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Abstract. We study a variant of the multi-armed bandit problem in
which a learner faces every day one of B many bandit instances, and
call it a routine bandit. More specifically, at each period h ∈ J1, HK,
the same bandit bh? is considered during T > 1 consecutive time steps,
but the identity bh? is unknown to the learner. We assume all rewards
distribution are Gaussian standard. Such a situation typically occurs in
recommender systems when a learner may repeatedly serve the same user
whose identity is unknown due to privacy issues. By combining bandit-
identification tests with a KLUCB type strategy, we introduce the KLUCB
for Routine Bandits (KLUCB-RB) algorithm. While independently running
KLUCB algorithm at each period leads to a cumulative expected regret
of Ω(H log T ) after H many periods when T →∞, KLUCB-RB benefits
from previous periods by aggregating observations from similar identified
bandits, which yields a non-trivial scaling of Ω(log T ). This is achieved
without knowing which bandit instance is being faced by KLUCB-RB on
this period, nor knowing a priori the number of possible bandit instances.
We provide numerical illustration that confirm the benefit of KLUCB-RB
while using less information about the problem compared with existing
strategies for similar problems.

Keywords: Multi-armed bandits · Transfer Learning · KL-UCB

1 Introduction

The stochastic multi-armed bandit [22,16,5,18], is a popular framework to model
a decision-making problem where a learning agent (learner) must repeatedly
choose between several real-valued unknown sources of random observations
(arms) to sample from in order to maximize the cumulative values (rewards)
generated by these choices in expectation. This framework is commonly applied to
recommender systems where arms correspond to items (e.g., ads, products) that
can be recommended and rewards correspond to the success of the recommenda-
tion (e.g., click, buy). An optimal strategy to choose actions would be to always
play an arm with highest expected reward. Since the distribution of rewards and
in particular their mean are unknown, in practice a learner needs to trade off
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exploiting arms that have shown good rewards until now with exploring arms to
acquire information about the reward distributions. The stochastic multi-armed
bandit framework has been well-studied in the literature and optimal algorithms
have been proposed [15,23,6,14,13].

When a recommender system is deployed on multiple users, one does not
typically assume that the best recommendation is the same for all users. The
naive strategy in this situation is to consider each user as being a different bandit
instance and learning from scratch for each user. When users can be recognized
(e.g., characterized by features), this information can be leveraged to speed up
the learning process by sharing observations across users. The resulting setting
is known as contextual bandit [17,19]. In this paper, we tackle the case where
users cannot be or do not want to be identified (e.g., for privacy reasons), but
where we assume that there exists a (unknown) finite set of possible user profiles
(bandit instances), such that information may be shared between the current
user and some previously encountered users.

Outline and contributions To this end, we introduce the routine bandit prob-
lem (Sec. 2), together with lower bounds on the achievable cumulative regret
that adapt the bound from [16] to the routine setting. We then extend the KLUCB
[9] algorithm, known to be optimal under the classical stochastic bandit setting,
into a new strategy called KLUCB-RB (Sec. 3) that leverages the information
obtained on previously encountered bandits. We provide a theoretical analysis
of KLUCB-RB (Sec. 4) and investigate the performance of the algorithm using
extensive numerical experiments (Sec. 5). These results highlight the empirical
conditions required so that past information can be efficiently leveraged to speed
up the learning process. The main contributions of this work are 1) the newly
proposed routine bandit setting, 2) the KLUCB-RB algorithm that solves this
problem with asymptotically optimal regret minimization guarantees, and 3) an
empirical illustration of the conditions for past information to be beneficial to
the learning agent.

2 The Routine Bandit Setting

A routine bandit problem is specified by a time horizon T >1 and a finite set
of distributions ν = (νb)b∈B with means (µa,b)a∈A,b∈B, where A is a finite set of
arms and B is a finite set of bandit configurations. Each b∈B can be seen as a
classical multi-armed bandit problem defined by νb = (νa,b)a∈A. At each period
h> 1 and for all time steps t ∈ J1, T K, the learner deals with a bandit bh? ∈ B
and chooses an arm aht ∈A, based only on the past. The learner then receives
and observes a reward Xh

t ∼ νaht ,bh? . The goal of the learner is to maximize
the expected sum of rewards received over time (up to some unknown number
of periods H > 1). The distributions are unknown, which makes the problem
non-trivial. The optimal strategy therefore consists in playing repeatedly on each
period h, an optimal arm ah? ∈ argmaxa∈A µa,bh? , which has mean µh? = µah? ,bh? .
The goal of the learner is equivalent to minimizing the cumulative regret with
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respect to an optimal strategy:

R(ν,H, T ) = Eν

[
H∑
h=1

T∑
t=1

(
µh? −Xh

t

)]
. (1)

Related works One of the closest setting to routine bandits is the sequential
transfer scenario [11], where the cardinality |B| and quantities H and T are known
ahead of time, and the instances in B are either known perfectly or estimated
with known confidence. Routine bandits also bear similarity with clustering
bandits [10], a contextual bandit setting [17] where contexts can be clustered
into finite (unknown) clusters. While both settings are recurring bandit problems,
routine bandits assume no information on users (including their number) but
users are recurring for several iterations of interaction, while clustering bandits
assume that each user is seen only once, but is characterized by features such that
they can be associated with previously seen users. Finally, latent bandits [20]
consider the less structured situation when the learner faces a possibly different
user at every time.

Assumptions and working conditions The configuration ν, the set of bandits
B, and the sequence of bandits (bh?)h>1 are unknown (in particular |B| and the
identity of user bh? are unknown to the learner at time t). The learner only knows
that ν∈D, where D is a given set of bandit configurations. In order to leverage
information from the bandit instances encountered, we should consider that
bandits reoccur. We denote by βhb =

∑h
h′=1I{bh′? =b}/h the frequency of bandit

b∈B at period h> 1 and assume βHb >0. The next two assumptions respectively
allow for two bandit instances b and b′ to be distinguishable from their means
when b 6= b′ and show consistency in their optimal strategy when b = b′.

Assumption 1 (Separation). Let us consider γν := min
b6=b′

min
a∈A
{|µa,b−µa,b′ | , 1}.

We assume γν>0.

Assumption 2 (Unique optimal arm). Each bandit b∈B has a unique optimal
arm a?b .

Assumption 2 is standard. Finally, we consider normally-distributed rewards.
Although most of our analysis (e.g., concentration) would extend to exponential
families of dimension 1, Assumption 3 increases readability of the statements.

Assumption 3 (Gaussian arms). The set D is the set of bandit configurations
such that for all bandit b ∈ B, for all arm a ∈ A, νa,b is a one-dimensional
Gaussian distribution with mean µa,b∈R and variance σ2 =1.

For ν∈D, we define for an arm a∈A and a bandit b∈B their gap ∆a,b=µ?b−µa,b
and their total number of pulls overH periodsNa,b(H,T ) =

∑H
h=1

∑T
t=1 I{aht=a,bh?=b}.

An arm is optimal for a bandit if their gap is equal to zero and sub-optimal if it
is positive. Thanks to the chain rule, the regret rewrites as

R(ν,H, T ) =
∑
b∈B

∑
a 6=a?b

Eν [Na,b(H,T )]∆a,b . (2)
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Remark 1 (Fixed horizon time). We assume the time horizon T to be the same
for all periods h∈J1 , HK out of clarity of exposure of the results and simplified
definition of consistency (Definition 1). Considering a different time Th for each
h would indeed require a substantial rewriting of the statements (e.g. think of
the regret lower bound), which we believe hinders readability and comparison to
classical bandits.

We conclude this section by adapting for completeness the known lower bound
on the regret [16,2,12] for consistent strategies to the routine bandit setting. We
defer the proof to Appendix A.

Definition 1 (Consistent strategy). A strategy is H-consistent on D if for
all configuration ν ∈ D, for all bandit b∈B, for all sub-optimal arm a 6= ab?, for
all α > 0,

lim
T→∞

Eν
[
Na,b(H,T )

Nb(H,T )α

]
= 0 ,

where Nb(H,T )=βHb HT is the number of time steps the learner has dealt with
bandit b.

Proposition 1 (Lower bounds on the regret). Let us consider a consistent
strategy. Then, for all configuration ν∈D, it must be that

lim inf
T→∞

R(ν,H, T )

log(T )
> c?ν :=

∑
b∈B

∑
a 6=a?b

∆a,b

KL(µa,b|µ?b)
,

where KL(µ|µ′)=(µ′ − µ)2/2σ2 denotes the Kullback-Leibler divergence between
one-dimensional Gaussian distributions with means µ, µ′∈R and variance σ2 =1.

This lower bound differs (it is larger) from structured lower bound that can
exclude some set of arms, as in [2,20] using prior knowledge on B, which here
is not available. On the other hand, we remark that the right hand side of the
bound does not depend on H, which suggests that one at least asymptotically,
one can learn from the recurring bandits. In the classical bandit setting, lower
bounds on the regret [16] have inspired the design of the well-known KLUCB [9]
algorithm. In the next section, we build on this optimal strategy to propose a
variant for the routine bandit.

3 The KLUCB-RB Strategy

Given the current period h, the general idea of this optimistic strategy consists
in aggregating observations acquired in previous periods 1 . . . h−1 where bandit
instances are tested to be the same as the current bandit bh? . To achieve this,
KLUCB-RB relies both on concentration of observations gathered in previous
periods and the consistency of the allocation strategy between different periods.
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Notations The number of pulls, the sum of the rewards and the empirical mean of
the rewards from the arm a in period h>1 at time t>1, are respectively denoted
by Nh

a (t) =
∑t
s=1 I{ahs=a}, S

h
a (t) =

∑t
s=1 I{ahs=a}X

h
s and µ̂ha(t) = Sha (t)/Nh

a (t) if
Nh
a (t)>0, 0 otherwise.

Strategy For each period h>1 we compute an empirical best arm for bandit bh?
as the arm with maximum number of pulls in this period: ah? ∈ argmax

a∈A
Nh
a (T ).4

Similarly, in the current period h>1, for each time step t∈J1, T K, we consider
an arm with maximum number of pulls: aht ∈ argmax

a∈A
Nh
a (t) (arbitrarily

chosen). At each period h∈ J2, HK each arm is pulled once. Then at each time
step t> |A|+1, in order to possibly identify the current bandit bh? with some
bandits bk? from a previous period k∈ J1, h−1K, we introduce for all arm a∈A,
the test statistics

Zk,ha (t)=∞ · I{aht 6=ak?}+
∣∣µ̂ha(t)−µ̂ka(T )

∣∣− d
(
Nh
a (t), δh(t)

)
− d

(
Nk
a (T ), δh(t)

)
, (3)

where the deviation for n>1 pulls with probability 1−δ, for δ>0, and probability
δh(t) are, respectively,

d(n, δ) =

√
2

(
1 +

1

n

)
log
(√
n+ 1

/
δ
)

n
δh(t) =

1

4 |A|
× 1

h− 1
× 1

t(t+ 1)
.

The algorithm finally computes the test

Tk,h(t) := max
a∈A

Zk,ha (t) 6 0 . (4)

After t rounds in current period h, the previous bandit bk? is suspected of being
the same as bh? if the test Tk,h(t) is true. From Eq. 3, we note that this requires
the current mostly played arm to be the same as the arm that was mostly played
in period k, which happens if there is consistency in the allocation strategy for
both periods under Assumption 2. We then define aggregated numbers of pulls
and averaged means: For all arm a∈A, for all period h>1, for all time step t>1,

N
h

a(t) := Nh
a (t) +

h−1∑
k=1

I{Tk,h(t)}N
k
a (T ), K

h

t :=

h−1∑
k=1

I{Tk,h(t)},

S
h

a(t) := Sha (t) +

h−1∑
k=1

I{Tk,h(t)}S
k
a(T ), µha(t) = S

h

a(t)/N
h

a(t) .

and follow a KLUCB strategy by defining the index of arm a∈A in period h>1 at
time step t>1 as

uha(t) = min
{
Uha (t) , U

h

a(t)
}
, (5)

4 ties are broken arbitrarily
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where

Uha (t) := µ̂ha(t) +

√
2f(t)

Nh
a (t)

, (6)

U
h

a(t) := µha(t) +

√√√√√2f
(
K
h

t T + t
)

N
h

a(t)
, (7)

with the function f being chosen, following [6] for classical bandits, as

f(x) := log(x) + 3 log log(max {e, x}) ,∀x > 1 .

One recognizes that Eq. 6 corresponds to the typical KLUCB upper bound for
Gaussian distributions. The resulting KLUCB-RB strategy is summarized in Algo-
rithm 1.

Algorithm 1 KLUCB-RB

Initialization (period h=1): follow a KLUCB strategy for bandit b1?.
for period h>2 do

Pull each arm once
for time step t∈J|A| , T−1K do

Compute for each previous period k∈J1, h−1K the test Tk,h(t) := max
a∈A

Zk,ha (t) 6 0

Aggregate data from periods with positive test and compute for each arm a∈A
the index uha(t) according to equations (5)-(6)-(7).
Pull an arm with maximum index aht+1 ∈ argmaxa∈A u

h
a(t)

end for
end for

Theoretical guarantees The next result shows that the number of sub-optimal
pulls done by KLUCB-RB is upper-bounded in a near-optimal way.

Theorem 1 (Upper bounds). Let us consider a routine bandit problem spec-
ified by a set of Gaussian distributions ν ∈D and a number of periods H > 1.
Then under KLUCB-RB strategy, for all 0< ε < εν , for all bandit b ∈ B, for all
sub-optimal arm a 6=a?b ,

Eν [Na,b(H,T )] 6
f(βHb HT )

KL(µa,b+ε|µ?b)

+

H∑
h=1

I{bh?=b}
[
τhν +4 |A|

(
1

ε2
+1

)(
5+

8h f(hT )

T KL(µa,b+ε|µ?b)

)]
,

where, for all period h> 2, τhν := 2ϕ
(
8|A|

[
ε−2ν +65γ−2ν log

(
128|A|(4h)1/3γ−2ν

)])
,

ϕ : x>1 7→x log(x), εν =min
b∈B

min
a6=a?b

∆a,b/2 and γν =min
b 6=b′

min
a∈A
{|µa,b−µa,b′ | , 1}.



Routine Bandits: Minimizing Regret on Recurring Problems 7

This implies that the dependency on the time horizon T in these upper bounds
is asymptotically optimal with regard to the lower bound on the regret given
in Proposition 1. From Eq. 2, by considering the case when the time horizon T
tends to infinity, we deduce that KLUCB-RB achieves asymptotic optimality.

Corollary 1 (Asymptotic optimality). With the same notations and under
the assumptions as in Theorem 1, KLUCB-RB achieves

lim sup
T→∞

R(ν,H, T )

log(T )
6 c?ν ,

where c?ν is defined as in Proposition 1.

For comparison, let us remark that under the strategy that runs a separate KLUCB
type strategy for each period, the regret normalized by log(T ) asymptotically
scales as H

∑
b∈B β

H
b

∑
a6=a?b

∆a,b/KL(µa,b|µ?b). KLUCB-RB strategy then performs
better than this naive strategy by a factor of the order of H/|B|. Also, up to
our knowledge, this result is the first showing provably asymptotic optimal
regret guarantee in a setting when an agent attempts at transferring information
from past to current bandits without contextual information. In the related but
different settings considered in [11,10,20], only logarithmic regret was shown,
however asymptotic optimality was not proved for the considered strategies. Also,
let us remind that |B| does not need to be known ahead of time by the KLUCB-RB
algorithm.

4 Sketch of Proof

This section contains a sketch of proof for Theorem 1. We refer to Appendix B for
more insights and detailed derivations. The first preoccupation is to ensure that
KLUCB-RB is a consistent strategy. This is achieved by showing that KLUCB-RB
aggregates observations that indeed come from the same bandits with high prob-
ability. In other words, we want to control the number of previously encountered
bandits falsely identified as similar to the current one.

Definition 2 (False positive). At period h>2 and step t>1, a previous period
k ∈ J1, h−1K is called a false positive if the test Tk,h(t) is true while previous
bandit bk? differs from current bandit bh? .

Combining the triangle inequality and time-uniform Gaussian concentration
inequalities (see e.g., [1]), we prove necessary condition for having Zk,ha (t) 6 0
for some arm a∈A at current period h and time step t, while having bk? 6= bh? .

Lemma 1 (Condition for false positives). If there exists a false positive at
period h>2 and time step t> |A|, then with probability 1−1/t(t+1), it must be
that

min
k∈J1,h−1K:bk? 6=bh?

min
a∈A

∣∣µa,bh? − µa,bk? ∣∣ 6 4 d
(

t

|A|
, δh(t)

)
.
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The proof of this key result is provided in Appendix B.1. It relies on time-uniform
concentration inequalities. We now introduce a few quantities.

Let us first consider at period h>2 the time step

thν := max

{
t > |A| : γν 6 4 d

(
t

|A|
, δh(t)

)}
+ 1 , (8)

beyond which there is no false positives with high probability. We define for all
a 6=ah? , for all 0<ε<εν :=minb∈Bmina 6=a?b {∆a,b, 1}/2 the subsets of times when
there is a false positive

T ha :=
{
t > thν : aht+1 = a and Kh+(t) 6= Kh? (t)

}
T h :=

⋃
a 6=ah?

T ha , (9)

where we introduced for convenience the setsKh+ :=
{
k∈J1, h−1K : Tk,h(t) is true

}
and Kh? (t) :=

{
k∈J1, h− 1K : bk?=bh? and aht =ak?

}
. We also consider the times

when the mean of the current pulled arm is poorly estimated or the best arm ah?
is below its mean (either for the current period or by aggregation) and define

Cha,ε :=
{
t>1 : aht+1 =a and

(∣∣µ̂ha(t)−µha
∣∣>ε or uhah? (t) = Uhah? (t)<µh?

)}
Chε :=

⋃
a 6=ah?

Cha,ε (10)

Cha,ε :=T ha ∪
{
t> thν : t /∈T h, aht+1=a and

(∣∣∣µha(t)−µha∣∣∣>ε or uhah? (t) = U
h
ah?

(t)<µh?

)}
Chε :=

⋃
a6=ah?

Cha,ε . (11)

The size of these (bad events) sets can be controlled by resorting to concentration
arguments. The next lemma borrows elements of proof from [7] for the estimation
of the mean of current pulled arm and [6] for the effectiveness of the upper
confidence bounds on the empirical means of optimal arms. We adapt these
arguments to the routine-bandit setup, and provide additional details in the
appendix.

Lemma 2 (Bounded subsets of times). For all period h > 2, for all arm
a∈A, for all 0<ε<εν ,

Eν
[∣∣T h∣∣]61 Eν

[∣∣Cha,ε∣∣]64ε−2 + 2 Eν
[∣∣∣Cha,ε∣∣∣]64ε−2 + 3 .

By definition of the index (Eq. 7), we have

∀t > |A| , Nh
a (t)KL

(
µ̂ha(t)

∣∣Uha (t)
)

= f(t)

N
h

a(t)KL
(
µha(t)

∣∣∣Uha(t)
)

= f
(
K
h

t T + t
)
.

We then provide logarithmic upper bounds on the aggregated number of pulls
N
h

a(t) to deduce the consistency of KLUCB-RB strategy. The following non-trivial
result combines standard techniques with the key mechanism of the algorithm.
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Lemma 3 (Consistency). Under KLUCB-RB strategy for all period h> 2, for
all 0<ε<εν , for all sub-optimal arm a 6=ah? , for all t> |A| such that aht+1 =a,

if t /∈Cha,ε, Nh
a (t)6

f(t)

KL(µha + ε|µh?)
, if t> thν and t /∈Cha,ε, N

h

a(t)6
f
(
Kh
t T + t

)
KL(µha + ε|µh?)

,

where Kh
t :=min

{
K
h

t , β
h−1
bh?

(h−1)
}
. In particular this implies

∀t > 1,∀a 6=ah? , Nh
a (t) 6

f(t)

KL(µha + ε|µh?)
+
∣∣Cha,ε∣∣+Nh

a (|A|+1) ,

where Nh
a (|A|+1)62 and Eν

[∣∣Cha,ε∣∣]64ε−2+2.

Thanks to Eq. 5 that involves the minimum of the aggregated index U
h

a(t) on
past episodes and (not aggregated) indexes Uha (t) for the current epoch, the proof
proceeds by considering the appropriate sets of time, namely t /∈Cha,ε or t /∈C

h

a,ε

depending on the situation. In particular, we get for the considered a that the
maximum index uha(t) is either greater than uhah? (t) = Uhah?

(t) or uhah? (t) = U
h

ah?
(t),

which in turns enable to have a control either on Nh
a (t) or N

h

a(t). In order to
obtain the last statement, it essentially remains to consider the maximum time
t′ ∈ J|A|+1; tK such that aht′+1 = a and t′ /∈ Cha,ε.

In order to be asymptotically optimal (in the sense of Corollary 1), the second
preoccupation is to ensure with high probability that we aggregate all of the
observations coming from current bandit bh? when computing the indexes. From
the definition of T h (Eq. 9) and Lemma 2, this amounts to ensure that the
current most pulled arm and the most pulled arms of previous periods are the
optimal arms of the corresponding periods with high probability. By using the
consistency of KLUCB-RB, we prove necessary conditions for the most pulled arms
being different from the optimal ones.
Lemma 4 (Most pulled arms). For all period h>2, for all 0<ε<εν , for all
t> thν such that t /∈T h and aht 6=ah? ,

t+
∣∣Kh? (t)∣∣T

2
−
(
f(t)+

∣∣∣Kh? (t)∣∣∣f(T ))∑
a6=ah?

1

KL
(
µha+ε

∣∣µh?)−
(
1+
∣∣∣Kh? (t)∣∣∣)|A|6 ∑

k∈Kh? (t)∪{h}

∣∣∣Ckε ∣∣∣ .
Let us remind that Kh? (t), defined after Lemma 1, counts the previous phases
before h facing the same bandit as the current one, and for which the most-played
arm until then agree. Then, by combining Lemma 3 and Lemma 4 we obtain
randomized upper bounds on the number of pulls of sub-optimal arms.
Proposition 2 (Randomized upper bounds). Under KLUCB-RB strategy, for
all bandit b∈B, for all sub-optimal arm a 6=a?b , for all 0<ε<εν ,

Na,b(H,T ) 6
f(βHb HT )

KL(µa,b+ε|µ?b)

+

H∑
h=1

I{bh?=b}

[
Thν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ?b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
,
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where Thν,ε := max

{
t> thν :

t

4
−
∑
a6=ah?

f(t)

KL(µha+ε|µh?)
6 |A|

}
+1 for h> 2, with thν

defined in Eq. (8).

We prove Theorem 1 by averaging the randomized upper bounds from Proposi-
tion 2.

5 Numerical Experiments

We now perform experiments to illustrate the performance of the proposed
KLUCB-RB under different empirical conditions. We compare KLUCB-RB with a
baseline strategy which consists in using a KLUCB that restarts from scratch at
every new period, that is the default strategy when no information (features)
is provided to share information across periods. We also include a comparison
with the sequential transfer algorithm tUCB [11] which constitutes interesting
baseline to compare with, since it transfers the knowledge of past periods to
minimize the regret in a very similar context. Through the periods h∈ J1, HK,
tUCB incrementally estimates the mean vectors by the Robust Tensor Power
method [3,4], then yielding a deviation of rate O(1/

√
h) over the empirical means.

Thus, it needs to know in advance the total number of instances |B|. Besides
the RTP method requires the mean vectors to be linearly independent mutually,
which forces the number of arms |A| to be larger than |B|, while KLUCB-RB can
tackle this kind of distributions. The next comparisons between KLUCB-RB and
tUCB will mainly illustrate the ability of the former to make large profits from
the very first periods, while the later needs to get a sufficiently high confidence
over the models estimates before beginning to use knowledge from the previous
periods.

All experiments are repeated 100 times. Sequence (bh)16h6H is chosen ran-
domly each time. All the different strategies are compared based on their cumu-
lative regret (Eq. 1). Additional experiments are provided in Appendix C.

5.1 More Arms than Bandits: A Beneficial Case

We first investigate how Assumption 1 can be relaxed in practice. Indeed KLUCB-RB
is designed such that only data from previous periods k < h for which the most
pulled arm āk? is the same as the current most pulled arm āht may be aggregated.
Consequently, let us define γ?ν := min

b 6=b′
min
a∈A?

|µa,b − µa,b′ | with A? being the set of

arms optimal on at least one instance b ∈ B. Assuming that KLUCB-RB converges to
the optimal action in a given period, it is natural in practice to relax Assumption 1
from γν > 0 to γ?ν > 0. Let us consider a routine two-bandit setting B = {b1, b2}
with actions A such that

b1 : (µ1,b1 , µ2,b1) = (
∆

2
,−∆

2
) and ∀a > 3, µa,b1 = µ (12)

b2 : (µ1,b2 , µ2,b2) = (
∆

2
− γ,−∆

2
+ γ) and ∀a > 3, µa,b2 = µ, (13)
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with µ = −∆2 , and γ = 0.85∆, and where ∆ = 10
√

log(HT )
T is set to accomodate

the convergence of KLUCB in the experiment. Note that Assumption 1 is not
satisfied anymore since γν = 0, but that γ?ν = γ. Fig. 1 shows the average
cumulative regret with one standard deviation after H = 500 periods of T = 103

rounds on settings where |A?| = 2 and |A| > 2.

(a) |A| = 2 (b) |A| = 10 (c) |A| = 50

Fig. 1: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 periods
of T = 103 rounds, for different action sets.

We observe that KLUCB-RB can largely benefit from relying on previous periods
when the number of arms exceeds the number of optimal arms, which naturally
happens when |A| > |B|. This can also happen for |A| 6 |B| if several bandits
b ∈ B share the same optimal arm. Besides, Fig. 2 shows a remake of the

same experiment, that is ∆ = 10
√

log(H×103)
103 , where the number of rounds per

period is decreased from 103 to T = 100. We can see that KLUCB-RB still yields
good satisfying performances, although T is not large enough to enable a sure
identification at each period of the current instance.

(a) |A| = 2 (b) |A| = 10 (c) |A| = 50

Fig. 2: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 periods
of T = 100 rounds, for different action sets.
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5.2 Increasing the Number of Bandit Instances

We now consider experiments where we switch among |B| = 5 four-armed bandits.
This highlights the kind of settings which may cause more difficulties to KLUCB-RB
in distinguishing the different instances: the lesser is the number of arms |A|
compared to the number of bandits |B|, the harder it should be for KLUCB-RB to
distinguish efficiently the different instances, in particular when the separation
gaps are tight. Let us precise that tUCB cannot be tested on such settings, where
the number of models |B| exceeds the number of arms |A|, since it requires that
the mean vectors (µa,b)a∈A for all b in B to be linearly independent.

Generating specific settings is far more complicated here than in cases where
|B| = 2 because of the intrinsic dependency between regret gaps (∆a,b)a∈A,b∈B
and separation gaps (|µa,b − µa,b′ |)a∈A,b 6=b′ . Thus, distributions of bandits ν ∈ D
used in the next experiments are generated randomly so that some conditions
are satisfied (see Eq. 14, 15). Recall that ν : (νb1 , . . . , νb|B|) is the set of bandit
configurations in the bandit set B. We consider two different distributions ν(1)
and ν(2), resulting in associated sets of bandits B1 and B2, satisfying the condition
C(ν) in order to ensure the convergence of algorithms at each period:

C(ν) : ∀b ∈ B, 8

√
log(HT )

T
6 min
a 6=a?b

∆a,b 6 12

√
log(HT )

T
. (14)

Let γ(α) := α
√

log(HT )
T . We generate two sets of bandits B1 and B2 such as to

ensure that ν(1) and ν(2) satisfy

γ(12) 6 γ?ν(1) 6 γ(16) γ(4) 6 γ?ν(2) 6 γ(8). (15)

Fig. 7 (Appendix C.3) shows the bandit instances in the two generated bandit
sets.

All experiments are conducted under the fair frequency β = 1/|B|. More
precisely, once a period h > 1 ends, bh+1

? is sampled uniformly in B and inde-
pendently of the past sequence (bk?)16k6h. Fig. 3 shows the average cumulative
regret with one standard deviation after H = 100 periods of T = 5000 rounds for
the two settings.

We observe that the performance of KLUCB-RB is tied to the smallest sub-
optimal gap for all bandit instances. Fig. 3a highlights that KLUCB-RB outperforms
KLUCB if the minimal sub-optimal gap of each bandit is less than the characteristic
smaller separation gap γ?ν . This supports the observation from Sec. 5.1 that
separation on optimal arms is sufficient. When arms are easier to separate than
bandits, one might as well restart a classical KLUCB from scratch on each period
(Fig. 3b). Note that situations where 0 < γν � min

b∈B
min
a6=a?b

∆a,b may not result in

a catastrophic loss in learning performances if the arms in A? are close enough
not to distort estimates computed on aggregated samples of from false positive
models (see Appendix C).
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(a) Setting ν(1) (b) Setting ν(2)

Fig. 3: Cumulative regret of KLUCB and KLUCB-RB along H = 100 periods of
T = 5000 rounds over three generated settings of |B| = 5 bandit instances with
|A| = 4 arms per instance.

5.3 Critical Settings

We saw previously that settings where bandit instances are difficult to distinguish
may yield poor performance (see Section 5.2, Fig. 3b). Indeed, to determine if
two estimated bandit models might result from the same bandit, both KLUCB-RB
and tUCB rely on a compatibility over each arm, i.e. the intersection of confidence
intervals. Therefore, it is generally harder to distinguish rollouts from many
different distributions (that is the cardinal of |B| is high) when |A| is low and
differences between arms are tight. To illustrate that, we consider an experiment
on the setting described in Figure 8 (Appendix C.3), composed of 4-armed bandits.
We recall that tUCB requires in particular |A| > |B|. Thus we choose a set |B| of
cardinal 4 in order to include a comparison of our algorithm with tUCB.

(a) T = 100 (b) T = 500

Fig. 4: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 period
for different numbers of rounds.
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Here we have |A?| = {0, 1, 3} and γ?ν := min
b 6=b′

min
a∈A?

|µa,b−µa,b′ | = 0.15, while the

minimal regret gaps of each instances are (min
a 6=a?b

∆a,b)b∈B = (0.74, 0.80, 0.81, 0.89).

Consequently, finding the optimal arm at each period independently is here far
less difficult than separating the different instances. Such a setting is clearly
unfavorable for KLUCB-RB and we expect KLUCB to perform better.

Fig. 4a and Fig. 4b the cumulative regret for the three strategies, along
H = 500 periods of T = 100 and T = 500 rounds respectively. As expected,
KLUCB outperforms KLUCB-RB under this critical setting. On the other hand
tUCB seems more robust and displays a cumulative regret trend that would be
improving compared with KLUCB in the long run. One should still recall that
tUCB requires knowing the cardinality of |B|, while KLUCB-RB does not.

We may notice (Fig. 4a) that if the number of rounds T is sufficiently small,
that is KLUCB does not have enough time to converge for each bandit, then
KLUCB-RB does not perform significantly worse than KLUCB for the first periods.
Then, as T rises (Fig. 4b), KLUCB begins to converge while KLUCB-RB still aggregate
samples from confusing instances, which yields an explosion of the cumulative
regret curve. We then expect for such setting that KLUCB will need far more longer
periods (T → ∞) to reach a regime in which it will discard all false positive
rollouts and takes advantage over KLUCB. On the contrary, tUCB takes advantage
of the knowledge of |B| and then waits to have enough confidence over the mean
vectors of the 4 models to exploit them.

6 Conclusion

In this paper we introduced the new routine bandits framework, for which we
provided lower bounds on the regret (Proposition 1). This setting applies well
to problems where, for example, customers anonymously return to interact with
a system. These dynamics are known to be of interest to the community, as
evidenced by the existing literature [11,10,20]. Routine bandits complement well
these existing settings.
We then proposed the KLUCB-RB strategy (Alg. 1) to tackle the routine bandit set-
ting by building on the seminal KLUCB algorithm for classical bandits. We proved
upper bounds on the number of sub-optimal plays by KLUCB-RB (Theorem 1),
which were used to prove asymptotic upper bounds on the regret (Corollary 1).
This result shows the asymptotic optimality of the strategy and thanks to the
proof technique that we considered, which is of independent interest, we further
obtained finite-time regret guarantees with explicit quantities. We indeed believe
the proof technique may be useful to handle other structured setups beyond
routine bandits.
We finally provided extensive numerical experiments to highlight the situations
where KLUCB-RB can efficiently leverage information from previously encountered
bandit instances to improve over a classical KLUCB. More importantly, we high-
lighted the cost to pay for re-using observations from previous periods, and showed
that easy tasks may be better tackled independently. This is akin to an agent that
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would behave badly by relying on a wrong inductive bias. Fortunately, there are
many situations where one can leverage knowledge from bandit instances faced
in the past. This would notably be the case if the agent has to select products
to recommend from a large set (A) and it turns out that there exists a much
smaller set of products (A?) that is preferred by users (Sec. 5.1).

Our results notably show that transferring information from previously en-
countered bandits can be highly beneficial (e.g., see Fig. 1 and 3a). However, the
lack of prior knowledge about previous instances (including the cardinality of the
set of instances) introduces many challenges in transfer learning. For example,
attempting to leverage knowledge from previous instances could result in negative
transfer if bandits cannot be distinguished properly (e.g., see Fig. 4).

Therefore, reducing the cost incurred for separating bandit instances should
constitute a relevant angle to tackle as future work. Another natural line of other
future work could investigate extensions of KLUCB-RB to the recurring occurrence
of other bandit instances, e.g., linear bandits, contextual bandits, and others.
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A Proof of Proposition 1

Let us denote by S the routine bandit setting and by S0 the setting resulting
from the routine bandit setting and the additional assumption that now the
sequence of bandits (bh?)h∈J1,HK is known to the learner. Then, since a consistent
strategy for S is also consistent for S0 (in the sense of Definition 1), we deduce
Proposition 1 from Lemma 5.

Lemma 5 (Lower bounds on the regret for S0). Let us consider a consistent
strategy for the setting S0. Then, for all configuration ν∈D, it must be that

lim inf
T→∞

R(ν,H, T )

log(T )
> c?ν :=

∑
b∈B

∑
a 6=a?b

∆a,b

KL(µa,b|µ?b)
.

Proof. Since the sequence of bandits (bh?)h∈J1,HK is known to the learner and since
there is no shared information between the bandits at first glance, the setting
S0 amounts to consider each of the |B| bandits (νb)b∈B as a separate problem,
where νb :=(νa,b)a∈A for b∈B. Then, from the known lower bound on the regret
for the classical multi-armed bandit problem [16], we get under the assumption
of consistency for all bandit b∈B,

lim inf
T→∞

1

log(Nb(H,T ))

∑
a 6=a?b

Na,b(T )∆a,b >
∑
a6=a?b

∆a,b

KL(µa,b|µ?b)
, where Nb(H,T ) = βHb HT .

From previous inequalities and Eq. 2, we conclude that

lim inf
T→∞

R(ν,H, T )

log(T )
>
∑
b∈B

lim inf
T→∞

log
(
βHb HT

)
log(T )

lim inf
T→∞

1

log
(
βHb HT

) ∑
a6=a?b

Na,b(T )∆a,b

>
∑
b∈B

∑
a 6=a?b

∆a,b

KL(µa,b|µ?b)
,

by Fatou’s Lemma and since we have lim infn unvn> lim infn un lim infn vn for
all positive real-valued sequences u, v.

B Proof of Theorem 1

From Proposition 2, we have the following inequality

Na,b(H,T ) 6
f(βHb HT )

KL(µa,b+ε|µ?b)
(16)

+

H∑
h=1

I{bh?=b}

[
Thν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ?b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
,

where for all h> 1, Pν
(
T ∈T h

)
6 1/T (T +1), Eν

[∣∣Chε ∣∣],Eν[∣∣∣Chε ∣∣∣]6 4 |A| ε−2+3

according to Lemma 10 and Thν,ε6τhν according to Lemma 6 stated below.
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By taking the expectation in Eq. 16 then it comes

Eν [Na,b(H,T )]

6
f(βHb HT )

KL(µa,b+ε|µ?b)

+

H∑
h=1

I{bh?=b}

[
τhν +5×

(
4 |A| ε−2+3

)
+

f(hT )

KL(µa,b+ε|µ?b)

h∑
k=1

32 |A| ε−2+24

T
+1/T (T+1)

]
.

We conclude the proof of Theorem 1 by using the two following inequalities

4 |A| ε−2 + 3 6 4 |A| (ε−2 + 1)

32 |A| ε−2 + 24

T
+

1

T (T + 1)
6

32 |A| (ε−2 + 1)

T
.

Lemma 6 (Upper bound on Thν,ε). With the same notations as Proposition 2,
for all 0<ε<εν ,

Thν,ε 6 τhν :=2ϕ
(

8|A|
[
ε−2ν + 65γ−2ν log

(
128 |A| (4h)1/3γ−2ν

)])
,

where ϕ : x>1 7→x log(x).

Proof. We first show that

thν < 130 |A| γ−2ν log
(

128(4h)1/3 |A| γ−2ν
)
. (17)

Let us consider t>3 |A|. We have

d
(

t

|A|
, δh(t)

)
=

√√√√
2

(
1 +
|A|
t

) log
(

4 |A|3 (h− 1)
√
t/ |A|+ 1(t/ |A|)(t/ |A|+ 1/ |A|)

)
t/ |A|

.

Since 1/|A|<1 and t/ |A|>3, we have√
t/ |A|+ 1(t/ |A|)(t/ |A|+1/ |A|) 6

√
t/ |A|+ 1(t/ |A|)(t/ |A|+1) 6 (t/ |A|)3 .

Then, since 1+|A|/t<1+1/3 and h−16h, we get

d
(

t

|A|
, δh(t)

)
6

√
8 |A| (4h)1/3

Φ
(
(4h)1/3t

)
where Φ : x > 3 7→ x/ log(x) > Φ(3). Φ(·) is a one-to-one function and ∀y >
Φ(3), Φ−1(y)6y log(y)+2 log(y). Thus we have

γν 6 4 d
(

t

|A|
, δh(t)

)
⇒ t 6 (4h)−1/3Φ−1

(
128(4h)1/3 |A| γ−2ν

)
6 128 |A| γ−2ν log

(
128(4h)1/3 |A| γ−2ν

)
+ 2(4h)−1/3 log

(
128(4h)1/3 |A| γ−2ν

)
.



Routine Bandits: Minimizing Regret on Recurring Problems 19

In particular, we get the following implication

γν 6 4 d
(

t

|A|
, δh(t)

)
⇒ t < 130 |A| γ−2ν log

(
128(4h)1/3 |A| γ−2ν

)
− 1

and thν<130 |A| γ−2ν log
(
128(4h)1/3 |A| γ−2ν

)
.

Furthermore, we have∑
a6=ah?

f(t)

KL(µha + ε|µh?)
< 2 |A| ε−2ν f(t) . (18)

By combining Eq. 17 and Eq. 18, from the definition of Thν,ε (see Proposition 2)
we get

Thν,ε 6 max
{
t > 10 : t− 8 |A|

(
ε−2ν f(t)− 65γ−2ν log

(
128(4h)1/3 |A| γ−2ν

))
6 0
}
.

(19)
We finally prove Lemma 6 by applying Lemma 7 with c=8 |A| ε−2ν and
c′=130 |A| γ−2ν log

(
128(4h)1/3 |A| γ−2ν

)
.

Lemma 7. For all c, c′>10, it holds

max {t > 10 : t− cf(t)− c′ 6 0} 6 2ϕ(c+ c′) ,

where ϕ : x>1 7→x log(x).

Proof. It can be shown that (t−cf(t)−c′)t>2ϕ(c+c′) is non-decreasing by standard
derivative analysis and that 2ϕ(c+c′)−cf(2ϕ(c+c′))−c>0.

In the following we prove the results stated in Section 4.

B.1 Proof of Lemma 1

In this subsection we control the number previously encountered bandits falsely
identified as different to the current one (see Definition 3) in addition to false
positives and prove Lemma 8, an extension of Lemma 1.

Definition 3 (False negative). At period h > 2 and step t > 1, a previous
period k ∈ J1, h−1K is called a false negative if the test Tk,h(t) is false while
previous bandit bk? corresponds to current bandit bh? .

We prove necessary conditions for having false positives or false negatives.

Lemma 8 (Condition for false positives/negatives). At period h>2 and
time step t> |A|, for all period k∈J1, h−1K, , with probability 1−1/(h−1)t(t+1),

k is a false positive =⇒ bk? 6= bh? and mina∈A
∣∣µa,bh? − µa,bk? ∣∣ 6 4 d

(
t

|A|
, δh(t)

)
k is a false negative⇐⇒ bk? = bh? and akt 6= aht .
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Proof. From Lemma 14, with probability 1−4 |A| δh(t)=1−1/(h−1)t(t+1), it
holds,

∀a ∈ A,
∣∣µ̂ha(t)− µha

∣∣ 6 d
(
Nh
a (t), δh(t)

)
and

∣∣µ̂ka(T )− µka
∣∣ 6 d

(
Nk
a (T ), δh(t)

)
.

(20)
False negative: Here we assume that bk?=bh? . By the triangle inequality, this

implies

∀a∈A,
∣∣µ̂ha(t)−µ̂ka(T )

∣∣ =
∣∣(µ̂ha(t)−µha

)
−
(
µ̂ka(T )−µka

)∣∣ 6 ∣∣µ̂ha(t)−µha
∣∣+∣∣µ̂ka(T )−µTa

∣∣ .
(21)

By combining Eq.20 and 21, with probability 1−1/(h−1)t(t+1), we have

∀a ∈ A,
∣∣µ̂ha(t)−µ̂ka(T )

∣∣− d
(
Nh
a (t), δh(t)

)
− d

(
Nk
a (T ), δh(t)

)
6 0 .

Then, from the definitions of the random variables (Zk,ha (t))a∈A (Eq. 3) and the
test Tk,h(t) (Eq. 4), this implies with probability 1−1/(h−1)t(t+1),

max
a∈A

Zk,ha (t) 6∞ · I{aht 6=ak?}, Tk,h(t) =
(
aht =ak?

)
.

Thus, with probability 1−1/(h−1)t(t+1), period k is a false negative if, and only
if, aht 6=ak?.

False positive: Here we assume that period k is a false positive. In particular, we
have bk? 6=bh? . By the triangle inequality, this implies

∀a∈A,
∣∣µ̂ha(t)−µ̂ka(T )

∣∣ > ∣∣µha − µka∣∣− ∣∣µ̂ha(t)−µha
∣∣− ∣∣µ̂ka(T )−µTa

∣∣ . (22)

By combining Eq.20 and 22, with probability 1−1/(h−1)t(t+1), we have

∀a ∈ A, Zk,ha (t) >∞·I{aht 6=ak?}+min
a∈A

∣∣µha−µka∣∣−2 d
(
Nh
a (t), δh(t)

)
−2 d

(
Nk
a (T ), δh(t)

)
.

(23)
Since period is assumed to be a false positive, we have maxa∈A Z

k,h(t)60 and
Eq. 23 implies that, with probability 1−1/(h−1)t(t+1),

aht = ak?, min
a∈A

∣∣µha−µka∣∣ 6 2 d
(
Nh
aht

(t), δh(t)
)

+ 2 d
(
Nk
ak?

(T ), δh(t)
)
. (24)

Since Nh
aht

(t) > t/ |A|, Nk
ak?

(T ) > T/ |A| (aht and ak? are most pulled arms) and
δh(T )6δh(t), the monotonic properties of d(·, ·) and Eq. 24, imply that, with
probability 1−1/(h−1)t(t+1),

min
a∈A

∣∣µha−µka∣∣ 6 2 d
(

t

|A|
, δh(t)

)
+ 2 d

(
T

|A|
, δh(T )

)
.

We conclude the proof of Lemma 8 by using Lemma 9 stated below.

Lemma 9 (Monotonic properties of d(·, ·)). For all period h>2,
(
d
(
t/|A| , δh(t)

))
t>|A|is

non-increasing.
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Proof. For all time step t> |A|, a direct calculation gives

d
(

t

|A|
, δh(t)

)
=

√
2 |A|

(
1+
|A|
t

)(
1

2

log(t/ |A|+1)

t
+

log(4 |A| (h− 1))

t
+

log(t+1)

t
+

log(t)

t

)
.

Then, in order to prove Lemma 9, it is sufficient to note that (log(t/|A|+1)/t)t>1,
(log(t+1)/t)t>2 and (log(t)/t)t>3 are non-increasing.

B.2 Proof of Lemma 2

Let us consider the subsets of times when the mean of the current pulled arm
is poorly estimated

Eha,ε :=
{
t > |A| : aht+1 = a and

∣∣µ̂ha(t)−µha
∣∣>ε} Ehε :=

⋃
a 6=ah?

Eha,ε

Eha,ε :=
{
t > thν : t /∈ T h, aht+1 = a and

∣∣µha(t)−µha
∣∣>ε} Ehε :=

⋃
a6=ah?

Eha,ε

and the subsets of times when the best arm ah? is below its mean

Uha :=
{
t > |A| : aht+1 = a and uhah? (t) = Uhah? (t) < µh?

}
Uh :=

⋃
a 6=ah?

Uha .

Uha :=
{
t > thν : t /∈ T h, aht+1 = a and uhah? (t) = U

h

ah?
(t) < µh?

}
Uh :=

⋃
a6=ah?

Uha .

Then we have

Cha,ε = T ha ∪ Eha,ε ∪ Uha Chε = T h ∪ Ehε ∪ Uh

Cha,ε = T ha ∪ Eha,ε ∪ U
h

a Chε = T h ∪ Ehε ∪ U
h

and deduce Lemma 2 from the extended Lemma 10.

Lemma 10 (Bounded subsets of times). For all period h> 2, for all arm
a∈A, for all 0<ε<εν ,

∀t∈J1, T K, Pν
(
t∈T h

)
6

1

t(t+1)
, Eν

[∣∣Eha,ε∣∣],Eν[∣∣∣Eha,ε∣∣∣]64ε−2, Eν
[∣∣Uh∣∣],Eν[∣∣∣Uh∣∣∣]62 .

This implies

Eν
[∣∣T h∣∣]61, Eν

[∣∣Cha,ε∣∣] ,Eν[∣∣∣Cha,ε∣∣∣]64ε−2+3, Eν
[∣∣Chε ∣∣] ,Eν[∣∣∣Chε ∣∣∣]64 |A| ε−2+3 .
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Proof. Subset T h: From Lemma 10 and the definition of thν (see Eq. 8), for all
t> thν , with probability 1−1/t(t+1), there is no false positive and if a previous
period k∈J1, h−1K is a false negative then bk?=bh? and ak? 6=aht (the most pulled
arms are different). From the definition of T h (see Eq. 9) this implies that for all
t> thν , with probability 1−1/t(t+1), t /∈T h. That is ∀t> thν , Pν

(
t∈T h

)
61/t(t+1).

Since on the other hand, we have

∣∣T h∣∣ =

T∑
t=thν

I{t∈T h} ,

by taking expectation on both sides, it comes

Eν
[∣∣T h∣∣] =

T∑
t=thν

Pν
(
t ∈ T h

)
6

T∑
t=thν

1

t(t+ 1)
6 1 .

We note that for 16 t<thν , it holds that t /∈T h and Pν
(
t∈T h

)
=061/t(t+1).

Subset Eha,ε:
Since we have ∣∣Eha,ε∣∣ =

T∑
t>|A|

I{aht+1=a, |µ̂ha(t)−µha |>ε} ,

by taking the expectation on both sides, it comes

Eν
[∣∣Eha,ε∣∣] 6 T∑

t=1

Pν
(
aht+1 =a,

∣∣µ̂ha(t)−µha
∣∣>ε) . (25)

Then, by combining Eq. 25 and Lemma 13, we prove Eν
[∣∣Eha,ε∣∣]64ε−2.

Subset Eha,ε: From the definitions of thν and T h (Eq. 8 and 9), we get the following
inclusion{
t> thν : t /∈T h, aht+1 =a,

∣∣µha(t)−µha
∣∣>ε}⊂{t> thν : aht+1 =a,

∣∣∣µ̂Kh? (t),ha (t)−µha
∣∣∣>ε},

(26)
where Kh? (t) :=

{
k∈J1, h−1K : bk?=bh? and ak?=aht

}
and NK,ha (t)=

∑
k∈KN

k
a (T )+

Nh
a (t),

SK,ha (t)=
∑
k∈K S

k
a (T )+Sha (t), µ̂K,ha (t)=SK,ha (t)/NK,ha (t), ∀K⊂Kh :=

{
k∈J1, h−1K : bk?=bh?

}
.

Thus, by defining Kt :=Kh? (t) if t> thν and t /∈T h, ∅ otherwise, Eq. 26 implies

∀t> thν ,Pν
(
t /∈T h, aht+1 =a,

∣∣µha(t)−µha
∣∣>ε)6Pν

(
aht+1 =a,

∣∣µ̂Kt,ha (t)−µha
∣∣>ε).

(27)
Since we have ∣∣∣Eha,ε∣∣∣ =

T∑
t=thν

I{t/∈T h, aht+1=a, |µha(t)−µha|>ε} ,
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by taking the expectation on both sides and using inequalities from Eq.27, it
comes

Eν
[∣∣∣Eha,ε∣∣∣] =

T∑
t=thν

Pν
(
t /∈T h, aht+1 =a,

∣∣µha(t)−µha
∣∣>ε)

6
T∑

t=thν

Pν
(
aht+1 =a,

∣∣µ̂Kt,ha (t)−µha
∣∣>ε) . (28)

Then, by combining Eq. 28 and Lemma 13, we prove Eν
[∣∣∣Eha,ε∣∣∣]64ε−2.

Subset Uh:
By definition of the index (Eq. 6), we have

∀t > |A| , Nh
ah?

(t)KL
(
µ̂hah? (t)

∣∣∣Uhah? (t)
)

= f(t) . (29)

Since µ̂hah? (t)6Uhah? (t) for all t> |A|, from the monotony of KL(x| ·) on [x,+∞),
it comes

∀t > |A| such that Uhah? (t) 6 µhah? , KL
(
µ̂hah?

∣∣∣µhah?) > KL
(
µ̂hah? (t)

∣∣∣Uhah? (t)
)
.

(30)
From Eq. 29 and 30 we deduce that

Uh ⊂
{
t > |A| : Nh

ah?
(t)KL

(
µ̂hah? (t)

∣∣µah? ,bh?)>f(t)
}
. (31)

From Eq. 31 plus the union bound, it comes

∣∣Uh∣∣ 6 T∑
t>|A|

I{
Nh
ah?

(t)KL
(
µ̂h
ah?

(t)
∣∣∣µah? ,bh?

)
>f(t)

} . (32)

By taking the expectation on both sides in previous inequality (Eq. 32), we have

Eν
[∣∣Uh∣∣]6 T∑

t>|A|

Pν
(
Nh
ah?

(t)KL
(
µ̂hah? (t)

∣∣µah? ,bh?)>f(t)
)
. (33)

Combining Eq. 33 and Lemma 14, it comes

Eν
[∣∣Uh∣∣] 6 ∑

t>|A|

t−1 log(t)−2 .

This implies Eν
[∣∣Uh∣∣]62 since it can be shown that

∑
t>|A|

t−1 log(t)−2 6
∫ ∞
t>|A|

t−1 log(t)−2 dt =
1

log(|A|)
6

1

log(2)
6 2 .
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Subset Uh: From the definition of subset T h (see Eq. 9), we have{
t> thν : t /∈T h

}
⊂
{
t> thν : N

h

ah?
(t)=N

Kh? (t),h
ah?

(t), µhah? (t)= µ̂
Kh? (t),h
ah?

(t), K
h

t =
∣∣Kh? (t)

∣∣} ,
(34)

whereKh? (t) :=
{
k∈J1, h−1K : bk?=bh? and ak?=aht

}
⊂Kh,Kh :=

{
k∈J1, h−1K : bk?=bh?

}
,

NK,ha (t) =
∑
k∈KN

k
a (T )+Nh

a (t), SK,ha (t) =
∑
k∈K S

k
a(T )+Sha (t) and µ̂K,ha (t) =

SK,ha (t)/NK,ha (t) for all K⊂ Kh and a∈A.
By definition of the index (Eq. 7), we have

∀t > thν , N
h

ah?
(t)KL

(
µhah? (t)

∣∣∣Uhah? (t)
)

= f
(
K
h

t T + t
)
. (35)

Since µhah? (t)6U
h

ah?
(t) for all t> thν , from the monotony of KL(x| ·) on [x,+∞), it

comes

∀t > thν such that U
h

ah?
(t) 6 µhah? , KL

(
µhah? (t)

∣∣∣µhah?) > KL
(
µhah?

∣∣∣Uhah? (t)
)
. (36)

By defining Kt :=Kh? (t) if t> thν and t /∈T h, ∅ otherwise, from Eq. 34, 35 and 36
we deduce that

Uh ⊂
{
t > thν : NKt,h

ah?
(t)KL

(
µ̂Kt,h
ah?

(t)
∣∣µah? ,bh?)>f(|Kt|T+t)

}
. (37)

Since we have{
t > thν : NKt,h

ah?
(t)KL

(
µ̂Kt,h
ah?

(t)
∣∣µah? ,bh?)>f(|Kt|T+t)

}
=

h−1⋃
K=0

{
t > thν : |Kt|=K, NKt,h

ah?
(t)KL

(
µ̂Kt,h
ah?

(t)
∣∣µah? ,bh?)>f(KT+t)

}
by using the inclusion from Eq. 37 plus the union bound, it comes∣∣∣Uh∣∣∣ 6 h−1∑

K=0

T∑
t=thν

I{
|Kt|=K, NKt,h

ah?
(t)KL

(
µ̂
Kt,h
ah?

(t)
∣∣∣µah? ,bh?

)
>f(KT+t)

} . (38)

By taking the expectation on both sides in previous inequality (Eq. 38), we have

Eν
[∣∣∣Uh∣∣∣]6 h−1∑

K=0

T∑
t=thν

Pν
(
|Kt|=K, NKt,h

ah?
(t)KL

(
µ̂Kt,h
ah?

(t)
∣∣µah? ,bh?)>f(KT+t)

)
.

(39)
Combining Eq. 39 and Lemma 14, it comes

Eν
[∣∣∣Uh∣∣∣] 6 h−1∑

K=0

T∑
t=thν

(KT+t)−1 log(KT+t)−2

6
∑
t>thν

t−1 log(t)−2 .
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This implies Eν
[∣∣∣Uh∣∣∣]62 since it can be shown that

∑
t>thν

t−1 log(t)−2 6
∫ ∞
t=thν−1

t−1 log(t)−2 dt =
1

log(thν − 1)
6

1

log(2)
6 2 .

Subsets Cha,ε, Chε , C
h

a,ε and Chε : We conclude the proof of Lemma 10 by taking the
expectation on both sides in the following inequalities and by using the bounds
on subsets T h, Uh, Uh, Eha,ε and Eha,ε.∣∣Cha,ε∣∣ 6 ∣∣Uh∣∣+

∣∣Eha,ε∣∣∣∣Chε ∣∣ 6 ∣∣Uh∣∣+
∑
a6=ah?

∣∣Eha,ε∣∣∣∣∣Cha,ε∣∣∣ 6 ∣∣T h∣∣+
∣∣∣Uh∣∣∣+

∣∣∣Eha,ε∣∣∣∣∣∣Chε ∣∣∣ 6 ∣∣T h∣∣+
∣∣∣Uh∣∣∣+

∑
a6=ah?

∣∣∣Eha,ε∣∣∣ .

B.3 Proof of Lemma 3

From Lemma 10, we have the bound Eν
[∣∣Cha,ε∣∣]6 4ε−2+2 and Eν

[∣∣∣Cha,ε∣∣∣]6
4ε−2+3.

Let us consider t> |A| such that t /∈Cha,ε=Eha,ε ∪ Uha and aht+1 =a. By definition
of the index (Eq. 6), we have

Nh
a (t)KL

(
µ̂ha(t)

∣∣Uha (t)
)

= f(t) . (40)

Since aht+1 =a, it follows from the KLUCB-RB strategy that

uhah? (t) 6 uha(t) 6 Uha (t) . (41)

Since aht+1 =a, we have t /∈Uh and

µh? 6 uhah? (t) = Uhah? (t) . (42)

Since ε<εν and since a is a sub-optimal arm, we have

µha + ε < µh? . (43)

Since aht+1 =a, we have t /∈Eha,ε and

µ̂ha(t) 6 µha + ε . (44)
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Then Eq. 41, 42, 43 and 44 imply

µ̂ha(t) 6 µha + ε < µh? 6 Uha (t) . (45)

Combining Eq. 40 and Eq. 45, it holds

KL
(
µha + ε

∣∣µh?) 6 KL
(
µ̂ha(t)

∣∣Uha (t)
)

and Nh
a (t)KL

(
µha + ε

∣∣µh?) 6 f(t) .

Let us consider t> thν such that t /∈Cha,ε=T ∪Eha,ε∪U
h

a and aht+1 =a. By definition
of the index (Eq. 7), we have

N
h

a(t)KL
(
µha(t)

∣∣∣Uha(t)
)

= f
(
K
h

t T + t
)
. (46)

Since aht+1 =a, it follows from the KLUCB-RB strategy that

uhah? (t) 6 uha(t) 6 U
h

a(t) . (47)

Since aht+1 =a, we have t /∈T h ∪ Uh and

µh? 6 uhah? (t) = U
h

ah?
(t) . (48)

Since ε<εν and since a is a sub-optimal arm, we have

µha + ε < µh? . (49)

Since aht+1 =a, we have t /∈T h ∪ Eha,ε and

µha(t) 6 µha + ε . (50)

Then Eq. 47, 48, 49 and 50 imply

µha(t) 6 µha + ε < µh? 6 U
h

a(t) . (51)

Combining Eq. 46 and Eq. 51, it holds

KL
(
µha + ε

∣∣µh?) 6 KL
(
µha(t)

∣∣∣Uha(t)
)

and N
h

a(t)KL
(
µha + ε

∣∣µh?) 6 f
(
K
h

t T + t
)
.

In order to conclude the proof it remains to show that K
h

t 6β
h−1
bh?

(h−1). Since
aht+1 =a, we have t /∈T h and we deduce from the definition of T h (see Eq. 9) that

K
h

t =
∣∣Kh? (t)

∣∣ 6 ∣∣{k ∈ J1, h− 1K : bk? = bh?
}∣∣ = βh−1

bh?
(h− 1) ,

where Kh? (t) :=
{
k ∈ J1, h−1K : bk?=bh? and ak?=aht

}
.
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Finally, we prove the last statement of Lemma 3. For all sub-optimal arm a∈A,
for all period h>1, for all time step t> |A|, we denote by

τha (t) = max
{
t′ ∈ J|A|+ 1 ; tK : aht′+1 = a and t′ /∈ Cha,ε

}
(52)

the last time step before time step t that does not belong to Cha,ε such that we
pull arm a in period h. In particular, we have

Nh
a

(
τha (t)

)
6

f
(
τha (t)

)
KL(µha+ε|µh?)

6
f(t)

KL(µha+ε|µh?)
. (53)

Then, from Eq. 52 and Eq. 53 we have

Nh
a (t) = Nh

a (|A|+1) +

t−1∑
t′>|A|

I{
ah
t′+1

=a
}

= Nh
a (|A|+1) +

t−1∑
t′>|A|

I{
ah
t′+1

=a, t′∈Cha,ε
} +

t−1∑
t′>|A|

I{
ah
t′+1

=a, t′ /∈Cha,ε
}

6 Nh
a (|A|+1) +

∣∣Cha,ε∣∣+Nh
a

(
τha (t)

)
6 Nh

a (|A|+1) +
∣∣Cha,ε∣∣+

f(t)

KL(µha+ε|µh?)
.

B.4 Proof of Lemma 4

Let us consider t> thν such that t /∈T h and aht 6=ah? . Since t /∈T h (see Eq. 9),

∀a ∈ A, N
h

a(t) = Nh
a (t) +

∑
k∈Kh? (t)

Nk
a (T ) , (54)

whereKh? (t) :=
{
k∈J1, h−1K : ak?=aht

}
. Since for all k∈Kh? , ak?∈argmaxa∈AN

k
a (T ),

from Eq. 54 we deduce that aht ∈argmaxa∈AN
h

a(t). Since aht 6=ah? , this implies

N
h

ah?
(t) 6 N

h

aht
(t) and N

h

aht
(t) 6

∑
a 6=ah?

N
h

a(t) . (55)

Furthermore, since t /∈T h (see Eq. 9), we have

K
h

t :=
∣∣Kh+(t)

∣∣ =
∣∣Kh? (t)

∣∣ . (56)

Then it comes
N
h

ah?
(t) =

∣∣Kh? (t)
∣∣T + t−

∑
a6=ah?

N
h

a(t) . (57)

Then Eq. 54, 55 and 57 imply∣∣Kh? (t)
∣∣T

2
+
t

2
6
∑
a 6=ah?

Nh
a (t) +

∑
k∈Kh? (t)

Nk
a (T ) . (58)
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For a 6=ah? and for k∈Kh? (t), the arm a is sub-optimal for bandit bk?=bh? . Thus,
from Lemma 3, we have

∀a 6= ah? ,∀k ∈ Kh? (t), Nh
a (t) 6

f(t)

KL(µha + ε|µh?)
+
∣∣Cha,ε∣∣+Nh

a (|A|+1) (59)

Nk
a (T ) 6

f(T )

KL(µka + ε|µk?)
+
∣∣Cka,ε∣∣+Nk

a (|A|+1) .

Then, by combining Eq. 58 and Eq. 59, we get

t

2
−

∑
a6=ah?

f(t)

KL(µha + ε|µh?)
+Nh

a (|A|+1)


+

∣∣Kh? (t)
∣∣T

2
−

 ∑
k∈Kh? (t)

∑
a6=ah?

f(T )

KL(µka + ε|µk?)
+Nk

a (|A|+1)


6

∑
k∈Kh? (t)∪{h}

∑
a 6=ah?

∣∣Cka,ε∣∣ (60)

We finally prove Lemma 4 from Eq. 60 and the following inequalities

∀k ∈ Kh? (t) ∪ {h} , ak? = ah? ,

∀k ∈ Kh? (t) ∪ {h} ,
∑
a6=ah?

Nk
a (|A|+1) =

∑
a6=ak?

Nk
a (|A|+1) 6 |A| ,

∀k ∈ Kh? (t) ∪ {h} ,
∑
a6=ah?

∣∣Cka,ε∣∣ =
∑
a6=ak?

∣∣Cka,ε∣∣ =
∣∣Ckε ∣∣ .

B.5 Proof of Proposition 2

We first deduce Lemma 11 from Lemma 4.

Lemma 11 (Conditions for misidentifying the best arms). For all period
h>1, for all 0<ε<εν , for all t>Thν,ε,(

t /∈T h and aht 6=ah?
)
⇐⇒

(
t<4

∣∣Chε ∣∣ or ∃k∈J1, hK, T <8
∣∣Ckε ∣∣ ) .

This implies(
T /∈T h and ah? 6=ah?

)
⇐⇒ ∃k∈J1, hK, T <8

∣∣Ckε ∣∣ .
We respectively refer to Proposition 2, Eq. 9 and Eq. 11 for the definitions of
Thν,ε, T h and Chε .

The proof of Lemma 11 is deferred to the Section B.5. We prove Proposition 2
in the following.

Let us introduce the subset P of pairs period-time when there is false positives
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or false negatives, or when the mean of the current pulled arm is underestimated,
or when the index of the best arm is below its mean, or when the most pulled
arms are different from the best arms. More formally,

P :=
{

(h, t)∈J1, hK×J1, T K :
(
t>Thν,ε, t∈C

h

ε∪Mh
ε

)
or

(
∃k∈J1, h−1K, T ∈T k∪Mk

ε

)}
,

(61)
whereMh

ε :=
{
t>Thν,ε : t /∈T h and aht 6=ah?

}
, for all period h>1.

Then, for a bandit b∈B and a sub-optimal arm a∈A, from Lemma 3 we have

Na,b(H,T ) 6
f
(
βHb HT

)
KL(µa,b + ε|µ?b)

+

H∑
h=1

T−1∑
t=0

I{bh?=b, aht+1=a, t<T
h
ν,ε or (h,t)∈P} . (62)

From the definitions of P (Eq. 61), Thν,ε (Proposition 2) and Chε (Eq. 11) for h>1,
this implies

Na,b(H,T ) 6
f
(
βHb HT

)
KL(µa,b + ε|µ?b)

(63)

+

H∑
h=1

T−1∑
t=0

I{bh?=b, aht+1=a, t<T
h
ν,ε}

+

H∑
h=1

T−1∑
t=0

I{
bh?=b, a

h
t+1=a, t∈C

h
ε

}

+

H∑
h=1

T−1∑
t=0

I{
bh?=b, a

h
t+1=a, t/∈C

h
a,ε

}I{∃k∈J1,h−1K,T∈T k}

+

H∑
h=1

T−1∑
t=0

I{
bh?=b, a

h
t+1=a, t/∈C

h
a,ε

}I{t∈Mh
ε or ∃k∈J1,h−1K,T∈Mk

ε} .

Furthermore, from Lemma 11 we have for all period h>1,

I{t∈Mh
ε or ∃k∈J1,h−1K,T∈Mk

ε} 6 I{t<4|Chε |} +

h∑
k=1

I{T<8|Ckε |} . (64)

By combining Eq.63 and Eq.64, we get

Na,b(H,T ) 6
f
(
βHb HT

)
KL(µa,b + ε|µ?b)

(65)

+

H∑
h=1

I{bh?=b}

[
Thν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+
(
T−1∑
t=0

I{
bh?=b, a

h
t+1=a, t/∈C

h
a,ε

}
)(

h∑
k=1

I{T<8|Ckε |}+I{T∈T k}

)]
.

Since the arm a is sub-optimal for the bandit b, the consistency (Lemma 3)
implies

∀h > 1,

T−1∑
t=0

I{
bh?=b, a

h
t+1=a, t/∈C

h
a,ε

} 6
f(hT )

KL(µa,b + ε|µ?b)
. (66)
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In addition, the following Markov’s type inequalities are satisfied

∀k > 1, I{T<8|Ckε |} 6
8
∣∣Ckε ∣∣
T

. (67)

By combining Eq. 65, 66 and 67, we prove Proposition 2, that is

Na,b(H,T )

6
f(βHb HT )

KL(µa,b+ε|µ?b)
+

H∑
h=1

I{bh?=b}

[
Thν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ?b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
.

Proof of Lemma 11 Let us consider a period h>1, 0<ε<εν , and a time step
all t>Thν,ε such that t /∈T h and aht 6=ah? . Then, since Thν,ε> thν , from Lemma 4 we
have
t+
∣∣Kh? (t)∣∣T

2
−
(
1+
∣∣∣Kh? (t)∣∣∣)|A| −(f(t)+∣∣∣Kh? (t)∣∣∣f(T ))∑

a6=ah?

1

KL
(
µha+ε

∣∣µh?) 6
∑

k∈Kh? (t)∪{h}

∣∣∣Ckε ∣∣∣ .
(68)

Furthermore, by definition of Thν,ε, since t> Thν,ε, we have

t

2
−
∑
a6=ah?

f(t)

KL(µha + ε|µh?)
− |A| > t

4

T

2
−
∑
a6=ah?

f(T )

KL(µha + ε|µh?)
− |A| > T

4
.

(69)

By respectively combining Eq. 68 and Eq. 69, we thus deduce∣∣Kh? (t)
∣∣ = 0 ⇒ t 6 4

∣∣Chε ∣∣∣∣Kh? (t)
∣∣ > 1 ⇒ ∃k ∈ J1, hK, T 6 8

∣∣Ckε ∣∣
which implies Lemma 11.

B.6 Tools from Concentration of Measure

This subsection gathers useful concentration lemmas that do not depend on the
considered strategy.

Notations For all period h > 2, for all time step t > |A|, for each (possible
random) subset of past periods K ⊂Kh :=

{
k∈J1, h−1K : bk?=bh?

}
, for all arm

a∈A, we define NK,ha (t) :=
∑
k∈KN

k
a (T )+Nh

a (t), SK,ha (t) :=
∑
k∈K S

k
a(T )+Sha (t)

and µ̂K,ha (t) :=SK,ha (t)/NK,ha (t).
In particular, for K=Kh? (t) :=

{
k∈J1, h−1K : bk?=bh? and ak?=aht

}
, we have

N
Kh? (t),h
a (t)=N

h

a(t) and µ̂K
h
? (t),h

a (t)=µha(t) when t> thν and t /∈T h (see Eq. 8 and
9).

Uniform bounds based on the Laplace method (method of mixtures for sub-
Gaussian random variables, see [21]) are given in Lemma 12.
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Lemma 12 (Uniform sub-Gaussian concentration). For all period h> 2,
for all time step t> |A|, for all arm a∈A, for all δ∈(0, 1), it holds

Pν
(
µ̂ha(t)− µa,bh? > d

(
Nh
a (t), δ

))
6 δ

Pν
(
µa,bh? − µ̂

h
a(t) > d

(
Nh
a (t), δ

))
6 δ ,

where d(n, δ)=
√

2(1+1/n) log
(√
n+ 1/δ

)
/n, for all n>1.

Lemma 13 reformulates Lemma B.1 from [7].

Lemma 13 (Concentration inequalities). For all period h>2, for all arm
a∈A, for all ε∈(0, 1/2), and all possibly random subset of periods Kt such that
the random variable NKt,ha (t) is a random stopping time, it holds∑

t>1

Pν
(
aht+1 =a,

∣∣µ̂Kt,ha (t)−µha
∣∣ > ε

)
6 4ε−2 .

Lemma 14 reformulates Theorem 1 from [8].

Lemma 14 (Self-normalized inequalities). For all period h>2, for all time
step t> |A|, for all arm a∈A, for all K∈J0, h−1K, for all δ>0 and all possibly
random subset of periods Kt such that the random variable NKt,ha (t) is a random
stopping time, it holds

Pν
(
|Kt|=K, NKt,ha (t)KL

(
µ̂Kt,ha (t)

∣∣µa,bh?)>δ) 6 2edδ log(KT+t)e exp(−δ) .

In particular, this implies for δ=f(KT + t),

Pν
(
|Kt|=K, NKt,ha (t)KL

(
µ̂Kt,ha (t)

∣∣µa,bh?)>f(KT+t)
)
6 (KT+t)−1 log(KT+t)−2 .

C Additional Experiments: Ideal Cases for which Bandits
are Close Enough on the Subset of Optimal Arms

This section provides additional experiments where we investigate some favorable
distributions ν where it is hard to separate the different bandits from each other.
All experiments are repeated 100 times.

C.1 A Single Instance

Let us first make a remark in the trivial limit case of a unique bandit, that
is to say B = {b}. In such cases, playing KLUCB-RB is obviously equivalent to
playing for Ttotal := HT rounds a KLUCB strategy on the bandit instance b, with
an additional term (H − 1)

∑
a∈A∆a,b in the final cumulative regret due to the

initialization at each period. Figure 5 highlights this fact for the two-armed
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Fig. 5: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 200 periods
of T = 103 rounds for the bandit set B = {b}.

bandit b defined in Eq. 70, over H = 200 periods of T = 103 rounds.

b : (µ1,b, µ2,b) = (−∆
2
,
∆

2
) where ∆ = 10

√
log(HT )

T
. (70)

Although the case |B| = 1 is not an interesting one since there is no switches
between different bandits instances, it enables to understand what happens when
|B| > 1 and bandits are similar, that is max

a∈A?
max
b6=b′
|µa,b − µa,b′ | approaches 0.

Besides, it highlights the need for tUCB to see a sufficient number of periods
before exploiting the estimated models of the bandits.

C.2 Similarity of Different Instances on the Optimal Subset A?

Let us consider routines over two bandits b1 and b2 composed of two arms
such that (µ1,b2 , µ2,b2) = (µ1,b1 + γ, µ2,b1 − γ) and a?b1 = 2. If γ > ∆2,b1/2,
arms arrangements are different in both instances and these cases are studied
in subsection 5.1. Otherwise we have a?b1 = a?b2 = 2 if ever 0 < γ < ∆2,b1/2.
Although separation of instances is particularly hard in such cases, samples
aggregation from false positive periods does not perturb the empirical means
arrangement, and thus yields great performances for KLUCB-RB. To explain how
this kind of distribution generalizes to settings composed of arbitrary numbers
of bandits and arms, we present in Fig. 6b a distribution ν such that |B| = 5
and |A| = 4. In this setting, we have A? = {1, 4}. Considering distributions of
bandits restricted to A?, B naturally decomposes into 3 clusters C(1) := {b1, b4},
C(2) := {b2, b3} and C(3) := {b5} so that

∀i ∈ {1, 2, 3} ,∀b, b′ ∈ C(i),∀a ∈ A?, |µa,b − µa,b′ | <
1

2
min
y∈C(i)

min
x∈A,x 6=a?y

∆x,y (71)

which entails in particular

∀i ∈ {1, 2, 3} ,∃a(i) ∈ A?,∀b ∈ C(i), a?b = a(i) ,
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and

∀i ∈ {1, 2, 3},∀b ∈ C(i),∀b′ /∈ C(i), |µa(i),b − µa(i),b′ | > min
x∈C(i)

min
a6=a?x

∆a,x. (72)

On the one hand, Eq. 71 sums up that different bandits from a same cluster
are hard to distinguish, in comparison with the difficulty of learning each instance
independently. On the other hand, Eq. 72 implies that clusters are easy to
separate from each other. Besides Eq. 71 also implies that the permutation of
A sorting arms according to an increasing order is the same for all instances
from a same cluster. Thus KLUCB-RB is expected to perform well for this kind of
arms distributions. Fig. 6a shows the cumulative regret curves with one standard
deviation obtained on this setting, along H = 25 periods of T = 2× 104 rounds.
As expected, it highlights that a positive cluster effect causes an improvement in
regret minimization. In practice, KLUCB-RB naturally clusterizes the previously
seen periods while the current period index h increases. More specifically, noting
C(h) the cluster containing bh? , KLUCB-RB makes all the different bandits from
C(h) share their samples with bh? for a large amount of rounds, which enables to
boost the minimization of regret across period h.

(a) Cumulative regret (b) ν : {νb1 , . . . , νb5}

Fig. 6: KLUCB-RB and KLUCB performances on a clusterized distribution according
to A?, along H = 25 periods of 2× 104

rounds.

C.3 Complement of Sections 5.2 and 5.3

Figure 7 shows the generated settings used in experiments of Section 5.2, and
Figure 8 the setting used in Section 5.3. More specifically, each sub-figure displays
the expected reward for each of the four arms, in each of the bandits, for the
three considered bandit sets.
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(a) ν(1) : {ν(1)b1
, . . . , ν

(1)
b5
} (b) ν(2) : {ν(2)b1

, . . . , ν
(2)
b5
}

Fig. 7: Distribution ν for each bandit in sets B1 and B2.

Fig. 8: Distribution ν for each bandit in the critical setting.


	Routine Bandits: Minimizing Regret on Recurring Problems

