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Contractions to update Elo ratings
for round-robin tournaments

Stéphane JUNCA

Abstract

A popular rating system to measure player strength by pairwise comparison is
the Elo’s system. This system is widely used to rank players in chess, go and online
games. Assuming the independence of the outcomes, it is a Markov chain. The
convergence of Elo ratings is studied when the update after each round-robin tour-
nament is a contraction. An important case is the linear updating. The contractive
assumption is discussed and compared to the non contractive usual Elo.

Keywords: Pairwise comparisons, Elo, Markov chain, iterated random func-
tions, contractivity.
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1 Introduction

The Elo rating system is widely used for games and mainly today for online games.
It can be used to rank any objects when a pairwise comparison is available [5,
16]. Its simplicity and efficiency is a success of this ranking. In this paper, the
Elo’s system is mathematically studied under a very constraining assumption on the
contractivity of the update. This contractivity is false for the original Elo’s system
but it is ‘almost’ true in practice. This point is discussed below in sections 3.3, 4.3.
Moreover, the contractivity is an important tool to give some mathematical results,
in particular for the fundamental linear model, in general to obtain the necessary
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stability conditions for the Elo’s system. It is worth saying that Apard Elo first
tried his rating system with the linear model [9, 16].

The Elo model The Elo rating system is first presented for 2 players. Let two
players i and j with rating Rni and Rnj at time n, Snij ∈ [0, 1] the result of the
match, Arpad Elo stated the following computations after each match to update
the ratings,

Rn+1
i = Rni +K(Sn+1

ij − b(Rni −Rnj )). (1.1)

Arpad Elo considered the case where the result of the match at time n + 1 is
Sn+1
ij = 0 or 1 and b(Rni − Rnj ) is the expected score for two players as a function

of the difference of the ratings at the previous time. The function b(.) has usually
to take values in [0, 1]. If the difference of rating is important, the logical result,
the win of the stronger player, has to affect slightly the ratings. Conversely, if the
weaker player wins, then, the ratings has to be more modified.

There is another interpretation of the function b(.). If b(.) ≡ 0 in (1.1) then the
rating diverges towards +∞. This is not interesting because we want to measure the
strength of the player by a finite number. In some sense, the ratings are expected to
converge if the strength of the players are constant. Thus, the function b(.) can be
seen as a damp to stabilize the basic random walk model b(.) ≡ 0. As a stabilisator,
b(.) can take values on R as it is done below. The function can also be seen as a
bonus or malus function of the result of the outcome. But b(.) has some minimal
constraint to sastifies. For instance, b(.) is increasing, at least non decreasing,

db

dx
≥ 0. (1.2)

Arpad Elo was a physicist and stated that the natural following conservation
law is fullfilled,

Rn+1
i +Rn+1

j = Rni +Rnj . (1.3)

Since, for all i, j and n, the scores satisfy the symmetry,

Sn+1
ij + Sn+1

ji = 1, (1.4)

The function b(.) has to satifies the same symmetry for all x,

b(x) + b(−x) = 1, (1.5)

which means that b(0) = 1/2 and x 7→ b(x)− 1/2 is an odd function.
For the function b(.) Arpad Elo chose a centered distribution function of a

normal law [9]. Now the logistic Elo is mainly used in practice.

b(x) =
1

1 + 10−x/400
. (1.6)

It is motivated for 3 or more players to keep a transitivity relation beetwen the
rating of players. If the player 1 is stronger than the player 2 and the player 2
is stronger than the palyer 3 then the player 1 is stronger than the palyer 3. A
quantitive and more precise notion of transitivity leads to a logistic law [1, 4, 6, 19].
This important point is not more detailled here because other functions b(.) than
the logistic function (1.6) are considered.
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Other bonus-malus function b can be used. For instance a linear function and
more generally a non decreasing function fullfilling the symmetry relation (1.5).

The K-factor has to be small in some sense. Not too big to not drastically change
the rating and not too small to expect that if the rating of a player is not the good
one then the process converges fastly enough to the new rating representing the real
strength of the player. Jeff Sonas studied numerically the important question of the
size of K [19]. The size of K will appear below to be crucial to obtain convergence
theorems.

Usually the rating is bigger than 1000 thus K � 1000. In this way, if the rating
are normalized to be of order O(1) replacing Rni by Rni /1000 in (1.1), the new factor
is K/1000 becomes really small, and accordingly modifying the b(.) function.

Arpad Elo expected that the rating of each player represents well the strength
of players after many games. Mathematically that means, in some sense, that the
rating’s converges to a law centered at the true value representing the skill of the
player. In other words, Rnk is expected to converge in law towards R∞k for k = 1, 2,
E(R∞k ) corresponds to the real strength of player k , and, b(E(R∞i )−E(R∞j )) is the
probability that i beats j.

Notice that the model (1.1) is invariant under translation. If Rni satisfies (1.1) for
all n, Rnj the similar relation and ‘r’ be a constant then, Rni + r, Rnj + r also satisfy
the same relation (1.1). Thus, the pertinent information is the relative strength
Rni −Rnj .

In all this paper only bounded independent (w.r.t. n) score Snij are considered
with the same law as Sij with Sij = 0 or 1 or with continuous values when the score
can be more quantified than a win or a loss, Sij ∈ [0, 1] or −M ≤ Sij ≤M ,

sup
i,j
|Sij | ≤M < +∞. (1.7)

Keeping the same law means that the strength of the players is supposed to be
constant. The independance of the score with respect to the time means that
players are not affected by the previous score.

Elo assumption on the expected score: Assume that the strength of the
players is constant, no learning effect as in [8]. The score expectation of an encounter
only depends on the difference of the theoritical ratings ρi − ρj [14] ,

E(Sij) = b(ρi − ρj), ∀n ∈ N (Elo Assumption) (1.8)

Indeed, the notion of theoritical rating or true strength is natural but generally
unknonw.

Furthermore, how one number can be describe the various skills of a chess player?
However, to rank players only one number is needed. In the Elo’s system it is im-
plicitely expected that Rni is a random variable fluctuating around the ‘real strength’
for large n, so,

ρi := lim
n→+∞

E(Rni ). (1.9)

The existence of the limit is already a mathematical problem and needs some sta-
bility of the Elo’s system.

In this paper, the more general case where the score expectation only depends
on the player without any notion of true rating is considered:

E(Sij) = sij (1.10)
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Indeed, for a Bernoulli model, Sij = 0 or 1, pij = P (Sij = 1), the matrix of scores
reads,

sij = pij . (1.11)

It is not assumed that the mean scores sij satisfy the Elo assumption (1.8). This is
more realistic. It is well known that ”circular” situations can occur, for instance:

� Player number 1 is stronger than player 2, i.e. p12 > 1/2.

� Player number 2 is stronger than player 3, i.e. p23 > 1/2.

� Player number 3 is stronger than player 1, i.e. p31 > 1/2.

More complex ”cycles” can be studied with more players [15]. Nevertheless, it
is expected that the Elo rating system ranks the players after enough time. An
important question is to try to identify the ‘real strength’ ρi and to verify that the
‘real strength’ ranks well all the players.

Round-robin tournaments The fairest tournament to rank N players is the
round-robin tournament when all meet all. The following evaluation of the rating
after each tournament is studied.

Rn+1
i −Rni = K

∑
j

(Sn+1
ij − b(Rni −Rnj )). (1.12)

The integer n means after n tournaments. On internet, the rating is usually updated
after each match. A numerical study [?] seems to show that the result is similar for
a large number of matches.

The important contractivity assumption is discussed in the section 4.3. It is not
true (but ‘almost’ true) for the usual Elo model. It is mandatory for the linearized
model.

The results obtained in the contractive setting are,

� condition on the size of K,

� convergence in law with exponential rate.

� Elo ratings are bounded.

� uniqueness of the invariant measure.

� explicit study of the linear case:

– The Elo’s system ranks well the players.

– The Elo assumption that the expected score depends on the difference of
the rating is not true.

The paper is organized as follows. The convergence in law is expounded in
Section 2. Section 3 deals with the linear case. The limit and the exponential rate
of convergence is explicit. Some assumptions on the Elo’s system are tested. Section
4 deals with the nonlinear case. The sections 3.3 and 4.3 present the main drawback
of the contractivity assumption and discuss some advantages.
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2 Convergence

The Elo vectorial Markov chain (1.12) for N players reads,

Rn+1 = Rn +K
(
Sn+1 −B(Rn)

)
= G(Rn) +KSn+1, (2.1)

with vectorial notations,

Rn = (Rn1 , · · · , RnN )T ,

1I = (1, · · · , 1)T ∈ RN , (2.2)

r = (r1, · · · , rN )T ,

Bi j(r) = b(ri − rj), (2.3)

B(r) = B(r) 1I, (2.4)

G(r) = r −KB(r), (2.5)

Sn+1 = Sn+1 1I, (2.6)

and the convention for all i

Sn+1
ii =

1

2
, (2.7)

which corresponds to b(0) = 1/2 and allow us to extend the sum (1.12) also for
j = i without changing the total sum.

Under contrative assumptions (2.8) on the bonus-malus function the following
convergence holds.

Theorem 2.1 (Bounds and exponential convergence in law)
If R0 is the initial random vector which is bounded in L∞(Ω) and independent of the
scores, (Sn) is a sequence of random independent matrixes with the same bounded
law as S (1.7), and if the following contractance assumptions are fullfilled:

K (N − 1) supb′ < 1, 0 < inf b′, (2.8)

then, with

γ = max(|1−KN sup b′|, |1−KN inf b′|) < 1, (2.9)

the Markov chain (Rn)n converges in law, with the exponential rate γ, to the law of
the random variable

R∞ +
1

N
(R0 · 1I) 1I

where R∞ ⊥ 1I, R∞ is independent of R0 and its law µ∞ is the vector valued
measure supported on the hyperplane 1I⊥ uniquely determined by:

µ∞ =
(

(Id−KB)#µ∞
)
? λS , (2.10)

where # is the push-forward of a measure by an application, ? denotes the convo-
lution of measures, and λS is the S’ law. The support of µ∞ is bounded. Let the
vector r∞ uniquely defined by r∞ ⊥ 1I and r∞ = G(r∞) + E(S 1I) then

‖R∞ − r∞‖∞ ≤ K

1− γ
‖(S− E(S)) 1I‖∞. (2.11)
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This theorem can be seen in the framework of ‘contractive iterated random
functions’ [7]. The point here is that the map Id −KB is not contractive on RN
but on the hyperplane 1I⊥.

Another point is the compact support of the limit law which is again a conse-
quence of the contractivity (2.8) and it is not true for the used Elo model (1.6)
where inf b′ = 0 [15].

¨The convergence of the sequence (Rn) towards a random variable R∞ is not
expected [7]. Else, by (2.1), R∞ has to satisfies: B(R∞) = S. This is false (except
the non interesting case when S is a constant).

Notice that, a priori, the limit depends on the factor K.

The linear case is first presented with more precise results. The limit in law is
‘explicit’, the optimal contractive assumption is provided, and the Elo assumptions
(1.8) are studied. After, the convergence in law for the nonlinear case is given.

3 Linear recurrence

The linear case only means that the bonus-malus function is linear,

b(r) =
1

2
+ Lr. (3.1)

In practice, L is quite small, L = b′(0) = ln(10)/1600 ∼ 10−3. For small r it corre-
sponds to the expectation to win if the ratings difference is r. It is an approximation
for |r| < 200. Conversely, for r too big, [r| > 1/L ∼ 1000, |b(r)| > 1 so it does not
correspond to a probability. Indeed, it is a malus (resp. a bonus) to have a too big
(resp. a too small) Elo. Thus, after the encounter, independently on the outcome,
there is a loss (resp. win) of Elo points. It is a reason why the linear function b is
not used. This discussion is continued in Section 3.3. Nevertheless, usually players
have a rating difference ≤ 400 � 1000, so this linear model is a interesting to try
to understand such typical situations. Moreover, Arpad Elo himself had started to
study the linear Elo [9, 16]. Notice that the Elo ranks well the players in figures 1,
2, 3, 4.

The linear case is also an interesting simplest case to test or unvalid some usual
assumptions on the Elo’s system presented in the introduction.

This section is organized as follows. First, a general result on linear Markov
chains is given [7, 17]. Second, the special case of the linear Elo rating is studied.
Third, some asssumed behaviors of the Elo rating system are checked on the linear
case.

3.1 Vectorial linear Markov chain

Consider a general vectorial linear iterative Markov chain [7],

Rn+1 = ARn + Sn+1, (3.2)

where R0 is given, Rn ∈ RN , A ∈ Mn,n(R), (Sn) a random independent vectorial
sequence in RN with the same law as S, and R0 is indepent of f this sequence. This
is a well known subject [7]. The convergence result is recalled with a simple proof
to be self-contained. A more general result can be found and proved in [7].
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Figure 1: 4 players, number of tournaments on the horizontal axis, ratings on the vertical
axis, true strength in red.

Theorem 3.2 ( Limit bounded law, expectation, covariance)
If the spectral radius of A satisfies %(A) < 1, R0 and S is a bounded random vec-
tor, R0, (Sn) are independent, then (Rn) convergences in law towards R̃∞ with a
geometric rate,

Rn
L−−−−−→

n→+∞
R̃∞ =

+∞∑
n=0

AnSn, (3.3)

‖R̃∞‖ ≤ ‖S‖
1− |||A|||

(3.4)

sup
n
‖Rn‖ ≤ ‖R0‖+

‖S‖
1− |||A|||

, (3.5)

lim
n→+∞

E(Rn) = E(R̃∞) = (Id−A)−1 E(S), (3.6)

|||Cov(R̃∞)||| ≤ 1

1− |||A|||2
|||Cov(S)|||, (3.7)

for a vector norm ‖.‖ on RN such that the induced matrix norm satisfies

|||A||| := sup
R 6=0

‖AR‖
‖R‖

< 1.

The matrix Cov(X) is the covariance matrix of the random vector X,

Cov(X) = E([X − E(X)][X − E(X)]T ).

We cannot expect a convergence almost everywhere of the Markov chain. In-
deed, if Rn converges a.e. then Sn also converges a.e. by (3.2). This convergence
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contradicts the independance of the sequence Sn (except in the trivial case when S
is almost surely constant).

Notice that the law of Rn is uniformly compactly supported.

Proof : Equation (3.2) yields:

Rn+1 = An+1R0 +

n∑
j=0

AjSn+1−j

Since ρ(A) < 1 and R0 is bounded , An+1R0 converges with a geometric rate towards
the vector 0. By the independance of the sequence (Sn) and R0, Rn+1 has the same
law as R̃n+1:

Rn+1 L
= R̃n+1 = An+1R0 +

n∑
j=0

AjSj .

R̃n converges uniformly towards R̃∞ with a geometric rate . Rn+1 and R̃n+1 have
the same law, thus ‖Rn+1‖ = ‖R̃n+1‖ ≤ ‖R0‖ +

∑n
j=0 ‖|A|‖j‖S‖, and the uniform

bounds (3.4), (3.5) follow.
The convergence in law and the previous uniform bound (3.5) imply the conver-

gence of the esperance and the variance, so we can use (3.2) or the summation of
the geometric series,

E
Ä
R̃∞
ä

= AE
Ä
R̃∞
ä

+ E(S),

Cov
Ä
R̃∞
ä

= ACov
Ä
R̃∞
ä
AT + Cov(S),

Cov(R̃∞) =
+∞∑
n=0

An Cov(S)
Ä
AT
än
,

which concludes the proof. �

The limit is generally not a discrete law. Consider, this simple scalar example
where S follows a symmetric Bernoulli law B(1/2) and:

Rn+1 =
1

2
(Rn + Sn), R0 ≡ 0.

The limit law is simply the uniform law on [0, 1], U([0, 1]). An interesting discussion
on the properties of the limit law in dimension 1 can be found in the review [7].

3.2 The linear Elo

Now the linear Elo model (3.1) is studied. This function satisfies (1.5), it is an
increasing function and it fits well the usual bonus function (1.6) with L ≈ 0.001,
but the function b(.) is not bounded.

A key role is played by the constant vector 1I. It is related to the conservation
of the total sum of Elo ratings. It is invariant by the matrix A involved in this linear
Markov chain. Thus, the matrix A is not contractive on R 1I. Hopefully it can be
contractive on the hyperplane 1I⊥.

The important Elo assumptions (1.8) are discussed on this simplest model by
computing the ‘real strengths’ ρi, i = 1, . . . , N , (1.9).

Let us start by some invariance properties also valid fo the nonlinear case (1.12).
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Figure 2: 4 players including two players with close strengths.

Proposition 3.1 (Invariances and the constant vector 1I)

� Invariance under translation: for any r ∈ R,

Rn + r 1I

satifies recurrent system (1.12). That is to say we can translate all the ratings
by the same contant r: Rni = Rni + r.

� Conservation of the total rating: for all n ∈ N ,

Rn · 1I = R0 · 1I,

that is to say
N∑
i=1

Rni =
N∑
i=1

R0
i .

Proof : The following proof does not use the linearity of b(.) and is still valid for
a nonlinear b(.).

The Elo update (1.1) in vectorial form (2.1) can be rewritten with the difference,

Rn+1 −Rn = K
(
Sn+1 − B

)
1I. (3.8)

The matrix B only involves the differences of ratings, soRn satisfies the same relation
and the invariance by translation follows.

The matrix S and B have the same symmetry from (1.4), (1.5).

S + S> = U = B + B>, (3.9)

with Uij = 1 for all i and j. That means that S − (1/2)U and B − (1/2)U are
skew-symmetric.
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Moreover U = 1I 1I>, so the useful identities follow,

1I>
(
S + S>

)
1I = 1I>U 1I = ( 1I> 1I)2 = N2 = 2 1I>S 1I, (3.10)

1I>
(
B + B>

)
1I = N2 = 2 1I>B 1I, (3.11)

since 1I>S 1I = 1I>S> 1I, 1I>B 1I = 1I>B> 1I are scalar quantities.
Thus, multiplying (3.8) on the left by 1I> yields,

1I>
(
Rn+1 −Rn

)
= K 1I>

(
Sn+1 − B

)
1I = K(N2 −N2)/2 = 0,

and the conservation of 1I>Rn follows.
Notice that only the symmetry of S and B are used, so the proof is valid for the

nonlinear case. �
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Figure 3: 4 players with close strengths. Notice that the strongest player loses points at
the start because their initial ranking is too high.

Now, the vectorial function B(.) is affine since b(.) is linear and be rewritten,

B(r) =
(
(1/2)U + B̂ r

)
1I,

with the the constant matrix B̂ defined by,

Lemma 3.1 B̂ = L
(
N Id−U

)
where where U is the the matrix defined by Uij ≡ 1.

Proof : For all i, the following computations yield the announced result,

Bij(r) = 1/2 + L(ri − rj)

(B(r))i = (B(r) 1I)i = N/2 +

N∑
j=1

L(ri − rj) = N/2 + L

Ñ
N ri −

N∑
j=1

rj

é
=
((

(1/2)U + L
(
N Id− U

)
r
)

1I
)
i
.

�
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Lemma 3.2 On 1I⊥, the matrix B̂ is the homothety LN Id.

(LN)−1B̂ is the matrix of the orthogonal projection on 1I⊥ and KerB̂ = R 1I.

Proof : The spectrum of U is {N, 0} and the multiplicity of 0 is N − 1, since
rankU = 1 and U 1I = ( 1I 1I>) 1I = N 1I. In other words, N−1U is simply the
orthogonal projector on R 1I. Thus U is diagonalizable with spectrum {0, N} and 0
has the multiplicity N − 1. Then, B̂ is also diagonalizable. The spectrum of B̂ is
{0, LN} and the multiplicity of LN is N − 1. Thus B̂ is the matrix of the linear
map on RN such that the restriction on 1I⊥ is simply LN Id. �

Now, the asymptotic behavior of Rn is stated in the linear case.

Theorem 3.3 (Asymptotic law, expectation and covariance) Assume R0 is
a random bounded initial vector independent to the scores and

K LN < 2, (3.12)

then, Rn converges in law with the geometric rate γ, |γ| < 1,

γ = 1−K LN, (3.13)

Rn
L−−−−−→

n→+∞

1

N
(R0 · 1I) 1I +R∞, (3.14)

1I ⊥ R∞ := K
∞∑
n=0

γnSn, (3.15)

E(R∞i ) =
1

LN

∑
j 6=i

sij , (3.16)

Cov(R∞) =
K2

1− γ2
Cov(S). (3.17)

Note that the asymptotic expectation does not depend on K. On the contrary
the standard deviation depends on K.

A consequence of the contractive assumption (3.12) is a bound of the number
of players for a round-robin tournament, for K = 20 used for amator chess players
by the FIDE (international chess federation) N < 2/(K L) = 100, with K = 20
and L = 1/1000, and for professional players (chess masters) K = 10 so N < 200.
In practice, the number of players for round robin-tournament is around 10 so the
contractance of the update is assured.

If K LN = 1, then γ = 0 and the convergence is reached at N = 1, R∞ = KS.
This is a discrete random vector if S is discrete. In general a not discrete variable
is expected for γ 6= 0 [7].

Proof : The framework of linear Markov chain (3.2) is used with A = Id −KB
and Sn+1 is replaced by K Sn+1. Unfortunatelly, A 1I = 1I so, the spectral radius
ρ(A) = 1 and Theorem 3.2 cannot be used directly. But, the restriction of A on 1I⊥

is simply (1 − K LN)Id 1I⊥ = γId 1I⊥ , and, Id 1I⊥ − A 1I⊥ = (K LN)Id 1I⊥ , Lemma
3.2. Thanks to the invariance by translation, Proposition 3.1, Rn can be replaced
by Rn − 1

N (R0 · 1I) 1I. Now Rn ⊥ 1I for all n and the contractivity of A on 1I⊥ can

be used. On 1I⊥, the limit of the rating is performing thanks to Theorem 3.2. The
induced euclidean norm can be used on 1I⊥ since ‖|A 1I⊥‖|2 = |γ| < 1. �
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Individual Variance The asymptotic variance of each rating depends on K
and the number of players. It has the order K2N due to size N × N of the score
matrice S and the bound of the independent coefficients (1.7),

V ar(Si) =
∑
j 6=i

V ar(Sij) ≤ (N − 1)M2

V ar(R∞i ) =
K2

1− γ2
V ar(Si) ≤ K2N

M2

1− γ2
. (3.18)

Moreover, the contractivity assumption K LN < 2 also yields to,

V ar(R∞i ) ≤ K 2M2

L(1− γ2)
.

Another way to bound the individual variance from Inequality (3.18) and finally
eliminating K is,

V ar(R∞i ) ≤ K2N
M2

1− γ2
=
K2N2L2

NL2

M2

(1− γ2)
=

1

N

(1− γ)2

(1− γ2)

2M2

L2
,

=
2

N

1− γ
1 + γ

Å
M

L

ã2

≤ 2

N

Å
M

L

ã2

.

That means that bigger is N , smaller is K and smaller is the variance.
From Inequality (3.18), the variance can be seen of order K by eliminating N

using the contractivity assumption, N < 2/(K L),

V ar(R∞i ) ≤ K 2M2

L(1− γ2)
.
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Figure 4: 10 players.
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Convergence towards the real strengths The Elo assumption (1.8) is first
supposed. That reads for E(Sij) (1.10),

sij = b(ρi − ρj) = L (ρi − ρj) (3.19)

Notice that this assumption is very constraining. They are (N − 1)N/2 unknowns
for the quantities (sij) since they satify the symmetry (1.4). There are only N − 1
independent parameters ρi since ρ ⊥ 1I or the model is invariant by translation.
Therefore the nonlinear system (3.19), 1 ≤ i < j ≤ N to define ρi (up to a trans-
lation) is quite overdeterminated, expect for the case N = 2. Nevertheless, in this
case (3.19) and for the linear model the ratings converge towards the ρi (up to a
translation).

Proposition 3.2 (About Elo assumption) Assume ρ ⊥ 1I. If the matrix (sij)ij
lives in the N − 1 vetorial subspace of matrixes defined by (3.19), that is to say the
Elo assumption (1.8) is true, then , the expectation of the limit rating law is the
theoritical Elo rating, E(R∞i ) = ρi for all i.

Proof : The limit law is R∞ given by Theorem 3.3. It suffices to apply the equality
(3.16),

E(R∞i ) =
1

LN

∑
j 6=i

sij =
1

LN

∑
j 6=i

L(ρi − ρj)

=
1

N

N∑
j=1

(ρi − ρj) = ρi −
1

N
(ρ · 1I) = ρi.

�

Without the Elo assumption (1.8), the true skill is naturally given by the ex-
pected total score for a round-robin tournament.

si� :=
1

N − 1

∑
j 6=i

sij . (3.20)

These quantities rank the players. Indeed, under the contractive assumption (3.12)
the limit rating is a biased estimation of si�. Therefore the mean ratings rank well
the players.

Proposition 3.3 (Convergence towards the true skill)
Assume K LN < 2, then, the following convergence of the empirical rating holds

ρi := lim
n→+∞

E(Rni ) =
1

L

Å
1− 1

N

ã
si� +

1

N
(E(R0) · 1I). (3.21)

Proof : This is again a corollary of Theorem 3.3. From (3.15), the following
equality holds

ρi = E(R∞i ) + (E(R0) · 1I)/N.

Now, as in the proof of Proposition (3.2) with equality (3.16), we have

LE(R∞i ) =
1

N

∑
j 6=i

sij =
N − 1

N
si�

which concludes te proof. �
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3.3 Why is the linear Elo not used?

In this section, the score belongs to [0, 1] (M = 1) to discuss the probabilistic
interpretation of the function b. Arpad Elo first assumed that the score is 0 or
1, [9]. In this case the score is a Bernoulli law and E(Snij) = pij is the constant
probability such that i beats j.

For the linear Elo, the function b is not confined in [0, 1]. Thus the interpretation
as a probability to win is lost when b(∆r) > 1 where ∆r is the difference of the rating
between the strongest and the weakest player. The critical value is approximately
the prime number 347,

∆r =
1

2L
≈ 347.44, (3.22)

b(347) < 1 < b(348) for the linearization of the logistic (1.6) at the origin. By
symmetry, b becomes negative for too negative ∆r, b(−348) < 0 < b(−347).

Nevertheless, in this section, It is shown that the linear Elo is quite good for
difference of ratings less than 347 Linear arguments are implictly used for the ini-
tialisation of the rating, and the Elo performance. A main other drawback is the
loss of Elo points for a too strong winner. However, further reflections shows that
such a loss occurs only marginally for two players. In fact, it is shown below that
the interval

IA =

Å
− 1

2L
,+

1

2L

ã
≈]− 347, 347[, (3.23)

is an attractive set for the difference of the ratings and almost a stable set. Thus
such dramatic events as b(Rni − Rnj ) is not a probability or the winner losses Elo
points are not so important.

Linear approximation The error between the linear and the logistic function
b is computed for different values of ∆r,
error = (1/2 + L∆r)− (1/(1 + 10−∆r/400).

∆r 100 200 300 347 400 500 1000
error ≈ 0.004 0.03 0.08 0.12 0.17 0.27 0.94

The logistic function (1.6) is quite flat and the linear approximation is good
enough for |r| < 300 with L = b′(0) = ln(10)/1600 ≈ 0.0014.

Elo initialisation Due to the slow convergence of the Elo it is important to
have a good initial Elo for a new chess player. Before having an Elo, the new player
plays ν games against rated players. Let R1, . . . , Rν the ratings of the rated player
encountered, Si the score in {0, 1/2, 1}, R = (R1 + . . .+Rν)/ν the mean rating and
S = (S1 + . . . + Sν)/ν the mean score, the initial Elo R0 = R + b(−1)(S). In other
words, the initialisation of the Elo R0 is uniquely defined by the relation,

S = b(R0 −R). (3.24)

Implicitely, using means score and means rating, it is a linear way to compute the
initial Elo after ν games. It coincides with the limit rating in the linear case if the
new player always has the same result in an infinite serie of round-robin tournaments
with the same players (3.21).
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Elo performance The Elo performance for a tournament is exactly computed as
the Elo initialisation (3.24). Thus, again, it is a linear argument assuming implicitly
that the bonus-malus function is linear.

Loss of points for the winner This becomes possible and it is a real drawback
for the linear Elo. In the following computations the loss of Elo points is computed
with K = 20 for the highest rating which is the strongest player and wins the match
but loses Elo points.

∆r = 347 400 500 600 700 800 900 1000
loss ≈ 0 - 1.5 - 4 - 7 - 10 -13 -16 -19

For professional chess players (International Master) K = 10 and the loss is the
half. In the next paragraph, it is explained a scenario where a such big loss cannot
occur.

Bounded stable set Consider first the case of only two players i and j. Let

Dn = Rni −Rnj

the difference of rating. A stable interval is, with K = 20,

IS =

Å
− 1

2L
− 2K,+

1

2L
+ 2K

ã
≈]− 387, 387[, (3.25)

Proposition 3.4 (2 players) Assume the stability condition 2K L < 1.
If D0 ∈ IA then Dn belongs to IS for all n ∈ N.

Notice that the stability condition 2K L < 1 for IS is stronger than the contractivity
condition (3.12) which reads for two players (N = 2), K L < 1.

The Elo is expressed with Dn thanks to the mass conservation (1.3),

Rni = m0 +Dn/2,

where the total mass is 2m0 = R0
i + R0

j . Thus Rni belongs to translated interval
m0 + (1/2)IS for all n.

Moreover, when Dn belongs to Is but outside IA, the dynamics is attractive to
come back in IA. There is a particular case when Dn is exactly at the boundary
of IA, Dn0 = 1/(2L) and for n > n0 the player i always wins then Dn stays at the
boundary. In fact, the dramatic loss of points for the winner only occurs when Dn

belongs to the set IS − IA.

Proof : By symmetries (Dn) satisfies the recurrence relation [15],

Dn+1 −Dn = 2K
Ä
Sn+1
ij − b(Dn)

ä
Assume that Dn belongs to IA and Dn is positive. The negative case can be handle
in a similar way. There are two cases.

If Dn belongs to IA then 0 < b(Dn) < 1 and Dn+1 ≤ Dn + 2K ≤ 1/(2L) + 2K,
i.e. Dn+1 ∈ IS .

If 1/(2L) ≤ Dn < 1/(2L) + 2K, that is Dn belongs to IS but outside IA,
then 1 ≤ b(Dn) < 1 + 2KL ≤ 2 and −4K = 2K(0 − 2) < Dn+1 − Dn, then
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−1/(2L) − 2K ≤ 1/(2L) − 4K ≤ Dn − 4K < Dn+1 ≤ Dn. Thus Dn+1 cannot go
outside IS .

Finally, by induction, Dn stays in IS for all n. �

The extension for N players is now exposed.

Proposition 3.5 (N players) Let Nm0 = R0
1 + . . .+R0

N be the total mass,

JA = m0 +

Å
− 1

2L
,+

1

2L

ã
, JS = m0 +

Å
− 1

2L
−N K,+

1

2L
+N K

ã
.

The set JS is table under condition K LN < φ = (1 +
√

5)/2 ≈ 1.6.

Moreover, under the strong contractive assumption K LN < 1, there exists n0 ≥ 0
such that, for all n ≥ n0 and all i ∈ {1, . . . , N}, Rni ∈ JS.
In fact, all Rni approach JA when n→ +∞,

lim sup
n→+∞

N
max
i=1
|Rni −m0| ≤

1

2L
. (3.26)

The mean mass m0 has a central role due to the mass conservation.
The contractive assumption used here is stronger than condition (3.12).
This proposition suggests that it is more stable to update the Elo after each match
instead of each round-robin tournament since IS is smaller than JS . See also [15].

Proof : The recursion formula (1.12) is rewriten using the linearity of the function
b. Incidentally, it gives another proof of the convergence in law for the linear case.
For this purpose, introduce the notations, the total score

S
n+1
i =

Sn+1
i1 + . . .+ Sn+1

iN

N
.

Notice that the sum is extented also for j = i. In this way, the mean score appears
in the recursion formul. The mean score is quite fundamental since it is the constant
m0 due to the mass conservation. Furthermore, the term for j = i does not add
someting since Sn+1

ii − b(0) = 1/2− 1/2 = 0.

Rn+1
i −Rni = K

N∑
j=1

Ä
Sn+1
ij − b(Rni −Rnj )

ä
.

Now, the mean quantities are used,

Rn+1
i −Rni = NK

Å
S
n+1
i − 1

2
− L(Rni −m0)

ã
. (3.27)

This formula can again be written in two ways. The first way is

Rn+1
i −Rni = NK

Ä
S
n+1
i − b(Rni −m0)

ä
. (3.28)

There is a simple interpretation of (3.28). It is like the player i plays against only
one player having the mean rating, which is constant due to the mass conservation,

and has the mean score S
n+1
i ∈ [0, 1]. The constant K is replaced by N K reflecting

that (N − 1) matches are played (the match j = i does not exist).
The second way is

Rn+1
i −m0 = γ(Rni −m0) +NK

Ä
S
n+1
i − 1/2

ä
, γ = 1−K LN. (3.29)
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The constant γ ∈]−1, 1[ under the contractive assumption K LN < 2. The formula
(3.29) is powerful enough to prove again Theorem (3.3).

The stability of JS is first proven with formula (3.27) and assumptionK LN < φ.
So, assume that Rni ∈ JS . Two cases are considered, Rni ∈ JA or Rni /∈ JA
When all the ratings Rni belong to JA then L|Rni −m0| < 1/2,
and

∣∣Rn+1
i −Rni

∣∣ ≤ N K, i.e. Rn+1
i ∈ JS .

Now, consider that Rni does not belong to JA. For instance Rni > m0 +1/(2L), then
L(Rni −m0) > 1/2 and Rn+1

i < Rni . Then Rn+1
i decreases. We have to check that

it does not decreases too much and leaves JS . Indeed, it stays in JS thanks to the
following computations,

Rn+1
i ≥ Rni −NK|1/2 + L(Rni −m0)| ≥ Rni −NK|1/2 + 1/2 +KLN |

> (m0 + 1/(2L) +NK)−KN(1 + φ)

= m0 + 1/(2L)− φNK > m0 − 1/(2L)−NK,

since the last inequality is equivalent to (φ − 1)KN ≤ 1/L, but KLN < φ and
(φ− 1)φ = 1, (φ2 = φ+ 1). .

Now, the attractivity of JA (3.26) is proven under the stronger condition

K LN ≤ 1, so 0 ≤ γ < 1. Notice that |Sn+1
i − 1/2| ≤ 1/2 since 0 ≤ S

n+1
i ≤ 1.

Thus, Formula (3.29) yields,

|Rn+1
i −m0| ≤ γ|Rni −m0|+NK/2.

Such inequality allows to pass to the limit sup and yields,

lim sup |Rni −m0| ≤
1

1− γ
NK/2 =

NK

2KLN
=

1

2L
.

In this last line the fact that there is γ instead of |γ| is crucial to the last inequality,
else a bigger interval appears. Thus, (3.26) is proved with 0 ≤ γ < 1. As a
consequence, there exists n0 such that all the rating Rn0

i belong to JS . Due to the
stability of JS they stay in JS and continue to approach JA. �

4 Nonlinear recurrence

For the nonlinear case, an elemtary proof of the convergence and the uniqueness of
the equilibria is given. This is a case well known in probability [7]. The interesting
case is the study of the Elo where the map is not contractive on the whole space
due to the invariance by translation of the Elo. Nevertheless, it is shown that the
Elo mapping is a contractor on the hyperplane 1I⊥ when the bonus-malus function
b is a contractor and K is not too big. This is enought to apply a classic result on
iterated contractive random mappings.

4.1 Contractor in L∞

A more general result can be found in [7] using other norms and less restrictive
assumption on the contractive mapping. For our purpose, the following result is
now presented, self-contained and used for the contractive Elo right after.
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Theorem 4.4 [Contraction mapping] Let (Sn) be a sequence of independent
bounded random vector in Rd with the same law S, G(.) a contractive map on
Rd with 0 ≤ γ < 1 be its Lipschitz constant, R0 be a random bounded variable
independent to (Sn) and the Markov chain Rn defined as follow,

Rn+1 = G(Rn) + Sn+1. (4.1)

Then the sequence (Rn) converges in law towards a bounded random vector R∞ such
that its law µ∞ is the vector valued measure uniquely determined by,

µ∞ = (G#µ∞) ? λS ,

where λS is the measure of the S law.
Furthermore, let r∞ be the constant vector uniquely defined by

r∞ = G(r∞) + E(S) then,

‖R∞(ω)− r∞‖L∞(Ω,Rd) ≤
1

1− γ
‖S − E(S)‖∞. (4.2)

Notice that, we cannot expect the convergence of the sequence Rn, else from the
reccurence relation that means that Sn converges. Since (Sn) is i.i.d, that means
that Sn is constant.

Remark 4.1 Altough, the limit expectation is unknown, (4.2) shows that the limit
law is close to a fixed point, closer if all the d standard deviation (Si)1≤i≤d are small.

Proof : The idea is to prove the convergence of another sequence (Wn) such that
Wn has the same law as Rn by reversing the time [7] as for the linear case.

V n+1
k+1 = G(V n

k ) + Sn+1−k, k ≤ n and V n
0 = R0.

Since (Sn+1−k)n≤N and (Sn+1)n≤N have the same law, Wn+1 = V n+1
n+1 has the

same law as Rn+1. It remains to prove the convergence of the sequence (Wn). For
k = n, n − 1, · · · , 1, since the term Sn+1−k is time reversed, the simplifications of
the source term follows,

V n+1
k+1 − V

n
k = G(V n

k )−G(V n
k−1),

|V n+1
k+1 − V

n
k | ≤ γ|V n

k − V n
k−1|,

|Wn+1 −Wn| = |V n+1
n+1 − V

n
n | ≤ γn|V n+1

1 − V n
0 |

≤ γn|G(R0) + Sn −R0| ≤ γnC,

where the constant C ≤ ‖R0‖∞ + ‖G(R0)‖∞ + ‖S‖∞. Thus (Wn) converges uni-
formly and (Rn) converges in law. Passing to the limit in the relation (4.1) gives
the equation for the limit law (4.2).

The uniqueness is the consequence of the previous convergence and the con-
tractance. The proof of the uniqueness is simpler than the proof of convergence.
Assume there is two equilibria. Takes R0 and R̃0 two random variables associated
to these two equilibria. Let Rn and R̃n be the associated sequence at time n with
the same sequence (S) in (4.1) but with different initial random variables R0 and
R̃0. Thus Rn and R̃n have the same law has their initial data. Moreover, Rn − R̃n
satisfies an homogenous recurrence relation, Rn+1 − R̃n+1 = G(Rn) − G(R̃n) so
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|Rn+1 − R̃n+1| ≤ γ|Rn − R̃n| and |Rn − R̃n| ≤ γn|R0 − R̃0|. By contractance and
the uniform bound, Rn − R̃n → 0 uniformly. Thus the limit laws are equal.

It turns to get the L∞ estimate (4.2). Summing up the inequality
|Wn −Wn−1| ≤ γn−1|G(R0) + Sn −R0| yields the upper bound

|Wn −W0| ≤ |Wn −Wn−1|+ . . .+ |W1 −W0| ≤ |G(R0) + Sn −R0|/(1− γ).

The limit is independent of the initial data R0 due to the previous uniqueness result.
With R0 = r∞, since W 0 = R0, and taking advantage that r∞ is a fixed point, the
inequality becomes,

|Wn − r∞| ≤ |G(r∞) + E(S)− r∞ + (Sn − E(S)|/(1− γ)

= |Sn − E(S)|/(1− γ) ≤ ‖S − E(S)‖∞/(1− γ).

Passing to the limit the same bound is valid for R∞,
|R∞ − r∞| ≤ |‖S − E(S)‖∞/(1− γ) which concludes the proof. �

4.2 The nonlinear contractive Elo

To use the general theorem 4.4 on contractive map, we recall that the Markov chain
associated to the Elo (1.12) can be rewritten in the vectorial form (2.1) as follows:

Rn+1 = G(Rn) +K Sn,

G(r) = r −KB(r).

The contractive property of G(.) depends on the properties on B(.). So, the map
B(.) is first studied. Notice that B(.) is not injective on RN since

B(R 1I) ≡ 1

2
U, B(R 1I) ≡ N

2
1I, (4.3)

from (3.9). However B(.) is a bijection on 1I⊥ under the assumption,

inf
x∈R

b′(x) > 0. (4.4)

Proposition 4.6 (Monotonicity of the vectorial map B(.) on 1I⊥)
If (4.4) is satisfied then, the map B(.) is a diffeomorphism from 1I⊥ to 1I⊥,
B( 1I⊥) = 1I⊥. and the map B(.) is monotonic and coercive on 1I⊥,

(B(r)−B(r′)) · (r − r′) ≥ (inf b′)

2
(‖r − r′‖ 1I⊥)2, ∀r, r′ ∈ RN , (4.5)

where
(
‖r‖ 1I⊥

)2
=

N∑
i=1

N∑
j=1

(ri − rj)2 is an euclidean norm on 1I⊥.

The map B(.) is a gradient,

B(r) = ∇ψ(r1, . . . , rN ), (4.6)

ψ(r) =
1

2

Ñ∑
i

∑
j

β(ri − rj)−N
N∑
i=1

ri

é
, β(x) =

∫ x

0
b(y) dy.
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Proof : First, B(.) is constant on R 1I (4.3) since b(0) = 1/2. It can be seen as the
general symmetry relation (3.9) which yields B(t 1I) = (N/2) 1I for all t ∈ R as in
(3.11) for the linear case.

Second, the coercive estimate (4.5) is performed on the scalar product s defined by,

s := (B(r)−B(r′)) · (r − r′) =
N∑
i=1

N∑
j=1

(b(ri − rj)− b(r′i − r′j))(ri − r′i).

Exchanging i and j and using the symmetry relation (1.5), another formula is ob-
tained for s, as in [14],

s =
N∑
i=1

N∑
j=1

(b(rj − ri)− b(r′j − r′i))(rj − r′j)

=

N∑
i=1

N∑
j=1

((1− b(ri − rj))− (1− b(r′i − r′j)))(rj − r′j)

= −
N∑
i=1

N∑
j=1

(b(ri − rj))− b(r′i − r′j))(rj − r′j)

Adding the two expressions of s yields,

2 s =

N∑
i=1

N∑
j=1

(b(ri − rj)− b(r′i − r′j))((ri − r′i)− (rj − r′j))

The monotonicity on b with δ = inf b′ > 0 yields to a lower bound for 2 s,

(b(x)− b(y))(x− y) ≥ δ(x− y)2

2 s =
N∑
i=1

N∑
j=1

(b(ri − rj)− b(r′i − r′j))((ri − rj)− (r′i − r′j))

≥
N∑
i=1

N∑
j=1

δ(ri − r′i − (rj − r′j))2 = δ‖r − r′‖2
1I⊥
,

which gives the coercive estimate (4.5)

Third, ‖r‖ 1I⊥ is an eulcidean norm on 1I⊥ associated with the scalar product,

(
r, r′

)
1I⊥

:=
N∑
i=1

N∑
j=1

(ri − rj)(r′i − r′j).

The bilinear form is non negative and vanishes on R 1I. On 1I⊥, for r 6= 0 1I⊥ ,
‖r‖ 1I⊥ > 0 since the condition 0 = 1I>r =

∑
ri and r 6= 0 insures that there exist i

and j such that ri 6= rj .

Fourth, B(.) is a gradient,

2
∂ψ

∂rk
=

Ñ
N∑
j=1

(β′(rk − rj)− β′(rj − rk))

é
−N

=

Ñ
N∑
j=1

(b(rk − rj) + (b(rk − rj)− 1)

é
−N = 2Bk(r).
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Finally, the diffeomorphism property is a consequence of the monotonicity. �

Now, the contractivity is obtained under the assumption inf b′ > 0 (4.4).

Proposition 4.7 (Contractive Elo on 1I⊥)
If assumption (4.4) is fulfilled and

K (N − 1) supb′ < 1, (4.7)

then, G(.) is a contractive map on 1I⊥.

Notice that G(.) is not contractant on Rd since G(t 1I) = (t − KN/2) 1I for all
t ∈ R, (4.3). Indeed, the optimal Lipschitz constant of G(.) on RN is 1.

The contractivity condition (4.7) is similar as the linear case (3.12) (and exactly
the same for N = 2).

Proof : The differential of G(.), DG is a symmetric matrix from (4.6),

DG = Id−K∇2ψ. (4.8)

The symmetry of DB can be checked directly and the formula will be used later,

∂Bi
∂ri

=
∑
j

b′(ri − rj), ∀i

∂Bi
∂rj

= −b′(ri − rj), ∀j 6= i.

The function b′ is even since x 7→ b(x)− 1/2 is an odd function.
Notice that DB 1I = 0 from the previous formula or from the invariance of

the hyperplane 1I⊥ under B(.) and also G(.). On 1I⊥, DB correspond to a positive
quadratic form (4.5). Now, the eigenvalues of DB and then DG has to be estimated.
Let λ be an eigenvalue of DB with the associated eigenvector v ∈ 1I⊥, v 6= 0. Let us
assume vi = maxj vj > 0, else change v by −v. Notice that there exists k 6= i such
that vi > vk since v /∈ R 1I (not all components can be equal). Using (vi − vk) > 0
and inf b′ > 0 yield,

λvi =
∑
j 6=i

b′(ri − rj)(vi − vj) ≥ b′(ri − rj)(vi − vk) > 0,

thus λ > 0, which is also a consequence of (4.5). Now, more precise estimates are
obtained on λ with L = supb′ (4.10),

DBii = (ei, DB ei) ≤ λ ≤ max
i

∑
j

|∂jDBij | ,∑
j 6=i

b′(ri − rj) ≤ λ ≤ 2 max
i

∑
j 6=i

b′(ri − rj)

(N − 1) inf b′ ≤ λ ≤ 2L (N − 1). (4.9)

The associated eigenvalue of DG is 1−K λ ∈]1− 2K L(N − 1), 1[. Therefore G(.)
is contractant on 1I⊥ if 1− 2K L(N − 1) > −1 which concludes the proof. �

We can now prove the convergence in law of the ratings (Rni ) when n goes
towards +∞ under the contractive assumption (2.8), that is the Theorem 2.1.
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Proof : To use the contractivity of G(.) on the hyperplane 1I, thanks the invariance
by translation, Proposition 3.1 valid in the nonlinear case, Rni is replaced by

R̊ni = Rni − (1/N)
∑
j

R0
j

without affecting the stochastic process. Now R̊0 ⊥ 1I. Moreover, R̊n ⊥ 1I for all n
due to the conservation of the total sum of ratings, Proposition 3.1. The conditions
(2.8) allow to use Propositions 4.7 and Theorem 4.4 and to conclude the proof.

�

4.3 On the contractivity

The contractivity is an important tool to study of the convergence of the linearized
model or general nonlinear models. But this assumption is not fulffilled for the
Elo’s system used in practice. First, it is explained why the usual Elo rating system
is not contractive. Second some consequences are discusssed. In particular many
comments valid for the linear case in Section (3.3) can be extended in the nonlinear
case.

It first turns to present the non contractivity of the usual Elo model. The Elo
model with the logistic function b(.) (1.6) is not contractive. Let us explain this
point for two players i and j as in the introduction. The two equations (1.1) -one
for i and one for j- to update the Elo can be rewritten as a single equation for the
difference of the rating, using the symmetries of the scores and the bonus function
b(.), [15],

Dn+1
ij = g(Dn

ij) + 2K Sn+1
ij , Dn

ij = Rni −Rnj , g(x) = x− 2K b(x).

The question is the contractance or not of the function g(.).

The function b(.) is in practice the increasing function (1.6) satisfying,

L := supb′ = b′(0) = ln 10/(4× 400) = 0, 001439116... ' 10−3 (4.10)

0 = inf b′. (4.11)

Therefore, the Lipschitz constant of g is max(|1− 2K L|, 1) ≥ 1. The function g is
never contractive. At least, the condition K L ≤ 1 is natural to avoid instability.
However, on any compact set [−A,A] and assuming K L < 1, the Lipschitz constant
of g is 0 < max(|1− 2K L|, 1−K b′(A)) < 1. So, if the ratings belongs in the same
bounded set then g is contractive. The chess players genrally believe that the Elo is
bounded. In practice, it is. But theorically, it is not [15]. It can growth like lnn but
with very small propabilities [15]. Nevertheless, with a contractivity in average [7],
it is possible to prove the convergence in law for two players [2, 3]. So understanding
the contractivity conditions can be useful to deal with the non contractive case.

There is a worse consequence on the condition (4.4), the function is unbounded,
lim±∞ b(x) = ±∞. It is clear at +∞ and the other limit comes from the skew-
symmetry of b, (1.5). Thus, the interpretation of b(ρi − ρj) as the expected score
is loss when b(ρi − ρj) /∈ [0, 1].

The main draw backs of this unboundeness is the possible loss of points for the
winner. It is possible that a very strong player will win against a very weak one
and lose Elo points. This point is discussed in section 3.3 for the linear Elo. It
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is explained that this case occurs when the difference of ratings are too large and
that this case is marginal for two players due to confinement of the ratings near an
attractive zone.

Indeed this drawback is already a drawback in the chess world. Players know
that playing against lower rated player is dangerous, because they have to win.
The loss is very costly. And professionnal chess players have asked for a smaller
K-factor (K = 10) to risk less precious Elo points in such an encounter. This leads
to another intersting problem, how take into to account different species of players
with a different K-factor. In particular the conservation of total sum of the Elo
ratings is lost. This is already a problem for the Glicko an extension of the Elo by
Glickman [10, 11, 12, 13]. Problems like this show that there are a lot of unanswered
questions about Elo’s system. On the other hand, the linear case and the nonlinear
contractive one is a step towards better understanding the Elo’s system.
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