareaF2 (x) =
l1 cos

(
ψP,x + θmin

2 s
)
− l22 cos

(
ψP,x + θmin

2 s
)

+ (L− l22) cos
(
2ψB,x − ψP,x − θmin

2 s
)

if 0 ≤ l22 ≤ L
l if (l22 < 0) & (l33 ≥ L)

0 else
(73)

where γF can be evaluated with (70) using β = ψB,x −
θmin

2 s, and

l22 =
l1 sin

(
ψP,x + θmin

2

)
+ L sin

(
2ψB,x − ψP,x + θmin

2

)
− x

sin
(

2ψB,x − ψP,x + θmin
2

)
+ sin

(
ψP,x − θmin

2

)
(74)

l33 =
x− l1 sin (γF1) + L sin

(
ψB,x + θmin

2
s
)

sin
(
ψB,x + θmin

2
s
)

+ sin
(
ψB,x − θmin

2
s
) (75)

with s = sign(ψB,x) if ψB,x 6= 0, s = −sign (x) else.
Remark if there is no current, i.e. Fcx,m = Fcx,b = 0, and

θmin > 0, the area F corresponds to [−xmin, xmin], where
xmin is evaluated using (52) exposed in Section 5.6 to
guarantee the absence of collision in the umbilical due to the
rigidity of the cable. Finally, remark the area F stops always
when it reaches the area D2. Indeed, no knot can be made
between l2 and l3 or between l2 and l1 when l2 = 0.

6.4 Numerical solution of umbilical model
In opposite with the case without current studied in
Section 5.3, the strong non-linearity of the relation (70)
makes the system (18)-(20) too complex to be solved
analytically.

Theorem 3 proposes a numerical solution of system (18)-
(20) and values of parameters γ, α, β, l2 and l3 inside the
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area A. Let note αA, βA,γA, l2A, l3A the evaluations of α, β,
γ, l2, l3 inside the area A described in the following theorem.

Theorem 3. Consider the system (18)-(20) with (x, y) such
|x| ≤ l and 0 ≤ y ≤ l and suppose (x, y) are inside the
area A. Considering also the assumption A8 and presence
of horizontal current, i.e. (70) and (64). The parameters
γ = γA and l3 = l3A where γA ∈

[
−π2 ,

π
2

]
and l3A ∈ [0, L]

are the solutions of the system{
x = l1 sin (γA)− l2 sin (αA) + l3A sin (βA)

y = l1 cos (γA)− l2 cos (αA) + l3A cos (βA)
(76)

with

βA = ψB,x+ (77)

atan


(

2
Ftm,x
Ftb,x

− cos (∆ψx)
)

tan (γA − ψP,x)− sin (∆ψx)

cos (∆ψx)− tan (γA − ψP,x) sin (∆ψx)


(78)

and l2 = L− l3A, αA = 2ψB,x − βA.

Consider now the system inside the area B. Since the
buoy reaches the surface, one has y = l3 cos (β). Due to the
current, the umbilical can always be taut, but the relation (64)
does not hold because the buoy is not on the ellipse E2 in this
configuration. Theorem 4 proposes a numerical solution of
system (18)-(20) and values of parameters γ, α, β, l2 and l3
in all areas.

Theorem 4. Consider the system (18)-(20) with (x, y)
and such yareaE (x) > y, i.e. the configuration is possible.
Considering also the assumption A8 and presence of
horizontal current. Let βA,γA and l3A be the value of β,
γ and l3 estimated using Theorem 3 for the couple (x, y).
Consider the following cases:

(1) if y < yareaC (x) , the ROV is inside the area C, so the
model (18)-(20) is not valid.

(2) if y < l3A cos (βA), the ROV is inside the area B and
α = αB , β = βB , γ = γB where

αB ∈
[
−π

2
,
π

2

]
(79)

βB ∈

{
[−π, 0]

[0, π]

if Fcx < 0

else.
(80)

γB ∈


[
ψP,x,

π
2

][
−π2 , ψP,x

][
−π2 ,

π
2

]
if (Fcx > 0) & (x > 0)

if (Fcx < 0) & (x < 0)

else.
(81)

are the solutions of the system
x = l1 sin (γB)− l2 sin (αB) + l3 sin (βB)

y = l3 cos (βB)

0 =
Ftb,x
Ftm,x

sin (βB − ψB,x) sin (γB − αB)

− sin (γB − ψP,x) sin (βB − αB)

(82)

with l2 = l1
cos(γB)
cos(αB) , l3 = L− l2.

(3) if y > l3A cos (βA) and y ≤ l1 cos (γA)− L cos (αA),
the ROV is inside the area D1 with l2 = L, l3 = 0, β = 0 and
values of α, γ can be evaluated using Theorem 2 (3).

(4) if y > l3A cos (βA) and y ≥ l1 cos (γA)− L cos (βA),
the ROV is inside the area D2 with l2 = 0, l3 = L, α = 0 and
values of β, γ can be evaluated using Theorem 2 (4).

(5) else, the ROV is inside the area A with β = βA, γ = γA
and l3 = l3A, and other parameters can be evaluated using
Theorem 3.

Again, if Theorem 4(1) is true, ROV must dive to y =
yareaC (x) to make the system valid. In addition, if the ROV
is inside the area F and not inside the area D2 simultaneously,
it is strongly recommended to leave it by the same side the
ROV is entered to avoid the creation of a knot. Remark
Theorem 4 is valid in area F, this area pointing only if the
umbilical makes knot or not.

6.5 Forces applied on the ROV with presence
of current

This section extends results of Section 5.8 by considering
the presence of currents. Remind ~Fcable→ROV is the strength
applied by the umbilical on the ROV. Excluding the ROV
propulsion, the sum FROV,x and FROV,y of the external
strengths applied on the ROV on axis Ox and Oy can be
expressed as

~FROV,x = (−T3 sin (β) + Fcx,ROV ) ~x (83)
~FROV,y = (T3 cos (β) + Fcy,ROV ) ~y (84)

where Fcx,ROV and Fcy,ROV are the strengths of the
horizontal and vertical currents applied on the ROV and T3

has been introduced in Section 6.2.
Following step of Appendix D, the strengths FROV,x and

FROV,y can be expressed as

~FROV,x.~x = −
(
Ftb,x

cos (2ψB,x − β)

2 cos (β − ψB,x)
− Fcx,b

)
tan (β)

+ Fcx,ROV (85)

~FROV,y.~y = Ftb,x
cos (2ψB,x − β)

2 cos (β − ψB,x)
− Fcx,b + Fcy,ROV .

(86)

7 Umbilical for Sea exploration: 3D case
with currents

In this section, the 3-Dimensionnal case with presence of
horizontal current is studied, 3D case without current already
exposed in Section 5.7. This case is more complex and can
be solved only using numerical method.

7.1 Geometrical model
The 3D case introduces new degrees of freedom, described
by parameters defined in the plans Poxy = (O, x, y) and
Pozy = (O, z, y). Let γ and φ be respectively the angles
between the boat and the ballast M in Poxy and Pozy , α and
µ be the angles between the ballast and the buoy in Poxy
and Pozy , and β and η be the angles between the buoy and
the ROV in Poxy and Pozy . The length l1x and l1z are the
projections of l1 on Poxy and Pozy , same for l2x, l2z , l3x and
l3z . All these parameters are illustrated in the Figure 13.
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Figure 13. Parameters for Sea Exploration with current in 3D
case, for (x, y, z) = (5, 2.5, 3). M : fixed ballast. B: sliding
buoys. The blue, magenta, red lines correspond to l1, l2, l3.
Black dash line: area where the ROV can move due to the
umbilical length. Red and green arrows: horizontal currents Fcx
and Fcz in direction ~Ox and ~Oz with Fcx = 3Fcz .

In a configuration where the umbilical is taut, and using
the coordinates of the ROV, the system can be expressed such

x = l1x sin (γ)− l2x sin (α) + l3x sin (β) (87)
y = l1x cos (γ)− l2x cos (α) + l3x cos (β) (88)
z = l1z sin (φ)− l2z sin (µ) + l3z sin (η) (89)

with

l21 = l21x + sin (φ)
2
l21z (90)

l22 = l22x + sin (µ)
2
l22z (91)

l23 = l23x + sin (η)
2
l23z (92)

L = l2 + l3 (93)

Let expressed (xM , yM , zM ) the coordinate of the ballast
M , Lx = l1x + l2x and Lz = l1z + l2z . Since the buoy is
still moving freely on the umbilical, its position is on

• the ellipse E2 of centers M and R with the two radius
Lx
2 and

√(
Lz
2

)2 − (x−xM )2+(y−yM )2

4 in Poxy ,
• the ellipse E3 of centers M and R with the two radius
Lz
2 and

√(
Lz
2

)2 − (z−zM )2+(y−yM )2

4 in Pozy .

Thus, since the buoy does not touch the surface (not inside
area B and C), these properties lead to

α = 2ψB,x − β (94)
µ = 2ψB,z − η (95)

where ψB,x has been defined in Section 6.1 in Poxy and ψB,z
is the orientation of the strength Ftb,z , similarly to ψB,x but
inside Pozy , which will be described in Section 7.2.

7.2 Study of the dynamic model
Let Fcx,m and Fcx,b be the strengths of the horizontal current
applied on the ballast M and buoy B on the axis ~Ox, as
exposed in Section 6.1. Since they exist only in Poxy , the
strengths applied on the system in Poxy are similar to the 2D
case studied in Section 6.1 and 6.2.

Let Fcz,m and Fcz,b be the strengths of the horizontal
current applied on the ballast M and buoy B on the axis ~Oz
such Fcz,m > 0 corresponds to a current in the direction ~Oz,
same for Fcz,b, as illustrated on Figure 13. Theses ones exist
only in Pozy . Let also define the sums of strengths Ftm,z and
Ftb,z such

Ftm,z =
√
P 2 + F 2

cz,m (96)

Ftb,z =
√
F 2
b + F 2

cz,b (97)

with their incidence angles

tan (ψP,z) =
Fcz,m
P

(98)

tan (ψB,z) = −Fcz,b
Fb

. (99)

When the buoy does not touch the surface, the relations
(70) linking Ftm,x, Ftb,x, γ and β are still valid in the plan
Poxy . Following the same steps than in Section 6.1, 6.2 and
Appendix C.1, one may write

Ftm,z
sin (Φ)

sin (Φ +H + ∆ψz)
= Ftb,z

sin (H)

sin (2H)
(100)

and

tan (H) =

(
2
Ftm,z
Ftb,z

− cos (∆ψz)
)

tan (Φ)− sin (∆ψz)

cos (∆ψz)− tan (Φ) sin (∆ψz)
(101)

with Φ = φ− ψP,z , H = η − ψB,z and ∆ψz = ψP,z −
ψB,z . Note if Fcz,m = Fcz,b = 0, one has ψP,z = ψB,z =
0, and so (95) is equal to µ = −η and (101) is equal to
tan (η) =

(
2
Ftm,z
Ftb,z

− 1
)

tan (φ).

7.3 Numerical solution of umbilical model
The system (87)-(89) have 14 unknown parameters:
l1x, l1z ,l2x, l2z, l3x, l3z ,l2, l3, α, β, γ, φ, µ, η. Enough
equations must be found to solve the system, and a small
number of variables must be selected to obtain a numerical
resolution with a reduced computing time. Using relations
found in previous sections and other presented in this section,
the Theorem 5 proposes a numerical resolution of system
(87)-(89) using only variables γ, φ, l3.

Following steps described in Appendix E.1, one can obtain

l21x =
l21(

1 + tan (φ)
2

cos (γ)
2
) (102)

l21z =
l21(

sin (φ)
2

+
(

cos(φ)
cos(γ)

)2
) (103)
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and the same for l2x, l2z and l3x, l3z replacing l1, γ, φ by l2,
α, µ and l3, β, η.

Using (102)-(103) and their equivalent for l2x, l2z , l3x, l3z ,
the system (87)-(89) has now only 8 unknown parameters:
l2, l3, α, β, γ, φ, µ, η. (93) solves l2 = L− l3 and (94)-(95)
express β, η with α, µ, leaving 5 unknown parameters. (70)
and (101) provide two other relations to express β, η with γ,
φ. The system (87)-(89) provide the last three equations, to
solve for the variables γ, φ, l3.

Theorem 5. Consider the system (87)-(89) with (x, y, z)
such |x| ≤ l, |z| ≤ l and 0 ≤ y ≤ l not inside the areas B
and C. Considering also the assumption A8 and presence of
horizontal current. The parameters γ, φ, l3 such

γ ∈


[
ψP,x,

π
2

][
−π2 , ψP,x

][
−π2 ,

π
2

]
if (Fcx > 0) & (x > 0)

if (Fcx < 0) & (x < 0)

else.
(104)

φ ∈


[
ψP,z,

π
2

][
−π2 , ψP,z

][
−π2 ,

π
2

]
if (Fcz > 0) & (z > 0)

if (Fcz < 0) & (z < 0)

else.
(105)

l3 ∈ [0, L] (106)

are the solutions of the system
x = l1x sin (γ)− l2x sin (α) + l3x sin (β)

y = l1x cos (γ)− l2x cos (α) + l3x cos (β)

z = l1z sin (φ)− l2z sin (µ) + l3z sin (η)

(107)

with

β = ψB,x+

atan


(

2
Ftm,x
Ftb,x

− cos (∆ψx)
)

tan (γ − ψP,x)− sin (∆ψx)

cos (∆ψx)− tan (γ − ψP,x) sin (∆ψ)


(108)

η = ψB,z+

atan


(

2
Ftm,z
Ftb,z

− cos (∆ψz)
)

tan (φ− ψP,z)− sin (∆ψz)

cos (∆ψz)− tan (φ− ψP,z) sin (∆ψz)


(109)

where (α, µ) are evaluated using (94)-(95), l2 = L− l3,
(l1x, l1z) evaluated using (102)-(103), and (l2x, l2z) and
(l3x, l3z) evaluated similarly to

(
l21x, l

2
1z

)
using l2, α, µ and

l3, β, η.

The Theorem 5 does not consider specific cases for the
areas D1 and D2 because these configurations can be solved
by taking l3 = 0 or l3 = L if required. Since the Theorem 5
provides a solution only outside the areas B and C, the
following Theorem 6 describes the solution of the system in
all cases. Let define l3xA and βA the evaluation of l3x and β
by Theorem 5.

Theorem 6. Consider the system (87)-(89) with (x, y, z)
such |x| ≤ l, |z| ≤ l and 0 ≤ y ≤ l inside the area B.
Considering also the assumption A8 and presence of
horizontal current. If y < l3xA cos (βA), the ROV is inside

the area B and αB , βB , γB , φB , µB and ηB where

αB ∈
[
−π

2
,
π

2

]
, µB ∈

[
−π

2
,
π

2

]
(110)

βB ∈

{
[−π, 0] if Fcx < 0

[0, π] else.
, η ∈

{
[−π, 0] if Fcz < 0

[0, π] else.
(111)

γB ∈


[
ψP,x,

π
2

][
−π2 , ψP,x

][
−π2 ,

π
2

]
if (Fcx > 0) & (x > 0)

if (Fcx < 0) & (x < 0)

else.
(112)

φB ∈


[
ψP,z,

π
2

][
−π2 , ψP,z

][
−π2 ,

π
2

]
if (Fcz > 0) & (z > 0)

if (Fcz < 0) & (z < 0)

else.
(113)

are the solutions of the system

x = l1x sin (γB)− l2x sin (αB) + l3x sin (βB)

z = l1z sin (φB)− l2z sin (µB) + l3z sin (ηB)

0 = l2xcos(αB)− l1xcos(γB)

0 = l2zcos(µB)− l1zcos(φB)

0 =
Ftb,x
Ftm,x

sin (βB − ψB,x) sin (γB − αB)

− sin (γB − ψP,x) sin (βB − αB)

0 =
Ftb,z
Ftm,z

sin (ηB − ψB,z) sin (φB − µB)

− sin (φB − ψP,z) sin (ηB − µB)

(114)

where l3x = y
cos(βB) , l3z = y

cos(ηB) , l3 =
√
l23x + l23z , l2 =

L− l3, (l1x, l1z) evaluated using (102)-(103), and (l2x, l2z)
evaluated similarly to

(
l21x, l

2
1z

)
using l2, α, µ.

7.4 Evaluation of the areas in 3D
To evaluate the areas in 3D case with presence of
horizontal current, numerical approaches similar to those
from Section 6.3 can be used. However, in order to obtain
a fast computation, approximations of the areas B, C, F
are proposed here. These approximate areas are sufficient
requirements to guarantee the umbilical is taut and absence
of knot. Areas D1 and D2 are not studied because useless for
Theorems 5 and 6 and the control of the ROV. Area E is of
course unchanged.

Let Fc,m =
√
F 2
cx,m + F 2

cz,m and Fc,b =
√
F 2
cx,b + F 2

cz,b

be the sum of the horizontal currents applied on the ballast
and the buoy, associated to orientations ζm = atan

(
Fcz,m
Fcx,m

)
and ζb = atan

(
Fcz,b
Fcx,b

)
. Let define also ε = atan

(
z
x

)
the

orientation of the ROV projected on the plan (O, x, z).

The lengths Lxz = {l1x, l1z, l2x, l2z, l3x, l3z} are respec-
tively smallest or equal to l1, l2 and l3. When ε = ζm = ζb,
the 3D case can be assimilated to a 2D case in the plan(
O, ~OR, ~Oy

)
with Fc,m and Fc,b as horizontal currents.

In the same way, when cos (ε− ζm) = cos (ε− ζb) = 0, the
horizontal currents push the ballast upward and the sliding
buoy downward perpendicularly to the plan, reducing values
of Lxy without influencing their position in the direction
~OR: the 3D case can so be assimilated to a 2D case in

the plan
(
O, ~OR, ~Oy

)
without horizontal current and with

shorter lengths l1, l2 and l3.
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Figure 14. Approximate areas F (magenta) and B (red) in the
3D case.. The red arrow: horizontal current Fc,m = Fc,b

Considering previous points, 3D areas B, C and F can so
be upper-bounded such

yareaB ≤ ȳareaB (115)
yareaC ≤ ȳareaC (116)
yareaF1 ≤ ȳareaF1 (117)
yareaF2 ≤ ȳareaF2 (118)

where ȳareaB , ȳareaC , ȳareaF1 and ȳareaF2 are evaluated
using the expression of yareaB , yareaF1 and yareaF2

exposed in Section 6.3 by replacing x by d =
√
x2 + y2, and

replacing Fcx,m and Fcx,b by F̄cx,m and F̄cx,b such

F̄cx,m = Fc,m cos (ε− ζm) (119)
F̄cx,b = Fc,b cos (ε− ζb) . (120)

The boundaries ȳareaB , ȳareaF1 and ȳareaF2 provide
sufficient requirements for the umbilical to stay taut outside
this area B and F without creating knots.

One can observe the area F should theoretically exist only
in the plane F where ε = ζm = ζb, else the projections of
cables l1, l2 and l3 are crossed on

(
O, ~OR, ~Oy

)
but not

the true cables in the three dimensional space. However, the
ROV must bypass the area F to not make a knot when it
wants to cross the plane F (ex: if F is the plan (O, x, y),
there is a risk of knot if the ROV takes the shortest pass
from coordinate z = 1 to z = −1). The area created by the
boundaries ȳareaF1 and ȳareaF2 allows to bypass the area
F softly without risk of creating a knot, as illustrated in
Figure 14.

8 Umbilical for diving exploration with
presence of large obstacles

8.1 The main idea
In the strategy exposed in previous sections, the presence
of obstacles higher than the minimum seafloor level is

(a) Sea exploration strategy (b) Diving exploration strategy

Figure 15. Comparison between methods exposed in
Section 5 and 8. For the same exploration area [0, 10]× [5, 10],
the diving exploration strategy allows to keep the cable l4 close
to the vertical and so avoid contact with obstacle.

Figure 16. Parameters of diving exploration strategy. M : fixed
ballast. B1: sliding buoys. B2: fixed buoy. P = Fb1 and
Fb2 = 63P . Black dash lines: exploration area where the ROV
can move due to the constraint taken for umbilical shape.

not considered. The operator must watch the model of the
umbilical and its knowledge of the environment to check
if the position of the umbilical does not coincide with the
presence of an obstacle. In presence of large/high obstacles
on the seafloor, the angles performed by the umbilical can
be very restrictive for the navigation and lead to a contact
between the umbilical and an obstacle, specifically when the
ROV is far from the boat, see Figure 15.

In this section, a third strategy is proposed where the
umbilical stays close to the vertical behind the ROV in all
situations since it is inside a defined area, allowing to dive
vertically without risk of collision between the umbilical and
a possible obstacle.

Consider in this configuration an umbilical of length l
divided in three parts of fixed lengths: a first part length l1
between the boat O and a ballast M fixed on the umbilical,
i.e. ‖OM‖ = l1, a second part of length L where a first
buoy B1 can move freely between the ballast and a second
fixed buoy B2, and finally a third part l4 between the fixed
buoy B2 and the ROV, i.e. ‖B2R‖ = l4. Similarly to case
studied in Section 4 and 5, the second part of umbilical L can
be divided in two lengths l2 = ‖M B1‖ and l3 = ‖B1R‖
corresponding to the lengths of the right side and left side of
the buoy B1, such L = l2 + l3. Let γ be the oriented angle
between the boat and the ballast M . α and β are respectively
the oriented angles between the ballast and the sliding buoy,
and between the sliding buoy and the second buoy. η is
the oriented angle between the second buoy and the ROV.
Parameters are illustrated in Figure 16.
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8.2 Umbilical model solved
In a configuration where the umbilical is taut, the system can
be expressed such

x = l1 sin (γ)− l2 sin (α) + l3 sin (β) + l4 sin (η) (121)
y = l1 cos (γ)− l2 cos (α) + l3 cos (β) + l4 cos (η) (122)
L = l2 + l3. (123)

with L, l1 and l4 fixed.
The objective is to define a configuration where the ROV

can explore an area [xmin, xmax] × [ymin, ymax] where η ≤
ηmax with ηmax ≥ 0 is taken small to avoid collision with
obstacles.

To respect these objectives, some conditions are taken:

• The minimum depth ymin > 0 is chosen such there is
no obstacle in the area [xmin, xmax]× [0, ymin],

• The ballast M and buoys must stay inside [0, ymin]×
[xmin, xmax] to avoid collision with an obstacle, and
buoys must not touch the surface. Thus, one takes
L = l1, and ymin can be expressed such

ymin = max (l1 + hM , l4) (124)

where hM is the ballast height,
• Since the buoy B2 must stay inside [xmin, xmax]×

[0, ymin], the maximal depth ymax can be expressed

ymax = ymin + l4, (125)

• xmin is evaluated using (52) defined in Section 5.6.
• The ballast M and the buoy B1 are chosen such
P = Fb1 where P and Fb1 are defined following
Assumptions A4 and A5. The Assumption A8 is
respected because L = l1.

Some observations can be made:

• l1 and l4 are chosen to satisfy (124) and (125): ymin

is favor to avoid collision between ballast/buoys and
obstacles, which limits the value of ymax due to (125),

• The system (121)-(123) is designed such the ROV
evolves only inside the working area [xmin, xmax]
× [ymin, ymax]. Due to the chosen parameters, the
areas A, B, C and D1 like in Section 5 is excluded
inside the working area, but area D2 exists, as shown
in Appendix F.4.

• The horizontal currents are considered absent for this
configuration, or small enough to be ignore compare
to the ballast and buoys.

The position of the buoyB2 can be assimilated to the ROV
position of the Section 5. In absence of horizontal currents,
(21) and (25) are still valid such α = −β and tan (β) =
Λ1 tan (γ) with Λ1 = 2 P

Fb1
− 1 = 1, so

β = γ. (126)

Following steps described in Appendix F.1, it can be
shown that

tan (β) = Λ2 tan (η) (127)

with Λ2 = 2Fb2Fb1
+ 1.

The boundary yareaD2 can be expressed as

yareaD2 (x)

= max

 2L√
1 + Λ2

2 tan (ηA (x))
2

+ l4 cos (ηA (x)) , 0


(128)

where ηA (x) is evaluated in Theorem 8.
For these conditions, the Theorems 7 and 8 describe the

value of parameters γ, α, β, l2 and l3.

Theorem 7. Consider the system (121)-(123) for x ∈
[xmin, xmax] and y ∈ [ymin, ymax], where ymin, ymax and
xmin are defined following (124)-(125) and (52). Consider
also P = Fb1 and the absence of horizontal current, i.e.
(25), (126) and (21), (127). For a chosen ηmax ≥ 0, the
condition

0 ≤ η ≤ ηmax (129)

is satisfied if

Fb2 ≥
Fb1
2

 |xmax − l4 sin (ηmax)|

tan (ηmax)
√

4l21 − (xmax − l4 sin (ηmax))2
− 1


(130)

and
xmax ≤ (l1 + L) + l4 sin (ηmax) . (131)

In these conditions,
1) If y < yareaD2 (x), one has η = ηA where ηA can be
evaluated following Theorem 8, and

β = atan (Λ2 tan (ηA)) (132)

l2 =
L+ l1

2
− y − l4 cos (ηA)

2 cos (γ)
(133)

and l3 = L− l2, α = −β, γ = β.
2) Else, the ROV is inside the area D2 and one has α = 0,

β = γ, l2 = 0, l3 = L and

sin (γ) =
aDbD +

√
a2
Db

2
D − 4 (1 + b2D) (a2

D − 1)

(a2
D − 1)

(134)

cos (η) =
y − 2L cos (γ)

l4
(135)

where aD =
x2+y2+4L2−l24

4yL and bD = x
y .

Theorem 8. Consider the conditions exposed in Theorem 7
are respected. Thus, η can be expressed such as

sin (η) = min
i∈[1,2,3,4]

(|Wi|) (136)

where{
W1 =

√
Uη− 2

3Aη−
√

∆W1

2 , if ∆W1 ≥ 0

W1 =∞ else,
(137)

{
W2 =

√
Uη− 2

3Aη+
√

∆W1

2 , if ∆W1 ≥ 0

W2 =∞ else,
(138)
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{
W3 =

−
√
Uη− 2

3Aη−
√

∆W2

2 if ∆W2 ≥ 0

W3 =∞ else,
(139)

{
W4 =

−
√
Uη− 2

3Aη+
√

∆W2

2 if ∆W2 ≥ 0

W4 =∞ else,
(140)

with ∆W1 = −
(
Uη + 4

3Aη +
2Bη√
Uη− 2

3A

)
, ∆W2 =

−
(
Uη + 4

3Aη −
2Bη√
Uη− 2

3A

)
, and

Aη = − x
2

2l24
−
(
4l21Λ2

2 − l24
)

l24 (Λ2
2 − 1)

(141)

Bη = − l
2
4 + 4l21Λ2

2

l34 (Λ2
2 − 1)

x (142)

Cη =
x4

16l44
+
x2
(
l24 − 4l21Λ2

2

)
4l44 (Λ2

2 − 1)
(143)

Uη =

(
− q

2
+
√

q2

4
+ p3

27

)1/3

+

(
− q

2
−
√

q2

4
+ p3

27

)1/3

if ∆Uη > 0,

2 cos

 1
3

acos

− q

2

√
− p

3

27

√− p
3

if ∆Uη < 0,

= −
√
− p

3
if ∆Uη = 0

(144)

with ∆Uη = q2

4 + p3

27 , p = −4Cη −
A2
η

3 and q =
2A3

η

27 +(
4AηCη −B2

η

)
+
−4CηAη

3 .

Proofs of Theorems 7 and 8 are provided in Appendix F.2,
F.3 and F.4.4.

8.3 Practical case: Forces applied on the ROV
This section exposes the strengths applied by the umbilical
on the ROV, to help to choose the ballast and the buoys within
the capabilities of the ROV.

Let ~Fcable→ROV be the strength apply by the umbilical
on the ROV, and ~T4 = −~Fcable→ROV is the tension of the
cable l4 between the buoy B2 and the ROV. Let perform the
principle of the fundamental principle of static on B1 and
B2:

ΣB1
~F = −Fb1~y − ~T3 + ~T2 (145)

ΣB2
~F = −Fb2~y + ~T3 + ~T4 (146)

where ~T2, ~T3 are the tension on the cable on B1 as defined
in Section 5.2 and illustrated in Figure 16.

Following Appendix F.5 and since we desire η ≤ ηmax,
the strength applied on the ROV can be bounded such

Fcable→ROV ≤
Fb2 + 1

2Fb1

cos (ηmax)
. (147)

Using (130) and (147) in Theorem 7, the choice of ballast
and buoys strengths P , Fb1 and Fb2 can be made in function
of the maximum strength of the ROV and desired ηmax.

8.4 Practical case: choice of umbilical length
To satisfied all constraints exposed in previous sections, the
choice of parameters l1, L and l4 is simple:

l1 = ymin − hM (148)
l4 = ymax − ymin (149)

ymin ≤ ymax ≤ 2ymin. (150)

and L = l1. xmax chosen with Theorem 7. Since the choice
of ymin restricts all other parameters, ymin must be taken the
largest possible.

9 ROV control
The systems exposed in previous sections are studied at the
equilibrium. However, each time the ROV dives, rises or
backs off, a part of the umbilical becomes temporary loosen.
Since a loosen cable can lead to a knot, and the loosen model
can be complex and/or heavy to compute, an alternative
approach is proposed here by controlling the ROV to make
the transitory phases short and the discrepancy between the
models studied and the reality small. Thus, the ROV is
controlled to move slower than the fall of the ballast and/or
the rise of the buoy. As long as their behavior are faster than
ROV’s velocity, the umbilical stays globally taut.

9.1 Main idea and hypotheses
For this work, the ROV never makes a complete turn on
itself and goes backwards to come closer to the position
x = 0: this assumption reduces the stress inside the umbilical
and avoid the formation of knot by twisting. In 2D case, it
means the ROV is always oriented in the direction ~Ox. In 3D
case, its mean its yaw orientation ωROV respected always the
following condition

ωROV ~y ∈
(
ωOR +

[
−π

2
,
π

2

])
~y, (151)

where ωOR is the angle between the ROV position and the
origin O in the plan (O, x, z).

The reasoning developed below is performed for the sea
exploration strategy developed in Section 5, 6 and 7, but it
is also valid for the diving exploration strategy developed in
Section 8, and can be easily adapted for surface exploration
in Section 4 by replacing the sliding buoy by the sliding
ballast.

The three behaviors illustrated in Figure 17 can be
observed. When the ROV moves forward, the umbilical is
always taut because 1) its displacement is in opposition with
the torque created by the ballast, 2) the ellipse created by the
system ballast/buoy/ROV becomes flatter, so the strength of
the buoy is also opposed to the cable displacement. During
the ascent of the ROV or while it is moving backward, the
umbilical is temporary loosen between the buoy and the
ROV because the movement gives slack to the buoy. Finally,
during the ROV dive, the umbilical is temporary loosen
between the weight and the buoy because the ballast and
the ROV share the same direction while the buoy pushes in
the opposite direction, keeping umbilical stretched between
them.
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(a) Move forward (b) Dive (c) Rise

Figure 17. Umbilical is temporary loosen when the ROV dives,
rises to surface or backs off. The umbilical is always taut when
the ROV moves straight ahead.

When the displacement of the ROV slackens the umbilical,
the fall of the ballast and the rise of the buoy try to retighten
it. However, the fall of the ballast is constrained by the cable
l1, making its displacement similar to a pendulum link to
the boat. On its side, the buoy is as if released freely in the
water when the umbilical is not taut, only submitted by its
weight and Archimedes strength. Since the displacement of
the ballast is limited when it is close to the vertical position,
and so its influence to retighten the umbilical, the control of
the ROV will be performed as if the buoy is the only strength
which can stretch the umbilical during the transition period.
Even if this hypothesis is false in practical case, it gives a
sufficient condition to restrict ROV behavior. This hypothesis
can be only taken when the ROV is not inside the area B or
C, i.e. when the buoy does not touch the surface.

When the buoy touches the surface, the umbilical can
be stretched only by the ballast and the horizontal current
applied on the buoy. Note the ballast’s weight is stronger or
equal than the buoy’s buoyancy, which can compensate the
pendulum effect in this configuration. However, the ballast
can stretch the umbilical only if γ 6= ψP,x (ψP,x = 0 when
there is no current). Else, only the horizontal current applied
on the buoy (so the surface current) can taut the umbilical.
Since a buoy on the surface can be subject to other strengths
like wind or wave, it is best to avoid working inside the area
B in practice. Remind umbilical cannot be stretched inside
the area C.

Thus, when the ROV rises, dives or goes back, its velocity
and acceleration must be bounded by buoy’s velocity and
acceleration since this one does not touch the surface, as
defined in the following Section 9.2.

9.2 Maximum velocity

When the umbilical is not taut between the ROV and the
buoy, the buoy is like dropped freely in the water with
only its weight and Archimedes strength. Consider the
fluid friction ~Ffb = −Kb~vb, where ~vb is the buoy velocity

such ~vb = vb,x~x+ vb,y~y and vb =
√
v2
b,x + v2

b,y , and Kb is
the fluid friction coefficient associated to the buoy. For a
spherical buoy of radius Rb, one has Kb = 6πRbρwater with
ρwater is the water mass density. Let mb, ρb and ab be the
mass, the mass density and the vertical acceleration of the
buoy. Remind Fb = (ρwaterVb −mb) g + Fcy,b with Vb the
volume of the buoy.

By performing the fundamental principle of dynamic on
the axis x and y as exposed in Appendix G, one gets

vb (t) =

(
1− exp

(
−Kb

mb
t

))

×

√(
Fcx,b
Kb

)2

+

(
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

))2

(152)

ab (t) = exp

(
−Kb

mb
t

)

×

√(
Fcx,b
mb

)2

+

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)2

(153)

The maximal velocity and acceleration can be expressed as

vb,max =

√(
Fcx,b
Kb

)2

+

(
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

))2

(154)

ab,max =

√(
Fcx,b
mb

)2

+

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)2

(155)

Thus, when the ROV rises, dives or goes back from a starting
instant t = 0 and is not inside the area B and C, its velocity
and acceleration must be bounded by vb (t) and ab (t) for
t ≥ 0. Note if the value of Fcx,b is unknown, (152)-(155)
can be lower bound by taking Fcx,b = 0 or a known lower
bound of Fcx,b, and so will be the velocity and acceleration
of the ROV. Same method can be used if Fcy,b is unknown
and Fcy,b > 0. If Fcy,b < 0, an upper bound of |Fcy,b| must
be known and guarantee that (ρwaterVbuoy,i −mbuoy,i) g +
Fcy,b > 0 (Assumption A6): its upper bound can be used
inside (152)-(155). It is recommended to take Fb such that
(ρwaterVbuoy,i −mbuoy,i) g >

−Fcy,b
2 in practice.

10 Reversed and transferred models
In previous section, a model to explore hull boat, seafloor or
hilly seafloor have been proposed. However, there exist some
configuration where it is the surface which is hilly, under the
ice or in underground caves for example. There exist also
configuration where the seafloor is very deep, and so the
length l1 is too long to be approximated by a straight line.
To solve theses problems and explore new environment, the
previous models can be “reversed” or “transferred”.

In reversed model, an anchor is used instead of the boat
as origin, and ballast are reversed by buoys and opposite, as
illustrated in Figure 18 (a) and (c). The same resolutions of
the models can be used, changing the buoyancy of the buoy
by ballast weight and opposite in the equation. The axis y is
also revered such ~Oy point to the surface, y = 0 corresponds
to the depth of the anchor yanchor, and y1 < y2, y1 is deeper
than y2.

In transferred models, the origin O is translated deeper
using an anchor at the end of a cable l0, not in contact
with the seafloor, as illustrated in Figure 18 (b). The anchor
becomes the new origin like the boat before. The main
advantage of this technique is the cable l0 linking the anchor
to the boat takes all the cable deformation due to its length,
while cables l1, l2 and l3 can still respect the Assumptions
A1-A7. Surface exploration and diving exploration strategies
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(a) Reversed model surface
exploration

(b) Transferred model sea
exploration

(c) Reversed model diving
exploration

Figure 18. Example of reversed model and transferred model.
An anchor is used instead of the boat as origin, and ballast and
buoys are reversed in the reversed models.

can easily be transferred by evaluating the system for y − l0
and adding the distance l0 at the result. In case of the Sea
Exploration configuration, the areas are impacted and must
be redefined. The areas D1, D2, E and F must be lower
than the value of l0, i.e. for U ∈ {D1, D2, E, F} yareaU =
yareaU + l0. Cases of areas B and C are more complex. If
L < l1, the area C is also lower of the value of l0 (and area
B still does not exist). If L > l1 and L− l1 > l0 the area B
and C must be elevated of l0, i.e. yareaU = yareaU − l0 for
U ∈ {B,C}, because there is more space before the buoy
reaches the surface. Else if l0 ≥ L− l1, the buoy can not
reach the surface without loose cable l0 or l1, so the area
B does not exist and the area C can be assimilate to a roof at
level yareaC = l0 + l1 − L.

In all situations, the anchor must be chosen enough
heavy to make strength of ballasts, buoy, ROV and current
negligible compared to it.

11 Practical case and experimental tests
This section discusses the validity of the assumptions made
in the paper, exposes some problems in practical case and
provides some experimental results to illustrate the validity
of the study.

11.1 Validity of assumptions taken and choice
of ballast and buoy

Consider first the assumptions made in this study. The
Assumptions A1, A4, A5, A6 and A8 can easily be respected
by the choice of the ballast mass and buoy volume. However,
the Assumptions A2 and A3 can be satisfied only when the
umbilical is relatively short (50m or less between the points).
In case of deep dive where cable l1 is too long to respect
theses assumptions, the problem can be solved using the
transferred model exposed in Section 10: the additional cable

Figure 19. Pulley to obtain a sliding buoy. 1: pulley. 2: umbilical.
3: ball joint to reduce twist effort between the buoy and the
pulley. 4: additional buoy and ballast to give a neutral buoyancy
to the pulley assembly (without considering the buoys in 5). 5:
buoys Fb for the self-management strategy.

l0 takes all the cable deformation due to its length, while
cables l1, l2 and l3 can respect A2 and A3.

Assumption A7 considers the friction between the
umbilical and the sliding ballast/buoy is quite negligible to
allow the ballast/buoy to reach its theoretical equilibrium
position. A pulley has been used in practice to let the
buoy slide with few friction, as illustrated in Figure 19.
Others tests have been performed using karabiner or ring,
but the performances obtained are insufficient to correspond
to the theory, the fault of a too strong friction making
the equilibrium position strongly dependent of the starting
position. Tests show Assumption A7 can be respected
mostly, but cannot be taken lightly, see next section. Note
the radium of the pulley Rp must be taken larger than the
radius made by cable rigidity, involving to take Rcurve =
Rp and so the value of angle θmin and xmin exposed
in Section 5.6. The pulley shown in Figure 19 has been
produced to respect perfectly the diameter of our umbilical,
but first tests performed using commercial pulleys provided
very good results: the method can so be easily adapted for
all kind of umbilical. The buoy is linked to the pulley by a
mechanical ball joint to avoid twist strength on the umbilical
by the buoy.

The choice of the ballast and buoy can be more complex.
First, a ratio P

Fb
must be chosen such 1) Assumption A8

is respected, 2) P and Fb are taken such the umbilical
weight/buoyancy is negligent compare to it, and can be
deformed by them. Theoretically, any ballast and buoy
respecting ratio P

Fb
works, however the biggest P and Fb are,

the fastest the dynamic of the system is but the strongest the
strength applied on the ROV by the umbilical is too: choice
of the ballast and buoy is a trade-off between perturbation on
the ROV, its maximum velocity and cable parameters.

11.2 Materials and experimentation
As illustrated in Figure 20 for the sea exploration and diving
exploration, the three configurations have been tested in pool
and in sea, in absence of current yet. To make measurements,
the results exposed in this section have been performed in
a pool of size 3m× 4m with a depth of 3m for the sea
exploration strategy, but similar conclusion can be taken for
the two others strategies. To obtain a configuration immobile
during the measurement, the ROV has been replaced by an
anchor immersed at a controlled distance and depth from the
origin (0, 0). Let however call it “ROV” in the text below.
The measurement have been made with a measuring tape.
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(a) BlueROV during test in pool.
Umbilical for diving exploration
with presence of large obstacles.
P = 80g, Fb1 = 80g,
Fb2 = 280g,
l1 = l4 = L = 1.5m, so
ηmax = 10°.

(b) BlueROV during test in sea.
Umbilical for sea exploration, the
boat is replaced here by the
orange buoy. P = 255g,
Fb = 135g, l1 = 2.5m and
L = 3.5m.

Figure 20. Materials for experimental tests in pool and sea.

The strength of a buoy is evaluated in gram, corresponding
to the maximum mass it can lift. One takes P = 255g and
Fb = 135g. The umbilical is floating with the following
parameters: diameter 4mm, Rcurve = 18mm. One takes the
lengths l1 = 2.5m and L = 3.5m. The mass for 6m of
umbilical is 85g. The pulley has an internal radius of Rp =
20mm.

Let defined EB the discrepancy between the mea-
sured position (xB,m, yB,m) and its theoretical posi-
tion (xB,th, yB,th) of the buoy B for a ROV position
(xROV , yROV ) such as

EB (xROV , yROV ) =

√
(xB,th − xB,m)2 + (yB,th − yB,m)2.

(156)

Since the movement of the buoy are larger than that of the
ballast, the accuracy of the method is studied using EB .

The Figure 21 (a) shows the difference between the areas
B and C measured and theoretical. One can observe the
both results are closed, the most discrepancies between
the measured and theoretical areas are mostly due to the
measurement error. Indeed, the boundary between the areas
B and C, i.e. the beginning of the umbilical release,
is not always simple to observe in practice. During our
experimentation, the boundary has been measured when
ballast reaches its resting position (0, l1) or when the
umbilical starts to twist due to the lack of tension between the
ballast and the buoy. Remind the height of the buoy (element
5 in Figure 19) must be taking into account in the evaluation
of the areas B and C.

The Figure 22 illustrates two examples of the difference
between theory and practice, and Figure 21 (b) shows the
discrepancy EB for several position (xROV , yROV ). These
figures show the discrepancy between the theoretical model
and the experimental results is small when the ROV is close
to the origin and becomes larger when it moves always. The
first reason of this discrepancy is the difference between
the angles α, β, γ of the model and the curves performed
by the umbilical in practice. Moreover, tests show the
frictions cannot be totally neglect, and so the immobilization
of the buoy’s position is not always identical in function
of the buoy’s starting point and the movement performed
by the ROV. Results exposed in the Figure 21 (b) are
so the mean of three measurements. The maximum error
measured before averaging was 0.38m for (xROV , yROV ) =

(a) Areas B and C. Plain lines: theoretical areas. Dots:
experimental measurement.

(b) Error EB

Figure 21. Experimental measurement of discrepancy EB and
areas B and C. Each point is the mean of three measurements
for the same position (xROV , yROV ).

Figure 22. Comparison between theoretical umbilical (colored
plain lines) and measured umbilical (large dash black lines).
Small black dash lines: poolside. Left: EB = 0.107m. Right:
Eb = 0.327m, largest discrepancy of the experimentation.

(3.5m, 2m). Note this problem of friction is proportional
with the horizontability of the cable, and so is negligible
when the ROV is close to the origin and increase with the
distance, like the discrepancy.

Despite the gap between theory and practice, the umbilical
remained perfectly taut during all tests since the ROV is
outside the area C, even during the transition phases, and its
shape is predictable with a margin error. Note also the ballast
and buoy used are small, inducing a small constraints on the
cable.
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11.3 Other practical problems
To perform the model of the umbilical in real time, this work
supposes the position of the ROV is known. To obtain this
position, the simple method is to use an Ultra Short Baseline
(USBL). In absence of USBL, the vertical position y of
the ROV can be find using a barometer, and the distance d
between the ROV and the boat can be found using a sonar or
by vision for example.

An other practical problem is the knowledge of the
horizontal current Fcx, required for the model or the areas’
evaluation. Since Fcx is in the most case unknown, the areas
can be defined for two cases: absence of current, i.e. Fcx =
0, and the maximum current Fcx,max against which the ROV
will not be able to go upstream, and so the navigation of the
ROV is impossible in these conditions. The area B must be
evaluated considering Fcx = 0, and area F must be evaluated
considering Fcx,max. Since is can be very restrictive for area
F, a upper-bound on an a priori knowledge of the current Fcx
can also be taken instead of Fcx,max. Note the buoy and/or
ballast can be instrumented to know their position and so
simplified model evaluation. Angles between the boat and
the umbilical and/or the ROV and the umbilical can also be
measured using a camera for example.

Finally, a last practical problem is the raising of the cable
and ROV after a deep sea mission. The cable l1 (or l0) coiling
and the ROV raising must be synchronized to avoid a knot
formation inside the area C.

12 Conclusion
This work proposes three passive self-management strategies
of the umbilical for a ROV, without motorized system on
the umbilical. Using moving ballast and buoys to tend the
umbilical, two dimensional and three dimensional models
of the umbilical shape have been provided, considering
absence or presence of currents. Cables are assimilated to
straight lines with minimum angle between them to consider
umbilical rigidity. Several areas have been defined where
the umbilical behavior are different. Theses areas and a
limitation of the ROV’s velocity and acceleration define a
safe exploration area without risk of knot on the umbilical
itself. To implement theses methods, the only required
feedback is the ROV position. The strengths applied on the
umbilical and the ROV have been studied. Finally, reversed
and transferred models allow a large adaptation of the three
basic configurations to extend them to other environments
while respecting hypotheses taken.

Future works will study other umbilical configurations,
e.g for large area to explore with shallow water depth. A
general model to create easily new configurations could
also be proposed. Variations of current, presence of waves
and uncertainty on parameters will be considered. Finally,
measurements in sea during a true mission will be performed.

References
[1] BA Abel. Underwater vehicle tether management

systems. In Proceedings of OCEANS’94, volume 2,
pages II–495, 1994.

[2] O. Blintsov. Development of the mathematical
modeling method for dynamics of the flexible tether

as an element of the underwater complex. Eastern-
European Journal of Enterprise Technologies, 1 (7):4–
14, 2017.

[3] L. Brignone, E. Raugel, J. Opderbecke, V. Rigaud,
R. Piasco, and S. Ragot. First sea trials of hrov the
new hybrid vehicle developed by ifremer. In Oceans
2015-genova, pages 1–7, 2015.

[4] B. Buckham and M. Nahon. Dynamics simulation of
low tension tethers. In IEEE Conference Proceedings
Oceans, volume 2, pages 757–766, 1999.

[5] R. D. Christ and R. L. Wernli Sr. The ROV manual:
a user guide for observation class remotely operated
vehicles. Elsevier, 2011.

[6] T. Crandle, G. Cook, and E. Celkis. Tradeoffs between
umbilical and battery power in rov performance. In
IEEE OCEANS 2017-Anchorage, pages 1–6, 2017.

[7] R. G. Duncan, Mark E. Froggatt, S. .T Kreger, R. J.
Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe.
High-accuracy fiber-optic shape sensing. In Sensor
Systems and Networks, volume 6530, page 65301S,
2007.

[8] O. A. Eidsvik and I. Schjølberg. Time domain
modeling of rov umbilical using beam equations. IFAC,
49(23):452–457, 2016.

[9] O. A. N. Eidsvik and I. Schjølberg. Finite element
cable-model for remotely operated vehicles (rovs) by
application of beam theory. Ocean Engineering,
163:322–336, 2018.

[10] J. E. Frank, R. Geiger, D. R. Kraige,
and A. Murali. Smart tether system for
underwater navigation and cable shape
measurement, 2013. US Patent 8,437,979, URL
https://patents.google.com/patent/US8437979B2/en.

[11] O. Ganoni, R. Mukundan, and R. Green. Visually
realistic graphical simulation of underwater cable.
2018.
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A Proof of umbilical model for surface
exploration

A.1 Proof of (6)-(8)
Since x ≤ L, (6) is obvious from (4). The relation L =
l1 + l2 shows (8). Consider now (5):

y = (l1 − l2) cos (α)

y = (−L+ 2l1) cos (α)

l1 =
1

2

(
L+

y

cos (α)

)
. (157)

From (4), one can write

cos (α) = cos
(

asin
( x
L

))
=

√
1−

( x
L

)2

(158)

so

l1 =
1

2

L+
y√

1−
(
x
L

)2
 . (159)

A.2 Proofs of (9) and (10)
Let define the mass depth yM . Using (6)-(8), one gets

yM = l1cos (α)

= l1

√
1−

( x
L

)2

=
1

2

L+
y√

1−
(
x
L

)2
√1−

( x
L

)2

=
1

2

(
L

√
1−

( x
L

)2

+ y

)
. (160)

To guarantee yfloor ≥ yM , one must have

yfloor ≥ yM

yfloor ≥
1

2

(
L

√
1−

( x
L

)2

+ y

)

2yfloor − L
√

1−
( x
L

)2

≥ y, (161)

and to take into account the mass height hM , one gets

yfloor ≥ yM (x) + hM

yfloor − hM ≥
1

2

(
L

√
1−

( x
L

)2

+ y

)

2 (yfloor − hM )− L
√

1−
( x
L

)2

≥ y. (162)

A.3 Proofs of umbilical model for surface
exploration with current

By making a rotation of the referential R by an angle
of π

2 − ψP,x, this problem can be assimilate to the case
without current studied in Section 4.1. Let define R∗ the
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new referential obtained with the parameters α∗, β∗ where
α∗ = ᾱ and β∗ = −ᾱ. Then

α = α∗ + ψP,x (163)
β = 2ψP,x − α. (164)

Let define x∗,y∗ the coordinate in referentialR∗ such

x∗ = x cos (ψP,x)− y sin (ψP,x) (165)
y∗ = y cos (ψP,x) + x sin (ψP,x) . (166)

Note l1 and l2 stay unchanged. Using result described in
Appendix A.1, one gets

α∗ = asin
(
x∗

L

)
(167)

l1 =
1

2

L+
y∗√

1−
(
x∗

L

)2
 (168)

l2 = L− l1 (169)

Using (163) and (165)-(166) to go back to the referential R,
one obtains

α = asin
(
x cos (ψP,x)− y sin (ψP,x)

L

)
+ ψP,x (170)

β = 2ψP,x − α (171)

l1 =
1

2

L+
y cos (ψP,x) + x sin (ψP,x)√
1−

(
x cos(ψP,x)−y sin(ψP,x)

L

)2

 (172)

l2 = L− l1. (173)

All the parameters have been defined.

B Proof for umbilical for sea exploration

B.1 Proof of θmin in (53)
To perform two half circles of radius Rcurve around the
ballast and the buoy, one must have

4Rcurve = l2 sin (−α) + l3 sin (β) . (174)

Since α = −β and L = l2 + l3, one gets

4Rcurve = L sin (β)

sin (β) =
4Rcurve

L

θmin = 2asin
(

4Rcurve
L

)
. (175)

B.2 Proof of (25) in area A
Since ~T1, ~T2 and ~T3 are unknown, (23) and (24) are projected
on the axis perpendiculars to ~T1 and ~T3, noted respectively
~v⊥T1 and ~v⊥T3:

ΣM ~F .~v⊥T1 = P sin (γ)− T2 sin (γ − α) (176)

ΣB ~F .~v⊥T3 = −Fb sin (β)− T2 sin (β − α) . (177)

Remind β = −α. Since ΣM ~F .~v⊥T1 = 0 and
ΣB ~F .~v⊥T3 = 0, one gets

T2 = P
sin (γ)

sin (γ + β)
(178)

T2 = Fb
sin (β)

sin (2β)
(179)

so

P
sin (γ)

sin (γ + β)
= Fb

sin (β)

sin (2β)
. (180)

From (180), one may write

P

Fb
sin (γ) sin (2β) = sin (β) sin (γ + β)

P

Fb
sin (γ) [2 sin (β) cos (β)] = sin (β) [sin (β) cos (γ)

+ sin (γ) cos (β)] (181)

If γ = 0, one has β = 0 and so α = 0. The case γ = π
2

is possible only if β = π
2 and α = −π2 because the buoy can

not go higher than the sea level. Consider now the case γ 6= 0
and γ 6= π

2 . (181) becomes

2
P

Fb
tan (γ) = tan (β) + tan (γ)(

2
P

Fb
− 1

)
tan (γ) = tan (β) . (182)

(182) provides a relation between γ and β in the area A.

B.3 Calculation of γ in area A
Let first remind Λ tan (γ) = tan (β). For a given θ, one has
sin (atan (θ)) = θ√

1+θ2
, so

sin (β) = sin (atan (Λ tan (γ)))

=
Λ tan (γ)√

1 + (Λ tan (γ))
2
. (183)

Put X = sin (γ). Thus, one has

tan (γ) =
X√

1−X2
(184)

and so (183) becomes

sin (β) =

ΛX√
1−X2√

1 +
(

ΛX√
1−X2

)2

=
ΛX√

1 + (Λ2 − 1)X2
. (185)

By introducing (21) and (20) inside (18), one gets

x = l1 sin (γ) + L sin (β) . (186)

Let’s introduce X and (185) inside (186):

x = l1X +
LΛX√

1 + (Λ2 − 1)X2
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(x− l1X)
√

1 + (Λ2 − 1)X2 = LΛX

(x− l1X)
2 (

1 +
(
Λ2 − 1

)
X2
)

= (LΛX)
2(

x2 − 2xl1X + l21X
2
) (

1 +
(
Λ2 − 1

)
X2
)

= L2Λ2X2

x2 + x2
(
Λ2 − 1

)
X2 − 2xl1X − 2xl1

(
Λ2 − 1

)
X3

+l21X
2 + l21

(
Λ2 − 1

)
X4 − L2Λ2X2 = 0

(187)

which can be reorganised such

aX4 + bX3 + cX2 + dX + E = 0 (188)

with

a = l21
(
Λ2 − 1

)
(189)

b = −2xl1
(
Λ2 − 1

)
(190)

c = x2
(
Λ2 − 1

)
− L2Λ2 + l21 (191)

d = −2xl1 (192)

e = x2. (193)

(188) is a quartic function which can be solved
using Ludovico Ferrari, described for our parameters in
Section B.5.

Remark if P = Fb, on gets Λ2 = 1 so a = 0 and b = 0.
(188) becomes a second order polynomial whom the solution
which interest us is

sin (γ) =
−d−

√
d2 − 4ce

2c
(194)

which is equal to

sin (γ) =
x (l1 − L)

l21 − L2

=
x (l1 − L)

(l1 − L) (l1 + L)

=
x

l
(195)

since l = l1 + L. Moreover, if x = 0, the only geometrical
solution without current is sin (γ) = 0.

B.4 Calculation of l2 and l3 in area A
Suppose β and γ have been previously evaluated using (25)
and results of Appendix B.3. Then (19) can be rewritten such

y = l1 cos (γ)− l2 cos (β) + (L− l2) cos (β)

y = l1 cos (γ) + (L− 2l2) cos (β)

−2l2 = −L+
y − l1 cos (γ)

cos (β)

l2 =
L

2
− y − l1 cos (γ)

2 cos (β)
(196)

and so l3 = L− l2.

B.5 Solve quartic function
Considering our application, only one solution of the quartic
function corresponds to our configuration. This section
summarized the Ludovico Ferrari’s method to solve quartic

function and add the knowledge of ours parameters to
exclude some cases and pick the appropriate solution.

Let solve the quartic function

aX4 + bX3 + cX2 + dX + e = 0. (197)

Suppose P > Fb, so a 6= 0 and b 6= 0, else the solution of
(188) is described in (194). Suppose also x > 0, else the only
geometric solution is X = 0.

Theorem 9. Consider x > 0 and P > Fb. The solution of
(197) considering the relation between the parameters l1, L,
x, P ans Fb is

X = min
i∈[1,2,3,4]

(|Xi|) (198)

where{
X1 =

√
U− 2

3
A−
√

∆Y 1

2
, X2 =

√
U− 2

3
A+
√

∆Y 1

2
, if ∆Y 1 ≥ 0

X1 =∞, X2 =∞ else,
(199){

X3 =
−
√
U− 2

3
A−
√

∆Y 2

2
, X4 =

−
√
U− 2

3
A+
√

∆Y 2

2
, if ∆Y 2 ≥ 0

X3 =∞, X4 =∞ else,
(200)

for ∆Y 1 = −
(
U + 4

3A+ 2B√
U− 2

3A

)
and ∆Y 2 =

−
(
U + 4

3A−
2B√
U− 2

3A

)
with

A = − x
2

2l21
−
(
L2Λ2 − l21

)
l21 (Λ2 − 1)

(201)

B = − l
2
1 + L2Λ2

l31 (Λ2 − 1)
x (202)

C =
x4

16l41
+
x2
(
l21 − L2Λ2

)
4l41 (Λ2 − 1)

(203)

U =

(
− q

2
+
√

q2

4
+ p3

27

) 1
3

+

(
− q

2
−
√

q2

4
+ p3

27

) 1
3

if ∆U > 0,

2 cos

 1
3

acos

− q

2

√
− p

3

27

√− p
3

if ∆U < 0,

−
√
− p

3
if ∆U = 0

(204)

with ∆U = q2

4 + p3

27 , p = −4C − A2

3 and q = 2A3

27 +(
4AC −B2

)
+ −4CA

3 .

B.5.1 Proof of Theorem 9
Suppose here x > 0 and P > Fb, so Λ2 > 1 and a 6= 0 and
b 6= 0. By putting X = Y − b

4a , (197) becomes

Y 4 +AY 2 +BY + C = 0 (205)

with

A =
−3b2

8a2
+
c

a
(206)

B =

(
b
2

)3
a3
− 1

2

bc

a2
+
d

a
(207)

C = −3

(
b

4a

)4

+ c

(
b
4

)2
a3
− 1

4

bd

a2
+
e

a
. (208)

Prepared using sagej.cls



26 Journal Title XX(X)

Let show that in our case, B 6= 0. We introduce the value
of (189)-(193) inside B:

B =

(
b
2

)3
a3
− 1

2

bc

a2
+
d

a

=

(
−xl1

(
Λ2 − 1

))3
(l21 (Λ2 − 1))

3 +
−2xl1

l21 (Λ2 − 1)

− 1

2

(
−2xl1

(
Λ2 − 1

)) (
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
(l21 (Λ2 − 1))

2

= −
(
x

l1

)3

− 2x

l1 (Λ2 − 1)
+
x
(
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
l31 (Λ2 − 1)

=
−x2

(
Λ2 − 1

)
− 2l21 +

(
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
l31 (Λ2 − 1)

x

=
−l21 − L2Λ2

l31 (Λ2 − 1)
x (209)

and since x > 0, L > 0, l1 > 0 and Λ > 0, one has B < 0.
Since B 6= 0, (205) can be rewritten(

Y 2 +
u

2

)2

= (u−A) (Y − Z)
2 (210)

where Z = B
2(u−A) and u is the solution of

u3 −Au2 − 4Cu+
(
4AC −B2

)
= 0

āu3 + b̄u2 + c̄u+ d̄ = 0 (211)

with

ā = 1 (212)
b̄ = −A (213)
c̄ = −4C (214)

d̄ = 4AC −B2. (215)

and where (211) can be evaluated using Cardan formula.
Evaluation of u

Using Cardan approach, (211) can be rewritten such that

U3 + pU + q = 0 (216)

where

u =

(
U − b̄

3ā

)
= U +

A

3
(217)

p =

(
c̄

ā
− b̄2

3ā2

)
= −4C − A2

3
(218)

q =

(
2b̄3

27ā3
+
d̄

ā
− b̄c̄

3ā2

)
=

2A3

27
+
(
4AC −B2

)
+
−4CA

3
(219)

Still following the Cardan approach, let define the
determinant ∆U = q2

4 + p3

27 and consider cases ∆U > 0,
∆U < 0 and ∆U = 0:

• If ∆U > 0, p and q are necessarily negative (property
of Cardan formula) and the solution of (216) is

U =

(
− q

2
+

√
q2

4
+
p3

27

) 1
3

+

(
− q

2
−
√
q2

4
+
p3

27

) 1
3

(220)

and so U > 0.

• If ∆U < 0, one has necessarily p < 0 (property of
Cardan formula) and the solution of (216) is

U = 2 cos

(
t

3

)√
−p

3
(221)

with

t = acos
(
− q

2r

)
(222)

r =

√
−p

3

27
(223)

and so U > 0.
• If ∆U = 0, one has necessarily p < 0 (property of

Cardan formula) and the solution of (216) is

U = −
√
−p

3
, (224)

so U ≥ 0.

Evaluation of Y
Let’s go back to (210):(

Y 2 +
u

2

)2

= (u−A) (Y − Z)
2 (225)

with

Z =
B

2 (u−A)

=
B

2
(
U − 2A

3

) (226)

Let’s show first u−A ≥ 0. Since u = U + A
3 , one has u−

A = U − 2A
3 where U ≥ 0. Let’s show A < 0:

A =
−3b2

8a2
+
c

a

=
−3
(
2xl1

(
Λ2 − 1

))2
8l41 (Λ2 − 1)

2 +
x2
(
Λ2 − 1

)
− L2Λ2 + l21

l21 (Λ2 − 1)

=
−12x2l21

(
Λ2 − 1

)2
8l41 (Λ2 − 1)

2 +
x2
(
Λ2 − 1

)
− L2Λ2 + l21

l21 (Λ2 − 1)

=
−12x2l21

(
Λ2 − 1

)2
8l41 (Λ2 − 1)

2

+
8x2l21

(
Λ2 − 1

)2 − 8l21L
2Λ2

(
Λ2 − 1

)
+ 8l41

(
Λ2 − 1

)
8l41 (Λ2 − 1)

2

=
−4x2l21

(
Λ2 − 1

)2 − 8l21
(
L2Λ2 − l21

) (
Λ2 − 1

)
8l41 (Λ2 − 1)

2

= − x
2

2l21
−
(
L2Λ2 − l21

)
l21 (Λ2 − 1)

(227)

so A < 0 if L2Λ2 − l21 ≥ 0, so if LΛ ≥ l1. Due to the
Assumption A8, one has

P ≥ Fb
2

(
l1
L

+ 1

)
L

(
2
P

Fb
− 1

)
≥ l1

LΛ ≥ l1 (228)
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so the condition is true and A < 0, so u−A > 0.
Since it has been proven that (u−A) > 0, Y of (225) is

the solution of one of the two equations{
Y 2 + u

2 = T (Y − Z)

Y 2 + u
2 = −T (Y − Z)

(229)

with T =
√
u−A and Z = B

2(u−A){
Y 2 − Y T +

(
ZT + u

2

)
= 0

Y 2 + Y T +
(
−ZT + u

2

)
= 0.

(230)

For (230), we can define two discriminates ∆Y 1 and ∆Y 2.
Consider first ∆Y 1

∆Y 1 = T 2 − 4
(
ZT +

u

2

)
= (u−A)− 4

(
B
√
u−A

2
(
U − 2A

3

) +
u

2

)
. (231)

Since u = U + A
3 , one gets

∆Y 1 =

(
U − 2

3
A

)
− 4

B
√
U − 2

3A

2
(
U − 2A

3

) +
U

2
+

1

6
A


=

(
U − 2

3
A

)
−

 2B√
U − 2

3A
+ 2U +

2

3
A


= −

U +
4

3
A+

2B√
U − 2

3A

 . (232)

In the same way, one can get

∆Y 2 = −

U +
4

3
A− 2B√

U − 2
3A

 . (233)

and obtain the four solution of (230):

Y1 =

√
U − 2

3A−
√

∆Y 1

2
(234)

Y2 =

√
U − 2

3A+
√

∆Y 1

2
(235)

Y3 =
−
√
U − 2

3A−
√

∆Y 2

2
(236)

Y4 =
−
√
U − 2

3A+
√

∆Y 2

2
. (237)

RemindX = Y − b
4a , soX = Y + x

2l1
. Then from (234)-

(237), one gets the four solution Xk for k ∈ [1, . . . , 4]:

X1 =

√
U − 2

3A−
√

∆Y 1

2
(238)

X2 =

√
U − 2

3A+
√

∆Y 1

2
(239)

X3 =
−
√
U − 2

3A−
√

∆Y 2

2
(240)

X4 =
−
√
U − 2

3A+
√

∆Y 2

2
. (241)

For our case, the solution is the smallest real absolute
value of the Xk solution, so

X = min
i∈[1,2,3,4]

(|Xi|) . (242)

Simplification of C

C = −3

(
b

4a

)4

+ c

(
b
4

)2
a3
− 1

4

bd

a2
+
e

a
.

= −3

(
−2xl1

(
Λ2 − 1

)
4l21 (Λ2 − 1)

)4

+

(
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
(l21 (Λ2 − 1))

3

(
−2xl1

(
Λ2 − 1

)
4

)2

− 1

4

(
−2xl1

(
Λ2 − 1

))
(−2xl1)

(l21 (Λ2 − 1))
2 +

x2

l21 (Λ2 − 1)

= −3
x4

16l41
+

(
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
l61 (Λ2 − 1)

3

×

(
x2l21

(
Λ2 − 1

)2
4

)
−

(xl1)
2 (

Λ2 − 1
)

l41 (Λ2 − 1)
2 +

x2

l21 (Λ2 − 1)

= − 3

16

x4

l41
+

(
x2
(
Λ2 − 1

)
− L2Λ2 + l21

)
l41 (Λ2 − 1)

(
x2

4

)
− x2

l21 (Λ2 − 1)
+

x2

l21 (Λ2 − 1)

= − 3

16

x4

l41
+
x4
(
Λ2 − 1

)
− x2L2Λ2 + x2l21

4l41 (Λ2 − 1)

= −
3x4

(
Λ2 − 1

)
16l41

+
4x4

(
Λ2 − 1

)
− 4x2L2Λ2 + 4x2l21

16l41 (Λ2 − 1)

=
x4
(
Λ2 − 1

)
− 4x2L2Λ2 + 4x2l21

16l41 (Λ2 − 1)

=
x4

16l41
+
x2
(
l21 − L2Λ2

)
4l41 (Λ2 − 1)

(243)

B.6 Calculation of the boundary between
areas

B.6.1 Boundary areas A-B: y = l3 cos (β)
The boundary between the areas A and B corresponds to the

depth y = l3 cos (β) with l3 ≥ 0 because the buoy must stay
on the surface. So (19) becomes

l3 cos (β) = l1 cos (γ)− l2 cos (α) + l3 cos (β)

0 = l1 cos (γ)− l2 cos (β)

l2 = l1
cos (γ)

cos (β)
(244)

and since L = l2 + l3, one gets

l3 = L− l1
cos (γ)

cos (β)
. (245)

At the boundary of areas A and B, β can still be evaluated
using (25) and γA can be evaluated using Theorem 1. Let
γA (x) be the value of γ inside the area A for a position
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x > 0. Thus, one has

cos (β) = cos (atan (Λ tan (γA (x))))

=
1√

1 + Λ2 tan (γA (x))
2
. (246)

Using (245) and (246), for a given x, the associate depth
yareaB can be expressed as

yareaB (x)

= max ([l3 cos (β) , 0])

= max ([L cos (β)− l1 cos (γA (x)) , 0])

= max

 L√
1 + Λ2 tan (γA (x))

2
− l1 cos (γA (x)) , 0


(247)

and the ROV is inside the area B if y < yareaB (x). Remark
yareaB can be rewritten

yareaB (x)

= max

L− l1
√

1 + (Λ2 − 1) sin (γA (x))
2√

1 + Λ2 tan (γA (x))
2

, 0

 .

(248)

B.6.2 Boundary areas B-C, A-C or D1-C
The area C can correspond to two cases : 1) if L ≥ l1, the

buoy is on the surface but ballast can not taut the cable L, 2)
ifL < l1, the cable l1 is not taut because the ROV is too close
to the surface. In the first case, the boundary is between the
area B and the area C. In the second, the boundary is between
the area A or D1 and area C.

Case 1: L ≥ l1
In this configuration, area B exist and we search the

boundary between the areas B and C. At the boundary of
the two areas, the buoy is on the surface and ballast can still
taut the cable L. In absence of current, the ballast can apply a
tension simultaneously on the cable l1 and L only for angles
γ such γ ∈

[
0, π2

]
. Else, the part L of the umbilical will not

be taut. Since (21) is still valid at the boundary between areas
B and C, one can deduce from (18) and that

x = l1 sin (γ) + L sin (β) (249)

For its limit angle γ = 0, one gets

sin (β) =
x

L
, (250)

which is possible only if x ≤ L.
Put the condition x ≤ L. Since the buoy is on the surface,

one has y = l3 cos (β). From (19) and since (21), one gets

y = l1 cos (γ)− l2 cos (β) + l3 cos (β)

0 = l1 − l2 cos
(

asin
( x
L

))
l2 =

l1√
1− x2

L2

. (251)

and l3 = L− l2.

Introducing (251) into y = l3 cos (β), one gets if x ≤ L

yareaC,1 (x) = max

L− l1√
1− x2

L2

√1− x2

L2
, 0


= max

([√
L2 − x2 − l1, 0

])
. (252)

and
yareaC,1 (x) = 0 if x > L. (253)

Remark (252) converges to zero when x converges to√
L2 − l21, so yareaC,1 (x) is continuous and one gets

yareaC,1 (x) =

{ √
L2 − x2 − l1

0

if x <
√
L2 − l21

else.
(254)

where L > l1.

Case 2: L < l1
In this configuration, area B does not exist and the buoy is

in contact with the ROV, so we search the boundary of areas
A or D1 and C. At the boundary and in absence of current,
the buoy is in contact with the ROV, so β = 0, l2 = L and
l3 = 0, and the ballast can apply a tension simultaneously
on the cable l1 and L only if α ∈ [0, π]. For its limit angle
α = 0, one can deduce from (18) that

sin (γ) =
x

l1
(255)

which is possible only if x ≤ l1.
Since the buoy is in contact with the ROV, one has l2 = L

and l3 = 0. Introducing these results in (19) and for α = 0,
one gets

y = l1 cos (γ)− L

= l1 cos

(
asin

(
x

l1

))
− L

= l1

√
1− x2

l21
− L

=
√
l21 − x2 − L. (256)

Thus, in similar way than for the case 1, one may write

yareaC,2 (x) =

{ √
l21 − x2 − L

0

if x <
√
l21 − L2

else.
(257)

where l1 > L.

Conclusion
The result of the two previous cases can be summarized by

yareaC (x) =
√
l21 − x2 − L, if

(
x <

√
l21 − L2

)
& (l1 > L) ,

√
L2 − x2 − l1, if

(
x <

√
L2 − l21

)
& (L > l1) ,

0 else.
(258)
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B.6.3 Boundary areas A-D1
In area D1, the buoy is in contact with the ROV, so l3 = 0

and l2 = L. Thus (18)-(19) becomes

x = l1 sin (γ)− L sin (α) (259)
y = l1 cos (γ)− L cos (α) (260)

At the boundary of areas A and D1, one still have β = −α
and β can still be evaluated using (25) and γA can be evaluate
using Theorem 1. Let γA (x) be the value of γ inside the area
A for a position x > 0. Thus, one has

cos (β) = cos (atan (Λ tan (γA (x))))

=
1√

1 + Λ2 tan (γA (x))
2
. (261)

Using (261) and (379), the associate depth yareaD1 can be
expressed for a given x as

yareaD1 (x)

= max ([l1 cos (γA (x))− L cos (β) , 0])

= max

l1 cos (γA (x))− L√
1 + Λ2 tan (γA (x))

2
, 0

 .

(262)

The ROV is inside the area D1 if y < yareaD1 (x). Remark
(262) can be rewritten such

yareaD1 (x) =
l1

√
1 + (Λ2 − 1) sin (γA (x))

2 − L√
1 + Λ2 tan (γA (x))

2
.

(263)

B.6.4 Boundary areas A-D2
In area D2, the buoy is in contact with the ballast, so l3 = L

and l2 = 0. Thus (18)-(19) becomes

x = l1 sin (γ) + L sin (β) (264)
y = l1 cos (γ) + L cos (β) . (265)

At the boundary of areas A and D2, β can still be evaluated
using (25) and γA can be evaluate using Theorem 1. Let
γA (x) be the value of γ inside the area A for a position
x > 0. One finds (261) again. Thus, using (261) and (383),
for a given x, the associate depth yareaD2 can be expressed
as

yareaD2 (x)

= max ([l1 cos (γA (x)) + L cos (β) , 0])

= max

l1 cos (γA (x)) +
L√

1 + Λ2 tan (γA (x))
2
, 0

 .

(266)

The ROV is inside the area D2 if y > yareaD2 (x).
Remark (266) can be rewritten such

yareaD2 (x)

= max

 l1
√

1 + (Λ2 − 1) sin (γA (x))
2

+ L√
1 + Λ2 tan (γA (x))

2
, 0

 .

(267)

B.6.5 Boundary areas E
The limit for the area E is simple because it corresponds

to the maximum length of umbilical. The ROV is always
outside the area E in practice because it can not physically
go inside. Area E can be expressed such that

yareaE (x) =
√
l2 − x2 (268)

where

if x > l, take x = l, (269)
if y > yareaE , take y = yareaE . (270)

B.7 Calculation of γ, α and β without current
B.7.1 Calculation of γ, α and β in area D1

In area D1, the buoy is in contact with the ROV, so l3 = 0
and l2 = L. One has x 6= 0 because the ROV cannot be
inside the area D1 if x = 0 (areas A or C at x = 0). Consider
first here y 6= 0. Thus (18)-(19) becomes

x = l1 sin (γ)− L sin (α) (271)
y = l1 cos (γ)− L cos (α) . (272)

From (272), one gets

cos (α) =
−y + l1 cos (γ)

L
(273)

and so α = −acos
(
−y+l1 cos(γ)

L

)
.

Let find now γ. From (273), one has

sin (−α) =

√
1−

(
−y + l1 cos (γ)

L

)2

(274)

By putting X = sin (γ), (274) becomes

sin (−α) =
1

L

√
L2 −

(
−y + l1

√
1−X2

)2

. (275)

Introducing (275) inside (271), one gets

x = l1X + L

(
1

L

√
L2 −

(
−y + l1

√
1−X2

)2
)

(276)

which can be rewritten such

(x− l1X)
2

= L2 −
(
−y + l1

√
1−X2

)2

x2 − 2l1xX + l21X
2 = L2 −

(
y2 − 2yl1

√
1−X2

+l21 − l21X2
)

x2 + y2 + l21 − L2 − 2l1xX = 2yl1
√

1−X2

x2 + y2 + l21 − L2

2yl1
− x

y
X =

√
1−X2 (277)

Put aD =
x2+y2+l21−L

2

2yl1
and bD = x

y . (393) becomes

(aD − bDX)
2

= 1−X2

a2
D − 2aDbDX + b2DX

2 = 1−X2

a2
D − 1− 2aDbDX +

(
1 + b2D

)
X2 = 0

CD −BDX +ADX
2 = 0 (278)
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with CD = a2
D − 1, BD = 2aDbD and AD = 1 + b2D. The

solution of (394) is

X =
BD −

√
B2
D − 4ADCD

2AD

=
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
.

Since X = sin (γ), one obtains if y 6= 0

sin (γ) =
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
. (279)

Consider now the case y = 0 and x 6= 0. Following the
same steps, one gets

cos (α) =
l1 cos (γ)

L
(280)

sin (γ) =
x2 + l21 − L2

−2l1x
. (281)

B.7.2 Calculation of γ, α and β in area D2
In area D2, the buoy is in contact with the ballast, so l3 = L

and l2 = 0. Thus (18)-(19) becomes

x = l1 sin (γ) + L sin (β) (282)
y = l1 cos (γ) + L cos (β) . (283)

From (283), one gets

cos (β) =
y − l1 cos (γ)

L
. (284)

From (284), one has sin (β) =

√
1−

(
y−l1 cos(γ)

L

)2

. By

putting X = sin (γ), one gets

sin (β) =
1

L

√
L2 −

(
y − l1

√
1−X2

)2

. (285)

Remark
(
y − l1

√
1−X2

)2
=
(
−y + l1

√
1−X2

)2
.

Thus, following the same steps developed in Section B.7.1
from (389) to (395), one gets the same evaluation of γ than
for the area D1, i.e.

sin (γ) =
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(286)

with aD =
x2+y2+l21−L

2

2yl1
and bD = x

y .

B.7.3 Calculation of γ and β in area B
In area B, the buoy is on the surface but ballast can still taut

the cables l1 and L, so γ ≥ 0, l2 > 0 and l3 > 0. Moreover,
since the buoy is on the surface, one has y = l3 cos (β). Thus,
(19) becomes

l3 cos (β) = l1 cos (γ)− l2 cos (α) + l3 cos (β)

0 = l1 cos (γ)− l2 cos (β) (287)

From y = l3 cos (β), one has

cos (β) =
y

l3
. (288)

Injecting (288) into (287), one gets

0 = l1 cos (γ)− (L− l3)
y

l3
0 = l3l1 cos (γ)− (L− l3) y

Ly = l3 (l1 cos (γ) + y)

l3 =
Ly

l1 cos (γ) + y
. (289)

and so l2 = L− Ly
l1 cos(γ)+y . Remark since γ ∈

[
0, π2

]
and

l1 > 0, one has y
l1 cos(γ)+y ≤ 1, thus (289) guarantees that

0 ≤ l3 ≤ L.
Let find the value of γ now. From (288), one has

sin (β) =

√
1−

(
y

l3

)2

(290)

and injecting (289) inside (290), one obtains

sin (β) =

√
1−

(
l1 cos (γ) + y

L

)2

. (291)

By putting X = sin (γ), one gets

sin (β) =
1

L

√
L2 −

(
l1
√

1−X2 + y
)2

. (292)

Using X , α = −β and (292) inside (18), one gets

x = l1 sin (γ) + L sin (β)

x = l1X +

√
L2 −

(
y + l1

√
1−X2

)2

(293)

which can be rewritten such

(x− l1X)
2

= L2 −
(
y + l1

√
1−X2

)2

x2 − 2l1xX + l21X
2 = L2 −

(
y2 + 2yl1

√
1−X2

+l21 − l21X2
)

x2 + y2 + l21 − L2 − 2l1xX = −2yl1
√

1−X2

x2 + y2 + l21 − L2

2yl1
− x

y
X = −

√
1−X2 (294)

Put aD =
x2+y2+l21−L

2

2yl1
and bD = x

y . (393) becomes

(aD − bDX)
2

= 1−X2 (295)

Remark the same aD and bD used here are exactly the
same that the ones used in Section B.7.1. Thus, following the
same steps developed in Section B.7.1 from (389) to (395),
one gets the same evaluation of γ than for the area D1 and
D2, i.e.

sin (γ) =
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(296)

with aD =
x2+y2+l21−L

2

2yl1
and bD = x

y . However, the evalua-
tion of β is different and one has

cos (β) =
y

l3

=
y + l1 cos (γ)

L
. (297)
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B.7.4 Calculation of γ and β in area E
Remind the ROV can not physically go inside area E. In

view of the practical case, we suppose the measurement of
the depth is easier to obtain than the distance x (using a
barometer for example) and more accurate. So

if y > l, put y = l, (298)

if y > yareaE (x) , put x =
√
l2 − y2 (299)

and cos (γ) = y
l , β = γ, l2 = 0, l3 = L.

C Proof for umbilical for sea exploration
with horizontal current

C.1 Proof of (70)
Since ~T1, ~T2 and ~T3 are unknown, we project (67) and (68)
on the axis perpendiculars to ~T1 and ~T3, noted respectively
~v⊥T1 and ~v⊥T3:

ΣM ~F .~v⊥T1 = Ftm,x sin (γ − ψP,x)− T2 sin (γ − α) (300)

ΣB ~F .~v⊥T3 = Ftb,x sin (β − ψB,x)− T2 sin (β − α) . (301)

Since ΣM ~F .~v⊥T1 = 0 and ΣB ~F .~v⊥T3 = 0, one gets

T2 = Ftm,x
sin (γ − ψP,x)

sin (γ − α)
(302)

T2 = Ftb,x
sin (β − ψB,x)

sin (β − α)
(303)

so

Ftm,x
sin (γ − ψP,x)

sin (γ − α)
= Ftb,x

sin (β − ψB,x)

sin (β − α)
. (304)

In the case where the buoy does not touch the surface, one
has α = 2ψB,x − β and so (304) becomes

Ftm,x
sin (γ − ψP,x)

sin (γ − 2ψB,x + β)
= Ftb,x

sin (β − ψB,x)

sin (2 (β − ψB,x))
.

(305)
By introducing notation Γ = γ − ψP,x, B = β − ψB,x

and ∆ψx = ψP,x − ψB,x, (305) becomes

Ftm,x
sin (Γ)

sin (Γ +B + ∆ψx)
= Ftb,x

sin (B)

sin (2B)
. (306)

From (306), one may write

Ftm,x
Ftb,x

sin (Γ) sin (2B) = sin (B) sin (Γ +B + ∆ψx)

(307)

2
Ftm,x
Ftb,x

sin (Γ) (sin (B) cos (B)) =

sin (B) (sin (Γ) cos (B + ∆ψx) + cos (Γ) sin (B + ∆ψx))
(308)

2
Ftm,x
Ftb,x

sin (Γ) cos (B) = sin (Γ) cos (B + ∆ψx)

+ cos (Γ) sin (B + ∆ψx) (309)

Since |Γ| 6= π
2 so γ 6= π

2 − ψP,x or γ 6= −π2 + ψP,x and
|B| 6= π

2 so β 6= π
2 − ψB,x or β 6= −π2 + ψB,x, one has

2
Ftm,x
Ftb,x

tan (Γ) cos (B)

= tan (Γ) [cos (B) cos (∆ψx)− sin (B) sin (∆ψx)]

+ [sin (B) cos (∆ψx) + cos (B) sin (∆ψx)] (310)

2
Ftm,x
Ftb,x

tan (Γ) = tan (Γ) [cos (∆ψx)− tan (B) sin (∆ψx)]

+ [tan (B) cos (∆ψx) + sin (∆ψx)]
(311)

(
2
Ftm,x
Ftb,x

− cos (∆ψx)

)
tan (Γ)− sin (∆ψx)

= tan (B) (cos (∆ψx)− tan (Γ) sin (∆ψx)) (312)

tan (B) =

(
2
Ftm,x
Ftb,x

− cos (∆ψx)
)

tan (Γ)− sin (∆ψx)

cos (∆ψx)− tan (Γ) sin (∆ψx)
(313)

Thus (313) provides a relation between γ and β.

C.2 Calculation of the boundary between
areas with current

C.2.1 Boundary areas B-C or A-C with current
The area C can correspond to two cases : 1) if L ≥ l1, the

buoy is on the surface but ballast can not taut the cable L,
2) if L < l1, the cable l1 is not taut because the ROV is too
close to the surface. Note at the boundary of areas B and C,
the following system is still valid

x = l1 sin (γ)− l2 sin (α) + l3 sin (β) (314)
y = l1 cos (γ)− l2 cos (α) + l3 cos (β) . (315)

Let’s studied the two cases.

Case 1: L ≥ l1
The area C does not exist theoretically when L > l1

because the umbilical can always be stretched by the current:
α , β, γ, l2, l3 can always be found such the umbilical is taut.
Thus

yareaC (x) = 0 if L ≥ l1. (316)

Case 2: L < l1
In this configuration, area B does not exist and the buoy is

in contact with the ROV, so the boundary of areas D1 and
C is searched. Since the buoy is in contact with the ROV
in area D1, one has l2 = L and l3 = 0, and the ballast can
apply a tension simultaneously on the cable l1 and L only
if α ∈ [−π, 0] when x > 0 and α ∈ [0, π] when x ≤ 0. For
its limit angle α = 0 and since l3 = 0, one can deduce from
(314) that

x = l1 sin (γ)

sin (γ) =
x

l1
(317)

which is possible only if |x| ≤ l1.
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Using (317), l2 = L and l3 = 0 inside (315), one gets

yareaC,2 (x) =

{
l1 cos

(
asin

(
x
l1

))
− L if |x| <

√
l21 − L2

0 else.
(318)

which is equal to

yareaC,2 (x) =

{ √
l21 − x2 − L

0

if |x| <
√
l21 − L2

else.
(319)

Conclusion
The result of the two previous cases can be summarized by

yareaC (x) ={√
l21 − x2 − L if

(
|x| ≤

√
l21 − L2

)
& (l1 > L) ,

0 else.
(320)

C.2.2 Boundary areas A-F
There are two boundaries between the areas A-F, the first

corresponding to |α− β| = 0, the second to |α− γ| = 0. To
take into account the rigidity of the umbilical and a safety
margin, this proof is evaluated defining |α− β| = θmin and
|α− γ| = θmin, where θmin ≥ 0 is the value defined in
(53) in Section 5.6. Let yareaF1 and yareaF2 be the two
boundaries, and consider the ROV is inside the area F if
yareaF1 ≤ y ≤ yareaF2.

Boundary areas A-F, side |α− β| = θmin

Let’s find the limit |α− β| = θmin. Since β = 2ψB,x − α,
one has

β = ψB,x −
θmin

2
s (321)

α = ψB,x +
θmin

2
s (322)

where s = sign(ψB,x) if ψB,x 6= 0, s = −sign (x) else.
Injecting (321)-(322) inside the system (18)-(20), one gets

x = l1 sin (γ)− (L− l3) sin

(
ψB,x +

θmin

2
s

)
+ l3 sin

(
ψB,x −

θmin

2
s

)
(323)

y = l1 cos (γ)− (L− l3) cos

(
ψB,x +

θmin

2
s

)
+ l3 cos

(
ψB,x −

θmin

2
s

)
(324)

The value of γ can be evaluated with (70) using the value
of β defined in (321). Consider first (323):

x = l1 sin (γ)− L sin

(
ψB,x +

θmin

2
s

)
+ l3

(
sin

(
ψB,x +

θmin

2
s

)
+ sin

(
ψB,x −

θmin

2
s

))
l3 =

x− l1 sin (γ) + L sin
(
ψB,x + θmin

2 s
)

sin
(
ψB,x + θmin

2 s
)

+ sin
(
ψB,x − θmin

2 s
) . (325)

Consider the value of l3 found using (325). If l3 > L or
l3 < 0, the buoy is in contact with the ballast (area D2) or the
ROV (area D1), and the value yareaF1 = l and yareaF1 = 0
are taken to close the area with the surface or the umbilical
length. Else, the value of yareaF1 is evaluated using (324).

The value of yareaF1 can be expressed as

yareaF1 =
l1 cos (γ)− (L− l33) cos

(
ψB,x + θmin

2 s
)

+l33 cos
(
ψB,x − θmin

2 s
)

if 0 ≤ l33 ≤ L
l if l33 > L

0 else,

(326)

with

l33 =
x− l1 sin (γF1) + L sin

(
ψB,x + θmin

2 s
)

sin
(
ψB,x + θmin

2 s
)

+ sin
(
ψB,x − θmin

2 s
) (327)

where γF1 is evaluated with (70) using β = ψB,x − θmin

2 s
with s = sign(ψB,x) if ψB,x 6= 0, s = −sign (x) else.

Boundary areas A-F, |α− γ| = θmin

The cross between l1 and l2 can happened only for γ =
ψP,x, i.e. when the ballast cannot pull the cable l1. Let’s
find the limit |α− γ| = θmin when γ comes close to ψP,x +
θmin

2 s, where s = sign(ψB,x) if ψB,x 6= 0, s = −sign (x)
else. Thus, one gets

α = ψP,x −
θmin

2
s (328)

β = 2ψB,x − α = 2ψB,x − ψP,x +
θmin

2
s (329)

Injecting (328)-(329) inside the system (18)-(20), one gets

x = l1 sin

(
ψP,x +

θmin

2
s

)
− l2 sin

(
ψP,x −

θmin

2
s

)
+ (L− l2) sin

(
2ψB,x − ψP,x +

θmin

2
s

)
(330)

y = l1 cos

(
ψP,x +

θmin

2
s

)
− l2 cos

(
ψP,x −

θmin

2
s

)
+ (L− l2) cos

(
2ψB,x − ψP,x +

θmin

2
s

)
(331)

Consider first (330):

x = l1 sin

(
ψP,x +

θmin

2
s

)
− l2 sin

(
ψP,x −

θmin

2
s

)
+ (L− l2) sin

(
2ψB,x − ψP,x +

θmin

2
s

)
x = l1 sin

(
ψP,x +

θmin

2
s

)
+ L sin

(
2ψB,x − ψP,x +

θmin

2
s

)
− l2

[
sin

(
2ψB,x − ψP,x +

θmin

2
s

)
+ sin

(
ψP,x −

θmin

2
s

)]

l2 =
l1 sin

(
ψP,x + θmin

2
s
)

+ L sin
(

2ψB,x − ψP,x + θmin
2
s
)
− x

sin
(

2ψB,x − ψP,x + θmin
2
s
)

+ sin
(
ψP,x − θmin

2
s
) .

(332)

Consider the value of l2 found using (332). If l2 < 0 or
l2 > L, the buoy is in contact with the ballast (area D2) or the
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ROV (area D1), and the value yareaF2 = l and yareaF2 = 0
are taken to close the area with the surface or the umbilical
length. Else, the value of yareaF2 is evaluated using (331).

The value of yareaF2 can be expressed as

yareaF2 =
l1 cos

(
ψP,x + θmin

2 s
)
− l22 cos

(
ψP,x + θmin

2 s
)

+ (L− l22) cos
(
2ψB,x − ψP,x − θmin

2 s
)

if 0 ≤ l22 ≤ L
l if (l22 < 0) & (l33 ≥ L)

0 else,
(333)

with l22 =
l1 sin

(
ψP,x+

θmin
2 s

)
+L sin

(
2ψB,x−ψP,x+

θmin
2 s

)
−x

sin
(

2ψB,x−ψP,x+
θmin

2 s
)

+sin
(
ψP,x−

θmin
2 s

) ,

and s = sign(ψB,x) if ψB,x 6= 0, s = −sign (x) else.

D Evaluation of strengths apply on the
ROV with presence of current

Let’s find the value of T3 by performing the fundamental
principle of static on B:

ΣB ~F .~x = 0

T3 cos (β) = T2 cos (α)− Fcx,b. (334)

From (303), one has T2 = Ftb,x
sin(β−ψB,x)

sin(β−α) , so (334)
becomes

T3 cos (β) = Ftb,x
sin (β − ψB,x)

sin (β − α)
cos (α)− Fcx,b (335)

Since the ROV is not inside the area B or C, one has α =
2ψB,x − β, thus

T3 cos (β) = Ftb,x
sin (β − ψB,x)

sin (2 (β − ψB,x))
cos (2ψB,x − β)− Fcx,b

(336)

T3 = Ftb,x
cos (2ψB,x − β)

2 cos (β − ψB,x) cos (β)
− Fcx,b

cos (β)
(337)

The strengths FROV,x and FROV,y can so be expressed as

~FROV,x.~x = −
(
Ftb,x

cos (2ψB,x − β)

2 cos (β − ψB,x)
− Fcx,b

)
tan (β)

+ Fcx,ROV (338)

~FROV,y.~y = Ftb,x
cos (2ψB,x − β)

2 cos (β − ψB,x)
− Fcx,b + Fcy,ROV .

(339)

E Proof for sea exploration, 3D case

E.1 Calculation of l1x, l2x, l3x and l1z, l2z, l3z
Let define yM and yB the coordinate of the ballastM and the
buoy B on the axis ~Oy. Since yM and yB can be evaluated
in the plans (O, x, y) and (O, z, y), one has

yM = l1x cos (γ) = l1z cos (φ) (340)
yB = y − l3x cos (β) = y − l3z cos (η) (341)
yB = l1x cos (γ)− l2x cos (α) = l1z cos (φ)− l2z cos (µ) .

(342)

Using (340)-(342), one gets

l1x = l1z
cos (φ)

cos (γ)
(343)

l2x = l2z
cos (µ)

cos (α)
(344)

l3x = l3z
cos (η)

cos (β)
. (345)

Using (343) and (90), one gets

l21 = l21x + sin (φ)
2
l21z

l21 = l21x + sin (φ)
2

(
cos (γ)

cos (φ)

)2

l21x

l21 =
(

1 + tan (φ)
2

cos (γ)
2
)
l21x

l21x =
l21(

1 + tan (φ)
2

cos (γ)
2
) . (346)

In the same way, one gets

l21 = l21x + sin (φ)
2
l21z

l21 = l21z

(
cos (φ)

cos (γ)

)2

+ sin (φ)
2
l21z

l21z =
l21(

sin (φ)
2

+
(

cos(φ)
cos(γ)

)2
) . (347)

Same calculation can be made for l22x, l22z and l23x, l23z ,
using respectively (344)-(91) and (345)-(92).

F Proof for umbilical for diving exploration
with presence of large obstacles

F.1 Proof of (127)
Let perform the principle of the fundamental principle of
static on B1 and B2 illustrates in Figure 16:

ΣB2
~F = −Fb2~y + ~T3 + ~T4 (348)

ΣB1
~F = −Fb1~y − ~T3 + ~T2 (349)

where ~T4 is the tension of the cable l4 on B2 and ~T2, ~T3

are the tension on the cable on B1 as defined in Section 5.2.
Since ~T2, ~T3 and ~T4 are unknown, (348)-(349) is projected
on the axis perpendicular to ~T2 and ~T4, respectively noted
~v⊥T2 and ~v⊥T4:

ΣB2
~F .~v⊥T4 = −Fb2 sin (η) + T3 sin (β − η) (350)

ΣB1
~F .~v⊥T2 = −Fb1 sin (β) + T3 sin (β − α) . (351)

Since ΣB2
~F .~v⊥T4 = 0 and ΣB1

~F .~v⊥T2 = 0, one gets
from (350)-(351)

Fb2
sin (η)

sin (β − η)
= Fb1

sin (β)

sin (β − α)
(352)
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Since α = −β, one gets

Fb2
sin (η)

sin (β − η)
= Fb1

sin (β)

sin (2β)

Fb2
Fb1

sin (η)

sin (β − η)
=

1

2 cos (β)

2
Fb2
Fb1

cos (β) sin (η) = sin (β) cos (η)− cos (β) sin (η)

2
Fb2
Fb1

tan (η) = tan (β)− tan (η)(
2
Fb2
Fb1

+ 1

)
tan (η) = tan (β)

tan (β) = Λ2 tan (η) (353)

with Λ2 = 2Fb2Fb1
+ 1.

F.2 Proof of Theorem 7
Using β = −α = γ, the system (121)-(122) becomes

x = (l1 + L) sin (β) + l4 sin (η) (354)
y = (l1 − l2 + l3) cos (γ) + l4 cos (η) . (355)

From (354) and (127), one can observe that the value of η
can be obtained following the same step that for Theorem 1
by replacing l1, L and Λ by l4, (l1 + L) = 2l1 and Λ2, which
is summarized in Theorem 8 and described in Appendix F.3.

From (355), one has

y = (l1 − l2 + (L− l2)) cos (γ) + l4 cos (η)

y − l4 cos (η)

cos (γ)
= (L+ l1 − 2l2)

l2 =
L+ l1

2
− y − l4 cos (η)

2 cos (γ)
. (356)

and l3 = L− l2.
Let’s find now the values of Fb2 and xmax such η ≤ ηmax

inside [xmin, xmax] × [ymin, ymax]. Considering first xmax,
one has xmax when η = ηmax, so

xmax = (l1 + L) sin (βmin) + l4 sin (ηmax) (357)

with βmin is evaluated using (127) for η = ηmax. Thus, using
(127), one may write

sin (βmin) = sin (atan (Λ2 tan (ηmax)))

=
Λ2 tan (ηmax)√

1 + (Λ2 tan (ηmax))
2

(358)

where the value of Λ2 is unknown here because the value of
Fb2 has not been defined yet. Continue to focus on (357):

xmax =
Λ2 tan (ηmax) (l1 + L)√

1 + (Λ2 tan (ηmax))
2

+ l4 sin (ηmax)

Λ2 tan (ηmax) (l1 + L) = (xmax − l4 sin (ηmax))

×
√

1 + (Λ2 tan (ηmax))
2

Λ2
2 tan (ηmax)

2
(l1 + L)

2
= (xmax − l4 sin (ηmax))

2

×
(

1 + (Λ2 tan (ηmax))
2
)
.

(359)

Remind L = l1 and put Γ = xmax − l4 sin (ηmax). Then

Λ2
2 tan (ηmax)

2 (
4l21
)

= Γ2
(

1 + (Λ2 tan (ηmax))
2
)

Λ2
2 tan (ηmax)

2 (
4l21 − Γ2

)
= Γ2

Λ2 =
|Γ|

tan (ηmax)
√

4l21 − Γ2
(360)

where 4l21 − Γ2 > 0 if

4l21 > (xmax − l4 sin (ηmax))
2

2l1 + l4 sin (ηmax) > xmax. (361)

(361) provides a condition on xmax. Go back to (360):

Λ2 =
|xmax − l4 sin (ηmax)|

tan (ηmax)
√

4l21 − (xmax − l4 sin (ηmax))
2

2
Fb2
Fb1

+ 1 =
|xmax − l4 sin (ηmax)|

tan (ηmax)
√

4l21 − (xmax − l4 sin (ηmax))
2

Fb2 =
Fb1
2

 |xmax − l4 sin (ηmax)|

tan (ηmax)
√

4l21 − (xmax − l4 sin (ηmax))2
− 1

 .

(362)

The value of Fb2 must so be chosen equal or larger than
Fb1
2

(
|xmax−l4 sin(ηmax)|

tan(ηmax)
√

4l21−(xmax−l4 sin(ηmax))2
− 1

)
to guarantee

η ≤ ηmax inside [xmin, xmax].

F.3 Proof of Theorem 8
Let first remind Λ2 tan (η) = tan (β) and let’s write

sin (β) = sin (atan (Λ2 tan (η)))

=
Λ2 tan (η)√

1 + (Λ2 tan (η))
2
. (363)

Put X = sin (η). One has

tan (η) =
X√

1−X2
(364)

and so (363) becomes

sin (β) =

Λ2X√
1−X2√

1 +
(

Λ2X√
1−X2

)2

=
Λ2X√

1 + (Λ2
2 − 1)X2

. (365)

By introducing (21),(20), (126) inside (121) and since
l1 = L, one gets

x = l1 sin (γ) + L sin (β) + l4 sin (η) .

x = 2L sin (β) + l4 sin (η) . (366)
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Let’s introduce X and (365) inside (366):

x = l4X +
2LΛ2X√

1 + (Λ2
2 − 1)X2

(x− l4X)
√

1 + (Λ2
2 − 1)X2 = 2LΛ2X

(x− l4X)
2 (

1 +
(
Λ2

2 − 1
)
X2
)

= (2LΛ2X)
2(

x2 − 2xl4X + l24X
2
) (

1 +
(
Λ2

2 − 1
)
X2
)

= 4L2Λ2
2X

2

x2 + x2
(
Λ2

2 − 1
)
X2 − 2xl4X − 2xl4

(
Λ2

2 − 1
)
X3

+l24X
2 + l24

(
Λ2

2 − 1
)
X4 − 4L2Λ2

2X
2 = 0

(367)

which can be reorganised such

aX4 + bX3 + cX2 + dX + E = 0 (368)

with

a = l24
(
Λ2

2 − 1
)

(369)

b = −2xl4
(
Λ2

2 − 1
)

(370)

c = x2
(
Λ2

2 − 1
)
− 4L2Λ2

2 + l24 (371)
d = −2xl4 (372)

e = x2. (373)

By putting X = Y − b
4a , (368) becomes

Y 4 +AηY
2 +BηY + Cη = 0 (374)

with

Aη = − x
2

2l24
−
(
4l21Λ2

2 − l24
)

l24 (Λ2
2 − 1)

(375)

Bη = − l
2
4 + 4l21Λ2

2

l34 (Λ2
2 − 1)

x (376)

Cη =
x4

16l44
+
x2
(
l24 − 4l21Λ2

2

)
4l44 (Λ2

2 − 1)
(377)

(368) is a quartic function which can be solved
using Ludovico Ferrari, similarly to the model studied in
Section B.5 for the Theorem 9. From these results, the
Theorem 8 can be written.

F.4 Proofs of boundaries
F.4.1 Boundary areas A-B, B-C and A-C
The minimal depth ymin has been chosen such ymin =

max([l1 + hM , l4]) and one has l1 = L. Thus, since the ROV
stay inside the working area where y ∈ [ymin, ymax], the
buoy can touch the surface only for x = 0. Areas B and C
does not exist inside the working area.

F.4.2 Boundary areas A-D1
In area D1, the buoy is in contact with the ROV, so l3 = 0

and l2 = L. Thus (121)-(122) becomes

x = l1 sin (γ)− L sin (α) + l4 sin (η) (378)
y = l1 cos (γ)− L cos (α) + l4 cos (η) (379)

At the boundary between area A and D1, one still have
γ = β = −α, and since l1 = L, one has

x = L sin (γ) + l4 sin (η) (380)
y = l4 cos (η) (381)

where y = l4 cos (η) ≤ l4 and since ymin =
max ([l1 + hB , l4]), one has y ≤ ymin for all y inside
the area D1. Thus, the area D1 is outside the working area
[xmin, xmax]× [ymin, ymax] and therefore are not require for
the umbilical model.

F.4.3 Boundary areas A-D2
In area D2, the buoy is in contact with the ballast, so l3 = L

and l2 = 0. At the boundary between area A and D2, one still
has γ = β = −α, and since l1 = L, (121)-(122) becomes

x = 2L sin (β) + l4 sin (η) (382)
y = 2L cos (β) + l4 cos (η) (383)

At the boundary of areas A and D2, β can still be evaluated
using (127) and ηA can be evaluated using Theorem 8. Let
ηA (x) be the value of η inside the area A for a position
x > 0, and so an evaluation βA (x) from (127) and ηA (x).
Thus, for a given x, the yareaD2 can be expressed as

yareaD2 (x)

= max ([2L cos (βA (x)) + l4 cos (ηA (x)) , 0])

= max

 2L√
1 + Λ2

2 tan (ηA (x))
2

+ l4 cos (ηA (x)) , 0


(384)

F.4.4 Calculation of γ, α, β and η in area D2
In area D2, the buoy is in contact with the ballast, so l3 = L

and l2 = 0. Since l1 = L and β = γ, (121)-(122) becomes

x = 2L sin (γ) + l4 sin (η) (385)
y = 2L cos (γ) + l4 cos (η) (386)

From (386), one gets

cos (η) =
y − 2L cos (γ)

l4
. (387)

From (388), one has sin (η) =

√
1−

(
y−2L cos(γ)

l4

)2

. By

putting X = sin (γ), one gets

sin (η) =
1

l4

√
l24 −

(
y − 2L

√
1−X2

)2

. (388)

Remind y ≥ ymin > 0 so y 6= 0. Introducing (388) inside
(385), one gets

x = 2LX + l4

(
1

l4

√
l24 −

(
−y + 2L

√
1−X2

)2
)
(389)

which can be rewritten such

(x− 2LX)2 = l24 −
(
−y + 2L

√
1−X2

)2

(390)
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x2 − 4LxX + 4L2X2

= l24 −
(
y2 − 4yL

√
1−X2 + 4L2 − 4L2X2

)
(391)

x2 + y2 + 4L2 − l24 − 4LxX = 4yL
√

1−X2 (392)

x2 + y2 + 4L2 − l24
4yL

− x

y
X =

√
1−X2 (393)

Put aD =
x2+y2+4L2−l24

4yL and bD = x
y . (393) becomes

(aD − bDX)
2

= 1−X2

a2
D − 2aDbDX + b2DX

2 = 1−X2

a2
D − 1− 2aDbDX +

(
1 + b2D

)
X2 = 0

CD −BDX +ADX
2 = 0 (394)

withCD = a2
D − 1,BD = 2aDbD andAD = 1 + b2D. Since

Fb2 > Fb1 = P , the solution of (394) is

X =
BD +

√
B2
D − 4ADCD

2AD

=
aDbD +

√
a2
Db

2
D − 4 (1 + b2D) (a2

D − 1)

(a2
D − 1)

.

Since X = sin (γ), one obtains if y 6= 0

sin (γ) =
aDbD +

√
a2
Db

2
D − 4 (1 + b2D) (a2

D − 1)

(a2
D − 1)

.

(395)

F.5 Study of strengths applied on the ROV
Since ~T2, ~T3 and ~T4 are unknown, (145)-(146) are projected
respectively on the axis perpendicular to ~T2, noted ~v⊥T2, and
~y:

ΣB1
~F .~v⊥T2 = −Fb1 sin (β) + T3 sin (β − α) (396)

ΣB2
~F .~y = Fb2 − T4 cos (η) + T3 cos (β) (397)

Since α = −β, one gets

T3 = Fb1
sin (β)

sin (2β)
(398)

T4 =
Fb2 + T3 cos (β)

cos (η)
(399)

One has sin(β)
sin(2β) = 1

2 cos(β) and
∥∥∥~T4

∥∥∥ =
∥∥∥~Fcable→ROV ∥∥∥, one

has

Fcable→ROV =
Fb2 + 1

2Fb1

cos (η)
. (400)

Since η ≤ ηmax, the strength applied on the ROV can be
bounded such

Fcable→ROV ≤
Fb2 + 1

2Fb1

cos (ηmax)
. (401)

G Proof of Section 9.2: maximum ROV
velocity

Let’s apply the fundamental principle of dynamic (FPD) on
the axis x and y.

FPD applied on axis ~y
Let use the FPD of the buoy projected on ~y:

(mb~ab,y) .~y =
(
~Fb + ~Ffb + ~Fcx,b + ~Fcy,b

)
.~y

mbv̇b,y = (ρwaterVb −mb) g −Kbvb,y + Fcy,b

v̇b,y =

(
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

− Kb

mb
vb,y (402)

Let solve the differential equation (402). The
hypothetical solution is vb,y,HS = A exp

(
−Kb
mb
t
)

with A a constant. Using the variation of the
constant method, a particular solution can be found
vb,y,PS = mb

Kb

[(
ρwaterVb
mb

− 1
)
g +

Fcy,b
mb

]
. The general

solution vb,y = vb,y,PS + vb,y,HS can be expressed as

vb,y (t) =
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)
+A exp

(
−Kb

mb
t

)
. (403)

Since the system is at its equilibrium before the umbilical
is slack, on has vb,y (0) = 0. Using this initial solution, one

gets A = −mbKb
(
ρwaterVb
mb

− 1
)
g so

vb,y (t) =
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)
×
(

1− exp

(
−Kb

mb
t

))
, (404)

ab,y (t) =

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)
exp

(
−Kb

mb
t

)
.

(405)

FPD applied on axis ~x
Let use the FPD of the buoy projected on ~x:

(mb~ab,x) .~x =
(
~Fb + ~Ffb + ~Fcx,b

)
.~x

mbv̇b,x = Fcx,b −Kbvb,x (406)

We desire to find an absolute value of vb,x. Since the
current Fcx,b is the only strength applied on the buoy on the
axis x and it is supposed the buoy is immobile at the initial
instant, i.e. vb,x (0) = 0, (406) can be rewritten such

mbv̇b,x = |Fcx,b| −Kbvb,x. (407)

Let solve the differential equation (407). The hypothetical
solution is vb,x,HS = B exp

(
−Kb
mb
t
)

with B a constant.
Using the variation of the constant method, a particular
solution can be found vb,x,PS =

|Fcx,b|
Kb

. Thus, the general
solution vb,x = vb,x,PS + vb,x,HS can be expressed as

vb,x (t) =
|Fcx,b|
Kb

+B exp

(
−Kb

mb
t

)
. (408)

Since the system is at its equilibrium before the umbilical
is slack, on has vb,x (0) = 0. Using this initial solution, one
gets B = − |Fcx,b|Kb

g so

vb,x (t) =
|Fcx,b|
Kb

(
1− exp

(
−Kb

mb
t

))
, (409)

ab,x (t) =
|Fcx,b|
mb

exp

(
−Kb

mb
t

)
. (410)
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Conclusion
From the two previous parts, one gets

vb (t) =

(
1− exp

(
−Kb

mb
t

))

×

√(
Fcx,b
Kb

)2

+

(
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

))2

(411)

ab (t) = exp

(
−Kb

mb
t

)

×

√(
Fcx,b
mb

)2

+

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)2

(412)

with the maximal velocity and acceleration

vb,max =√(
Fcx,b
Kb

)2

+

(
mb

Kb

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

))2

(413)

ab,max

=

√(
Fcx,b
mb

)2

+

((
ρwaterVb
mb

− 1

)
g +

Fcy,b
mb

)2

.

(414)

H Algorithm choice of umbilical length
This section proposes an algorithm to choose the parameters
l, L and l1 in function of several environmental constraints.
Note this algorithm is a suggestion made on a choice of
constraints order: others parameters are possible.

Remind yfloor is the dept of the seafloor. Let’s defined

• [ymin, ymax] are the desired minimum depth and
maximum depths for the ROV exploration, where
ymax ≤ yfloor − hM .

• [xmin, xmax] are the desired minimum and maximum
horizontal distances for the ROV exploration, where
xmin has been defined in Section 5.6.

• Since the boat can move on the surface, the respect of
parameters [ymin, ymax] is favored over [xmin, xmax].

• Since reaching a distance d =
√
x2 + y2 between the

ROV and the boat will lead to an important strength
for the ROV (see Section 5.8), it is recommend to
respect d ≤ 0.9l. An overly secure configuration is
x ≤ L when it is possible.

• Let ε > 0 be a constant distance of security.

The following steps described two methods to choose l1 and
L to obtain l.

Umbilical length for ymin favored over ymax

1. To go the deepest possible without the ballast touches
the seafloor, take l1 = yfloor − hM

2. To respect ymin since x = xmin, L = l1 + ymin

is chosen, so l = l1 + L = 2 (yfloor − hM ) + ymin −
hB . The maximum distance x where ymin can be
respected is so x =

√
l2 − y2

min.

3. The ROV can reach the depth ymax for x ≤ x̄, where
x̄ =

√
l2 − y2

max.

(a) If xmax > x̄, then the research area must
be restricted to [xmin, xM ]× [ymin, ymax] with

xM =

√
(0.9l)

2 − y2
max.

(b) Else, then xmax ≤ x̄ and
i. If x̄ ≥ L, then OK.

ii. Else, the umbilical is too long and can
potentially be reduced. Take
L = max ([xmax, l1 + ymin]).

4. To prevent the ballast touches the seafloor, take l1 =
l1 − ε.

Umbilical length for ymax favored over ymin

1. To respect ymax for x ∈ [xmin, xmax], one take l∗ =
1

0.9

√
x2

max + y2
max.

2. Take l∗1 = l∗−ymin

2 .
3. If l∗1 ≤ yfloor − hM , the ballast does not touch the

seafloor. We can take l1 = l∗1 and
l ∈ [l∗, 2 (yfloor − hB) + ymin].

4. If l1 > yfloor − hM , the ballast touch the seafloor. Take
so l1 = yfloor − hM and

y∗min =
1

0.9

√
x2

max + y2
max − 2 (yfloor − hM ) .

(415)
Then

(a) If y∗min ∈ [0, ymax[, then OK.
Take l = 2 (yfloor − hM ) + y∗min and the research
area must be restricted to [xmin, xmax]×
[y∗∗min, ymax] with y∗∗min = max (ymin, y

∗
min).

(b) If y∗min < 0, take y∗min = 0 and define the
maximum horizontal distance
xM =

√
3.24 (yfloor − hM )

2 − y2
max using

(415). The research area must be restricted to
[xmin, xM ]× [ymin, ymax].

(c) Else, y∗min ≥ ymax, put y∗min = 0.9ymax and

xM =
√

0.81 (y∗∗min + 2 (yfloor − hM ))
2 − y2

max

using (415). The research area must be restricted
to [xmin, xM ]× [y∗min, ymax].

5. To prevent the ballast touch the seafloor, take l1 =
l1 − ε.
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(a) P = Fb, L = l1 (b) P = Fb, L = 2l1

(c) P = Fb, L = 2.5l1 (d) P = Fb, L = 2l1

(e) P = 3Fb, L = 2l1 (f) P = 10Fb, L = 2l1

Figure 23. Influence of parameters on the areas when l1 < L.

(a) Fcx = 0 (b) Fcx = 0.25Fc

(c) Fcx = 0.5Fc (d) Fcx = 1.5Fc

Figure 24. Influence of parameters Fcx = Fcx,m = Fcx,b, with
P = 3Fb and (x, y) = (1.5, 3) in any case. One observes the
areas D2 and F take more space when the horizontal current
rise, since other areas becomes smaller.
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