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Engineering (GeM, UMR 6183 CNRS), Ecole
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Definition

Mechanically generated heat can be defined

as heat produced bymechanical processes, involv-

ing motion and deformation of matter. In this

entry, we will mostly focus on heat generated by

deformation in elasto-viscoplastic solids as well as

by frictional contact. These heat sources play

a significant role in many industrial processes,

such as metal forming and friction welding.

Overview

Temperature can have a significant effect on

mechanical behavior of materials such as metals

or polymers. Conversely, mechanical activity can

be at the origin of heat generation (or absorption),

contributing to thermal transfers within the

material. Such thermomechanical coupling

effects originate from various micro-mechanical

processes. They can be classified in two broad

categories: entropic effects and dissipative

effects. Entropic effects are linked to variations

of the mechanical entropy, hence the name.

They are reversible, in the sense that if a given
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evolution of the mechanical state produces heat,

through a decrease of mechanical entropy, then

the reverse evolution will absorb heat, through

an increase in mechanical entropy. A typical

example is thermoelasticity: compression of

a thermoelastic material will generate heat,

while mechanical expansion will be associated

to heat absorption. Note that if temperature gra-

dients are generated by entropic effects, some

dissipation will occur by heat conduction. This

is why thermoelastic effects can slightly dampen

mechanical free vibrations, for example. But

the thermoelastic coupling effect is in itself

reversible. On the other hand, dissipative effects

are linked to micro-mechanical irreversible

processes, such as dislocation glide through

obstacles, formation of micro-cracks, nucleation,

growth, and coalescence of cavities (in a word,

damage). They are thus irreversible by nature and

always generate heat. A combination of entropic

and dissipative effects is generally observed in

metals, although dissipative effects rapidly

become dominant once a significant amount of

plastic strain or damage has developed (and

excluding phase changes). For example,

thermoelastic effects in metals can typically

lead to variations in temperature of the order of

1 �C, while large viscoplastic strains can cause an

increase of temperature of 10s to 100s degrees

Celsius, as illustrated below. In addition to heat

generated in the bulk of materials by such micro-

mechanisms, boundary effects such as friction

can significantly contribute as well to heat

generation in mechanical processes.

Thermodynamic Description

The different sources of thermomechanical

coupling appear clearly from a rigorous

thermodynamic description. Consider a local

state approach, where we describe the

thermomechanical state of a material point by

the strain tensor E and the absolute temperature

T. In addition, irreversible micro-mechanisms are

described by a set of internal variables j (the

exact nature – scalar, vector, or tensor – of these

internal variables depends on specific behaviors

considered and does not need to be detailed here).

Let us then introduce the Helmholtz free energy

WðE; T; jÞ ¼ U � TS ð1Þ

where U is the internal energy and S the entropy

(all quantities per unit volume). The free energy

function defines the quantities thermodynami-

cally conjugate to state variables (stress tensor

S, entropy S, and internal forces X):

S ¼ @EWðE; T; jÞ ð2Þ

S ¼ �@TWðE; T; jÞ ð3Þ

X ¼ �@jWðE; T; jÞ ð4Þ

Conservation of energy is expressed in local

form by the following balance equation:

_U ¼ S : _Eþ Qe � divq ð5Þ

where Qe is the external heat supply and q the

heat flux. Using the above relations, it can be

rewritten as follows:

T _S ¼ X � _j þ Qe � divq ð6Þ

which is the heat equation in entropy form. Using

relation (3), the rate of entropy can itself be

expressed as

_S ¼ � @2
TEWðE; T; jÞ : _E

� @2
TTWðE; T; jÞ _T � @2

TjWðE; T; jÞ � _j

ð7Þ

Defining the heat capacity at constant strain

(and constant internal variables) by

rcE ¼ �T@2
TTWðE; T; jÞ ð8Þ

the classical heat equation is then recovered:

rcE _T ¼ Qr þ Qi þ Qe � div q ð9Þ
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where Qr denotes source terms related to revers-

ible (entropic) effects

Qr ¼ T @TSðE; T; jÞ : _E

� T @TXðE; T; jÞ � _j
ð10Þ

while Qi denotes source terms related to internal

dissipation

Qi ¼ XðE; T; jÞ � _j ð11Þ

The relative importance of these different heat

source terms varies from case to case, as

discussed below.

Entropic Effects

Thermal Softening

Considering the case of materials in the elastic

range, one can see from relation (10) that entropic

heat source terms will be generated by

a temperature dependence of elastic constants.

Indeed, if the stress–strain relation is given by

SðE;TÞ ¼ CðTÞ : E ð12Þ

where CðTÞ is a fourth-order (temperature-

dependent) elasticity tensor, then the entropic

heat source term becomes

Qr ¼ T E : @TC : _E ð13Þ

Thus, in the case of thermal softening of

elastic constants, increasing radial loadings

(deformation-controlled) will be associated to

heat absorption (i.e., temperature decrease under

adiabatic conditions). Consider, for example,

a sample under harmonic tension/compression

cyclic loading: exx ¼ E0 sinot. This will generate

a heat source term given by

QðaÞ
r ¼

1

2
o E20 TE

0ðTÞ sin 2ot ð14Þ

where E0ðTÞ is the variation of Young modulus

with temperature (with a typical value of

�6.6 10�2 GPa/K for an alloyed steel, in the

range [�100 �C, 250 �C]).

Thermoelasticity

Consider now an isotropic thermoelastic material,

for which the stress–strain relation is given by

sij ¼ lekkdij þ 2meij � ð3lþ 2mÞaydij ð15Þ

where l and m are Lamé coefficients, a the coef-

ficient of thermal expansion, and y ¼ T � T0 the

temperature change. The associated entropic

source term is thus

Qr ¼ �3k aT _ekk ð16Þ

where k ¼ lþ 2=3m is the bulk modulus. Thus,

volume expansion will generate cooling, while

compression will generate heating. Considering

again a sample under harmonic tension/

compression, the heat source term due to

thermoelasticity will then be given by

QðbÞ
r ¼ �3kð1� 2nÞ aT oE0 cosot ð17Þ

where we have neglected second-order effects

(i.e., terms in a2). The coefficient of thermal

expansion of an alloyed steel is of the order of

15 10�6 m/(m.K). Table 1 compares values of

heat source terms for an alloyed steel at room

temperature (T ¼ 293 K), with an axial strain

amplitude E0 ¼ 10�3. It shows that (for this mate-

rial in this temperature range) thermoelastic

effects are two orders of magnitude larger than

thermal softening effects. Note also the doubling

of frequency observed for the latter.

Mechanically Generated Heat, Table 1 Comparison

of entropic heat source terms

Thermal softening Q
ðaÞ
r ¼ �9 669o sin 2ot

Thermoelasticity Q
ðbÞ
r ¼ �922 950o cosot

All heat source terms in W=m�3
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Dissipative Effects

Viscoplasticity

An important source of dissipation in metals is

associated to (visco-)plastic deformations. With-

out going into the details of a particular plasticity

model, the following basic assumptions generally

hold:

• The strain tensor is split into an elastic and

a plastic part: E ¼ Ee þ Ep

• The free energy is also split into thermoelastic,

plastic hardening, and thermal capacity parts:

WðE; T; jÞ ¼ WeðEe; TÞ þWpðEp; jÞ þWtðTÞ

ð18Þ

where j is the equivalent plastic strain:

j ¼

ðt

0

2

3
_E
p
: _E

p
� �1=2

dt ð19Þ

The thermoelastic free energy We corre-

sponds to energy stored through reversible

crystal lattice distortion, while the plastic free

energy Wp corresponds to energy stored

through irreversible crystal lattice modifications

(typically dislocation microstructures). Macro-

scopically, formation of these dislocation

microstructures translates into kinematic hard-

ening (dependence on Ep in Wp), but poten-

tially also some amount of isotropic hardening

(dependence on j).

The stress tensor is now given by

S ¼ @EW ¼ @EeWeðEe; TÞ ð20Þ

while the stress thermodynamically conjugate to

the plastic strain tensor is given by

XEp ¼ �@EpW ¼ S� Sc ð21Þ

where the backstress is defined by Sc ¼ @EpWp.

This backstress describes kinematic hardening.

Denoting by wp ¼ @jW
p the scalar stress

conjugate to the equivalent plastic strain, we can

write the dissipative heat source as

Qi ¼ ðS� ScÞ : _E
p
�wp _j ð22Þ

The dissipated heat power can alternatively be

rewritten as a fraction b of the plastic power:

Qi ¼ bS : _E
p

ð23Þ

A large volume of literature has been devoted

to evaluating the actual fraction of plastic work

transformed into heat. Seminal work on the topic

dates back to Taylor and Quinney [7], with sub-

sequent extensive reviews by Titchener and

Bever [8] and Bever et al. [1]. The work of Taylor

and Quinney is often referred to for justifying the

choice of a constant coefficient b in (23), with

values in the range [0.8, 1.0]. This is clearly in

contradiction with (22), showing that the fraction

of plastic power transformed into heat can in

general be a function of strain, strain rate, and

temperature. This is confirmed by experimental

observations, as, for example, shown in

Chrysochoos and Belmahjoub [2] or Macdougall

[3]. These authors, as well as several others,

measured fractions of plastic power transformed

into heat varying between as low as 0.5 and

maximal values close to 1.0. Lower values typi-

cally correspond to early stages of plastic defor-

mation with increasing values as plastic strains

develop and plastic storage mechanisms tend to

saturate. Higher strain rates are typically associ-

ated to higher values of fraction b. As pointed out

by Rittel [4], it is important to note that in their

original work, Taylor and Quinney [7] actually

measured fractions of plastic work, that is, ener-

gies integrated over the whole loading history:

ðt

0

Qi dt ¼ bint

ðt

0

S : _E
p
dt ð24Þ

where bint denotes an integral fraction of plastic

work transformed into heat. Obviously, if b in

(23) is constant, then bint � b. But in the general

case, these correspond to different definitions.
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A rough estimate of the amplitude of plastic

dissipation can be established as follows. Con-

sider plastic flow under uniaxial loading at

a constant yield stress of sy ¼ 400 MPa (a com-

mon value for steel), with an axial plastic strain

approximated by epxx 
 E
p
0 sinot (this expression

obviously neglects elastic transition between ten-

sion and compression). Accounting for the

isochoric nature of plastic flow, and assuming

no plastic storage mechanisms (b ¼ 1), the asso-

ciated dissipated heat power will be given by

Qi 

ffiffi

3
2

q

E
p
0 sy o cosotj j ð25Þ

Considering a plastic strain amplitude of 1 %,

we can then write Qi 
 489 104 o cosotj j, which

is about five times the amplitude of thermoelastic

effects estimated here above (with elastic

strains of an amplitude of 0.1 %). Note again

that the dissipated heat power will always

remain positive, contrarily to thermoelastic con-

tributions. A more precise illustration or the rel-

ative importance of the various heat sources can

be obtained by computing the thermomechanical

response of an elastoplastic material point

under uniaxial cyclic load in adiabatic conditions.

Considering properties typical of steel

(Young modulus E ¼ 217.5 GPa, Poisson coeffi-

cient v ¼ 0.3, yield stress sy ¼ 400 MPa, no

hardening, coefficient of thermal expansion

a ¼ 15 10�6 m/(m.K), volumetric heat capacity

rcE ¼ 3:925 106 J=ðK:m3), initial temperature

T0 ¼ 293 K) and a cyclic loading of amplitude

E0 ¼ 0:01 at a frequency of 1 Hz, one obtains

the results illustrated in Fig. 1. In this figure, we

see that plastic dissipation leads to a monotonous

temperature increase of about 10 K over three

loading cycles, onto which is superposed

a cyclic variation due to thermoelastic effects,
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with an amplitude of about 1 K. Given the

discussion above on the fraction of plastic

power transformed into heat, these results repre-

sent an upper bound to temperature increase.

Few attempts have been made to explicitly

model the evolution of factor b. One noticeable

model is due to Zehnder [9], which postulates that

factor b is directly related to strain hardening.

Zehnder’s model predicts a value of b starting

relatively low and increasing with strain harden-

ing, in agreement with many experimental obser-

vations. Rosakis et al. [5] have also studied the

problem in a thermodynamic framework, propos-

ing that factor b and its evolution can be charac-

terized by a unique function of equivalent plastic

strain EðjÞ, describing the stored energy of cold

work. Yet, this last model may not be valid in

presence of concurrent annealing effects (soften-

ing due to local heating), as illustrated in Stainier

and Ortiz [6].

Finally, note that, although emphasis was

given here to plastic storage mechanisms linked

to hardening (kinematic or not), other phenomena

can play an important role in this context. In

particular, phase changes (e.g., martensitic trans-

formations) could be included and have an effect

of amplitude comparable to those linked to

plastic hardening.

Frictional Contact

In many industrial processes, such as metal

forming or friction welding, heat is generated

not only in the bulk, by mechanisms linked to

plastic deformation as discussed above, but also

by friction on contact surfaces. Consider two

material surfaces in contact, sliding with respect

to each other at a relative velocity VT (T stands

for tangent). The frictional force FT will act in the

direction opposite to that of the relative velocity,

and the dissipated energy rate (per unit surface) is

given by

Qf ¼ �FT � VT ð26Þ

The amount of heat generated then depends on

the amplitude of the sliding velocity and of the

frictional force.

Friction Models

Several friction models exist, yielding different

predictions. The most common model is Coulomb

friction, assuming that the friction force is propor-

tional to the normal contact force FN:

FT ¼ �mFN

VT

VTk k
ð27Þ

where the friction coefficient m (unitless) depends

on the specific pair of materials in contact (and

also on temperature). If contact pressure is

increased, the tangential force will at some point

become so large that interlocking asperities

(commonly considered as the main source of

friction resistance) will reach their elastic limit

in shear. This suggests to bound the amplitude of

tangential force to a fraction of the shear yield

stress ty of the material, leading to Tresca model:

FT ¼ �k ty
VT

VTk k
ð28Þ

where coefficient k accounts for geometrical fac-

tors. Under these assumptions, the generated heat

rate is given by

Qf ¼ FT VTk k ð29Þ

where FT is the amplitude of the tangential force

FT ¼ min½mFN; kty�
� �

. Dissipated power Qf is

then linear with respect to sliding velocity at the

contact interface.

Alternatively, viscous friction assumes that

the friction force is proportional to the relative

sliding velocity:

FT ¼ �m̂VT ð30Þ

where m̂ is a viscous friction coefficient (units,

N.s/m3). Dissipated power is then given by

Qf ¼ m̂ VTk k2 ð31Þ

that is, the generated heat rate is proportional to the

square of sliding velocity at the contact interface.
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The choice of a friction model thus has a signifi-

cant effect on the prediction of associated heat

sources. Note that there are also more sophisti-

cated friction models for lubricated contact,

based on solutions to Reynolds equation.

Partition of Frictional Power

At the fine scale, friction can often be related

to interactions between asperities of contacting

surfaces. These asperities deform plastically, can

break, leading to morphological changes at the

microscopic level. Given the previous discussion

on heat generated by plastic deformations, it

would be legitimate to consider that only a fraction

of frictional power is actually transformed into

heat. Yet, by lack of experimental observations at

that scale, most (not to say all) authors dealing

with the topic assume that 100 % of frictional

power is transformed into heat.

The distribution of heat generated by friction

at a contact interface between the two bodies in

contact is determined by a combination of many

factors: morphology of asperities on each contact

surface, presence of a lubricant and/or fragments

(third body), etc. Macroscopic continuum

mechanics models typically ignore these details,

and it is then necessary to provide a rule defining

the partition of heat generated by friction

between the two bodies in contact. For more

details, see entry on Heat Conduction with

Thermal Contact: Modeling and Analysis.

References

1. Bever MB, Holt DL, Titchener AL (1973) The stored

energy of cold work. Prog Mater Sci 17:5–177

2. Chrysochoos A, Belmahjoub F (1992) Thermographic

analysis of thermomechanical couplings. Arch Mech

44(1):55–68

3. Macdougall D (2000) Determination of the plastic

work converted to heat using radiometry. Exp Mech

40(3):298–306

4. Rittel D (1999) On the conversion of plastic work to

heat during high strain rate deformation of glassy

polymers. Mech Mater 31:131–139

5. Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J

(2000) A thermodynamic internal variable model for

the partition of plastic work into heat and stored energy

in metals. J Mech Phys Solids 48(3):581–607

6. Stainier L, Ortiz M (2010) Study and validation

of a variational theory of thermomechanical coupling

in finite viscoplasticity. Int J Solids Struct 47(5):

705–715

7. Taylor GI, Quinney H (1937) The latent heat remaining

in a metal after cold working. Proc Royal Soc London

A163:157–181

8. Titchener AL, Bever MB (1958) The stored energy of

cold work. Prog Metal Phys 7:247–338

9. Zehnder AT (1991) A model for the heating due to

plastic work. Mech Res Commun 18(1):23–28

7


