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Abstract

Vertical Take Off and Landing (VTOLs) vehichules are used to
move passengers between skyports in urban air mobility. Safety land-
ing sites (SLSs) cover the trajectory of VTOLs for emergency landings.
We study the optimal placement of SLSs in the air transportation net-
work under budget on SLS installation. We propose two models based
on the k-splittable and the un-splittable multi-commodity flow prob-
lems. We develop edge and path formulations for each model of the
problem. Edge formulations for two models are solved by a branch-
and-bound algorithm. We propose a branch-and-price approach to
solve path formulations. We perform numerical experiments on a set
of automatically generated instances.

Keywords— Networks Optimization, Networks Simulation, Branch and Price,
Multi-Commodity Flows, Column Generation

1 Introduction

The transportation system is getting more and more diverse and multimodality
is a key factor. The current transportation network that helps us get from point
A to point B by car, bike, scooter, and public transit—and, in the not-so-distant
future, flights. Flying taxi (Vertical Take Off and Landing Vehicules: VTOLs)
would exploit the vertical space i.e., to alleviate congestion on the ground and
enable riders to click a button for a shared flight. Aerial ridesharing will enable
rapid, reliable transportation through a network of small electric VTOLs (eVTOLs)
that can take off and land vertically. We work in collaboration with Uber mobility
team on energy efficient network design problem [HG16].

VTOL aircraft need to be safer than driving a car on a fatalities-per-passenger-
mile basis. In emergence, VTOLs need a large number of spare landing sites i.e.
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safety landing sites (SLS) to land. If the trajectory of a VTOL is not covered
by ranges of installed SLSs, it would be dangerous in cruise. Owing to budget
constraint on SLS installation, the operator (Uber) needs to place as few SLSs as
possible and meets the quality of service (QoS) constraint. Safety is not optional
but mandatory.

Optimization model goes into detail concerning the evolutionary pathway to
a mass market through affordable vehicles and operations. The operational cost is
mainly routing cost of VTOLs. It is our optimization goal to minimize it.

Multi-commodity flow problem is a network flow problem with multiple com-
modities (flow demands) between different source and sink nodes. The classi-
fication of flows is based on the number of paths to route one demand. Each
VTOL takes a path and has a capacity on the number of passengers. Unsplittable
multi-commodity flow problem [BHV00, LLRR20, Gen19] and k-splittable multi-
commodity flow problem [GJPP10, TD08, TDM05] play a basic role in the deriva-
tion of VTOL traffic model. Unsplittable multi-commodity flow problem is proved
to be NP−hard by Kleinberg et al. [Kle96, Kle98], k-splittable multi-commodity
flow problem is proved to be NP−hard by Baier et al. [BKS02]. Multi-commodity
flow problem [Alv05] can be reprensented by edge and path formulations. Formula-
tions have significant impact on the speed of solver [Van00]. We develop two traffic
models based on k−splittable and unsplittable multi-commodity flow models, and
for each model edge and path formulations are proposed.

Both path formulations contain exponential number of path variables but
have less constraints. We solve their LP relaxation by column generation ap-
proach. Column generation method [LD05] proved its efficiency to solve several
multi-commodity flow and network optimization problems. To enforce the integral-
ity, we use the branch-and-price algorithm [BJN+98, GL14] based on the column
generation method.

The remainder of this thesis is organized as follows. In Section (2), we intro-
duce the problem description and notations of the transportation network, safety
landing site (SLS), skyports, k-splittable and unsplittable flow models. In Sec-
tion (3), we present edge and path formulations for k-splittable multi-commodity
flow model. In Section (4), we present edge and path formulations for unsplittable
multi-commodity flow model. In Section (5), we use a branch-and-bound algorithm
for solving edge formulations. In Section (6), we introduce a branch-and-price al-
gorithm for path formulations, the reduced cost and Farkas pricing and branching
rules. In Section (7), we illustrate our instance generator and perform tests on
various formulations and algorithms. Finally, we conclude this paper in Section (8)
with prospect of research.

2 Problem Description

The model of vehicule transportation (taxi on ground) and its corresponding
optimization problems are well studied. The model of VTOL transportation is still
open for researchers, and we import basic concepts from network optimization to
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model the VTOL transportation problem mathematically. We introduce networks
of air traffic, flow representation of trajectories of VTOLs and constraints for place-
ment of SLSs. These models play base roles to derive mathematical programs which
are solvable by MILP solvers.

2.1 Air transportation and networks

The trajectory of the VTOL could pass through any part of the 3D continuous
space, but usually the 3D space is sampled (discretized) to obtain a graph G =
(N,A). For all (i, j) ∈ A, let cij be the cost of arc (i, j).

As an example, let us consider Figure (1) which represents a simplified 2D
problem, i.e., we neglect the altitude dimension for sake of clarity. The continuous
space is sampled considering a regular grid and the set of nodes N is represented
by the blue circles. The arcs A are, in this case, connecting each node i to its
neighbours (the nodes within a distance to i equal to the sampling step). In the
figure, each segment between two adjacent nodes represents two opposite direction
arcs, but we explicitly draw the direction only for the path from s to t (in red). Note
that, from a practical viewpoint, the identified path is smoothed in a second phase
to make the trajectory more realistic. Of course, one could consider a different
sampling and different arcs, like diagonal arcs. However, this topic is not covered
in this work and remains an open question.

In case of congestion of VTOls, a capacity constraint mij is imposed on every
edge (i, j) ∈ A, and it defines the maximum number of VTOLs. The weight cij is
the cost of transportation per unit on that edge, and it is proportional to the length
of the edge. These parameters are part of given data to represent congestion and
cost, and we formulate them in the terminology of network optimization.

2.2 Traffic flow model

Skyports are subset of critical nodes in the networks for take off and landing.
Transportation demands require to move passengers from one skyport to another.
There are D demands in total with different sources and destinations.

Each demand h requires transportation of dh from a source skyport sh to a
destination skyport th where dh is the number of VTOLs.

2.2.1 k-splittable multi-commodity flows

In a scenario, the operator can use at most k paths to route one demand,
therefore, corresponding VTOL takes one of these paths. Every path is unsplittable,
and the routing problem is called k-splittable flow problem.

The flow on each path defines the number of VTOLs used. If the flow is
integer, it is too hard for optimization. As paths are always the crucial results for
the operator, we relax the integrality constraint and outputs the paths of flows,
but fractional flow is a drawback of this model, for it cannot provide the accurate
assignment of VTOLs to paths.
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Figure 1: A path from skyport s to skyport t (in red)

2.2.2 Unsplittable multi-commodity flows

In the other scenario, the operator allows to choose the optimal path for every
VTOL.

In fact, after assignment of passengers, demand h is decomposed into dh single
VTOL demands, every VTOL is equivalent to a demand, and the demand just
defines the source and the destination of this VTOL. We view that a demand is
transported by a VTOL or flow. Each flow now is unspittable, and the problem is
called unsplittable multi-commodity flow problem. Flows of this problem is purely
binary.

2.3 SLSs and covers

In this article, we consider an additional constraint, i.e., the safety measure
that imposes the VTOLs to be “not too far” from a so-called Safety Landing Site
(SLS) all along its trajectory from source s to destination t. If we focus on the
problem of identifying the optimal trajectory as discussed above, given a set of
SLS, we can impose the safety constraint by removing from the graph G = (V,A)
each arc (i, j) which do not satisfy it, i.e., for which there exists a point in the
segment i − j such that the distance between that point and the closest SLS is
greater than the safety distance.

Usually, all SLSs have an identical covering range. For each SLS `, its cover
is a subset A` of edges of the network that are located in the safety distance from
the SLS. SLSs are not necessarily vertices of the network, in fact, we define SLSs
by their covering edges which are part of data for our algorithm. In particular,
skyports are special SLSs although their cover range are smaller than that of SLS.
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We denote the set of edges covered by skyports by A0 for which SLSs are redundant.
Therefore, VTOL have mutiple choices of SLSs to land according to which edge its
trajectory takes.

There are ` possible locations for placement of SLSs. However, to route all
demands, only a subset of SLSs is enough, and the operator asks the optimizer
to save the investment on SLSs. Our goal is to design the placement of SLSs such
that edges of trajectories of all VTOLs are covered by at least one of installed SLSs,
meanwhile the cost of transportation is minimized and the number of installed SLSs
does not exceed a budget b.

3 Formulations for k-splittable flows

We propose two formulations of the k-splittable flow model: the edge for-
mulation and the path formulation. The path formulation is the Dantzig-Wolfe-
Decomposition of the edge formulation where path variables are extreme points of
the convex hull of flows of edge formulation.

Their linear relaxations have the same value, but sizes of LPs are not the
same, and thus solving time of corresponding MILPs are different. In following
subsections we describe these two mathematical formulations of the k-splittable
flow model.

3.1 Edge formulation

The edge formulation is a three-index model. Flows are decomposed into edge
variables indexed by the edge index, the demand index and the order of splittable
flow. There are two kinds of edge variables x and f , x is the binary route variable
and f is the fractional flow variable. Let us recall parameters

Parameters:
cij : The cost per VTOL of transport each edge (i, j).
mij : The capacity of each edge (i, j).
dh: The traffic demand from the source sh to the target th.
βhij : The upperbound for a flow of demand h on the edge (i, j), that is

min{mij , dh}.
b: the budget on the number of SLSs.
Besides edge variables, we also have a demand allocation variable whq to assign

the amount of the demand h to q-th splittable flow. Moreover, the placement of
SLSs is denoted by y.

Variables:
fhijq : The fractional flow variable indicating how much amount of the demand

h is routed on edge (i, j) by the q-th splittable flow.
xhijq : The binary flow variable indicating whether the demand h is routed on

edge (i, j) by the q-th splittable flow.
whq : The amount of demand h routed by the q-th splittable flow.
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y` : The binary SLS variable indicating whether the SLS is installed at the
`-th site.

min z =
∑

(i,j)∈A

D∑
h=1

k∑
q=1

cijf
h
ijq (1a)

fhijq ≤ βhijxhijq ∀h = [1, D],∀q = [1, k], ∀(i, j) ∈ A, (1b)∑
j∈V

xhijq −
∑
j∈V

xhjiq = 0 ∀h = [1, D],∀q = [1, k], ∀i ∈ V \ {sh, th}, (1c)

∑
j∈V

xhshjq −
∑
j∈V

xhjshq = 1 ∀h = [1, D],∀q = [1, k], (1d)

∑
j∈V

xhjthq −
∑
j∈V

xhthjq = −1 ∀h = [1, D],∀q = [1, k], (1e)

∑
j∈V

fhijq −
∑
j∈V

fhjiq = 0 ∀h = [1, D],∀q = [1, k], ∀i ∈ V \ {sh, th}, (1f)

∑
j∈V

fhshjq −
∑
j∈V

fhjshq = whq ∀h = [1, D],∀q = [1, k], (1g)

∑
j∈V

fhjthq −
∑
j∈V

fhthjq = −whq ∀h = [1, D],∀q = [1, k], (1h)

k∑
q=1

D∑
h=1

fhijq ≤ mij ∀(i, j) ∈ A, (1i)

D∑
h=1

whq = dh ∀h = [1, k] (1j)

xhijq ≤
∑̀

`=1,(i,j)∈A`

y` ∀h = [1, D],∀q = [1, k],∀(i, j) ∈ A \A0, (1k)

∑̀
`=1

y` ≤ b (1l)

fhijq ∈ [0, βhij ] ∀h = [1, D],∀q = [1, k],∀(i, j) ∈ A, (1m)

xhijq ∈ {0, 1} ∀h = [1, D],∀q = [1, k],∀(i, j) ∈ A, (1n)

y` ∈ {0, 1} ∀` = [1, `] (1o)

whq ∈ [0, dh] ∀h = [1, D],∀q = [1, k] (1p)

Link route constraint (1b): This constraint links the flow variable f and route
variable x.

Route flow conservation constraint (1c) to (1e) : The route flow x is balanced
at each vertex.
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Fractional flow conservation constraint (1f) to (1h) : The fractional flow f is
balanced at each vertex.

Edge capacity constraint (1i): The sum of all flows f routed over a edge does
not exceed its capacity.

Demand distribution constraint (1j): The sum of demands routed by different
splittable flows is equal to that demand.

Cover constraint (1k): For every route of each demand, there is at least one
SLS that covers its edges.

Budget constraint (1l): The sum of SLSs cannot exceed the budget.

3.2 Path formulation

Path formulation reformulates the edge formulation by transforming edge vari-
ables into path variables. Path variables are incident vectors of edge variables. No-
tice that the order of splittable flow is presented in the edge formulation. However,
path variables only have two indices, the path index and the demand index.

Parameters:
Ph: The set of simple paths from the source sh to the destination th for

demand h.
βh: The upperbound for the flow of a path of demand h, that is min{maxij∈Amij , dh}.
Variables:
fhp : the fractional flow variable indicating how much amount of the demand

h is routed on path p.
xhp : the binary flow variable indicating whether the demand h is routed on

path p.
y` : the binary SLS variable indicating whether the SLS is installed.

min z =
∑

(i,j)∈A

cij

D∑
h=1

∑
p∈Ph,(i,j)∈p

fhp (2a)

fhp ≤ βhxhp ∀h = [1, D],∀p ∈ Ph, (2b)

D∑
h=1

∑
p∈Ph,(i,j)∈p

fhp ≤ mij ∀(i, j) ∈ A, (2c)

∑
p∈Ph

xhp ≤ k ∀h = [1, D], (2d)

∑
p∈Ph

fhp = dh ∀h = [1, D], (2e)

1

k

∑
p∈Ph,(i,j)∈p

xhp ≤
∑̀

`=1,(i,j)∈A`

y` ∀h = [1, D],∀(i, j) ∈ A \A0, (2f)

∑̀
`=1

y` ≤ b (2g)
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fhp ∈ [0, βh] ∀h = [1, D],∀p ∈ Ph, (2h)

xhp ∈ {0, 1} ∀h = [1, D],∀p ∈ Ph, (2i)

y` ∈ {0, 1} ∀` = [1, `] (2j)

Link route constraint (2b): This constraint links the flow path variable f and
route path variable x.

Edge capacity constraint (2c): The sum of all flows f routed over a edge does
not exceed its capacity.

Splittable constraint (2d): The number of flows are at most k.
Demand satisfication constraint (2e): The sum of flow path variables should

equal to the demand.
Cover constraint (2f): For every path of each demand, there is at least some

SLSs that cover its edges.
Budget constraint (2g): The sum of SLSs cannot exceed the budget.
Compared to the edge formulation, a large number of flow conservation con-

straints are no longer needed, but at the cost of exponential number (in the size of
edges) path variables.

MILP solver relaxes above MIP model to LP, and this relaxation provides a
lower bound of MIP useful for fathoming. After linearization, we have fhp = βhxhp ,
and we can obtain a LP only with fractional x variables. The relaxation follows as

min z =
∑

(i,j)∈A

cij

D∑
h=1

∑
p∈Ph,(i,j)∈p

βhxhp (3a)

D∑
h=1

∑
p∈Ph,(i,j)∈p

βhxhp ≤ mij ∀(i, j) ∈ A, (3b)

∑
p∈Ph

xhp ≤ k ∀h = [1, D], (3c)

∑
p∈Ph

βhxhp = dh ∀h = [1, D], (3d)

1

k

∑
p∈Ph,(i,j)∈p

xhp ≤
∑̀

`=1,(i,j)∈A`

y` ∀h = [1, D],∀(i, j) ∈ A \A0, (3e)

∑̀
`=1

y` ≤ b (3f)

xhp ∈ [0, 1] ∀h = [1, D],∀p ∈ Ph, (3g)

y` ∈ [0, 1] ∀` = [1, `] (3h)
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4 Formulations for unsplittable flows

We present an edge and a path formulations of unsplittable model in the same
way as those of k-splittable model.

4.1 Edge formulation

In the edge formulation, it is a two-index model. Flows are decomposed into
edge variables indexed by the edge index and the demand index. There are only
one kind of edge variables x. Let us redefine some parameters

Parameters:
cij : The cost per unit (VTOL) of transport each edge (i, j).
mij : The capacity of each edge (i, j).
b: the budget on the number of SLSs.
Variables:
xhij : The binary flow variable indicating whether the demand h is routed on

edge (i, j).
y` : The binary SLS variable indicating whether the SLS is installed at the

`-th site.

min z =
∑

(i,j)∈A

D∑
h=1

cijx
h
ij (4a)

∑
j∈V

xhij −
∑
j∈V

xhji = 0 ∀h = [1, D], ∀i ∈ V \ {sh, th}, (4b)

∑
j∈V

xhshj −
∑
j∈V

xhjsh = 1 ∀h = [1, D], (4c)

∑
j∈V

xhjth −
∑
j∈V

xhthj = −1 ∀h = [1, D], (4d)

D∑
h=1

xhij ≤ mij ∀(i, j) ∈ A, (4e)

xhij ≤
∑̀

`=1,(i,j)∈A`

y` ∀h = [1, D],∀(i, j) ∈ A \A0, (4f)

∑̀
`=1

y` ≤ b (4g)

xhij ∈ {0, 1} ∀h = [1, D],∀(i, j) ∈ A, (4h)

y` ∈ {0, 1} ∀` = [1, `] (4i)

Flow conservation constraint (4b) to (4d) : The route flow x is balanced at
each vertex.
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Edge capacity constraint (4e): The sum of all flows x routed over a edge does
not exceed its capacity.

Cover constraint (4f): For every route of each demand, there is at least one
SLS that covers its edges.

Budget constraint (4g): The sum of SLSs cannot exceed the budget.

4.2 Path formulation

The path formulation only contains binary flow variables and SLS variables.
Let us define variables

Variables:
xhp : the binary flow variable indicating whether the demand h is routed on

path p.
y` : the binary SLS variable indicating whether the SLS is installed.

min z =
∑

(i,j)∈A

cij

D∑
h=1

∑
p∈Ph,(i,j)∈p

xhp (5a)

D∑
h=1

∑
p∈Ph,(i,j)∈p

xhp ≤ mij ∀(i, j) ∈ A, (5b)

∑
p∈Ph

xhp = 1 ∀h = [1, D] (5c)

∑
p∈Ph,(i,j)∈p

xhp ≤
∑̀

`=1,(i,j)∈A`

y` ∀h = [1, D],∀(i, j) ∈ A \A0, (5d)

∑̀
`=1

y` ≤ b (5e)

xhp ∈ {0, 1} ∀h = [1, D],∀p ∈ Ph, (5f)

y` ∈ {0, 1} ∀` = [1, `] (5g)

Edge capacity constraint (5b): The sum of all flows x routed over a edge does
not exceed its capacity.

Unsplittable constraint (5c): Demand is routed by an unsplittable flow.
Cover constraint (5d): For every path of each demand, there is at least some

SLSs that cover its edges.
Budget constraint (5e): The sum of SLSs cannot exceed the budget.

4.3 Comparison

The columns and rows of edge formulations grow linearly with the size of net-
works, they are not scalable. Path formulations have many advantages, it contains
less constraints. Although it consists of exponential number of path variables, it
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can be solved efficiently by column generation. By adding the pricing algorithm
into branch-and-bound procedure, we obtain the branch-and-price method.

5 Branch-and-bound

Branch-and-bound is an algorithm for solving discrete optimization problems,
and it is widely used in MILP solvers. Branch-and-bound algorithm consists of
a implicit enumeration of candidate solutions in the state space. The search tree
partitions the state space, and its node represents a subset of the state space. At
the start, the root node is the entire state space to explore. The search is guided
by the LP relaxation of the problem. If the relaxed lower bound (dual bound) is
greater than the incumbent value, the node is fathomed.If an inetger solution is
found, the incumbent solution (the best solution found so far) is updated, or if the
LP relaxation is infeasible, the node is aborted. Otherwise, an integer variable x
has fractional value f , and the node is branched into two nodes. The up branch
imposes the bound x ≤ bfc, and the down branch imposes the bound x ≥ dfe.
Afterwards, a node is selected to repeat the above process until the duality gap
(incumbent value minus the lowest dual bound) is zero.

Edge formulations k-splittable model (1) and unsplittable model (4) can be
solved by branch-and-bound, but path formulation contains exponential number of
path variables. It is impossible to list all path variables and solve the huge LP by
branch-and-bound method, unless for tiny unrealistic instance.

6 Branch-and-Price

Some LP models consist of a huge number of variables compared to the number
of constraints. The nonzero variables in optimal solution are at most as many as
the number of constraints. Therefore, it is still possible to solve LP efficiently by
recognizing the subset of variables which are non-zero in the optimal solution. The
algortihm can start to solve a small subset of variables of initial LPs, and mange
columns of LP dynamically. Column generation [LD05] is an efficient method for
solving large scale linear programming, and a branch-and-bound method is called
the branch-and-price when embedding it.

Usually, master problems of (3) and (5) have an exponential number of path
variables, restricted master problem (RMP) limits columns of LP to a subset of path
variables. At each iteration, the column generation method exploits the primal and
dual information of the restricted master problem (RMP) to add new path variables
with negative reduced cost into the LP.

Pricing algorithm generates new path variables which can improve the LP.
The pricing algorithm consists of two parts: improve the current LP solution and
repair the infeasibility. The first one is called reduced cost pricing, and it observes
the reduced cost of path variables to improve the optimality. The second one is
called Farkas pricing which identifies and repairs the infeasibility. We will construct
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an extended graph in which the pricing algorithm is solved by the shortest path
algorithm.

Both reduced cost pricing and Farkas pricing are derived from the dual problem
or Lagrangian which defines dual constraints on path. In the next subsections, we
will present the pricing problem for RMP of k-splittable model and unsplittable
model.

6.1 Column generation for k-splittable flows

The linear relaxation of integer program of (2) relaxes integrity constraints on
x and y. The following lemma guarantees that we can drop the upperbound on x
and y in its LP relaxation.

Lemma 6.1. If the problem (2) is feasible, then its LP relaxation admits an optimal
solution with all x ≤ 1 and y ≤ 1.

Proof. Since the problem (2) is feasible, there exist an optimal solution (x∗, f∗, y∗).
If there exist a y∗hp > 1, by constraint (2c), x∗hp ≤ βhp always holds, decrease y∗hp
to 1, the solution remains feasible and optimal. If there exist a y∗` > 1, because
the left hand side of the constraint (2f) is always less or equal to 1, set y∗` to 1, the
solution remains feasible and optimal.

The bounds of variables of LP relaxation of (2) all becomes non-negative. We
list the Lagrangian multipliers associated to constraints. The sign of the multiplier
is defined by the sign of the constraints. If the constraint is in left hand side, the
multiplier is non-negative. If the constraint is a equality constraint, the multiplier
is unbounded. These multipliers appear to be dual variables of dual problem.

Dual variables by constraints:
Link route constraint (2b): αhp ≥ 0,∀h = [1, D],∀p ∈ Ph.
Edge capacity constraint (2c): γij ≥ 0,∀(i, j) ∈ A.
Splittable constraint (2d): µh ≥ 0,∀h = [1, D].
Demand satisfication constraint (2e): ζh ∈ R,∀h = [1, D].
Cover constraint (2f): ηhij ≥ 0,∀h = [1, D],∀(i, j) ∈ A \A0.
Budget constraint (2g): ξ ≥ 0.
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The Lagrangian on the LP relaxation defined as follow

L =
∑

(i,j)∈A

cij

D∑
h=1

∑
p∈Ph,(i,j)∈p

fhp +

D∑
h=1

∑
p∈Ph

αhp(fhp − βhxhp) +
∑

∀(i,j)∈A

γij

(

D∑
h=1

∑
p∈Ph,(i,j)∈p

fhp −mij) +

D∑
h=1

µh(
∑
p∈Ph

xhp − k) +

D∑
h=1

ζh(
∑
p∈Ph

fhp−

dh) +

D∑
h=1

∑
(i,j)∈A\A0

ηhij(
1

k

∑
p∈Ph,(i,j)∈p

xhp −
∑̀

`=1,(i,j)∈A`

y`)+

ξ(
∑̀
`=1

y` − b)

(6)

It is easy to check that LP relaxation of (2) equals to the primal of Lagrangian
relaxation defined by the follow

primal1 = min
x≥0,f≥0,y≥0

max
α≥0,γ≥0,µh≥0,ζ∈R,≥,η≥0,ξ≥0

L. (7)

Thus we can define the dual of the LP relaxation of (2) by

dual1 = max
α≥0,γ≥0,µ≥0,ζ∈R,≥,η≥0,ξ≥0

min
x≥0,f≥0,y≥0

L. (8)

By the strong duality theorem of linear program

Theorem 6.1. If either the primal or the dual have non-empty feasible set, then
primal1 = dual1.

Constraints of dual problem are based on primal variables, we deduce the dual
as follow

max z = −
∑

(i,j)∈A

γijmij −
D∑
h=1

(µhk + ζhdh)− ξ
∑̀
`=1

b (9a)

∑
(i,j)∈p

(cij + γij) + ζh + αhp ≥ 0, ∀h = [1, D],∀p ∈ Ph (9b)

−
D∑
h=1

∑
(i,j)∈A`

ηhij + ξ ≥ 0, ∀` = [1, `] (9c)

∑
(i,j)∈p,(i,j) 6∈A0

ηhij
k

+ µh − βhαhp ≥ 0, ∀h = [1, D],∀p ∈ Ph (9d)

αhp ≥ 0, ∀h = [1, D],∀p ∈ Ph (9e)
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γij ≥ 0, ∀(i, j) ∈ A (9f)

µh ≥ 0, ∀h = [1, D] (9g)

ζh ∈ R, ∀h = [1, D] (9h)

ηhij ≥ 0, ∀h = [1, D],∀(i, j) ∈ A \A0

(9i)

ξ ≥ 0. (9j)

It is easy to verify that zero dual variables is a feasible solution to the dual
problem. The dual problem have exponential number of constraints on path. Be-
cause the dual problem is non-empty, so we can use the dual simplex to solve the
dual problem.

We can add constraints (9d) and (9b) of the dual problem with negative fea-
sibility, in turn, those path variables x and f associated with these constraints are
added into active columns of the primal problem. Accoding to the strong duality
theorem and the complementary slackness, we can deduce the primal solution by
the dual solution.

However, the number of dual varibales α is exponential, we cannot generate
all α of the dual in advance. Notice that fhp = βhxhp , so they are generated in pair.
In the other way, we can derive the dual of the equivalent LP relaxation (3) in the
following

max z = −
∑

(i,j)∈A

γijmij −
D∑
h=1

(µhk + ζhdh)−
D∑
h=1

∑
(i,j)∈A\A0

ηhij
∑̀

`=1,(i,j)∈A`

y` − ξ
∑̀
`=1

b

(10a)

−
D∑
h=1

∑
(i,j)∈A`

ηhij + ξ ≥ 0, ∀` = [1, `] (10b)

βh(
∑

(i,j)∈p

(cij + γij) + ζh) +
∑

(i,j)∈p,(i,j)6∈A0

ηhij
k

+ µh ≥ 0, ∀h = [1, D],∀p ∈ Ph

(10c)

γij ≥ 0, ∀(i, j) ∈ A (10d)

µh ≥ 0, ∀h = [1, D] (10e)

ζh ∈ R, ∀h = [1, D] (10f)

ηhij ≥ 0, ∀h = [1, D],∀(i, j) ∈ A \A0

(10g)

ξ ≥ 0. (10h)

This dual problem do not have dual variables associated with exponential
number of path variables. We can solve it by improve and check procedure such
that after the restricted dual problem is solved to optimal, we adds the most violated
constraint to the dual and corresponding primal path variable into the primal.
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The left hand side of dual constraints (10) associated to path variable p ∈
Ph, h ∈ D is indeed the reduced cost of this path variable in the primal problem.
Let us denote it as

RC(p) = βh(
∑

(i,j)∈p

(cij + γij) + ζh) +
∑

(i,j)∈p,(i,j)6∈A0

ηhij
k

+ µh (11)

The reduced cost is the steepest descent direction. Denote the objective of solution
(x, y) by z(x, y), we have the well known interpretation of reduced cost from the
following lemma:

Lemma 6.2. Let (x, y) be a basic feasible solution of (3). If increase xp from 0
to arbitrarily small ε such that corresponding (x, y) remains feasible, then RC(p) =
z(x,y)z(x,y)

ε .

Therefore, once there exists negative reduced cost, we can improve the primal
by increase the associated column from zero, which is called column generation.

The part of reduced cost w.r.t the edge i.e. path cost follows as

PC(p) = βh
∑

(i,j)∈p

(cij + γij) +
∑

(i,j)∈p,(i,j)6∈A0

ηhij
k

(12)

To find the least reduced cost path p, we can generate a graph identical to
the network and add the cost c, γ and η to the weight of the edge. The shortest
path in the graph is the least reduced cost path. Since all costs are non-negative,
we can run the Dijkstra’s algorithm whose complexity is O(|V |2). To check the
optimality of the primal, we check whether the reduced cost of the path is negative,
if it non-negative, the LP optimal, otherwise, we add the column and reoptimize.

Because we actually work on the LP relaxation of (2), and duals are obtained
from its constriaints, then we add xp and fp associated to a shortest path p in the
(2), and we should add the link constraint (2b) as well. The solver SCIP [GAB+20]
supports to add columns during the pricing, but it cannnot support add rows in
pricing shown in the Figure (2). Therefore, we cannot implement it by hand.

In this section, one can learn a trick to derive the reduced cost without writing
the dual problem explicitly. We can just write the dual variables whose associated
primal constraints contain path variables, for they compose the term w.r.t the path
variables in the Lagrangian. Gathering all dual terms (dual variables times with
some constants) associated with the same path, we obtain its reduced cost.
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Figure 2: The framework of SCIP

6.2 Column generation for unsplittable flows

The continuous linear relaxation of integer program of (5) relaxes integrity
constraints on x and y. Following the lemma (6.1) , we can drop the upperbound
of y. The upperbound of x is implicitly implied by the constraint (5c), so we can
drop the upperbound as well

Dual variables by constraints:
Edge capacity constraint (5b): γij ≥ 0,∀(i, j) ∈ A.
Unsplittable constraint (5c): µh ∈ R,∀h = [1, D].
Cover constraint (5d): ηhij ≥ 0,∀h = [1, D],∀(i, j) ∈ A \A0.
Budget constraint (5e): ξ ≥ 0.

6.2.1 Reduced cost pricing

By the trick of the precedent section, we can deduce the reduced cost of p ∈
Ph, h ∈ [1, D] as the follow

RC(p) =
∑

(i,j)∈p

(cij + γij) +
∑

(i,j)∈p:(i,j) 6∈A0

ηhij + µh (13)

It is the left hand side of the dual constraints associated with the path variable
p. Again, we use the Dijkstra’s algorithm to compute the least reduced cost path,
add the path if its reduced cost is negative. This approach is called reduced cost
pricing. The reduced cost pricing problem observes whether there are path variables
of negative reduced costs to improve the optimality. If RMP is solved to optimality
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and then no variables have negative reduced costs, we can deduce the optimality of
the master problem.

6.2.2 Farkas pricing

We initialize the RMP with the shortest path of each demand. If the primal of
(5) is infeasible, so its dual is unbounded. During branch-and-price, it is possible
when the presolver fails to find a feasible solution or the subproblem is infeasible
after branching. The Farkas pricing [And01] identifies and repairs the infeasibility.

Let us recall a variant of Farka’s lemma [CCZ+14]

Lemma 6.3. The system Ax+ By ≤ f, Cx+Dy = g, x ≥ 0, y ≥ 0 is infeasible if
and only if there exists (u, v) s.t. ATu+ CT v ≥ 0, BT +Dv, u ≥ 0

Note that the Farkas condition ATu + CT v ≥ 0, BT + Dv = 0, u ≥ 0 is
exactly the tangent cone of dual constraints, where (u, v) is called Farkas certificate.
According to Farkas’ lemma, a RMP is infeasible if and only if there is an unbounded
ray (Farkas certificate) of the dual problem of RMP. Since the branch-and-price
algorithm is usually solved by MILP solver with dual-simplex method, it is easy to
incorporate infeasibility detection into the solver.

The pricing algorithm detects the dual constraints (13) associated with the
path variable for which the left hand side is negatively unbounded for the Farkas
certificate. Adding this constraint would add a cutting plan to repair unboundness
of the dual RMP and hence the infeasibility of the primal RMP.

If such Farkas certificate of the dual problem exists, the Farkas pricing adds
the corresponding path variables into the RMP of the primal. Here, the Farkas
coefficient FC(p) of path variable xp is computed by the same way as reduced cost
except that edge cost c = 0 as follow

FC(p) =
∑

(i,j)∈p

γij +
∑

(i,j)∈p,(i,j)6∈A0

ηhij + µh

If Farkas coefficients are non-negative for all paths, the primal problem is
infeasible. Thus, the solver can abort this node. If Farkas coefficient of at least one
path variable is negative, the solver adds it to RMP and reoptimize.

6.3 Branching rule

At every node in the branch-and-bound tree, if no more columns are priced
out (LP is optimal) and the LP solution is still fractional, branching rules are called
to enforce the integrity of path variables and SLS variables.

The branching rule for the problem (5) is decomposed into two phases, the
first phase enforces the integrity of path variables and the second phase enforces
the integrity of SLS variables. If there are fractional path variables, the algorithm
goes to the first phase, otherwise, it goes to the second phase.

As for path variables, branching on variable is a straight way to fix the binary
path variable x to either 0 or 1. If the variable is fixed to 1, there is no issue. If
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the variable is fixed to 0, the pricing algorithm might regenerate it. In the worst
case, the solver generates a column, fix it to zero and regenerate it again, and thus
never terminates.

Another approach proposed in [BHV00] branches on edges. If a path of de-
mand st is fractional, there must exist two fractional paths of flow st that diverge
at two edges (i, j) and (i, k) from a common vertex i. We choose the demand with
the most number of non-zero fractional flows. Then we partition the out edges from
i into two sets such that partition of divergent edges are almost of the same size.

Therefore, for one branch, it can forbid the edge (i, j) by the constraint∑
p∈ϕst:(i,j)∈p xp = 0; for the other branch, it can forbid the edge (i, k) by the

constraint
∑
p∈ϕst:(i,k)∈p xp = 0.

Actually, we are adding forbidden edge set into two branches. Our branching
rule follows the same methodology as [BHV00], but we emphasize more on dichton-
omy and balance of search tree. We choose the demand h with maximum fractional
paths, and create two disjoint edge sets such that partition of divergent edges are
almost of the same size. We also try to maximize the number of edges to branch
unlike only two branch edges. The algorithm follows as (1).

The pricing algorithm is compatible with branching decisions, it just deletes
corresponding forbidden edges for each flow when computing the shortest path.

As for the SLS variable, we branch on SLS variable y`∗ according to the most
fractional rule [AKM05] as follows

`∗ = arg max
`

min{y`, 1− y`} (14)

In the up branch, y`∗ is fixed to 1; In the down branch, y`∗ is fixed to 0. If the
right hand side of the constraint (5d) in the down branch is zero, the corresponding
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edges are forbidden.

Algorithm 1: Branching rule

Data:
G: the original graph representing network, G = (V,E)
Ph: the set of non-zero path variables of demand h ∈ D
Result: Forbidden edges
h←− arg maxh |Ph|
Find the first divergent node i for paths in Ph

Ohp ←− out edges from i of Ph

OhG ←− non-forbidden out edges from i in G

Eh1 , E
h
2 ←− ∅

for (i, j) ∈ Ohp do
if |Eh1 | < |Oh2 | then

Eh1 ←− Eh1 ∪ {(i, j)}
else

Eh2 ←− Eh2 ∪ {(i, j)}

for (i, j) ∈ OhG \Ohp do
if |Eh1 | < |Oh2 | then

Eh1 ←− Eh1 ∪ {(i, j)}
else

Eh2 ←− Eh2 ∪ {(i, j)}

return Eh1 , E
h
2

7 Experiments

As there is lack of public data set for SLS locations, we generated networks,
skyports, SLSs and traffic demands artificially. The design of instance genera-
tor follows the guidelines of the Uber team and whitepaper [RZS18]. With these
instances, we test the performance of edge formulation (1) for k−splittable flow
models, edge and path formulations (4 and (5)) for unsplittable models.

7.1 Instance generator

We generate for each test instance, a meshed network with SLSs, skyports,
demands, capacities and costs. Conceptually, the map is a [0, 1] × [0, 1] rectangle
map. The network is represented by a mesh of this map. If the mesh has Lx × Ly
nodes, the mesh has the length Lx and the width Ly. SLSs are circles in the
map. Skyports are selected as parts of mesh nodes. Demands are represented by
(sh, th, dh), the source and target nodes and the demand value. We partition the
map into cells, placement of SLSs and skyport are cells by cells. The scale ratio
defines the width over length, and cell and mesh units in y and x axis follow this
ratio.
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Inputs of the instance generator follow as:

1. sr: the scale ratio of y axis of over x axis of the map.

2. Lx: the number of nodes in a row along x-axis.

3. Sx: the number of cells for skyport localization in a row along x-axis,

4. `x: the number cells for SLS localization in a row along x-axis,

5. D: the number of demands in the unit of VTOLs,

6. rSLS: the scale factor for SLSs’s ellipse.

7. rfS: the scale factor for skports.

8. `cell: the number SLSs in each cell,

9. C: the set of capacities in the unit of VTOLs.

Outputs of the instance generator follow as:

1. G = (V,A): the mesh network with costs and capacities assigned to edges,

2. D demands with source, target and demand values,

3. A0: the cover set by skyports A0.

A`: other cover set by SLSs ∀` ∈ `.

Dallas Metropolitan is a template to launch the VTOL service, we assume the
length and width of this city is about 100km and 100km. The VTOL has landing
range of 20km (150mph in 5 mins), the size range is 96 km. Therefore, there are 25
SLSs, for each the the covered radius is 20 km. The number of skyports are 64. By
inputting these parameter into the instance generator, we can generate a network
with the same scale like Dallas in Figure 4
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Figure 3: A network like Dallas Metropolitan

The network in Figure (4) is generated with the setting of sr = 1.2, Lx =
6, Sx = 2, `x = 4, D = 7, rfSLS = 1.6, rfS = 0.5, C = {1, 2, 3} such that A0 =
∅. This regular network is easy to adjust its scale, and we use them to test the
scalability of algorithms in subsequent experiments.
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Figure 4: A network

The budget limits the number of SLSs available which in turn contrained rout-
ing paths of VTOLs, and the optimal solutions would be different under different
budget constraint. For the instance in Figure (4), we set a budget of 5 and 8 re-
spectively. Optimal solutions are depicted in Figure (5) and (6). Black ellipses are
installed SLSs. On the budget of 5, the routing cost is 591.19; On the budget of 8,
the routing cost is 472.00. More budgets provides more routing possibilities, so the
cost is lower.
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Figure 5: Budget 5
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Figure 6: Budget 8
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7.2 Numerical comparison of algorithms

In this section, we test performance of models and algorithms. Tested algo-
rithms are the performance of the branch-and-price algorithm for path formulation
(5) of unsplittable flow model, the branch-and-bound algorithm for edge formula-
tion (4) of unsplittable flow model and the branch-and-bound algorithm for edge
formulation (1) of k-splittable (k=3) flow model.

The computing environment has an Intel(R) Core(TM) i7-6700K CPU @
4.00GHz and 16GB of RAM with Ubuntu 20.04 operating system. We imple-
ment branch-and-price algorithm by MILP solver SCIP [GAB+20] with IBM ILOG
CPLEX 12.10.0 as LP solver, branch-and-bound algorithm by the MILP solver
CPLEX 12.10.0 in single-thread mode. Time limit is set to 3600 seconds.

Data set consists of 8 instances, and the number of nodes ranges from 36
to 529. All networks are grid meshes, Table (1) lists numbers of nodes, edges,
demands, SLSs and skyports, respectively.

Instance Nodes Edges Demands SLSs Skyports

1 36 120 3 16 4
2 48 164 6 20 6
3 63 220 7 20 6
4 100 360 11 36 16
5 225 840 17 49 36
6 324 1224 20 64 49
7 400 1520 25 81 64
8 529 2024 25 100 81

Table 1: Instance

In our experiments, we fix a budget for each instance. We test the branch-and-
bound algorithm for edge formulation of unsplittable flow problem (4), the branch-
and-price algorithm for path formulation of unsplittable flow problem (5) and the
branch-and-bound algorithm for edge formulation of 3-splittable flow problem (1).
For each algorithm on instances, we list the primal bound (incumbent solution) z∗,
duality gap (%), time (seconds) and the number of nodes. The symbol ’−’ indicates
that the solver does not find a solution in the time limit.

We first compare the performance of formulation (4) and (1), as their models
are different but solved by the branch-and-bound method of the same solver Cplex.
For formulation (4), 6 instances (4) are solved to optimality, 1 instance has a
feasible solution and 1 instance has no feasible solution found; For formulation (1),
4 instances (4) are solved to optimality and 4 instances have no feasible solution
found. As for providing a feasible solution, (4) is always faster, as it has less
variables and constraints than (1). However, as for instances with feasible solution
for formulation (1), the optimal objective is always lower. In the unsplittable model,
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I B
Edge formulation unsplittable Path formulation unsplittable Edge formulation k-splittable

z∗ Gap t Nodes z∗ Gap t Nodes z∗ Gap t Nodes

1 5 175.98 0 0.02 1 175.98 0 0.53 4 162.25 0 0.54 231
2 5 355.92 0 0.05 1 355.92 0 0.2 23 348.97 0 10.99 1344
3 5 591.19 0 4.74 1538 591.19 0 3600 128920 456.65 0 9.27 622
4 5 300.05 0 0.05 1 300.05 0 0.56 1 298.01 0 0.71 1
5 9 1512.13 0 22.83 1446 1512.18 0.31 3600 64666 - - 3600 777
6 20 2290.75 0 790.37 20861 - - 3600 33192 - - 3600 616
7 25 3025.70 0.35 3600 30341 - - 3600 10635 - - 3600 225
8 29 - - 3600 20861 - - 3600 10829 - - 3600 1

Table 2: Performance experiments

every demand is exactly one VTOL, which is routed by a single path, so the flow
is always binary. In the 3-splittable model, paths of demand might have fractional
VTOLs. If these demands are routed by unsplittable flows, then paths must have
integer VTOLs. Therefore, the 3-splittable model is more flexible than unsplittable
model and it relaxes the integrality of its fractional flows f . To refine the solution
of (1), the optimizer can start to solve the model of large k, enforce the integerality
constraint on f , and reoptimize the path formulation on the restricted path set
from the previous result.

Then, we compare the performance of formulation (4) and (5), they solve the
same model by different algorithms. As for the branch-and-price algorithm for (5),
it only solves 1 instance to optimality, it finds feasible solutions for 4 solutions and
it does not find solutions for 3 instances. It is not stable and slower than edge
formulation (4). If its initial path variables are close to the optimal solution, it
can prove the optimality very fast like in instance 4. It spends lots of time proving
the optimality of instance 3 although it already finds the optimal solution. It is
a common problem in column generation that the dual problem converge slowly,
some stabilization techniques [PSUV13, PSUV18] can accelerate the convergence.

8 Conclusions

In this work we proposed mathematical programming approaches for minimiz-
ing energy cost of VTOLs in traffic networks under safety and budget constraints.

We derived new path formulations for unsplittable and k−splittable flow mod-
els respectively. We developed a column generation approach embedded in a branch-
and-price algorithm.

In the future, we can develop a polyhedral study of our problem to devise
new valid inequalities as well as a branch-price-cut (BPC) algorithm. The widely
used inequalities [AR02, BBA07, BHV00, VA18] for unsplittable multi-commodity
flow problem deals with knapsack capacity constraint, and we can import it in our
problem.

According to the order of branching rules, we actually solve master and sub
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problem iteratively. The master problem first fixes the binary SLS variables, and
the sub problem searches for the binary flow variables. We can apply Bender
decomposition [Cos05] into the branch-and-price algorithm, when the sub problem
is infeasible or non-optimal, the so-called no-good cuts [CX04] can strengthen the
original integer program.

To model the uncertainty of demands, we can use the robust linear program-
ming models, which the program would be converted to a second order cone pro-
gramming problem. Its main problem is efficiency of second order cone solver.
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10 Summary of the Internship

Regeneration of columns for k-splittable model: LP (3) is equivalent
to LP relaxation of (2), they only differ in the linking constraint (2b), therefore,
duals of other identical constraints should be the same as well. To avoid the issue
of unknown dual in (2), the reduced cost (11) is derived from (3).

Notice: the reduced cost (11) is manually derived from duals, not internal
reduced cost provided by scip (In a correct implementation, they should be the
same!).

The MIP program given to scip is (2). The scip cannot support to add rows
(2b) during column generation for LP relaxation of (2). The scip’s internal LP is
different is from ideal LP (2) and (3) that I supposed in my paper. Therefore, the
duals that I have are wrong, for sure, the reduced cost is wrong. The reduced cost
of a generated column becomes negative (would be regenerated!) is sometimes -70,
so it is not numerical rounding error.

Stability: As Leo pointed, column generation has a big problem in stablil-
ity. The problem is another issue different from regeneration of columns. In this
case, the convergence is very slow, it is observed in my ’correct’ implementation of
unsplittable model (5), the dual bound does not change for very long time, even
it already finds the best solution (primal bound) same as that of edge formulation
implemented in cplex.
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