Routine Bandits: Minimizing Regret on Recurring Problems

Anonymous Author(s) Affiliation Address email

Abstract

1	We study a variant of the multi-armed bandit problem in which a learner faces
2	every day one of B many bandit instances, and call it a routine bandit. More
3	specifically, at each period $h \in [1, H]$, the same bandit b^h is considered during
4	$T > 1$ consecutive time steps, but the identity b^h is unknown to the learner. We
5	assume all rewards distribution are Gaussian standard. Such a situation typically
6	occurs in recommender systems when a learner may repeatedly serve the same
7	user whose identity is unknown due to privacy issues. By combining bandit-
8	identification tests with a KLUCB type strategy, we introduce the KLUCB for
9	Routine Bandits (KLUCB-RB) algorithm. While independently running KLUCB
10	algorithm at each period leads to a cumulative expected regret of $\Omega(H \log T)$
11	after H many periods, KLUCB-RB benefits from previous periods by aggregating
12	observations from similar identified bandits, which yields a non-trivial scaling of
13	$o(H \log T)$. We provide numerical illustration that confirm the benefit of KLUCB-
14	RB.

15 **1** Introduction

- 16 **2** ...
- 17 3 Regret analysis
- **18 4 Sketch of proof**

24 5 Numerical experiments

25 6 Discussion

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

Broader impact

References

A Proof of ...