
HAL Id: hal-03286443
https://hal.science/hal-03286443v2

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Geometry of Causality
Simon Castellan, Pierre Clairambault

To cite this version:
Simon Castellan, Pierre Clairambault. The Geometry of Causality. Proceedings of the ACM on
Programming Languages, In press, pp.1-70. �hal-03286443v2�

https://hal.science/hal-03286443v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


24

The Geometry of Causality
Multi-Token Geometry of Interaction and its Causal Unfolding

SIMON CASTELLAN, Univ Rennes, Inria, CNRS, IRISA, France
PIERRE CLAIRAMBAULT, Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

We introduce a multi-token machine for Idealized Parallel Algol (IPA), a higher-order concurrent programming

language with shared state and semaphores. Our machine takes the shape of a compositional interpretation of

terms as Petri structures, certain coloured Petri nets. For the purely functional fragment of IPA, our machine is

conceptually close to Geometry of Interaction token machines, originating from Linear Logic and presenting

higher-order computation as the low-level process of a tokenwalking through a graph (a proof net) representing

the term. We combine here these ideas with folklore ideas on the representation of first-order imperative

concurrent programs as coloured Petri nets.

To prove our machine computationally adequate with respect to the reference operational semantics, we

follow game semantics and represent types as certain games specifying dependencies and conflict between

computational events. Petri strategies are those Petri structures obeying the rules of the game extracted from

the type. We show how Petri strategies unfold to concurrent strategies in the sense of concurrent games on

event structures. This link with concurrent strategies not only allows us to prove adequacy of our machine,

but also lets us generate operationally a causal description of the behaviour of programs at higher-order types,

which is shown to coincide with that given denotationally by the interpretation in concurrent games.

Additional Key Words and Phrases: Geometry of Interaction, Game Semantics, Shared Memory Concurrency,

Coloured Petri Nets, Higher-Order

1 INTRODUCTION
1.1 The Operational, the Denotational and the Game Semantics
Semantics of programming languages are often classified into two broad families. On the one hand,

operational semantics formalize execution via concrete, local rules that often operate directly on

syntax: this includes methods based on rewriting, labelled transition systems or abstract machines.

Mathematically those are usually relatively simple inductive structures making them easy to

implement and reason about. However they often focus on closed programs, and most formalisms

strugglewith compositionality. On the other hand, denotational semantics embed types and programs

in an adequate mathematical space (domains and continuous functions, sets and relations, games

and strategies, etc). Compositionality holds by definition, as the denotation is computed by induction

on syntax, sending each syntactic construction to a corresponding semantic operation – this makes

denotational semantics a great tool for modular reasoning on programs and to inform programming

language design. However, the link with the source code is often quite remote: identifying the piece

of syntax and the runtime environment responsible for a denotationally observed behaviour can be

subtle, in particular because interpretation can involve complex constructions (such as composition

of strategies). Denotational semantics abound with adequacy results relating evaluation in the

sense of operational and denotational semantics, but those typically concern closed programs of
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ground type, and are not very informative for open programs. In this paper we ask ourselves:

how transparent can we make the link between operational and denotational semantics, for open
programs of arbitrary type? Such a link, if established convincingly, could play a valuable role in

the mathematical theory of programming semantics.

To approach this question, we allow ourselves some flexibility on what we exactly mean by

“operational semantics”: we do not necessarily refer here to the familiar range of syntactic techniques,

but more broadly to, let us say, a formalization of execution specified by concrete, local rules acting

on an intermediate representation of programs obtained from the source code in amodular way, with

low complexity (say, linear). The goal is that one should then be able to easily extract denotational

information from execution traces in this operational semantics. Because denotational semantics

predict program evaluation in any context, this implies that our executions cannot stop at computing

the result of closed programs of ground types; they must, for open programs of arbitrary type,

produce (lazily) a structure that is fully informative of their dynamic behaviour in any context, in

a way that is both operationally meaningful and close to denotational semantics. The field that

studies such interactive representations of programs is called game semantics [Abramsky et al.

2000; Hyland and Ong 2000]: it presents the interactive behaviour of programs as a strategy in a

two-player game that the program plays with its execution environment. More specifically, we

target concurrent games [Castellan and Clairambault 2020; Castellan et al. 2017]: based on event
structures, those offer a representation of the interactive behaviour of programs that is causal and

with full non-deterministic branching information. Thanks to this intensional expressivity, they

are related by forgetful projections to a growing number of models in the denotational semantics

landscape – this includes various other game models [Castellan and Clairambault 2020], relational

or weighted relational models [Castellan et al. 2018; Clairambault and de Visme 2020], and the

Scott model through Ehrhard’s extensional collapse theorem [Ehrhard 2012].

Operational game semantics. Connecting operational and game semantics is far from a new

idea. Though it was clear from early work on game semantics [Danos et al. 1996] that interaction

between strategies was related to execution by abstract machines, the idea to generate strategies

by operational means was – to our knowledge – first suggested by Laird in his trace semantics for

higher-order references [Laird 2007] (with the explicit connection with game semantics later worked

out by Jaber [Jaber 2015]). In the 2010s, several works were proposed blurring the lines between

operational and game semantics [Ghica and Tzevelekos 2012; Levy and Staton 2014], typically

via LTSs dealing with open programs by sending and receiving messages from the environment

(interestingly, similar structures appear in work on compositional certified compilers [Stewart

et al. 2015]); for these systems, compositionality is a theorem rather than a definition. But these

developments do not yield strategies in the sense of previously established models. Furthermore

they only deal with sequential deterministic programs, and it seems hard to extend LTS-based

techniques to give a causal account of the execution of higher-order concurrent programs.

But in fact, a powerful connection between operational and denotational semantics was already

established significantly before the above, although not then presented as such: it is Baillot’s result

[Baillot 1999] that Girard’s Geometry of Interaction for IMELL generates the strategy obtained as its

interpretation in so-called Abramsky-Jagadeesan-Malacaria (AJM) games [Abramsky et al. 2000].

As this result is one of our main inspirations, we take some time to introduce its main intuitions.

1.2 The GoI Token Machine and AJM Games
Girard’s Geometry of Interaction (GoI) was first introduced as a model construction for System F

[Girard 1989]; but it was soon realized, following work by Danos, Herbelin and Regnier [Danos et al.

1996; Danos and Regnier 1996] and Mackie [Mackie 1995] that it informed an abstract machine
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Fig. 1. The 𝜆-graph representation of a term
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Fig. 2. A token on a wire

that could be used to evaluate programs, with links with Lamping’s optimal reduction [Gonthier

et al. 1992]. We introduce this informally, on a simply-typed linear 𝜆-calculus with one atom 𝛼 .

In order to execute the GoI token machine on a term ⊢ 𝑀 : 𝐴, one usually first translates it into a

proof net in the sense of linear logic – or alternatively, to avoid relying too much on familiarity

with linear logic, into a simple 𝜆-graph: for instance, the linear 𝜆-term

⊢ (𝜆𝑓 𝛼⊸𝛼 . 𝜆𝑥𝛼 . 𝑓 𝑥) (𝜆𝑦𝛼 . 𝑦) : 𝛼 ⊸ 𝛼 (1)

may be represented by the graph shown in Figure 1. The reader should recognize in this directed

graph the structure of the term: there is one node for each application, and one node for each

abstraction. An application node receives two inputs (the function and its argument, drawn on top)

and emits one output (the result, drawn at the bottom). An abstraction node receives one input (the

“body” of the function, drawn on top) and emits two outputs: a wire for the bound variable, drawn

on the side, and a wire for the resulting function, drawn at the bottom. All wires are explicitely

labelled with a type. Finally the dangling wires match the overall typing judgment; it is the interface

with which the program will interact with its environment. One may define a rewriting theory for

such representations (though then this is more elegantly done on linear logic proof nets).

The Geometry of Interaction token machine captures execution as a token walking through this

graph, following local rules. At any point in time, the token sits on one of the wires – more precisely,

on an occurrence of an atom in the type labelling the wire. The token also has a direction: it may

follow the orientation of the wire, or go against it – we represent this as an arrow accompanying

the atom, as in Figure 2. How is execution formalized? The GoI token machine is initialized by

putting a token, going up, on the rightmost atom occurrence on the output dangling wire. This

token is then pushed around the graph following simple local rules, of which we show a few:

@

𝐴 ⊸ 𝐵 𝐴

𝐵

{
@

𝐴 ⊸ 𝐵 𝐴

𝐵
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Fig. 3. An execution of the GoI token machine
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Fig. 4. Token transitions for contraction

Here, we use 𝐴, 𝐵 to range over arbitrary types while 𝛼 is reserved to occurrences of the atom.

In the transitions shown above, tokens are shown accompanying a type 𝐴 or 𝐵, but it is meant that

they sit on a particular atom occurrence within 𝐴 or 𝐵, as e.g. in Figure 2. Each transition moves the

token to another copy of the same type, so it makes sense to require that it should sit on the same
atom occurrence as before. The reader should be able to complete the missing rules: in each node,

the “𝐴s” and the “𝐵s” are associated pairwise, and the rules simply follow this correspondence.

Following these rules, the GoI token machine on our example 𝜆-graph yields the execution depicted

in Figure 3: a token thrown on the output atom 𝛼 eventually makes its way back to the dangling

wire, on the input atom 𝛼 . This input/output behaviour is the same as observed when running

the GoI token machine on (the 𝜆-graph for) 𝜆𝑥 . 𝑥 : 𝛼 ⊸ 𝛼 , reflecting that the 𝜆-term in (1) indeed

evaluates to 𝜆𝑥 . 𝑥 : 𝛼 ⊸ 𝛼 – it is possible to read back the normal form from executions of the GoI.

Of course, the simplicity of this presentation of the GoI token machine exploits the linearity of the

language at hand. The non-linear version heavily rests on Girard’s decomposition𝐴 → 𝐵 = !𝐴 ⊸ 𝐵

of the call-by-name function type as a combination of the linear function type and the “bang” (!)

modality, marking replicable resources. Proof nets for non-linear languages then involve explicit

“contraction” nodes allowing us to link one abstracted variable to several variable occurrences:

𝑐𝐴

!𝐴 !𝐴

!𝐴

This heavily impacts the token game: tokens must carry data identifying resource accesses, and

helping route tokens around the net. These “exponential signatures” may be formalized as natural

numbers or via a simple inductive definition E ::= ℓE | 𝓇E | . . . (with elements ranged over by e
and its variants). The token game exploits this, via rules including those in Figure 4. We omit the

details, which we will not rely on in this paper, the full machine appears e.g. in [Baillot 1999].

Altogether, one “runs” a 𝜆-term by: (1) translating it to a proof net; (2) initializing the machine by

putting a token going up on a dangling wire, on a variable occurrencemwith exponential signature

e – hence the input is a pair (m, e); (3) applying the rules as long as possible. The machine may in

principle get stuck or loop forever, we say it halts if it emits a token carrying e′ going down on an

atom occurrence m′
, corresponding to a pair (m′, e′). Such pairs, called moves, form a set written

Moves. Then the GoI token machine on Γ ⊢ 𝑀 : 𝐴 initialized and executed as above yields

𝑓𝑀 : Moves ⇀ Moves ,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 24. Publication date: January 2023.
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a partial function. Now it turns out that this 𝑓𝑀 directly informs the strategy J𝑀K interpreting𝑀 in

AJM game semantics. More precisely, and as Baillot proved, the interpretation of types may be set

up so that the moves of the game JΓ ⊢ 𝐴K indeed form a subset of Moves, and that we have:

Theorem 1.1 (Baillot, 1999). Consider Γ ⊢ 𝑀 : 𝐴 any term.
Then, the strategy J𝑀K : JΓ ⊢ 𝐴K, obtained denotationally from𝑀 , comprises exactly the sequences

𝑠 = 𝑠1𝑠2 . . . 𝑠2𝑛−1𝑠2𝑛

which are valid plays on JΓ ⊢ 𝐴K and such that for all 1 ≤ 𝑖 ≤ 𝑛, we have 𝑠2𝑖 = 𝑓𝑀 (𝑠2𝑖−1).

Thus the GoI token machine generates operationally the strategy J𝑀K in AJM game semantics,

by computing the “next move” by Player (the program under scrutiny) as a (partial) function of

the previous move by Opponent (the execution environment). This simple generation mechanism

exploits that the strategies interpreting 𝜆-terms in AJM games are history-free, and only depend on

the previous move and not the rest of the play (in AJM jargon, 𝑓𝑀 is the “history-free skeleton”).

Baillot proves this for IMELL, Intuitionistic Multiplicative Exponential Linear Logic, which

includes the simply-typed 𝜆-calculus. In this restricted case, this is an elegant solution to our problem:

the strategy interpreting a term in a well-established, mainstream game semantics, normally

obtained from the term in a denotational, compositional way, is alternatively computed operationally

by executing𝑀 in the so-called “Interaction Abstract Machine” [Danos et al. 1996]. This is a great

inspiration to us, but in terms of expressivity as a programming language IMELL is somewhat

trivial – essentially the simply-typed 𝜆-calculus. Baillot’s technical toolbox does not extend beyond

IMELL: it is unclear what is the right extension of proof nets, the token machine is too sequential

and allows no memory, and even the notion of “generation of a strategy” is inadequate as the target

strategies in game semantics are no longer history-free – we need new tools.

1.3 Multi-Token GoI via Petri Nets
In this paper we aim for a result analogous to Theorem 1.1 on a far end of the expressivity spectrum:

a language we call Idealized Parallel Algol (IPA, see Section 3.1) with a combination of complex

programming language features: higher-order, recursion, concurrency, local state and semaphores.

If we are to follow Baillot’s lead, we need a notion of proof net for IPA, a GoI token machine, a

game semantics, and an appropriate notion of operational “generation” of a strategy. Concerning

the game semantics, IPA has the advantage of being well-studied: it is a cosmetic variation of

the language ICA for which Ghica and Murawski have provided an interleaving fully abstract

game model [Ghica and Murawski 2008] based on a non-alternating version of Hyland-Ong games

[Hyland and Ong 2000]. More recently, Castellan and Clairambault [Castellan and Clairambault

2020] have refined it into a causal fully abstract game model based on concurrent games on event

structures [Castellan et al. 2017]. The concurrent game model projects onto Ghica and Murawski’s

[Castellan and Clairambault 2020] but is more fine-grained: it carries all information about non-

deterministic branching and causal dependence and independence between computational events,

in the style of true concurrency models. It also deals with replication in a way that is analogous

with AJM games, using copy indices that reflect the exponential signatures of the token machine.

On the GoI side, token machines were extended in multiple ways: they were redeveloped in

a coalgebraic setting supporting a range of algebraic effects (e.g. nondeterminism, probability,

exceptions, global state, interactive I/O, etc.) [Hoshino et al. 2014; Muroya et al. 2016]; and for

quantitative effects up to quantum primitives [Dal Lago et al. 2017; Hasuo and Hoshino 2017].

They were extended to multi-token machines, for Linear Logic [Laurent 2001] or for functional

programs [Dal Lago et al. 2014, 2015] (including in call-by-value) or interaction nets [Dal Lago

et al. 2014]; up to multiport interaction nets [Dal Lago et al. 2017] which encompasses concurrent

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 24. Publication date: January 2023.
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Petri net Event structure

•

fork

𝑎 𝑏

join

fork

𝑎 𝑏

join

Fig. 5. Parallelism

Petri net Event structure

•

𝑎 𝑏

𝑎 𝑏

Fig. 6. Non-determinism

behaviour through the translation of the 𝜋-calculus [Mazza 2005]. In principle, one could obtain a

multi-token machine for IPA by translating terms to the 𝜋-calculus and then multiport interaction

nets. But generalizing Theorem 1.1 would require all translations to preserve the causal semantics,

and the state of the art leaves us unprepared for that. Instead we design a multi-token machine

operating on a structure directly obtained from the IPA source code. It is not so surprising that

such a machine can be designed, but its correctness is a challenge: GoI correctness proofs usually

rest on proof-theoretic techniques, e.g. exploiting the cut elimination result of proof nets or via

realizability models, none of which are available for higher-order shared memory concurrency. To

solve that we adopt a novel methodology: the adequacy of our multi-token GoI will leverage recent

progress in concurrent game semantics of programming languages, via our unfolding theorem.

So how shall we obtain a GoI token machine for IPA? We cannot follow the traditional route

exposed before, as it is unclear what would be a fitting notion of proof net. Instead, our idea is

to skip proof nets altogether, and directly translate programs into graphs already equipped with
the token game. Ignoring at first the exponential signatures, it should be clear that the proof nets

of Section 1.2 equipped with the token game are finite state machines: the states are simply the

possible positions of the token on the proof net. As IPA is a concurrent language, its token machine

must have multiple tokens: this invites a translation of programs into Petri nets.

Petri Nets. Petri nets are multi-token finite automata; they are one of the most well-established

“truly concurrent” models in concurrency theory; their use is widespread in computer science and

beyond. Roughly speaking, a Petri net is a bipartite directed graph, whose nodes are either locations
(drawn as circles), or transitions (drawn as rectangles). Locations may contain one or several tokens,
denoted as black dots for now. Locations with edges to a transition 𝑡 are called the preconditions of
𝑡 , while locations with an edge from 𝑡 are its postconditions. The token game consists in firings

• •

𝑡 { 𝑡

• •

which can occur if all pre-conditions are inhabited – the effect is to remove one token on each

pre-condition (unlike what the diagram suggests, there may be several), and add one token on each

post-condition. From this simple rule emerges complex concurrent phenomena, reviewed now. In

Figure 5 we show a Petri net with a simple parallel behaviour: the initial transition fork enables

transitions a and b, which occur completely independently of each other. Once both have fired, join
may occur. This behaviour may equivalently be displayed as the partial order drawn on the right

hand side. In Figure 6, we show a net with a simple non-deterministic behaviour as both transitions

a and b compete for the same token. To draw this in partial order style, we need an additional

conflict relation, pictured as a wiggly line, which indicates that a and b are incompatible – together,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 24. Publication date: January 2023.
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Petri net Event structure

•

loop

𝑎

loop

loop

loop

...

𝑎

𝑎

𝑎

Fig. 7. Recursion

Petri net Event structure

𝑎 𝑏 𝑐

• •

𝑑

𝑑

𝑎 𝑏 𝑐

𝑑 𝑑

𝑎 𝑏 𝑐

𝑑 𝑑

𝑎 𝑏 𝑐

𝑑 𝑑

Fig. 8. Loops with conflict

the partial order and the conflict relation form an event structure [Winskel 1986]. Petri nets are

folded structures: they may comprise loops. Just like possibly cyclic finite transition systems unfold

to infinite trees, Petri nets unfold to event structures [Hayman and Winskel 2008; Nielsen et al.

1981]: this is illustrated in Figure 7 and in the presence of other phenomena in Figure 8.

In our work, a program will be translated to a Petri net and the matching concurrent strategy will

be its unfolding. But IPA is not a linear or affine language. Looking back at the GoI token machine

of Section 1.2, it appears that tokens must carry an additional piece of data: an exponential signature.
Petri nets where the tokens carry an additional data are called coloured Petri nets: there, tokens
have a distinguished identity formalized as an element of a given set of colours, and transitions

𝑐1 . . . 𝑐𝑛

𝑡 {

. . .

𝑡

𝑐′
1

𝑐′
𝑘

specify the new colours via a transition function, e.g. here 𝛿 ⟨𝑡⟩(𝑐1, . . . , 𝑐𝑛) = (𝑐′
1
, . . . , 𝑐′

𝑘
).

In this paper we introduce Petri structures, certain coloured Petri nets, and aim to translate

programs to Petri structures systematically. But how shall we do that?

1.4 Compositional Construction of Coloured Petri Nets
Just like the translation of a term to a proof net, we shall translate programs compositionally, so

that the net reflects the structure of the term. It is convenient to set this up as for a denotational

semantics: we provide Petri structures for the basic building blocks of IPA, and assemble them by

equipping Petri structures with adequate categorical-like operations. Some existing works already

propose ways to compose Petri nets: notably, the open Petri nets of [Baez and Master 2020], note

also the compositional unfolding of coloured Petri nets of [Chatain and Fabre 2010].

In these works, Petri nets communicate via locations: the external interface of an open Petri net

consists in certain locations on which tokens may be exchanged with the environment. In contrast,

our Petri structures communicate via transitions: the external interface of a Petri structure consists
in distinguished “visible” transitions via which the net can receive (for negative transitions) and
send (for positive transition) tokens to the outside world. Petri structures “from 𝐴 to 𝐵” have shape

𝐴 𝐵

m𝑘

m2

m1

m′
𝑛

m′
2

m′
1
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𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝑛

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝑛

;

𝐴 𝐵 𝐶

=

𝐴 𝐵 𝐶

Fig. 9. Composition of Petri nets

where𝐴 and 𝐵 respectively inform sets of addresses {m1, . . . ,m𝑘 } and {m′
1
, . . . ,m′

𝑛}. This is inspired
by the connection of the traditional GoI token machine with game semantics: the m𝑖s and m′

𝑖s

correspond to occurrences of atoms in dangling wires. In Section 1.2, receiving an Opponent move

(m, e) puts a new token with colour e on the dangling wire corresponding to m – we regard this as

firing the negative transitionm with input e from the environment, introducing a new token inside

the net. Thus we regard visible transitions as channels using which the net can communicate with

the outside world: firing a negative transition matching m receives a token e on channel m and

(usually, but not necessarily) puts it in an internal location; firing a positive transition matching m
with token e on the precondition (usually) sends e to the outside world on channel m.

These Petri structures can be composed simply by synchronizing them on their matching visible

transitions, as illustrated in Figure 9 – see the formal definition in Section 2.2.2. Formerly visible

transitions synchronize into an internal transition which we consider to have a new neutral (0)
polarity, allowing tokens to flow silently between the two composed Petri structures.

1.5 Contributions and Outline
Contributions. Firstly, we give a translation of IPA into certain coloured Petri nets called Petri

structures. This is done as a translation J−KPStruct : IPA → PStruct phrased as a denotational

interpretation by induction on syntax. For 𝑀 a program, J𝑀K is regarded as the multi-token

machine loaded with𝑀 . We define a token game, which – as a corollary from further results of the

paper – satisfies adequacy w.r.t. the reference operational semantics of IPA (Theorem 3.10).

Secondly, we construct an unfolding to Strat, the concurrent games causal model of IPA [Castellan

and Clairambault 2020]. But we cannot go directly from PStruct to Strat: morphisms in PStruct are
arbitrary nets whose behaviour need not be semantically sensible. In contrast, in Strat, programs

yield strategies which must respect the rules of a game, derived from the type of the program. To

bridge the gap, we define a new (pre)category PStrat, a hybrid between Petri structures and game

semantics. Its objects are games (as in Strat) and its morphisms are strategic Petri structures or Petri
strategies, whose behaviour abides by the game and that satisfy an additional safety condition. This

gives a second interpretation J−KPStrat : IPA → PStrat, but we insist that Petri strategies are simply

Petri structures satisfying additional invariants: J𝑀KPStruct and J𝑀KPStrat are the same net, and there

is an identity-on-morphisms F : PStrat → PStruct preserving the interpretation.

We then extend the unfolding of Petri nets to an interpretation-preserving functor

𝒰 : PStrat → Strat ,
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the main challenge being that unfolding is compatible with composition. Altogether we get

IPA
J−KPStruct

yy
J−KPStrat
��

J−KStrat

$$
PStruct PStrat

F
oo

𝒰

// Strat

(2)

a commuting diagram letting us deduce adequacy of GoI from the adequacy theorem in Strat. But
we regard (2) as a much stronger adequacy theorem: this diagram expresses that even for open,

higher-order terms, the causal behaviour specified operationally by the GoI multi-token machine

coincides with the behaviour specified denotationally by the concurrent games semantics in Strat.
As a final contribution, the multi-token machine for IPA is fully implemented and available at

https://ipatopetrinets.github.io/.

Outline. In Section 2 we introduce Petri structures and the core operations on them. In Section 3,

we recall IPA and provide Petri structures for its primitives, altogether providing our interpretation.

In Section 4, we briefly recall concurrent games, introduce PStrat and describe the unfolding. In

Section 5 we describe our implementation, and in Section 6 we conclude.

2 PETRI STRUCTURES
In this section we introduce our representation of programs called Petri structures and show their

main compositionality properties. In Section 2.1, we give the formal definition of Petri structures.

In Section 2.2, we show that Petri structures naturally form a (pre)category, i.e. a category without

unit laws. In Section 2.3, we discuss how to represent nonlinear programs.

2.1 Definition and Examples
The definition of Petri structures depends on two parameters: firstly, a set Tok of tokens. This is
the set of colours, the same for all locations. Secondly, a set M of addresses, serving the role of

the “multiplicative addresses” from the introduction. Each m ∈ M has a polarity pol(m) ∈ {−, +},
specifying whether it is a label for actions by the program (+) or the environment (−). In our

interpretation these two sets have a concrete definition, which we shall postpone until later on.

As a convention we write ⊎ for set-theoretic union, when it is assumed or known disjoint.

Definition 2.1. A Petri structure on𝑀 ⊆𝑓 M is a tuple

𝝈 = ⟨L,T = T + ⊎ T 0 ⊎ T −, 𝜕, pre, post, 𝛿⟩
where L is a finite set of locations, T is a finite set of transitions sorted by polarity +, 0 or −,

𝜕 is a labeling T + ⊎ T − → 𝑀 preserving polarity,

pre is a function T → P(L) of pre-conditions,
post is a function T → P(L) of post-conditions,

such that pre(𝑡−) = ∅, post(𝑡+) = ∅ for all transitions with the indicated polarity; and 𝛿 assigns to

any 𝑡 ∈ T a partial function, the transition function, typed according to:

𝛿 ⟨𝑡0⟩ : cond(pre(𝑡)) ⇀ cond(post(𝑡)) ,
𝛿 ⟨𝑡−⟩ : Tok ⇀ cond(post(𝑡)) ,
𝛿 ⟨𝑡+⟩ : cond(pre(𝑡)) ⇀ Tok ,

where cond(𝐿) = Tok𝐿 is the set of conditions of support 𝐿 –wewrite cond the set of all conditions.

Hopefully, the earlier discussion makes this definition natural. To illustrate it, we start by

exhibiting a few Petri structures with limited interaction with the environment.
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Q−

1

A+

Fig. 10

Q−

1 2

𝑎 𝑏

3 4

𝑐 𝑑

5 6

A+

𝛿 ⟨Q⟩ (•) = {•@1, •@2}
𝛿 ⟨𝑎⟩ ({•@1}) = {✓@3}
𝛿 ⟨𝑏⟩ ({•@2}) = {✓@4}
𝛿 ⟨𝑐⟩ ({𝑣@3}) = {𝑣@5}
𝛿 ⟨𝑑⟩ ({𝑣@4}) = {𝑣@6}
𝛿 ⟨A⟩ ({✓@5

, 𝑣@6}) = 𝑣

Fig. 11. Petri structure for skip ∥ skip : U

Q−

1 3

w

4

r

5

2

A+

𝛿 ⟨Q⟩ (•) = {1@1, 0@2, •@3}
𝛿 ⟨w⟩({𝑛@1, 𝑝@2}) = {✓@4

, 𝑛@2}
𝛿 ⟨r⟩ ({𝑛@2, •@3}) = {𝑛@2, 𝑛@5}
𝛿 ⟨A⟩ ({✓@4

, 𝑛@5}) = iszero(𝑛)

Fig. 12. Petri structure for coin : B

2.1.1 Closed Petri structures. This limited interaction will take place via two addresses Q (negative,

for “Question” – the channel used by the environment to initiate computation) and A (positive, for

“Answer” – the channel used by the program to return a value); so we temporarily fixM = {Q−, A+}.
Our first examples include no duplication of resources, hence there is no need for exponential

signatures yet. However, and unlike for the plain 𝜆-calculus of Section 1.2, we will need tokens to

carry values that may arise during computation. We define the data signatures

D ::= 𝑛 | tt | ff | ✓ | • (3)

that reflect the values of ground datatypes in IPA, with • a special dummy data, used to fill the data

field for tokens with no defined value. We temporarily fix Tok = D.

We draw a Petri structure 𝝈 following the conventions introduced earlier: locations are circles,
transitions are boxes – note that in our diagrams in the paper, the integers appearing in locations

are not tokens, but simply identifiers for the locations. Altogether the graph drawn carries the

information of L, T , pre and post, while 𝛿 is a separate transition table. Whenever unambiguous,

we name visible transitions simply as their label via 𝜕. If 𝐿 = {𝑙1, . . . , 𝑙𝑛} ⊆ L, a condition (t𝑖 )𝑙𝑖 ∈𝐿 ∈
cond(𝐿) is written {t@𝑙1

1
, . . . , t@𝑙𝑛

𝑛 } where each 𝑙𝑖 ∈ 𝐿 appears exactly once. An individual t@𝑙
(for

t ∈ Tok, 𝑙 ∈ L) is called a token-in-location, or tokil – we write TokIL(𝝈) for the set of tokils.
We start with the Petri structure skip in Figure 10: it shall interpret the constant skip : U of IPA,

the unique value of type U, which performs no action. Upon being triggered by receiving • on Q− ,
the net prepares data ✓ in location 1 by 𝛿 ⟨Q−⟩(•) = {✓@1}. This enables A+, which outputs the

value ✓ via 𝛿 ⟨A+⟩({𝑣@1}) = 𝑣 . Note that in this transition, 𝑣 stands for any token, so – for now –

any data value in D. Next, Figure 11 presents a parallel evaluation of skip ∥ skip. When triggered

the net throws two tokils •@1
and •@2

corresponding to evaluation requests for the two constants.

Both tokils are forwarded to an independent copy of the structure of Figure 10. Upon receiving the

two values in locations 5 and 6, the last transition fires and outputs ✓ on A+. The example – or its

closed variant obtained by the interpretation – may be run here.

Petri nets can also represent shared state: Figure 12 shows the closed Petri structure for the term

⊢ newref 𝑟 in (𝑟 := 1 ∥ iszero !𝑟 ) : B (4)

written coin, a non-deterministic choice obtained by setting up a race in the memory (by convention

newref initializes 𝑟 to 0). Though we have not yet introduced IPA, we hope this example is clear –

in particular it is worth pointing out our nonstandard typing rule for parallel composition, which

allows us to put a program of unit type in parallel with a program of arbitrary ground type.

Upon initialization (by receiving • on Q−), the net throws three tokens: the tokil 0@2
initializes

the variable to 0; the tokil 1
@1

is a write request for the value 1; and •@3
is a read request. There is a

race between the read r and the write w: if r wins, the value in location 5 ends up being 0. If w wins

then r reads value 1 instead. The final transition waits for the write acknowledgment and the result

of the read to send the value read on A+. This example may be run in the implementation here.
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𝓇⊢Q

1

ℓ⊢𝒾
𝑔
&
𝓇⊸Q

ℓ⊢𝒾
𝑔
&
ℓ⊸Q

2

ℓ⊢𝒾
𝑥
&
Q

ℓ⊢𝒾
𝑥
&
A

3

ℓ⊢𝒾
𝑔
&
ℓ⊸A

ℓ⊢𝒾
𝑔
&
𝓇⊸A

4

𝓇⊢A

𝛿 ⟨𝓇⊢Q⟩ (•) = {•@1}
𝛿 ⟨ℓ⊢𝒾𝑔& ℓ⊸Q⟩(•) = {•@2}
𝛿 ⟨ℓ⊢𝒾𝑥& A⟩ (✓) = {✓@3}
𝛿 ⟨ℓ⊢𝒾𝑔& 𝓇⊸A⟩(✓) = {✓@4}

𝛿 ⟨ℓ⊢𝒾𝑔& 𝓇⊸Q⟩({•@1}) = •
𝛿 ⟨ℓ⊢𝒾𝑥& Q⟩ ({•@2}) = •
𝛿 ⟨ℓ⊢𝒾𝑔& ℓ⊸A⟩({✓@3}) = ✓
𝛿 ⟨𝓇⊢A⟩ ({✓@4}) = ✓

Fig. 13. An open Petri structure for 𝑔 : U→ U, 𝑥 : U ⊢ 𝑔 𝑥 : U

2.1.2 Open Petri structures. The addresses Q− and A+ are enough to represent the limited interactive

behaviour of closed programs of ground type, but open programs will require a wider range of

addresses. For instance, Petri structures corresponding to programs typed with𝑔 : U→ U, 𝑥 : U ⊢ U
will commucate with their environment through the following addresses:

𝑀 = {ℓ⊢𝒾𝑔& ℓ⊸Q−, ℓ⊢𝒾
𝑔
&
ℓ⊸A

+, ℓ⊢𝒾
𝑔
&
𝓇⊸Q

+, ℓ⊢𝒾
𝑔
&
𝓇⊸A

−, ℓ⊢𝒾
𝑥
&
Q+, ℓ⊢𝒾

𝑥
&
A−, 𝓇⊢Q

−, 𝓇⊢A
+}

where the injections ℓ⊢ and 𝓇⊢ indicate the two sides of ⊢; 𝒾𝑥
&
and 𝒾

𝑔
&
point to a variable name; ℓ⊸

and 𝓇⊸ point to either side of an arrow →; and Q and A stand for “Question” (call) or “Answer”

(return). Without Q and A, each element of 𝑀 corresponds to an occurrence of a base type in

𝑔 : U→ U, 𝑥 : U ⊢ U, and each such occurrence admits a call (Q) and a return (A).
Based on this set of addresses𝑀 , we show in Figure 13 the Petri structure for 𝑔 : U→ U, 𝑥 : U ⊢

𝑔 𝑥 : U. Upon initialization when receiving token • on 𝓇⊢Q
−
, the net interrogates the return value of

𝑔 by sending • on ℓ⊢𝒾𝑔& 𝓇⊸Q+. If 𝑔 calls its argument with ℓ⊢𝒾
𝑔
&
ℓ⊸ Q− , the net interrogates the return

value of 𝑥 . If 𝑥 returns a value with ℓ⊢𝒾
𝑥
&
A− , this value is propagated to the argument of 𝑔. Finally, if

𝑔 returns with ℓ⊢𝒾
𝑔
&
𝓇⊸A, the value is forwarded to the right hand side via 𝓇⊢A

+
. Readers familiar with

proof nets will recognize the axiom links in the wiring of Figure 13, readers familiar with game

semantics will recognize pairs of Opponent moves and induced Player responses. This example

may be run here — for clarity the implementation displays the hierarchical relationship between

calls and returns, even though those are not part of the Petri structure.

The set𝑀 used for this example is a subset of the full set of addresses, defined as

M ::= ℓ⊗M | 𝓇⊗M | ℓ⊢M | 𝓇⊢M | ℓ⊸M | 𝓇⊸M | 𝒾𝑥
&
M | 𝓌VM | 𝓇VM | ℊSM | 𝓇SM | Q | A ,

for 𝑥 any element of a countable set Var of variables – we use m to range over addresses. These

addresses allow us to represent explicitly the tags in disjoint union: for instance, the tensor of two

set of addresses𝑀 and𝑀 ′
is𝑀 ⊗ 𝑀 ′ = ℓ⊗ (𝑀) ⊎ 𝓇⊗ (𝑀 ′) where e.g. ℓ⊗ (𝑀) = {ℓ⊗𝑚 | 𝑚 ∈ 𝑀}. Other

constructions are used similarly; the constructors indexed by V and S correspond to addresses

for reference and semaphore types. The polarity of addresses is defined as pol(Q) = −, pol(A) =
+, pol(ℓ⊢m) = −pol(m), pol(ℓ⊸m) = −pol(m), and preserved in all other cases.

2.2 The Precategory PStruct

At the core of our approach is the composition of Petri structures, and the corresponding identities

– one might expect those to form a category. We shall see that though composition is associative

(up to isomorphism), the identity laws fail (even up to isomorphism), calling for the next notion:

2.2.1 Precategories. It is good to keep in mind that Petri structures should really be regarded not

as a semantics, but as an alternative representation of syntax. So composing a Petri structure with

the identity plugs it into a purely forwarder net which, though not changing the behaviour (as
made formal by the unfolding in Section 4), does add new transitions and locations.

Thus we get a structure with associativity but no identity laws, a precategory:

Definition 2.2. A (small) precategory C is given by: (1) a set of objects C0; (2) for each𝐴, 𝐵 ∈ C0

a set of morphisms C(𝐴, 𝐵); (3) for each 𝐴 ∈ C0, an identity id𝐴 ∈ C(𝐴,𝐴); and (4) for each
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𝑓 ∈ C(𝐴, 𝐵) and 𝑔 ∈ C(𝐵,𝐶), a composition 𝑔 ◦ 𝑓 ∈ C(𝐴,𝐶); which is associative, i.e. we have

ℎ ◦ (𝑔 ◦ 𝑓 ) = (ℎ ◦ 𝑔) ◦ 𝑓
for all 𝑓 ∈ C(𝐴, 𝐵), 𝑔 ∈ C(𝐵,𝐶) and ℎ ∈ C(𝐶, 𝐷).

A category is in particular a precategory, and the definition of functors between categories

applies transparently to precategories. We insist that we do not demand id𝐵 ◦ 𝑓 = 𝑓 ◦ id𝐴 = 𝑓 . One

might wonder what it means to call something an “identity” without identity laws. The point is

that functors must still preserve these “identities”, so in particular a functor from a precategory to

a category (such as𝒰 in this paper) will send id𝐴 to an actual identity with identity laws.

Before defining the precategory PStruct, we need one final component:

Definition 2.3. Consider 𝝈 ,𝝉 two Petri structures on 𝑀 ⊆ M. An isomorphism 𝜑 : 𝝈 � 𝝉
consists of bijections 𝜑L : L𝝈 ≃ L𝝉 and 𝜑T : T𝝈 ≃ T𝝉 compatible with all structure.

Two Petri structures 𝝈 and 𝝉 on𝑀 are isomorphic, written 𝝈 � 𝝉 , if there is an (unspecified)

isomorphism 𝜑 : 𝝈 � 𝝉 . This is an equivalence relation on Petri structures on𝑀 . Now we set:

Definition 2.4. The precategory PStruct has: (1) objects, all finite subsets ofM; (2) morphisms

from𝑀 to 𝑁 , isomorphism classes of Petri structures on𝑀 ⊢ 𝑁 = ℓ⊢ (𝑀) ⊎ 𝓇⊢ (𝑁 ); (3) composition

and identities, described respectively in Sections 2.2.2 and 2.2.3.

Though morphisms of PStruct are isomorphism classes of Petri structures, in the sequel we shall

treat them as concrete Petri structures, keeping in mind the additional proof obligation that all

constructions must preserve isomorphisms (which is always straightforward). Thus we may write

𝝈 ∈ PStruct(𝑀, 𝑁 ) for 𝝈 a concrete Petri structure, or simply 𝝈 : 𝑀 ⊢ 𝑁 .

As stated before, we shall formulate the translation of IPA to Petri structures as an interpretation of

programs in PStruct. While this interpretation adopts the language andmethodology of denotational

semantics, it is not a denotational semantics in the popular sense of being an invariant of reduction.

The Petri structure of a term certainly changes under reduction: the first symptom of that is the

fact that identity laws are missing in PStruct. We argue that despite the missing equations the

translation remains compositional, in the sense that the translation of a compound expression is a

function of the interpretation of its components. It is compositional in the same sense that e.g. the
translations of the 𝜆-calculus to proof nets or to the 𝜋-calculus are compositional.

2.2.2 Composition. Fix two Petri structures 𝝈 ∈ PStruct(𝑀, 𝑁 ) and 𝝉 ∈ PStruct(𝑁, 𝑃); we aim to

define 𝝉 ⊙ 𝝈 ∈ PStruct(𝑀, 𝑃), their composition. Composing 𝝈 and 𝝉 amounts to synchronizing

𝝈 ’s visible transitions on the right with 𝝉 ’s visible transitions on the left:

Definition 2.5. Visible 𝑡𝝈 ∈ T +
𝝈 ⊎T −

𝝈 and 𝑡𝝉 ∈ T +
𝝉 ⊎T −

𝝉 are synchronizable if they have opposite
polarities; and 𝜕𝝈 (𝑡𝝈 ) = 𝓇⊢m, 𝜕𝝉 (𝑡𝝉 ) = ℓ⊢m for some m ∈ 𝑁 . We define the set of transitions:

T𝝉 ⊛ T𝝈 = {ℓ⊙ (𝑡) | 𝑡 ∈ T 0

𝝈 ⊎ T 𝑝,ℓ⊢
𝝈 }

⊎ {𝓇⊙ (𝑡) | 𝑡 ∈ T 0

𝝉 ⊎ T 𝑝,𝓇⊢
𝝉 }

⊎ {𝑡𝝈 ⊛ 𝑡𝝉 | 𝑡𝝈 ∈ T𝝈 , 𝑡𝝉 ∈ T𝝉 synchronizable.}
with T 𝑝,𝒾

𝝈 transitions of polarity 𝑝 ∈ {−, +} and label 𝜕(𝑡) = 𝒾m for m ∈ M; likewise for T 𝑝,𝒾
𝝉 .

Intuitively, T𝝉 ⊛ T𝝈 imports an unsynchronized 𝑡 from 𝝈 as ℓ⊙ (𝑡), an unsynchronized 𝑡 from 𝝉 as

𝓇
⊙ (𝑡), but also a new transition 𝑡𝝈 ⊛ 𝑡𝝉 for every synchronizable pair. Here, ℓ⊙ and 𝓇

⊙
are formal

injections used to keep transitions from 𝝈 and 𝝉 disjoint. From now on, if 𝑋 and 𝑌 are sets, we

write 𝑋 +⊙ 𝑌 = ℓ⊙ (𝑋 ) ⊎ 𝓇⊙ (𝑌 ). We shall use the same convention with other tags later on – or

simply write 𝑋 +𝑌 = ℓ (𝑋 ) ⊎ 𝓇(𝑌 ). Now, we may finally define the composition 𝝉 ⊙ 𝝈 : 𝑀 ⊢ 𝑃 as:
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pre𝝉⊙𝝈 (ℓ⊙ (𝑡)) = ℓ⊙ (pre𝝈 (𝑡))
pre𝝉⊙𝝈 (𝓇⊙ (𝑡)) = 𝓇

⊙ (pre𝝉 (𝑡))
pre𝝉⊙𝝈 (𝑡+ ⊛ 𝑡−) = ℓ⊙ (pre𝝈 (𝑡+))
pre𝝉⊙𝝈 (𝑡− ⊛ 𝑡+) = 𝓇

⊙ (pre𝝉 (𝑡+))

post𝝉⊙𝝈 (ℓ⊙ (𝑡)) = ℓ⊙ (post𝝈 (𝑡))
post𝝉⊙𝝈 (𝓇⊙ (𝑡)) = 𝓇

⊙ (post𝝉 (𝑡))
post𝝉⊙𝝈 (𝑡+ ⊛ 𝑡−) = 𝓇

⊙ (post𝝉 (𝑡−))
post𝝉⊙𝝈 (𝑡− ⊛ 𝑡+) = ℓ⊙ (post𝝈 (𝑡−))

Fig. 14. Pre-conditions and post-conditions for the composition

𝓇⊢Q
−

1 2

ℓ⊢ℓ⊗Q
+ ℓ⊢𝓇⊗Q

+

ℓ⊢ℓ⊗A
− ℓ⊢𝓇⊗A

−

3 4

𝓇⊢A
+

⊙

𝓇⊢ℓ⊗Q
−

𝓇⊢𝓇⊗Q
−

1 2

𝓇⊢ℓ⊗A
+

𝓇⊢𝓇⊗A
+

Fig. 15. A composition yielding Figure 11

𝓇⊢𝓇⊸Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢𝓇⊸A
−

2

𝓇⊢𝓇⊸A
+

ℓ⊢ℓ⊸Q
−

3

𝓇⊢ℓ⊸Q
+

𝓇⊢ℓ⊸A
−

4

ℓ⊢ℓ⊸A
+

Fig. 16. The Petri structure cc !N⊸N

Definition 2.6. We setL𝝉⊙𝝈 = L𝝈 +⊙L𝝉 ; T𝝉⊙𝝈 = T𝝉 ⊛T𝝈 ; T 𝑝

𝝉⊙𝝈 = T 𝑝,ℓ⊢
𝝈 +⊙T 𝑝,𝓇⊢

𝝉 where 𝑝 ∈ {+,−};
𝜕𝝉⊙𝝈 (ℓ⊙ (𝑡)) = 𝜕𝝈 (𝑡) and 𝜕𝝉⊙𝝈 (𝓇⊙ (𝑡)) = 𝜕𝝉 (𝑡). Conditions are in Figure 14, and:

𝛿𝝉⊙𝝈 ⟨ℓ⊙ (𝑡)⟩(ℓ⊙ (𝛼)) = ℓ⊙ (𝛿𝝈 ⟨𝑡⟩(𝛼))
𝛿𝝉⊙𝝈 ⟨𝓇⊙ (𝑡)⟩(𝓇⊙ (𝛽)) = 𝓇

⊙ (𝛿𝝉 ⟨𝑡⟩(𝛽))
𝛿𝝉⊙𝝈 ⟨𝑡+ ⊛ 𝑡−⟩(ℓ⊙ (𝛼)) = 𝓇

⊙ ((𝛿𝝉 ⟨𝑡−⟩ ◦ 𝛿𝝈 ⟨𝑡+⟩)(𝛼))
𝛿𝝉⊙𝝈 ⟨𝑡− ⊛ 𝑡+⟩(𝓇⊙ (𝛽)) = ℓ⊙ ((𝛿𝝈 ⟨𝑡−⟩ ◦ 𝛿𝝉 ⟨𝑡+⟩)(𝛽))

with ℓ⊙, 𝓇⊙
applied to 𝛼 ∈ cond𝝈 , 𝛽 ∈ cond𝝉 by retagging locations, i.e. ℓ⊙ (𝛼) = {(s, d)@ℓ⊙ (𝑙 ) |

(s, d)@𝑙 ∈ 𝛼} ∈ cond𝝉⊙𝝈 and 𝓇
⊙ (𝛽) = {(s, d)@𝓇⊙ (𝑙 ) | (s, d)@𝑙 ∈ 𝛽} ∈ cond𝝉⊙𝝈 .

We show in Figure 15 an example composition, yielding (up to isomorphism) the structure of

Figure 11. Notice how the two copies of Figure 10 glue together the disconnected components – for

calls and returns – of the left hand side operand.

Runs on 𝝉 ⊙ 𝝈 happen as follows: at first, the token game is played independently in 𝝈 and 𝝉 . If
𝝈 wishes to play a positive transition on the right (resp. 𝝉 wishes to play a positive transition on

the left), it synchronizes with a matching negative transition on the other side – if it exists. The

resulting (neutral) synchronized transition has transition function the composite of the synchronized

transitions. The effect is that tokens “jump” between 𝝈 and 𝝉 , following the control flow.

2.2.3 The copycat Petri structure. Next, PStruct requires an “identity”: the copycat Petri structure.
Copycat exchanges tokens between left and right, forwarding negative moves on either side to the

matching positive move on the other side, keeping tokens otherwise unchanged.

Definition 2.7. For𝑀 ⊆ M finite, we define the copycat Petri structure on𝑀 , written cc𝑀 . Its

locations are L cc𝑀 = 𝑀 , its transitions are Tcc𝑀 = 𝑀 × {ℓ, 𝓇} with polarities as in

T +
cc𝑀 = (𝑀+ × {𝓇}) ⊎ (𝑀− × {ℓ})

T −
cc𝑀 = (𝑀− × {𝓇}) ⊎ (𝑀+ × {ℓ})

and no neutral transition, for𝑀+ = {m ∈ 𝑀 | pol(𝑚) = +}, and likewise for𝑀−
. These transitions

are mapped to addresses with 𝜕(m, ℓ) = ℓ⊢m and 𝜕(m, 𝓇) = 𝓇⊢m; we set pre(m+, 𝓇), pre(m−, ℓ),
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pre𝝈⊗𝝉 (ℓ⊗ (𝑡)) = ℓ⊗ (pre𝝈 (𝑡))
pre𝝈⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇

⊗ (pre𝝉 (𝑡))
post𝝈⊗𝝉 (ℓ⊗ (𝑡)) = ℓ⊗ (post𝝈 (𝑡))
post𝝈⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇

⊗ (post𝝉 (𝑡))

Fig. 17. Pre-conditions and post-conditions for the tensor operation

post(m−, 𝓇), post(m+, ℓ) to {m} and pre and post returning ∅ elsewhere. Finally:

𝛿 ⟨(m+, 𝓇)⟩({(s, d)@m}) = (s, d)
𝛿 ⟨(m−, ℓ)⟩({(s, d)@m}) = (s, d)

𝛿 ⟨(m−, 𝓇)⟩(s, d) = {(s, d)@m}
𝛿 ⟨(m+, ℓ)⟩(s, d) = {(s, d)@m} ,

altogether giving c𝑀 : 𝑀 ⊢ 𝑀 , a Petri structure from𝑀 to𝑀 .

As an example, we show in Figure 16 the Petri structure cc !N⊸N, writing !N ⊸ N for the set

{ℓ⊸Q+, ℓ⊸A−, 𝓇⊸Q−, 𝓇⊸A+} which shall arise as the interpretation of N→ N.
Composition is associative up to isomorphism, making PStruct a precategory. However, com-

posing with copycat yields a structure with strictly more nodes – copycat will be neutral for

composition only after unfolding as it will unfold to the copycat strategy, see Section 4.

2.2.4 Tensor. Another construction at the core of categorical models of programming languages is

the tensor operation, which we now define for Petri structures:

Definition 2.8. Consider 𝝈 ∈ PStruct(𝑀1, 𝑁1) and 𝝉 ∈ PStruct(𝑀2, 𝑁2).
We set L𝝈⊗𝝉 = L𝝈 +⊗ L𝝉 ; T𝝈⊗𝝉 = T𝝈 +⊗ T𝝉 with T 𝑝

𝝈⊗𝝉 = T 𝑝
𝝈 +⊗ T 𝑝

𝝉 for 𝑝 ∈ {+,−};

𝜕𝝈⊗𝝉 (ℓ⊗ (𝑡)) = ℓ⊢ℓ⊗m (𝜕𝝈 (𝑡) = ℓ⊢m)
𝜕𝝈⊗𝝉 (ℓ⊗ (𝑡)) = 𝓇⊢ℓ⊗m (𝜕𝝈 (𝑡) = 𝓇⊢m)
𝜕𝝈⊗𝝉 (𝓇⊗ (𝑡)) = ℓ⊢𝓇⊗m (𝜕𝝉 (𝑡) = ℓ⊢m)
𝜕𝝈⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇⊢𝓇⊗m (𝜕𝝉 (𝑡) = 𝓇⊢m)

pre- and post-conditions in Figure 17, and for the transition table we set:

𝛿𝝈⊗𝝉 ⟨ℓ⊗ (𝑡)⟩(ℓ⊗ (𝛼)) = ℓ⊗ (𝛿𝝈 ⟨𝑡⟩(𝛼))
𝛿𝝈⊗𝝉 ⟨𝓇⊗ (𝑡)⟩(𝓇⊗ (𝛼)) = 𝓇

⊗ (𝛿𝝉 ⟨𝑡⟩(𝛼))

with ℓ⊗, 𝓇⊗
applied on conditions as in Definition 2.6. This yields 𝝈 ⊗𝝉 ∈ PStruct(𝑀1⊗𝑀2, 𝑁1⊗𝑁2).

This simply puts 𝝈 and 𝝉 side by side without interaction. As an example, the Petri structure on

the right hand side of the composition symbol in Figure 15 is 𝝈 ⊗ 𝝈 for 𝝈 in Figure 10.

2.3 Exponentials
It is simple to complete the ingredients on Petri structures introduced so far into what could be a

symmetric monoidal closed precategory (we lack currying and structural morphisms), introduced in

Appendix B), sufficient to interpret a linear 𝜆-calculus – the resulting interpretation would yield a

Petri structure that is very close to the GoI token machine described for the linear 𝜆-calculus in

Section 1.2. However, we have yet to deal with the constructions relative to replication of resources.

2.3.1 Tokens. As in traditional GoI, we enrich tokens with exponential signatures so as to be able

to address distinct copies of a single resource. This leads us to our definitive notion of tokens:

Definition 2.9. The set Tok of tokens is Tok = E∗ × D, for D the data signatures from (3),

E ::= ℓ
!
E | 𝓇

!
E | ⟨E, E⟩ | ♦
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𝓇⊢ℓ⊗m−
𝓇⊢𝓇⊗m−

m−

ℓ⊢m+

ℓ⊢m−

m+

𝓇⊢ℓ⊗m+
𝓇⊢ℓ⊗m+

𝛿c𝑀 ⟨𝓇⊢ℓ⊗m−⟩(e :: s, d) = {(ℓ
!
e :: s, d)@m− }

𝛿c𝑀 ⟨𝓇⊢𝓇⊗m−⟩(e :: s, d) = {(𝓇
!
e :: s, d)@m− }

𝛿c𝑀 ⟨𝓇⊢ℓ⊗m+⟩({(ℓ
!
e :: s, d)@m+ }) = (e :: s, d)

𝛿c𝑀 ⟨𝓇⊢𝓇⊗m+⟩({(𝓇
!
e :: s, d)@m+ }) = (e :: s, d)

Fig. 18. Contraction c𝑀

is the set of exponential signatures, and the set E∗
of finite lists of E is referred to as exponential

stacks. We denote exponential stacks via typical list-like notations, e.g. [] ∈ E∗
, [♦, ℓ

!
♦] ∈ E∗

, etc.

All tokens walking around in Petri structures are now pairs (s, d) of an exponential stack s ∈ E∗
,

whose length may vary, and a data value d ∈ D. We introduced exponential signatures in Section

1.2; this mechanism corresponds to the linear decomposition of the arrow type 𝐴 → 𝐵 as !𝐴 ⊸ 𝐵:

!𝐴 can be thought of as multiple copies of 𝐴 indexed by exponential signatures.

Why use exponential stacks and not merely signatures? Linear logic representation of higher-

order types have nested exponentials. Each exponential leads to a signature, so we end up with

a stack whose length corresponds to the level of nesting. Consider the simple example where a

program 𝑓 𝑀1 + 𝑓 𝑀2 interacts with the context 𝑓 := 𝜆𝑛. 𝑛 + 𝑛. The program calls 𝑓 twice with

distinct stacks, e.g. [ℓ
!
♦] and [𝓇

!
♦]. In the first call for instance, the context then reacts by starting

two evaluations of 𝑀1 with stacks [ℓ
!
♦, e1] and [ℓ

!
♦, e2] where e1, e2 are two distinct signatures

chosen by the context – likewise, we will have [𝓇
!
♦, e3] and [𝓇

!
♦, e4] for the second call. In general,

stacks alternate between signatures created by the program and signatures created by the context.

If𝑀 ⊆𝑓 M (an object of PStruct), we set !𝑀 = 𝑀 . The addresses are unchanged, but morally the

tokens exchanged have a deeper exponential stack (only enforced formally with PStrat). Though
there is no practical difference in PStruct, keeping the notation helps typecheck the constructions.

2.3.2 Contraction. As explained in Section 1.2, contraction exploits exponential signatures to give

distinguished identifiers to every resource usage, and to route tokens accordingly in the net. More

precisely, we introduce the following Petri structure for𝑀 ⊆𝑓 M:

Definition 2.10. The contraction, a Petri structure c𝑀 on !𝑀 ⊢ !𝑀 ⊗ !𝑀 , has locations Lc𝑀 = 𝑀 ,

transitions Tc𝑀 = 𝑀 +⊢ (𝑀 +⊗ 𝑀) with polarity as for M, and net and transitions in Figure 18.

In Figure 18 and other forthcoming Petri structures, we omit the transition rules that only

propagate tokens with no modification: for instance here, we have 𝛿c𝑀 ⟨ℓ⊢m−⟩(s, d) = {(s, d)@m+ }.
It is also worth emphasizing that the representation of the net in Figure 18 is symbolic: for each

negative m− ∈ 𝑀 there is a net as in the lhs, for each positive m+ ∈ 𝑀 a net as in the rhs.

The contraction Petri structure only operates at the top of the exponential stack, leaving every-

thing underneath unchanged. As the token passes through contractions c𝑀 : !𝑀 ⊢ !𝑀 ⊗ !𝑀 from

right to left, it accumulates injections ℓ
!
and 𝓇

!
at the top of the exponential stack, which may then

be used in the other direction to route back to the original resource – as in Figure 4.

2.3.3 Promotion. When interpreting𝑀 𝑁 ,𝑀 may evaluate 𝑁 several times, each time passing a

different exponential signature. However, since we work compositionally, we have computed a

structure J𝑁 K (intuitively realising a type 𝐴) that expects to be evaluated once, and we need to

promote it to a structure J𝑁 K† (intuitively realising a type !𝐴) that can be evaluated several times.

In traditional GoI, the promotion of 𝑁 is obtained by wrapping 𝑁 in a special delimiter called

an exponential box, which marks the parts of the net being promoted. Special transitions handling

exponential stacks are applied when tokens cross the borders of a box. Instead here we rewrite the

transitions, leaving the net invariant but changing transition functions as follows:
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Definition 2.11. Consider 𝝈 ∈ PStruct(!𝑀, 𝑁 ). We set L𝝈† = L𝝈 , T𝝈† = T𝝈 with the same

polarities, 𝜕𝝈† = 𝜕𝝈 , and pre- and post-conditions are also unchanged. Finally, the transition table is:

(1) 𝛿𝝈† ⟨𝑡−⟩(e :: s, d) = e :: 𝛼 if 𝜕𝝈 (𝑡) = 𝓇⊢− and 𝛿𝝈 ⟨𝑡⟩(s, d) = 𝛼
(2) 𝛿𝝈† ⟨𝑡0⟩(e :: 𝛼) = e :: 𝛽 if 𝛿𝝈 ⟨𝑡⟩(𝛼) = 𝛽
(3) 𝛿𝝈† ⟨𝑡+⟩(e :: 𝛼) = (e :: s, d) if 𝜕𝝈 (𝑡) = 𝓇⊢− and 𝛿𝝈 ⟨𝑡⟩(𝛼) = (s, d)
(4) 𝛿𝝈† ⟨𝑡+⟩(e :: 𝛼) = (⟨e, e′⟩ :: s, d) if 𝜕𝝈 (𝑡) = ℓ⊢− and 𝛿𝝈 ⟨𝑡⟩(𝛼) = (e′ :: s, d)
(5) 𝛿𝝈† ⟨𝑡−⟩(⟨e, e′⟩ :: s, d) = e :: 𝛼 if 𝜕𝝈 (𝑡) = ℓ⊢− and 𝛿𝝈 ⟨𝑡⟩(e′ :: s, d) = 𝛼

where 𝜕𝝈 (𝑡) = 𝒾−means 𝜕𝝈 (𝑡) = 𝒾m for somem ∈ M, and e :: 𝛼 is {(e :: s𝑖 , d𝑖 )@𝑙𝑖 | (s𝑖 , d𝑖 )@𝑙𝑖 ∈ 𝛼}.
With this definition, we obtain 𝝈† ∈ PStruct(!𝑀, !𝑁 ).

In 𝝈†
, messages on the right hand side from the environment come with an extra signature, which

appears at the top of the exponential stacks in incoming tokens (equation 1). Neutral transitions

only fire when all the pre-conditions have the same value for that signature but otherwise leave it

invariant, in effect creating one independent copy of 𝝈 for each exponential signature (equation 2).

Positive messages on the right hand side reply with the stored signature (equation 3).

The transition functions for the right hand side, if applied unchanged also on the left hand side,

would intuitively yield a Petri structure on ‼𝑀 ⊢ !𝑁 , with one additional layer for the exponential

stack on the left hand side. Instead, in order to obtain a Petri structure playing on !𝑀 ⊢ !𝑁 , we

apply the constructor ⟨−,−⟩ to pack (equation 4) or unpack (equation 5) two levels of the stack

into one. This amounts to inlining the “digging” operation from linear logic.

This way of handling promotion without boxes is original to this work, and only possible thanks

to the flexibility offered by Petri structures. With token machines on proof nets a box is needed,

because the transitions only depend on the nature of the crossed node and have no way to take

into account in how many exponential boxes we currently are – this impossibility is patched when

crossing the box borders. In contrast, here we may directly “edit” the transition function when

applying promotion. Of course the correcteness of this mechanism without boxes is subtle, it seems

unclear how it could be proved via any other way than the unfolding to concurrent games.

2.3.4 Dereliction. The reader may wonder what primitive introduces the “leaves” ♦ of exponential
signatures. For each𝑀 ⊆𝑓 M there is a Petri structure der𝑀 : !𝑀 ⊢ 𝑀 that corresponds to a single

resource usage – it is defined like cc𝑀 , except for the only two changed clauses

𝛿 ⟨(m−, ℓ)⟩({(s, d)@m}) = (♦ :: s, d)
𝛿 ⟨(m+, ℓ)⟩(♦ :: s, d) = {(s, d)@m}

adding a removing the dummy exponential signature ♦ as a new layer of the stack on the lhs.

3 IPA AND ITS INTERPRETATION
Now that the backbone of Petri structures is set up, we define our language of study and examine

the additional primitives on Petri structures required for its interpretation.

3.1 The language IPA

IPA is a higher-order call-by-name concurrent language with shared memory and semaphores,

serving as a paradigmatic language for these features in the game semantics literature [Ghica and

Murawski 2008]. Our variant is more expressive in some ways (in particular, it has a let construct);

but it also has the restriction that reference and semaphore types should not appear at the right

hand side of an arrow. See Section 3.1.4 for a discussion on this restriction.
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Γ ⊢ skip : U Γ ⊢ tt : B Γ ⊢ ff : B Γ ⊢ 𝑛 : N Γ, 𝑥 : 𝐴,Δ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴,Δ ⊢ 𝑀 : 𝑂

Γ,Δ ⊢ 𝜆𝑥𝐴 . 𝑀 : 𝐴 → 𝑂

Γ ⊢ 𝑀 : 𝑂 → 𝑂

Γ ⊢ Y𝑀 : 𝑂

Γ ⊢ 𝑀 : 𝐴 → 𝑂 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝑂

Γ ⊢ 𝑀 : S

Γ ⊢ grab𝑀 : U

Γ ⊢ 𝑀 : B Γ ⊢ 𝑁1 : X Γ ⊢ 𝑁2 : X

Γ ⊢ if𝑀 𝑁1 𝑁2 : X

Γ ⊢ 𝑁 : S

Γ ⊢ rel𝑁 : U

Γ ⊢ 𝑀 : X Γ ⊢ 𝑁 : Y

Γ ⊢ f (𝑀, 𝑁 ) : Z
Γ ⊢ 𝑀 : U Γ ⊢ 𝑁 : X

Γ ⊢ 𝑀 ∥ 𝑁 : X

Γ, 𝑥 : X,Δ ⊢ 𝑀 : Y Γ,Δ ⊢ 𝑁 : X

Γ,Δ ⊢ let 𝑥 = 𝑁 in𝑀 : Y

Γ, 𝑟 : V,Δ ⊢ 𝑀 : X

Γ,Δ ⊢ newref 𝑟 in𝑀 : X

Γ ⊢ 𝑀 : V Γ ⊢ 𝑁 : N

Γ ⊢ 𝑀:=𝑁 : U

Γ ⊢ 𝑀 : V

Γ ⊢ !𝑀 : N

Γ, 𝑠 : S,Δ ⊢ 𝑀 : X

Γ,Δ ⊢ newsem 𝑠 in𝑀 : X

Fig. 19. Typing rules for IPA

3.1.1 Types and terms. The types of IPA are:

𝐴, 𝐵,𝐶 ::= 𝑂 | V | S 𝑂 ::= U | B | N | 𝐴 → 𝑂

where types generated by 𝑂 are called well-opened. We have U a unit type, B and N respectively

types for booleans and natural numbers, a type V for integer references, and S for semaphores. The
split into standard types and well-opened types implements that V and S should not appear on the

right of an arrow. We refer to U,B and N as ground types, and use X,Y,Z to range over those.

We define terms directly via typing rules – throughout this paper, we only consider well-typed

terms. Contexts are lists of typed variables 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , where variables come from a fixed

countable set Var. Typing judgments have the form Γ ⊢ 𝑀 : 𝐴, with Γ a context and 𝐴 a type.

The typing rules appear in Figure 19; we give a few comments and clarifications. The construction

f (𝑀, 𝑁 ) applies to any computable f : X × Y ⇀ Z (abusing notations to treat X,Y,Z as sets),

intended to be evaluated left-to-right. This covers usual primitives: we define𝑀 ; 𝑁 = seq(𝑀, 𝑁 ),
with seq : X × Y→ Y the projection function. Basic arithmetic primitives are obtained similarly.

Our asymmetric rule for parallel composition is unusual: we allow one of the threads to return a

value of ground type, which makes examples shorter without significantly affecting the language.

Conditionals eliminate to ground type, but as usual in call-by-name, a more general conditional

can be derived. We refer to constants of ground type as values; we use 𝑣 to range over values of
any type, and 𝑛,𝑏 or 𝑐 to range over values of respective types N,B or U.

3.1.2 Examples. We saw in (4) a derived non-deterministic primitive. Another simple program is

𝑥 : U, 𝑦 : X ⊢ newsem 𝑠 in grab 𝑠; (𝑥 ; rel 𝑠 ∥ grab 𝑠; 𝑦) : X ,

illustrating the use of semaphores. A semaphore has two state: free, or locked. The command grab 𝑠
attempts to grab a semaphore 𝑠 . If 𝑠 is free, then grab 𝑠 terminates successfully and makes it locked.

If 𝑠 is already locked, then the instruction grab 𝑠 waits until 𝑠 becomes free. The command rel
(for “release”) is symmetric. Thus in the example above, the second thread is stuck until 𝑥 has

successfully completed, triggering the release of 𝑠 , authorizing the grab 𝑠 and giving the green light

to 𝑦. Altogether, the program behaves exactly like sequential composition.

As a final example, IPA allows dynamic creation of references and semaphores: for instance,

⊢ (𝜆𝑥 . 𝑥 + 𝑥) (newref 𝑟 in 𝑟 :=!𝑟 + 1; !𝑟 ) : N

returns 1 + 1 = 2, because execution causes the initialization of two independent references. An

unbounded number of references can arise in this way if this happens within recursion.

Though IPA is a toy language, it is semantically highly non-trivial, raising realistic challenges.
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3.1.3 Operational semantics. The reference semantics for IPA is a small-step interleaving opera-

tional semantics following closely that of [Ghica and Murawski 2008]. We fix a countable set L
of memory locations. A store is 𝑠 : L ⇀ N with finite domain where N stands, overloading

notations, for natural numbers. Configurations are ⟨𝑀, 𝑠⟩ with 𝑠 a store, dom(𝑠) = {ℓ1, . . . , ℓ𝑛}
and Σ ⊢ 𝑀 : 𝐴 with Σ = ℓ1 : V, . . . , ℓ𝑖 : V, ℓ𝑖+1 : S, . . . , ℓ𝑛 : S. Reduction rules have the form

⟨𝑀, 𝑠⟩ { ⟨𝑀 ′, 𝑠′⟩ where dom(𝑠) = dom(𝑠′); we write {∗
for the reflexive transitive closure. If

⊢ 𝑀 : X, we write𝑀 ⇓ if ⟨𝑀, ∅⟩ {∗ ⟨𝑣, ∅⟩ for some value 𝑣 . Then𝑀 converges, else it diverges.
The detailed rules, essentially as in [Ghica and Murawski 2008], are postponed to Appendix A as

they will be referred to only indirectly in this paper (via Theorem 4.5).

3.1.4 On the restriction on types. Our version of IPA is restricted to the effect that reference and

semaphore types cannot occur on the right hand side of an arrow, i.e. types such as B → V are

forbidden. This is because V is semantically treated like a product V𝑤 × V𝑟 of a write-only and a

read-only reference – and while products can be curryied away when on the left hand side of an

arrow, that is not the case for products on the right hand side. Dealing with such products is subtle

for reasons already suggested by the call-by-name isomorphism of types 𝐴 → (𝐵 ×𝐶) � (𝐴 →
𝐵) × (𝐴 → 𝐶): the product morally generates two copies of 𝐴, and tokens must carry additional

data indexing those copies. Similar difficulties arise when dealing with additives in traditional GoI

[Girard 1995] – it can be done, but with the price of additional complications.

We opted for a version of IPA without (implicit) products, because (1) it allows us to emphasize

the important concepts of our approach, rather than obfuscating them with additional structure

for additives; (2) we believe that functions returning variables or semaphores is a rare pattern in

functional programming. In any case, this restricted IPA is sufficient as a proof of concept language

– it already has all the behaviours that IPA is designed to study: races, interactions between higher-

order and state or semaphores, etc; (3) this is an artefact of products in call-by-name. Our next step

is to tackle more realistic programming languages, but those will be in call-by-value. The issue

does not arise in call-by-value, as the isomorphism of types above disappears.

3.2 IPA-structures
3.2.1 Definition. What additional data should a precategory like PStruct have, so as to support
an interpretation of IPA following the methodology of denotational semantics? We call our pro-

posed answer IPA-structures: those start with the operations available in a categorical model of

intuitionistic linear logic, to which we add primitives maching IPA (with no equations required):

Definition 3.1. An IPA-structure is a precategory C, with a distinguished set C• ⊆ C0 of well-
opened objects – we use 𝐴, 𝐵,𝐶 to range over all objects and 𝑂 to range over C• – and:

• Constructions.We have objects U,B,N ∈ C•, V, S, 1 ∈ C0, and:

tensor: for 𝐴, 𝐵 ∈ C0, there is 𝐴 ⊗ 𝐵 ∈ C0,

product: for (𝐴𝑥 )𝑥∈𝑉 with 𝑉 ⊆𝑓 Var, &𝑥∈𝑉𝐴𝑥 ∈ C0,

arrow: for 𝐴 ∈ C0 and 𝑂 ∈ C•, there is 𝐴 ⊸ 𝑂 ∈ C•,
bang: for 𝐴 ∈ C0, there is !𝐴 ∈ C0,

with &∅ = ⊤ the product of the empty family.

• Operations. We have constructions on morphisms:

⊗ : C(𝐴1, 𝐵1) × C(𝐴2, 𝐵2) → C(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2)
ΛΓ,Δ
𝑥 :𝐴,𝑂

: C(!(&[Γ, 𝑥 : 𝐴,Δ]),𝑂) → C(!(&[Γ,Δ]), !𝐴 ⊸ 𝑂)
(−)† : C(!Γ,𝑂) → C(!Γ, !𝑂)

where, if Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 where 𝐴𝑖 ∈ C0 for all 𝑖 , we write [Γ] for (𝐴𝑥 )𝑥∈{𝑥1,...,𝑥𝑛 } ;
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JΓ ⊢ skip : UK = skip ◦wΓ

JΓ ⊢ tt : BK = tt ◦wΓ

JΓ ⊢ ff : BK = ff ◦wΓ

JΓ, 𝑥 : 𝐴,Δ ⊢ 𝑥 : 𝐴K = varΓ,Δ
𝑥 :𝐴

JΓ,Δ ⊢ 𝜆𝑥𝐴 . 𝑀 : 𝐴 → 𝑂K = ΛΓ,Δ
𝑥 :𝐴,𝑂

(J𝑀K)
JΓ ⊢ 𝑀 𝑁 : 𝑂K = ev!𝐴,𝑂 ◦ (J𝑀K ⊗ J𝑁 K†) ◦ cΓ
JΓ ⊢ Y𝑀 : 𝑂K = Y𝑂 ◦ J𝑀K†

JΓ ⊢ if𝑀 𝑁1 𝑁2 : XK = ifX ◦ (J𝑀K ⊗ (J𝑁1K ⊗ J𝑁2K)) ◦ c3Γ
JΓ ⊢ f (𝑀, 𝑁 ) : ZK = op(f)X,YZ ◦ (J𝑀K ⊗ J𝑁 K) ◦ cΓ
JΓ ⊢ 𝑀 ∥ 𝑁 : XK = parX ◦ (J𝑀K ⊗ J𝑁 K) ◦ cΓ

JΓ,Δ ⊢ let 𝑥 = 𝑁 in𝑀 : YK = letX,Y ◦ (ΛΓ,Δ
X,Y (J𝑀K) ⊗ J𝑁 K) ◦ cΓ,Δ

JΓ,Δ ⊢ newref 𝑥 in𝑀 : XK = newrefX ◦ ΛΓ,Δ
V,X (J𝑀K)

JΓ ⊢ 𝑀:=𝑁 : UK = assign ◦ (J𝑀K ⊗ J𝑁 K) ◦ cΓ
JΓ ⊢!𝑀 : NK = deref ◦ J𝑀K

JΓ,Δ ⊢ newsem𝑥 in𝑀 : XK = newsemX ◦ ΛΓ,Δ
V,X (J𝑀K)

JΓ ⊢ grab𝑀 : UK = grab ◦ J𝑀K
JΓ ⊢ rel𝑁 : UK = release ◦ J𝑁 K

Fig. 20. Interpretation of IPA in an IPA-structure

varΓ,Δ
𝑥 :𝐴

∈ C(!(&[Γ, 𝑥 : 𝐴,Δ]), 𝐴)
ev𝐴,𝑂 ∈ C((𝐴 ⊸ 𝑂) ⊗ 𝐴,𝑂)

c𝑛Γ ∈ C(!Γ, ⊗𝑛 (!Γ))
skip ∈ C(1,U)

tt ∈ C(1,B)
ff ∈ C(1,B)
n ∈ C(1,N)

Y𝑂 ∈ C(!(!𝑂 ⊸ 𝑂),𝑂)
ifX ∈ C(B ⊗ (X ⊗ X),X)

op(f)X,YZ ∈ C(X ⊗ Y,Z)
parX ∈ C(U ⊗ X,X)
letX,Y ∈ C((!X ⊸ Y) ⊗ X,Y)

newrefX ∈ C(!V ⊸ X,X)
newsemX ∈ C(!S ⊸ X,X)

assign ∈ C(V ⊗ N,U)
deref ∈ C(V,N)
grab ∈ C(S,U)

release ∈ C(S,U)

Fig. 21. Primitives of IPA-structures

• Primitives. As listed in Figure 21, where ⊗0𝐴 = 1, ⊗1𝐴 = 𝐴, ⊗𝑛+2𝐴 = 𝐴 ⊗ (⊗𝑛+1𝐴), and
writing w𝐴 ∈ C(!𝐴, 1) for c0

𝐴
and c𝐴 ∈ C(!𝐴, !𝐴 ⊗ !𝐴) for c2

𝐴
.

3.2.2 Interpretation of IPA. The interpretation follows the standard lines of the interpretation of

call-by-name languages into models of intuitionistic linear logic. Fix C an IPA-structure.
We interpret the types of IPA as objects of C, with JUK = U, JBK = B, JNK = N, JVK = V, JSK = S,

and finally, J𝐴 → 𝐵K = !J𝐴K ⊸ J𝐵K. Note that well-opened types are mapped to well-opened objects.

Contexts are also interpreted as objects of C, with J𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛K =
˘

𝑥𝑖 ∈{𝑥1,...,𝑥𝑛 }J𝐴𝑖K.
To any typed term Γ ⊢ 𝑀 : 𝐴 we associate as interpretation a morphism JΓ ⊢ 𝑀 : 𝐴K ∈

C(!JΓK, J𝐴K) sometimes shortened to J𝑀K, following the clauses of Figure 20. Thus if we can equip

PStruct with this additional structure, we will automatically obtain following the definition above

J−K : IPA → PStruct

a translation sending any IPA program, possibly open and of higher type, to a Petri structure.

3.2.3 Relating Interpretations. Recall that at the heart of our methodology for this paper is the

diagram (2) with, in particular, operations𝒰 : PStrat → Strat and F : PStrat → PStruct commut-

ing with the interpretation. As our interpretations shall all follow the interpretation of IPA in an

IPA-structure detailed above, interpretation-preserving operations shall be obtained by:

Definition 3.2. Consider C and D two IPA-structures, and 𝐹 : C → D a functor.

Then, 𝐹 is a (strict) IPA-functor iff it preserves all the data of IPA-structures on the nose.

It follows immediately by induction that the interpretation of types and terms is preserved:

Lemma 3.3. Consider C,D two IPA-structures, and 𝐹 : C → D an IPA-functor.
Then, for any Γ ⊢ 𝑀 : 𝐴, we have 𝐹 (J𝐴KC) = J𝐴KD , 𝐹 (JΓKC) = JΓKD , and 𝐹 (J𝑀KC) = J𝑀KD .

To sum up: IPA-structures list the ingredients necessary to give an interpretation to all terms of

IPA, and IPA-functors list the proof obligations in order to relate two interpretations. In particular,

PStruct, PStrat and Strat from (2) will be IPA-structures, and F ,𝒰 will be IPA-functors.
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𝓇⊢Q
− ℓ⊢ℓ⊗A

− ℓ⊢𝓇⊗A
−

𝓇⊢A
+

1 2 3 4

ℓ⊢ℓ⊗Q
+ ℓ⊢𝓇⊗Q

+

𝛿op(f ) ⟨ℓ⊢𝓇⊗A−⟩([], d)
= {([], •)@2, ( [], d)@3}

𝛿op(f ) ⟨𝓇⊢A+⟩({([], d)@3, ( [], d′)@4})
= ( [], f (d, d′))

Fig. 22. Operators

𝓇⊢Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢ℓ⊸𝓌VQ
−

3

w

4

ℓ⊢ℓ⊸𝓌VA
+

ℓ⊢ℓ⊸𝓇VQ
−

5

r

6

2

ℓ⊢ℓ⊸𝓇VA
+

ℓ⊢𝓇⊸A
−

7

𝓇⊢A
+

𝛿newref ⟨𝓇⊢Q−⟩([], •)
= {([], •)@1, ( [], 0)@2}

𝛿newref ⟨w⟩({([e], d)@3, (_, _)@2})
= {([e], d)@2, ( [e],✓)@4}

𝛿newref ⟨r⟩({([e], •)@5, (_, d)@2})
= {([e], d)@2, ( [e], d)@6}

Fig. 23. New reference

𝓇⊢Q
−

1

ℓ⊢𝓇⊗Q
+

ℓ⊢𝓇⊗A
−

2

3

ℓ⊢ℓ⊗𝓇⊸Q
+

ℓ⊢ℓ⊗ℓ⊸Q
−

s

4

ℓ⊢ℓ⊗ℓ⊸A
+

5

ℓ⊢ℓ⊗𝓇⊸A
−

6

𝓇⊢A
+

𝛿let⟨ℓ⊢𝓇⊗A−⟩([], d)
= {([], d)@2, ( [], d)@3}

𝛿let⟨s⟩({([], d)@3, (s, •)@4})
= {([], d)@3, (s, d)@5}

Fig. 24. Let binding

3.3 PStruct as an IPA-structure
Completing the precategory PStruct into a full IPA-structure requires providing nets for a number

of primitives, most of which are straightforward and detailed in Appendix B. Here we focus on

three constructions which we consider more informative or noteworthy.

3.3.1 Operators. For op(f)X,YZ ∈ PStruct(X ⊗ Y,Z), the net and its transitions are shown in Figure

22. By convention we omit the transitions that are trivial, in the sense that they merely forward

tokens without affecting them (the typing specifying uniquely where these tokens should go).

Upon initialization by receiving ( [], •) on 𝓇⊢Q− , the net first puts ( [], •) in location 1 triggering

the evaluation request for the first argument, i.e. sending ( [], •) on ℓ⊢ℓ⊗Q+. When the first argument

returns a value with a message on ℓ⊢ℓ⊗A
−
, the net stores the value in location 3, and puts a token in

location 2 to evaluate the second argument. Once the value is received on ℓ⊢𝓇⊗A
−
, the pre-conditions

of 𝓇⊢A
+
are met and the net emits the final result, applying f on the two stored values. Here we

see that our machine may use several tokens during computation even for sequential programs:

locations are used in the style of the GoI token machines to track the control flow, but also as a

way to store intermediate results throughout computation.

3.3.2 New reference. For newrefX ∈ PStruct(!V ⊸ X,X), the net and its non-trivial transitions

are shown in Figure 23. The Petri structure newref takes as an argument !V ⊸ X, i.e. a “program
of type X” that may query a reference. Location 2 stores the current value. Upon initialization with

𝓇⊢Q
−
, newref : (1) initializes the reference, setting a token with data 0 in location 2; (2) in parallel,

gives control to the argument via ℓ⊢𝓇⊸Q
+
. Write and read requests arrive respectively in locations 3

and 5. The neutral transitions w and r perform the memory update and reading. Normally, i.e. in
the context of the evaluation of a closed program, there is ever at most one token in location 2 (if

the net is under a promotion there may be several, kept apart by their exponential stack), forcing

reads and writes to be handled in some sequential order. Note that r overwrites the token in the

store even through it does not change the value: this is essential in order to get the unfolding right.

3.3.3 Let binding. For letX,Y ∈ C((!X ⊸ Y) ⊗ X,Y), the net and its non-trivial transitions are

shown in Figure 24. At first sight, let is only a write-once reference, with value stored in location 3.

But we have seen that in the net for newref, read updates overwrite the token storing the current

value. Doing the same for the let binding would sequentialize all reads, which is fine in terms of

interleavings but would break our causal unfolding as it is not compatible with the expected causal

behaviour of the let binding. So instead, transition r reads the stored value with token ( [], d), and
puts back the exact same token, so that further accesses to the value stored do not depend on it.
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See Appendix B for the other constructions, which yield:

Corollary 3.4. PStruct is an IPA-structure.

Following Section 3.2.2 we obtain for any term Γ ⊢ 𝑀 : 𝐴 a net J𝑀K ∈ PStruct(!JΓK, J𝐴K) regarded
as the token machine with𝑀 loaded. In particular, a closed program ⊢ 𝑀 : X yields a Petri structure

J𝑀K on {𝓇⊢Q−, 𝓇⊢A+} which we can execute by playing the token game.

3.4 The Token Game and Adequacy
In order to reason formally on the execution of Petri structures, we now formalize the token game.

Its states are called markings, in which each location contains a finite set of tokens.

Definition 3.5. Consider 𝝈 a Petri structure. A marking on 𝝈 is a finite subset of TokIL.
The set of markings on 𝝈 is writtenℳ(𝝈), ranged over by 𝛼, 𝛽,𝛾 .

We use the same notation for markings as for conditions, i.e. 𝛼 = {([], •)@1, ( [], •)@2, ( [♦],✓)@2}
is a (non-reachable) marking for the Petri structure of Figure 11. Unlike for conditions, markings

allow several tokens on the same location; however we cannot have the same token twice on

the same location – markings are sets, not multisets. It should be clear from this notation that

conditions may be regarded as markings, and we shall do so silently from now on.

The token game is a walk on a labelled transition system of markings. While neutral transitions

act on markings only, visible ones send or receive tokens on addresses. Together, an address and a

token form a move – we set Moves = M × E∗ × D ≃ M × Tok, ranged over by𝑚. The transition

system is defined in two steps. First, events are transitions instantiated with specific input:

Definition 3.6. An event of a Petri structure 𝝈 is a pair (𝑡, 𝜄) written 𝑡L𝜄M where 𝜄 is an input of 𝑡 ,

i.e. a token (s, d) if 𝑡 is negative or some 𝛼 ∈ cond(pre(𝑡)) otherwise. We write:

𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽 if 𝛿 ⟨𝑡⟩(𝛼) = 𝛽 ,
𝑡+L𝛼M : 𝛼

𝑚↦−→𝝈 ∅ if 𝛿 ⟨𝑡⟩(𝛼) = (s, d),
𝑡−L(s, d)M : ∅ 𝑚↦−→𝝈 𝛽 if 𝛿 ⟨𝑡⟩(s, d) = 𝛽 ,

where𝑚 = (𝜕𝝈 (𝑡), s, d) is the move played. We writeℰ(𝝈) the set of events of 𝝈 , ranged over by e.

Events inherit from transitions a polarity. A visible e plays a move 𝑚, written 𝑚 = 𝜕𝝈 (e) =

(m, s, d). For negative e the token (s, d) is received on m, while for positive e, (s, d) is sent on m.

Events only mention the tokils involved in the transition, i.e.mentioned in the transition function.

To obtain the actual token game, one must allow events to occur in the presence of other tokils

sitting in the net, not playing any role in the transition. This is captured by the notion of firings:

Definition 3.7. The setℱ(𝝈) of firings, ranged over by f , comprises

e0 ⊎ 𝛾 : 𝛼 ⊎ 𝛾 −→𝝈 𝛽 ⊎ 𝛾 if e : 𝛼 ↦−→𝝈 𝛽 ,

e+ ⊎ 𝛾 : 𝛼 ⊎ 𝛾 𝑚−→𝝈 𝛾 if e : 𝛼 𝑚↦−→𝝈 ∅,
e− ⊎ 𝛾 : 𝛾

𝑚−→𝝈 𝛾 ⊎ 𝛽 if e : ∅ 𝑚↦−→𝝈 𝛽 .

for 𝛾 ∈ℳ(𝝈) with 𝛾 ∩ 𝛼 = 𝛾 ∩ 𝛽 = ∅.

Note the disjointness assumption, which means a transition can only fire if the tokils it emits do

not collide with tokils already present. Now we can finally capture the token game with:

Definition 3.8. A run in 𝝈 is a sequence 𝜌 = f1 . . . f𝑛 of firings s.t. f𝑖 : 𝛼𝑖 −→𝝈 𝛼𝑖+1 or f𝑖 : 𝛼𝑖 𝑚−→𝝈

𝛼𝑖+1 with 𝛼1 = ∅. We write 𝜌 : ∅ −→→𝝈 𝛼𝑛+1 or 𝜌 : ∅ 𝑠−→→𝝈 𝛼𝑛+1, where 𝑠 =𝑚1 . . .𝑚𝑝 lists the moves

of visible firings in 𝜌 . We also write 𝑠 = play(𝜌) and call 𝑠 the play of 𝜌 .
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Q−

𝑎 𝑏

𝑐 𝑑

A+

(Q,[ ],•)
−−−−−−→

Q−

• •

𝑎 𝑏

𝑐 𝑑

A+

−−−−−→

Q−

•

𝑎 𝑏

✓

𝑐 𝑑

A+

−−−−−→ . . .

Fig. 25. A run of a Petri structure

For example, (the variant with full tokens of) Figure 11 has

∅ (Q,[ ],•)−→ {([], •)@1, ( [], •)@2} −→ {([],✓)@3, ( [], •)@2}
−→ {([],✓)@5, ( [], •)@2} −→ {([],✓)@5, ( [],✓)@4}
−→ {([],✓)@5, ( [],✓)@6} (A,[ ],✓)−→ ∅

as a run with play(𝜌) = (Q, [], •)(A, [],✓). We read it as tokens walking through the Petri net as in

Figure 25 (omitting exponential stacks, which are always [] in this example).

We define may-convergence for Petri structures on {𝓇⊢Q−, 𝓇⊢A+}:

Definition 3.9. Consider 𝝈 a Petri structure on {𝓇⊢Q−, 𝓇⊢A+}. We say 𝝈 may converge, written
𝝈 ⇓, iff there is a run 𝜌 : ∅ −→→𝝈 𝛼 such that play(𝜌) = (𝓇⊢Q, [], •)(𝓇⊢A, [], d) for some d ≠ •.

Now that this is set up, we can state formally one of the main results of this paper:

Theorem 3.10 (Adeqacy). For any ⊢ 𝑀 : U,𝑀 ⇓ iff J𝑀K ⇓.

This is the standard way of stating that at ground type and with respect to may-convergence,

the token machine is faithful to standard operational semantics. But here adequacy shall follow

from a much more powerful result, also giving a proper account of higher-order: we shall prove

that the Petri structure J𝑀K unfolds to the concurrent strategy for𝑀 .

4 UNFOLDING AND CORRECTNESS
We link to the denotational model of IPA presented in [Castellan and Clairambault 2020], where

both types and programs are interpreted as event structures, called games and strategies respectively.
In Section 4.1, we recall basic definitions about this model, yielding Strat, an adequate IPA-

structure. We wish to define the unfolding as an IPA-functor from PStruct to Strat, but in general

the behaviour of Petri structures is too wild for this. So our following step, performed in Section 4.2,

is to tame PStruct, eliminating those nets whose behaviour fails to respect a protocol (the game)

specified by the type – this leads to another IPA-structure PStrat of Petri strategies. In Section 4.3,

we define a causal reconstruction mapping Petri strategies to strategies, i.e. event structures.

4.1 Concurrent Strategies for IPA
4.1.1 Types as Games. In PStruct, a type is merely interpreted by a finite set of addresses. This

forgets information: (1) the possible values, for instance B and N have the same interpretation;

(2) the dependency from function calls to returns, and the dependency arising from the scope:

in (N → B) the natural number should not be interrogated before the boolean. Adding this

information yields a game, i.e. an event structure with moves as events. Recall first:
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Definition 4.1. An event structure (es) is 𝐸 = ( |𝐸 |, ≤𝐸, #𝐸), where |𝐸 | is a (countable) set of

events, ≤𝐸 is a partial order and #𝐸 is an irreflexive symmetric binary relation, satisfying:

finite causes: ∀𝑒 ∈ |𝐸 |, [𝑒]𝐸 is finite

conflict inheritance: ∀𝑒1 #𝐸 𝑒2, ∀𝑒2 ≤𝐸 𝑒
′
2
, 𝑒1 #𝐸 𝑒

′
2
,

where [𝑒]𝐸 = {𝑒′ ∈ |𝐸 | | 𝑒′ ≤𝐸 𝑒} – #𝐸 and ≤𝐸 are respectively conflict and causal dependency.

We write _𝐸 for the immediate dependency, i.e. 𝑒 _𝐸 𝑒′ iff 𝑒 <𝐸 𝑒′ with no event strictly

in between. An es 𝐸 comes with a notion of state, its (finite) configurations: those are finite

𝑥 ⊆𝑓 |𝐸 | down-closed for ≤𝐸 and compatible, i.e. if 𝑒, 𝑒′ ∈ 𝑥 , then ¬(𝑒 #𝐸 𝑒′). We write 𝒞(𝐸) the
configurations of 𝐸. If 𝑥 ∈ 𝒞(𝐸) and 𝑒 ∉ 𝑥 with 𝑥 ∪ {𝑒} ∈ 𝒞(𝐸), we say 𝑥 enables 𝑒 , written 𝑥 ⊢𝐸 𝑒 .

Definition 4.2. Consider 𝐴 = ( |𝐴|, ≤𝐴, #𝐴) an es with |𝐴| ⊆ Moves, and write mult(𝐴) = {m ∈
M | ∃(m, s, d) ∈ |𝐴|}. Then, 𝐴 is a game if it satisfies the additional axiom:

finite addresses: the set mult(𝐴) is finite.

This is the usual notion of concurrent game, except that moves are taken inMoves and hence

the polarity function pol𝐴 : |𝐴| → {−, +} is inherited from Moves and no longer part of the data.

We shall need the more specific arenas, capturing the causal patterns arising from types:

Definition 4.3. An arena is a game 𝐴 satisfying:

alternating: if 𝑎1 _𝐴 𝑎2, then pol(𝑎1) ≠ pol(𝑎2),
forestial: if 𝑎1 ≤𝐴 𝑎 and 𝑎2 ≤𝐴 𝑎, then 𝑎1 ≤𝐴 𝑎2 or 𝑎2 ≤𝐴 𝑎1,

local conflict: if 𝑎1, 𝑎2 ∈ |𝐴| are in minimal conflict, then [𝑎1)𝐴 = [𝑎2)𝐴,
negative: if 𝑎 ∈ min(𝐴), then pol(𝑎) = −,

where min(𝐴) is the set of minimal events of 𝐴. Finally, 𝐴 is well-opened if min(𝐴) is a singleton.

This used the strict dependencies [𝑎)𝐴 = {𝑎′ ∈ 𝐴 | 𝑎′ <𝐴 𝑎}, and the notion ofminimal conflict:
in an event structure 𝐸, 𝑒1, 𝑒2 ∈ |𝐸 | are in minimal conflict if 𝑒1 #𝐸 𝑒2, while if 𝑒′

1
≤𝐸 𝑒1 and

𝑒′
2
≤𝐸 𝑒2 with at least one of these being strict, then ¬(𝑒′

1
#𝐸 𝑒

′
2
) – so the conflict is not inherited.

We omit the interpretation of types and contexts as arenas, see Appendix C.1.

4.1.2 Strategies. In concurrent games, strategies are also event structures:

Definition 4.4. A prestrategy 𝜎 : 𝐴 on game 𝐴 comprises an es ( |𝜎 |, ≤𝜎 , #𝜎 ) with 𝜕 : |𝜎 | → |𝐴| a
function called the display map, subject to the following conditions:

rule-abiding: if 𝑥 ∈ 𝒞(𝜎), then 𝜕(𝑥) ∈ 𝒞(𝐴),
locally injective: if 𝑠1, 𝑠2 ∈ 𝑥 ∈ 𝒞(𝜎), 𝜕(𝑠1) = 𝜕(𝑠2), then 𝑠1 = 𝑠2.

We say that 𝜎 is a strategy if it satisfies the further two:

courteous: for all 𝑠1 _𝜎 𝑠2, if pol(𝑠1) = + or pol(𝑠2) = −, then 𝜕(𝑠1) _𝐴 𝜕(𝑠2),
receptive: for all 𝑥 ∈ 𝒞(𝜎), for all 𝜕(𝑥) ⊢𝐴 𝑎− , there is a unique 𝑥 ⊢𝜎 𝑠 ∈ 𝒞(𝜎) s.t. 𝜕(𝑠) = 𝑎,

and is negative if any 𝑠 ∈ min(𝜎) is negative.

Rule-abiding and locally injective together amount to 𝜕 : 𝜎 → 𝐴 being amap of event struc-
tures. The event structure 𝜎 presents observable computational events along with their causal

dependencies and conflicts. Events of 𝜎 are not moves of the game, but they do correspond to moves

via the action of 𝜕. This permits an explicit representation of non-deterministic branching: several

events of 𝜎 may correspond to the same move if they are conflicting and so belong to separate

branches of the execution. The strategy keeps them separate, even if they cannot be distinguished.
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Theorem 4.5. The category Strat forms an IPA-structure, and for any ⊢ 𝑀 : U, J𝑀KStrat ⇓ iff𝑀 ⇓.

See [Castellan and Clairambault 2020]. Here 𝜎 : U converges, written 𝜎 ⇓, if it has a +-move.

4.2 Strategic Petri Structures
Aiming for PStrat, given a game 𝐴 and a Petri structure 𝝈 on mult(𝐴), we must define what it

means for 𝝈 to follow the rules of 𝐴 – intuitively, the runs of 𝝈 must form valid plays on 𝐴:

Definition 4.6. A sequence 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ Moves∗ is a play on 𝐴, written 𝑠 ∈ Plays(𝐴), if it is:

valid: for all 1 ≤ 𝑖 ≤ 𝑛, {𝑠1, . . . , 𝑠𝑖 } ∈ 𝒞(𝐴),
non-repetitive: for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, if 𝑠𝑖 = 𝑠 𝑗 then 𝑖 = 𝑗 .

Recall that any run 𝜌 : ∅ −→→𝝈 𝛼 on 𝝈 generates a sequence play(𝜌) obtained by collecting the

visible moves in 𝜌 – we shall ask that 𝝈 behaves as prescribed by the game as long as Opponent

does. But we shall also need a safety condition, required for the unfolding. For that, we set:

Definition 4.7. Consider e : 𝛼 ↦−→𝝈 𝛽 an event of 𝝈 . We call pre(e) = 𝛼 the pre-condition of e,
and post(e) = 𝛽 the post-condition of e. The set new(e) = 𝛽 \ 𝛼 contains the tokils produced by

e; and eat(e) = 𝛼 \ 𝛽 those consumed. Those extend to firings by ignoring the context.

The distinction between post(f) and new(f) matters for let: its transition s (see Section 3.3)

requires ( [], d)@3
to fire, but leaves it unchanged. So ( [], d)@3

is both a pre-condition and a post-
condition, but is not produced. Other than for let, pre- and post-conditions are always disjoint.

Our safety constraint uses the notion of collection, which gathers the tokils seen in a run so far:

Definition 4.8. Consider 𝜌 = f1 . . . f𝑛 : ∅ −→→𝝈 𝛼𝑖+1, a run of 𝝈 , with f𝑖 : 𝛼𝑖 −→ 𝛼𝑖+1. The
collection of 𝜌 is Coll(𝜌) = ⋃

1≤𝑖≤𝑛+1 𝛼𝑖 . We say that 𝛼 ∈ cond𝝈 is fresh in 𝜌 iff 𝛼 ∩ Coll(𝜌) = ∅.

This lets us finally define Petri strategies on a game 𝐴:

Definition 4.9. We say that 𝝈 is strategic on 𝐴 if for any 𝜌 : ∅ 𝑠−→→𝝈 𝛼 with 𝑠 ∈ Plays(𝐴),

valid: if f+ : 𝛼
𝑎−→ 𝛽 , then 𝑠𝑎 ∈ Plays(𝐴),

receptive: if 𝑠𝑎− ∈ Plays(𝐴), there is a unique e− ∈ ℰ(𝝈) s.t. e− : ∅ 𝑎−↦−→ 𝛽 with 𝛽 ∩ 𝛼 = ∅,
strongly safe: if f : 𝛼 −→ 𝛽 or f : 𝛼 𝑎−→ 𝛽 with 𝑠𝑎 ∈ Plays(𝐴), then new(f) is fresh in 𝜌 ,

we write 𝝈 : 𝐴 – additionally, 𝝈 : 𝐴 is negative iff for all e0 : 𝛼 ↦−→ 𝛽 or e+ : 𝛼
𝑎↦−→ ∅, 𝛼 ≠ ∅.

Strong safety entails that in a given execution, a tokil can occur at most once: it cannot appear,

be consumed, and reappear later. Thus for each occurring tokil we can unambiguously identify a

cause, which will be central in the unfolding of Petri strategies to actual strategies – see Section 4.3.

Examples of Petri strategies abound in this paper so far, since it shall follow that for all term

Γ ⊢ 𝑀 : 𝐴, the Petri structure J𝑀K is a Petri strategy on !JΓK ⊢ J𝐴K. In contrast, the Petri structure

skip of Section 2.1.1 does not satisfy e.g. skip : N, as there is a clear failure of condition valid.

Proposition 4.10. There is an IPA-structure PStrat, with objects arenas (with the associated
constructions), and morphisms from 𝐴 to 𝐵 the negative Petri strategies 𝝈 : 𝐴 ⊢ 𝐵 up to isomorphism.

There is an identity-on-morphisms IPA-functor F : PStrat → PStruct sending 𝐴 to mult(𝐴).

Proof. We must show that all primitives are strategic, and that all operations preserve the

property. The main technical challenge is composition: to show that 𝝉 ⊙ 𝝈 is a Petri strategy, we

exploit that none of 𝝈 and 𝝉 can be the first one to break the rules. See details in Appendix D. □
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Q−

1 2𝑥

𝑎 𝑏

3 4A+

Fig. 26. let𝑥 = skip in𝑥 ∥ 𝑥

Q−L•M : ∅ (Q,[ ],•)−↦−→ {•@1,✓@𝑥
, •@3}

𝑎L{•@1,✓@𝑥 }M : {•@1,✓@𝑥 } ↦−→ {✓@𝑥
,✓@3}

𝑏L{•@2,✓@𝑥 }M : {•@2,✓@𝑥 } ↦−→ {✓@𝑥
,✓@4}

A+L{✓@3

,✓@4}M : {✓@3

,✓@4} (A,[ ],✓)+↦−→ ∅

Q−L•M · 𝑎L{•@1,✓@𝑥 }M · 𝑏L{•@2,✓@𝑥 }M · A+L{✓@3

,✓@4}M
Q−L•M · 𝑏L{•@2,✓@𝑥 }M · 𝑎L{•@1,✓@𝑥 }M · A+L{✓@3

,✓@4}M

Fig. 27. Events and maximal valid runs

Q−L•M

𝑎L{•@1,✓@𝑥 }M 𝑏L{•@2,✓@𝑥 }M

A+L{✓@2, •@3}M

Fig. 28. Max. causal run

4.3 The Unfolding of a Petri Strategy
Leveraging strong safety we can give a rather direct definition of unfolding, close to the unfolding

of 1-safe Petri nets in [Nielsen and Thiagarajan 2002]. An event structure is a global object, putting

together all possible executions with explicit causal and branching information. Our definition first

performs a causal reconstruction for individual runs, before patching them together via an already

existing operation – that of taking the primes of a rigid family [Castellan et al. 2014b].

4.3.1 Causal Reconstruction of Runs. Fix a Petri strategy 𝝈 : 𝐴 ⊢ 𝐵. A valid run on 𝝈 is 𝜌 : ∅ −→
→𝝈 𝛾 such that play(𝜌) ∈ Plays(𝐴 ⊢ 𝐵). Valid runs are the executions that abide by the typing

discipline of 𝐴 ⊢ 𝐵. An event e of 𝜌 is an event e of 𝝈 such that there exists 𝛾 with e ⊎ 𝛾 a firing

in 𝜌 . By strong safety, 𝛾 must be unique. We writeℰ(𝜌) for the set of events of 𝜌 . Two runs are

equivalent if they have the same events: two equivalent runs only differ by meaningless ordering

of some events. This induces a semantic dependence onℰ(𝜌): e ≤𝜌 e′ iff e occurs before e′ in any

valid 𝜌 ′ of 𝝈 equivalent to 𝜌 . Our causal reconstruction relies on a concrete characterization of this.

Intuitively an event e of 𝜌 should directly cause e′ if pre(e) ∩ post(e′) ≠ ∅, however, in some

cases (notably for let) the same tokil may be both consumed and produced – i.e. essentially left

in place – and this should be accounted for when computing the dependency. An example of this

is illustrated in Figures 27 and 28 (omitting exponential stacks): we have pre(𝑎L{•@1,✓@𝑥 }M) ∩
post(𝑏L{•@2,✓@𝑥 }M) ≠ ∅, and yet those two events may be reordered at will.

So we adjust this and define the dynamic dependency between events of a run by

e ◁𝝈 e′ ⇔ (new(e) ∩ pre(e′) ≠ ∅) ∨ (post(e) ∩ eat(e′) ≠ ∅) ,

onℰ(𝜌) for any valid 𝜌 : ∅ −→→𝝈 𝛾 . In other words, e ◁𝝈 e′ if (1) e′ requires a token produced by e;
or (2) e′ consumes a token that e outputs. We also incorporate the static dependency

e ◁𝐴⊢𝐵 e′ ⇔ e : 𝛼 𝑎↦−→ 𝛽, e′ : 𝛼 ′ 𝑎′↦−→ 𝛽 ′, where 𝑎 _𝐴⊢𝐵 𝑎
′

importing on events of 𝜌 the dependencies imposed by the game. Altogether, we obtain:

Proposition 4.11. For 𝜌 a valid run of 𝝈 , ≤𝜌 = (◁𝐴⊢𝐵 ∪ ◁𝝈 )∗.

Posets (ℰ(𝜌), ≤𝜌 ) are referred to as causal runs of 𝝈 ; we write R(𝝈) for the causal runs of 𝝈 .
From Proposition 4.11, valid runs of 𝝈 are exactly the linearizations of causal runs in R(𝝈).

A valid run 𝜌 of 𝝈 comprises visible events (generated by visible transitions) and neutral events
(generated by neutral transitions), and this dichotomy transports to causal runs. If 𝓆 ∈ R(𝝈), the
set of labels of visible events is by construction a configuration of𝐴 ⊢ 𝐵, written 𝜕𝝈 (𝓆) ∈ 𝒞(𝐴 ⊢ 𝐵).

4.3.2 Hiding. The causal runℰ(𝜌) associated to a valid run 𝜌 reconstructs causal dependencies

among all events in 𝜌 , neutral or visible. This contrasts with the game semantics of Section 4.1,

which records visible events only. To link them, we use the following definition:
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Definition 4.12. Consider 𝓆 ∈ R(𝝈). The hiding of 𝓆, written 𝓆↓, has

events: those 𝑒 ∈ |𝓆| that are visible,
causality: the restriction of ≤𝓆,

and 𝜕𝝈 (𝓆↓) = 𝜕𝝈 (𝓆) ∈ 𝒞(𝐴 ⊢ 𝐵). We call 𝓆↓ a visible causal run of 𝝈 , and write 𝓆↓ ∈ R𝑉 (𝝈).

Visible causal runs are extracted via a causal reconstruction from runs of 𝝈 , which – if 𝝈 comes

from a program 𝑀 – are executions of 𝑀 in our multi-token machine. Besides this operational

nature, we shall see now that they match the denotational interpretation of𝑀 in concurrent games.

4.3.3 Unfolding to a Strategy. We aggregate all visible causal runs into one event structure, via:

Theorem 4.13. There exists a strategy𝒰(𝝈) : 𝐴, unique up to isomorphism, such that there is an
order-isomorphism 𝜑 : 𝒞(𝒰(𝝈)) � R𝑉 (𝝈) satisfying 𝜕𝒰(𝝈 ) = 𝜕𝝈 ◦ 𝜑 .

Proof. The crux is that𝒞
𝑉 (𝝈) forms a rigid family [Castellan et al. 2014b], i.e. a set F of posets

closed under prefix and such that any finite directed subset has a supremum. In that case, the

structure Pr(F ) = ( | Pr(F )|, ≤Pr(F) , #Pr(F) ) defined by the following components

| Pr(F )| = {𝓆 ∈ F | 𝓆 prime}
𝓆 ≤Pr(F) 𝓅 ⇔ 𝓆 ⊆ 𝓅

¬(𝓆 #Pr(F) 𝓅) ⇔ {𝓆,𝓅}↑ ,
where 𝓆 ∈ F is prime iff it has a top element, is an event structure with 𝜒F : 𝒞(Pr(F )) � F an

order-isomorphism – this is folklore in event structures, see Appendix E.2.

Using this, we set𝒰(𝝈) = Pr(R𝑉 (𝝈)). Its display map is uniquely determined by its action on

configurations, defined as 𝜕𝒰(𝝈 ) = 𝜕𝝈 ◦ 𝜒R𝑉 (𝝈 ) . All remaining conditions follow. □

An event of𝒰(𝝈) is not quite an event of 𝝈 , but a causal run with a top – which we regard as

an event of 𝝈 (the top) together with a choice of a causal history leading to it.

4.3.4 Unfolding as an IPA-functor. As expected, unfolding preserves the interpretation:

Theorem 4.14. We have an IPA-functor𝒰 : PStrat → Strat.

Proof. A lengthy verification. Most cases follow by inspection, the crux being that the unfolding

preserves composition. □

Hence, the main result of this paper follows by Lemma 3.3:

Corollary 4.15. Consider Γ ⊢ 𝑀 : 𝐴 any IPA term. Then,𝒰(J𝑀KPStrat) = J𝑀KStrat.

In other words, the strategy J𝑀KStrat obtained by induction on syntax following the methodology

of denotational semantics, can also be extracted directly from running the multi-token machine

J𝑀KPStrat, and reading back the causal dependencies between events. From this also follows the

adequacy of our multi-token GoI interpretation (Theorem 3.10). Indeed, for ⊢ 𝑀 : U, then

𝑀 ⇓
(1)

⇔ J𝑀KStrat ⇓
(2)

⇔ J𝑀KPStrat ⇓
(3)

⇔ J𝑀KPStruct ⇓

where (1) is by Theorem 4.5, (2) is by Corollary 4.15 (it is immediate that J𝑀KPStrat ⇓ iff𝒰(J𝑀KPStrat) ⇓)
and for (3), by Lemma 3.3 and Proposition 4.10, J𝑀KPStrat = J𝑀KPStruct.

5 IMPLEMENTATION
We illustrate this with an interactive web application available here with some documentation here.
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c

. . .

Fig. 29. Example of an optimization

Usage. The interface lets the user enter a IPA program (or choose from a list of examples) and

then displays the Petri structure. The user can then fire available transitions and see the tokens flow

through the net and the visible causal run obtained via causal reconstruction appear on the left.

The implementation also includes a reverse mode letting the user undo causally maximal events, not

necessarily in the reverse order in which they were played – leveraging our causal analysis of runs.

Optimisations. Our translation, following the categorical semantics, tends to generate large Petri

structures. To keep the nets at a reasonable size, we have implemented several optimisations.

We first eliminate locations and transitions that are unreachable from a negative transition, or

that never reach a positive transition. Such “dead code” can arise during composition. Moreover,

when we have several transitions occurring in a simple sequence, we combine them into one by

composing their transition functions and eliminate the intermediate transitions and locations. One

example of such optimisation is represented in Figure 29, where we merge a and b0 and remove

the location ℓ . The new transition c has pre(c) = pre(a) and post(c) = post(a) \ {ℓ} ∪ post(c) and
transition function: 𝛿 ⟨c⟩(𝛼) = 𝛿 ⟨a⟩(𝛼) \ {t} ∪ 𝛿 ⟨b⟩({t}), where t denotes the tokil at ℓ in 𝛿 ⟨a⟩(𝛼).
There are minor inconsistencies between examples in the paper and the implementation as

optimisation choices are not unique. In the paper, they are chosen so as to make transition functions

more intuitive, which sometimes leads to different choices (compare e.g. Figure 12 with this).

6 CONCLUSION
Though this is a theoretical contribution, we believe it is worth exploring applications to the

compilation and analysis of higher-order, concurrent, effectful programming.

Our translation confines the infinity to tokens (data and exponential signatures). Forgetting
colours, we immediately obtain a finitary over-approximation of the behaviour of programs, a Petri

net in the usual sense, that may be used to prove e.g. safety properties. This may be refined by

handling colours symbolically or over-approximating them via abstract interpretation – perhaps

offering a new truly concurrent basis for the static analysis of higher-order concurrent programs.

Though it is subtle semantically, IPA is of course hardly a realistic programming language. We

do not foresee any fundamental obstacle in generalizing this approach: we expect that building

a machine faithful to game semantics will let us leverage the impressive array of computational

features that this semantic framework has been able to model.
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Basic red. for PCF

(𝜆𝑥𝐴 . 𝑀) 𝑁 { 𝑀 [𝑁 /𝑥]
if 𝑏 𝑁tt 𝑁ff { 𝑁𝑏

Y𝑀 { 𝑀 (Y𝑀)
let 𝑥 = 𝑣 in𝑀 { 𝑀 [𝑣/𝑥]

f (𝑣1, 𝑣2) { 𝑣

(if f (𝑣1, 𝑣2) = 𝑣)

Basic reductions for references and semaphores
newref 𝑥 in 𝑣 { 𝑣

newsem𝑥 in 𝑣 { 𝑣

Stateful reductions
⟨!ℓ, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑛, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩

⟨ℓ:=𝑛, 𝑠 ⊎ {ℓ ↦→ _}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩
⟨grab(ℓ), 𝑠 ⊎ {ℓ ↦→ 0}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 1}⟩
⟨rel(ℓ), 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 0}⟩ (𝑛 > 0)

Stateless context rules
𝑀 { 𝑀 ′

𝑀 𝑁 { 𝑀 ′ 𝑁

𝑀 { 𝑀 ′

if𝑀 𝑁1 𝑁2 { if𝑀 ′ 𝑁1 𝑁2

𝑀 { 𝑀 ′

!𝑀 { !𝑀 ′
𝑁 { 𝑁 ′

𝑀:=𝑁 { 𝑀:=𝑁 ′

𝑀 { 𝑀 ′

grab(𝑀) { grab(𝑀 ′)
𝑀 { 𝑀 ′

rel(𝑀) { rel(𝑀 ′)
𝑀 { 𝑀 ′

𝑀:=𝑣 { 𝑀 ′
:=𝑣

𝑁 { 𝑁 ′

let 𝑥 = 𝑁 in𝑀 { let 𝑥 = 𝑁 ′ in𝑀

𝑀1 { 𝑀 ′
1

f (𝑀1, 𝑀2) { f (𝑀 ′
1
, 𝑀2)

𝑀2 { 𝑀 ′
2

f (𝑀1, 𝑀2) { f (𝑀1, 𝑀
′
2
)

Stateful context rules

⟨𝑀 [ℓ/𝑥], 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑀 ′ [ℓ/𝑥], 𝑠′ ⊎ {ℓ ↦→ 𝑛′}⟩
⟨newref 𝑥:=𝑛 in𝑀, 𝑠⟩ { ⟨newref 𝑥:=𝑛′ in𝑀 ′, 𝑠′⟩

(ℓ ∈ L fresh)

⟨𝑀 [ℓ/𝑥], 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑀 ′ [ℓ/𝑥], 𝑠′ ⊎ {ℓ ↦→ 𝑛′}⟩
⟨newsem𝑥:=𝑛 in𝑀, 𝑠⟩ { ⟨newsem𝑥:=𝑛′ in𝑀 ′, 𝑠′⟩

(ℓ ∈ L fresh)

Fig. 30. Operational semantics of IPA

A OPERATIONAL SEMANTICS
We include in Figure 30 the operational semantics of IPA. Here,𝑀 { 𝑁 stands for

⟨𝑀, 𝑠⟩ { ⟨𝑁, 𝑠⟩ ,
i.e. all rules operate on configurations ⟨𝑀, 𝑠⟩, but only the relevant part of the tuple is shown.

B THE IPA-STRUCTURE PStruct

We gather here the missing pieces for the construction of the IPA-structure PStruct.

B.1 PStruct as an IPA-structure: Constructions, Operations
Now, we introduce the IPA-structure operations for Petri structures, following Definition 3.1.

For PStruct we fix PStruct• = PStruct0: we do not need to distinguish well-opened objects.

B.1.1 Constructions. First of all, the constructions of Section 2.1 are applied to finite sets of addresses
simply by applying the corresponding injections from Definition 2.1. In other words we set𝑀 ⊗𝑁 =

𝑀 +⊗ 𝑁 ; &𝑥∈𝑉𝑀𝑥 = ⊎𝑥∈𝑉 𝒾𝑥& (𝑀𝑥 );𝑀 ⊸ 𝑁 = 𝑀 +⊸ 𝑁 and !𝑀 = 𝑀 .

For basic types, we set U,B and N as G = {Q−, A+}. We postpone V and S to Section B.3.

B.1.2 Tensor. The tensor is described in Section 2.2.4.

B.1.3 Currying. Rather than merely introducing currying, we introduce a general operation to

rename the addresses associated with visible transitions in a Petri structure:

Definition B.1. Take 𝝈 a Petri structure on𝑀 and 𝑓 : M ⇀ M s.t.𝑀 ⊆ dom(𝑓 ), 𝑓 (𝑀) ⊆ 𝑁 .
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The renaming 𝝈 [𝑓 ], a Petri structure on 𝑁 , is as 𝝈 except for 𝜕𝝈 [ 𝑓 ] (𝑡) = 𝑓 (𝜕𝝈 (𝑡)).

The net itself is not affected, only the labelling function for visible transitions. Now:

Definition B.2. Consider 𝝈 ∈ PStruct(!(&[Γ, 𝑥 : 𝐴,Δ]),𝑂). We define the function Λ𝑥 : M⊢ ⇀
M⊢ by Λ𝑥 (𝓇⊢m) = 𝓇⊢𝓇⊸m, Λ𝑥 (ℓ⊢𝒾𝑥& m) = 𝓇⊢ℓ⊸m, and Λ𝑥 (m) = m otherwise.

Then, setting ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝝈) = 𝝈 [Λ𝑥 ], we obtain ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝝈) ∈ PStruct(!(&[Γ,Δ]), !𝐴 ⊸ 𝑂).

This reassigns visible transitions corresponding to variable 𝑥 to the left hand side of⊸ on the

right hand side of ⊢. Transitions initially assigned to the right hand side must also be relabelled,

but the rest are unchanged. The net itself (i.e. the graph) remains the same.

B.1.4 Promotion. Promotion is described in Section 2.3.3.

B.2 PStruct as an IPA-structure: Stateless Primitives
Next, we describe all the primitives involved in the interpretation of the 𝜆-calculus and recursion.

B.2.1 Variable, evaluation. First, the variable is simply a copycat set to component 𝒾
𝑥
&
of the context.

Definition B.3. Consider𝑀 ⊆ M finite, and 𝑥 ∈ Var.
We define var𝑥 :𝑀 as Lvar𝑥 :𝑀 = L cc𝑀 , Tvar𝑥 :𝑀 = Tcc𝑀 , with the same pre- and post-conditions as for

cc𝑀 . We set 𝜕var𝑥 :𝑀 (m, ℓ) = ℓ⊢𝒾𝑥& m and 𝜕var𝑥 :𝑀 (m, 𝓇) = 𝓇⊢m. Finally, the transition table is:

𝛿 ⟨(m+, 𝓇)⟩({(s, d)@m}) = (s, d)
𝛿 ⟨(m−, ℓ)⟩({(s, d)@m}) = (♦ :: s, d)

𝛿 ⟨(m−, 𝓇)⟩(s, d) = {(s, d)@m}
𝛿 ⟨(m+, ℓ)⟩(♦ :: s, d) = {(s, d)@m} .

Recall that terms Γ ⊢ 𝑀 : 𝐴 are meant to be interpreted as morphisms J𝑀K ∈ C(!JΓK, J𝐴K). The !
explains the ♦ in the transition table, which corresponds to dereliction in linear logic terminology.

Note that the top two of these transitions do not affect the token: they only forward it following

the structure of the net. From now on, we call trivial such transitions and omit them for succinctness.

Evaluation, used for application, is also a copycat:

Definition B.4. For𝑀, 𝑁 ⊆ M finite sets, ev𝑀,𝑁 = cc𝑀⊸𝑁 [Ω], where Ω : M ⇀ M is Ω(𝓇⊢𝓇⊸m) =
𝓇⊢m, Ω(𝓇⊢ℓ⊸m) = ℓ⊢𝓇⊗m, Ω(ℓ⊢𝓇⊸m) = ℓ⊢ℓ⊗𝓇⊸m, Ω(ℓ⊢ℓ⊸m) = ℓ⊢ℓ⊗ℓ⊸m, and Ω(m) = m otherwise.

B.2.2 Other stateless primitives. For finite𝑀 ⊆ M, the (binary) contraction c𝑀 was presented

in Section 2.3.2. The 𝑛-ary contraction, defined likewise, is omitted – it may also be obtained by

induction, composing binary contractions.

The fixpoint combinator Y𝑀 is similar: it has LY𝑀
= 𝑀 , TY𝑀

= (𝑀 +⊸ 𝑀) +⊢ 𝑀 , net in Figure

32a and transition rules in Figure 31. The net has no loops, but loops may arise by composition.

Operations were described in Section 3.3.1. Constants, conditionals are introduced in Figures

32b, 32c respectively, with transition rules in Figure 31. Hopefully their behaviour is clear at this

point. Finally, the let was introduced in Section 3.3.3.

B.3 PStruct as an IPA-structure: Stateful Primitives
For typesV and Swe have addresses V = {𝓌VQ

−,𝓌VA
+, 𝓇VQ−, 𝓇VA+} and S = {ℊSQ−,ℊSA+, 𝓇SQ−, 𝓇SA+},

where𝓌V is the address for write requests, 𝓇V for read requests, ℊS for grab, 𝓇S for release.
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𝛿if ⟨ℓ⊢𝓇⊗ℓ⊗Q+⟩({([], tt)@2}) = ( [], •)
𝛿if ⟨ℓ⊢𝓇⊗ℓ⊗Q+⟩({([], ff)@2}) = ( [], •)

𝛿Y𝑀
⟨𝓇⊢m−⟩(s, d) = {(ℓ

!
♦ :: s, d)@m− }

𝛿Y𝑀
⟨ℓ⊢ℓ⊸m−⟩(e1 :: e2 :: s, d) = {(𝓇

!
⟨e1, e2⟩ :: s, d)@m− }

𝛿Y𝑀
⟨𝓇⊢m+⟩({(ℓ

!
♦ :: s, d)@m+ }) = (s, d)

𝛿Y𝑀
⟨ℓ⊢ℓ⊸m+⟩({(𝓇

!
⟨𝑒1, 𝑒2⟩ :: s, d)@m+ }) = (e1 :: e2 :: s, d)

𝛿newsem⟨𝓇⊢Q−⟩([], •) = {([], •)@1, ( [], tt)@2}
𝛿newsem⟨g⟩({([e], •)@3, (_, tt)@2}) = {([e], ff)@2, ( [e],✓)@4}
𝛿newsem⟨r⟩({([e], •)@3, (_, ff)@2}) = {([e], tt)@2, ( [e],✓)@6}

Fig. 31. Transition tables for IPA-structure primitives

𝓇⊢m− ℓ⊢ℓ⊸m−

m−

ℓ⊢𝓇⊸m+

ℓ⊢𝓇⊸m−

m+

𝓇⊢m+ ℓ⊢ℓ⊸m+

(a) Fixpoint combinator Y𝑀

𝓇⊢Q
−

1

𝓇⊢A
+

(b) Constant

𝓇⊢Q
−

1

ℓ⊢ℓ⊗Q
+

ℓ⊢ℓ⊗A
−

2

ℓ⊢𝓇⊗ℓ⊗Q
+ ℓ⊢𝓇⊗𝓇⊗Q

+

ℓ⊢𝓇⊗ℓ⊗A
− ℓ⊢𝓇⊗𝓇⊗A

−

3

𝓇⊢A
+

(c) Petri structure for if

𝓇⊢Q
−

1

ℓ⊢𝓇⊗Q
+

ℓ⊢𝓇⊗A
−

2

ℓ⊢ℓ⊗𝓌VQ
+

ℓ⊢ℓ⊗𝓌VA
−

3

𝓇⊢A
+

(d) Petri structure assign

𝓇⊢Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢ℓ⊸ℊSQ
−

3

g

4

ℓ⊢ℓ⊸ℊSA
+

ℓ⊢ℓ⊸𝓇SQ
−

5

r

6

2

ℓ⊢ℓ⊸𝓇SA
+

ℓ⊢𝓇⊸A
−

7

𝓇⊢A
+

(e) Petri structure for newsem

Fig. 32. The nets of Petri structures for IPA primitives

B.3.1 Reference and semaphore queries. Recall that Definition 3.1 requires primitives

assign ∈ C(V ⊗ N,U) , deref ∈ C(V,N)
grab ∈ C(S,U) , release ∈ C(S,U)

for reference and semaphore queries. Among these, we set deref = cc N [ℓ⊢m ↦→ ℓ⊢𝓇Vm, 𝓇⊢m ↦→
𝓇⊢m], grab = cc U [ℓ⊢m ↦→ ℓ⊢ℊSm, 𝓇⊢m ↦→ 𝓇⊢m] and release = cc U [ℓ⊢m ↦→ ℓ⊢𝓇Sm, 𝓇⊢m ↦→ 𝓇⊢m] copycat
strategies simply accessing the matching component of the reference or semaphore.

The remaining query assign is more elaborate: upon being evaluated, it sends an evaluation

request to its integer argument. Upon receiving a value, it sends the write request, and propagates

the acknowledgement. The net is in Figure 32d and its transition rules are trivial.

B.3.2 Initialization. The actual stateful behaviour is provided by nets for new references and

semaphores newref ∈ C(!V ⊸ X,X) and newsem ∈ C(!S ⊸ X,X). New references were

introduced in Section 3.3.2. The (identical) net for new semaphores appears in Figure 32e with

non-trivial transitions in Figure 31.
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U =
(Q, [], •)−

(A, [],✓)+
B =

(Q, [], •)−

(A, [], tt)+ (A, [], ff)+
N =

(Q, [], •)−

(A, [], 0)+ (A, [], 1)+ (A, [], 2)+ . . .

Fig. 33. Interpretation of IPA ground types

For new semaphores, in normal operation, location 2 contains exactly one token with data either

tt or ff, encoding if the semaphore is free. The transitions g and r grab and release the semaphore,

and may only fire if the semaphore currently has the adequate state.

C CONCURRENT STRATEGIES
We now provide details about the construction of the IPA structure of concurrent strategies as

presented in [Castellan and Clairambault 2020].

C.1 Types and Contexts as Games
We detail the interpretation of types. Figure 33 presents the interpretation of ground types.

We nowmove on to constructions on games and arenas.Wewrite either 1 or⊤ for the empty arena.

If (m, s, d) ∈ Moves, we write ℓ⊗ ((m, s, d)) = (ℓ⊗ (m), s, d) and likewise for all injections appearing

in the definition of addresses. This extends to sets of moves by direct image. Address injections

also apply to binary relations on moves in the obvious way, e.g. ℓ⊗ (𝑅) = {(ℓ⊗ (𝑚), ℓ⊗ (𝑚′)) | 𝑚𝑅𝑚′}.

Definition C.1. Consider 𝐴, 𝐵 games. Then we set games 𝐴 ⊗ 𝐵 and 𝐴 ⊢ 𝐵 with components:

|𝐴 ⊗ 𝐵 | = ℓ⊗ ( |𝐴|) ⊎ 𝓇⊗ ( |𝐵 |)
≤𝐴⊗𝐵 = ℓ⊗ (≤𝐴) ⊎ 𝓇⊗ (≤𝐵)
#𝐴⊗𝐵 = ℓ⊗ (#𝐴) ⊎ 𝓇⊗ (#𝐵)

|𝐴 ⊢ 𝐵 | = ℓ⊢ ( |𝐴|) ⊎ 𝓇⊢ ( |𝐵 |)
≤𝐴⊢𝐵 = ℓ⊢ (≤𝐴) ⊎ 𝓇⊢ (≤𝐵)
#𝐴⊢𝐵 = ℓ⊢ (#𝐴) ⊎ 𝓇⊢ (#𝐵)

𝐴 ⊗ 𝐵 is called the tensor, and 𝐴 ⊢ 𝐵 is called the hom-game.

If 𝐴, 𝐵 are arenas, so is 𝐴 ⊗ 𝐵. In contrast, 𝐴 ⊢ 𝐵 is never an arena unless 𝐴 is empty. Formally,

both constructions are defined in the same way, but with a distinct injection – remember that ℓ⊢
inverts polarity, so that in 𝐴 ⊢ 𝐵 the polarity is inverted in 𝐴.

From the definition, configurations of𝐴⊗𝐵 have a restricted shape: any 𝑥 ∈ 𝒞(𝐴⊗𝐵) decomposes

uniquely as 𝑥 = ℓ⊗ (𝑥𝐴) ⊎ 𝓇⊗ (𝑥𝐵) with 𝑥𝐴 ∈ 𝒞(𝐴) and 𝑥𝐵 ∈ 𝒞(𝐵) – we write 𝑥 = 𝑥𝐴 ⊗ 𝑥𝐵 . Likewise,
any configuration 𝑥 ∈ 𝒞(𝐴 ⊢ 𝐵) decomposes as 𝑥 = 𝑥𝐴 ⊢ 𝑥𝐵 = ℓ⊢ (𝑥𝐴) ⊎ 𝓇⊢ (𝑥𝐵).

C.1.1 Further arena constructions. We give the remaining constructions required by Definition 3.1.

First a new notation: for𝑚 = (m, s, d) ∈ Moves and e ∈ E, we write e ::𝑚 = (m, e :: s, d), i.e. the
exponential signature implicitly applies to the exponential stack of𝑚. This is an injection, and

accordingly we apply it to sets and relations as with the injections from addresses.

Definition C.2. We define three other constructions on arenas:

linear arrow: for 𝐴,𝑂 arenas with𝑂 well-opened, we define 𝐴 ⊸ 𝑂 well-opened in Figure 34a.

product: for (𝐴𝑥 )𝑥∈𝑉 a family of arenas with 𝑉 ⊆ Var, we define
˘

𝑥∈𝑉 𝐴𝑥 in Figure 34b.

bang: for 𝐴 an arena, we define !𝐴 in Figure 34c.
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|𝐴 ⊸ 𝑂 | = ℓ⊸ ( |𝐴|) ⊎ 𝓇⊸ ( |𝑂 |)
≤𝐴⊸𝑂 = ℓ⊸ (≤𝐴) ⊎ 𝓇⊸ (≤𝑂 )

⊎ 𝓇⊸ (min(𝑂)) × ℓ⊸ ( |𝐴|)
#𝐴⊸𝑂 = ℓ⊸ (#𝐴) ⊎ 𝓇⊸ (#𝑂 )

(a) Arrow

| & (𝐴𝑥 )𝑥∈𝑉 | =
⊎

𝑥∈𝑉 𝒾
𝑥
&
( |𝐴𝑥 |)

≤&(𝐴𝑥 )𝑥 ∈𝑉 =
⊎

𝑥∈𝑉 𝒾
𝑥
&
(≤𝐴𝑥

)
𝒾
𝑥
&
(𝑎) # 𝒾𝑦

&
(𝑎′) ⇔ (𝑥 = 𝑦 ∧ 𝑎 #𝐴𝑥

𝑎′)
∨(𝑥 ≠ 𝑦)

(b) Product

|!𝐴| =
⊎

e∈E e :: |𝐴|
≤!𝐴 =

⊎
e∈E e :: (≤𝐴)

#!𝐴 =
⊎

e∈E e :: (#𝐴)

(c) Bang

Fig. 34. Arena constructions

V =
(𝓌VQ, [], 0)− (𝓌VQ, [], 1)− . . . (𝓇VQ, [], •)−

(𝓌VA, [],✓)+ (𝓌VA, [],✓)+ . . . (𝓇VA, [], 0)+ (𝓇VA, [], 1)+ . . .

S =
(ℊSQ, [], •)− (𝓇SQ, [], •)−

(ℊSA, [],✓)+ (𝓇SA, [],✓)+

Fig. 35. Arenas for references and semaphores

(𝓇⊸Q, [], •)−

(ℓ⊸𝓇⊸Q, [e], •)+ (𝓇⊸A, [], tt)+ (𝓇⊸A, [], ff)+

(ℓ⊸ℓ⊸Q, [e, e′], •)− (ℓ⊸𝓇⊸A, [e],✓)−

(ℓ⊸ℓ⊸A, [e, e′],✓)+

Fig. 36. Arena !(!U ⊸ U) ⊸ B

(𝓇⊸Q, [], •)−

(ℓ⊸𝓇⊸Q, [♦], •)+

(ℓ⊸ℓ⊸Q, [♦, e], •)− (ℓ⊸𝓇⊸A, [♦],✓)−

(ℓ⊸ℓ⊸A, [♦, e],✓)+ (ℓ⊸ℓ⊸A, [♦, e],✓)+ (𝓇⊸A, [], tt)+ (𝓇⊸A, [], ff)+

Fig. 37. Part of a concurrent strategy

It remains to give the arenas for references and semaphores, in Figure 35.

The arrow 𝐴 ⊸ 𝑂 enforces that an argument cannot be called before the function has been

called. The bang !𝐴 creates countably many independent copies of 𝐴, one for each exponential

signature, for thread indexing (for that, [Castellan and Clairambault 2020] uses integers).
A more elaborate example of arena is in Figure 36. The representation is symbolic: from the

exponentials in the construction, the full arena is infinite and comprises moves as in the diagram

for all exponential signatures e, e′ ∈ E. However, we have e.g. (ℓ⊸𝓇⊸Q, [𝑒], •) ≤ (ℓ⊸ℓ⊸Q, [e1, e2], •)
only when 𝑒 = 𝑒1 – in an exponential stack, the first element corresponds to the outermost !(−).

C.2 The Category of Arenas and Strategies
Events of a strategy 𝜎 inherit a polarity from pol𝜎 (𝑠) = pol(𝜕(𝑠)) – a definition used implicitly from

now on. Again, this definition is as in [Castellan and Clairambault 2020] without the component

and conditions – unnecessary for this paper – pertaining to symmetry.

The event structure 𝜎 presents observable computational events along with their causal depen-

dencies and conflicts. Events of 𝜎 are not moves of the game, but they do correspond to moves

via the action of 𝜕. This permits an explicit representation of non-deterministic branching: several

events of 𝜎 may correspond to the same move if they are conflicting and so belong to separate

branches of the execution. The strategy keeps them separate, even if they cannot be distinguished.

We show in Figure 37 (part of) a concurrent strategy playing on the game in Figure 36. In such

diagrams we represent the strategy and the explored part of the arena in a single picture. Nodes

correspond to events of the strategy, drawn directly as their display through 𝜕 – this means that

two conflicting nodes may have the same label, as happens in Figure 37. Arrows _ correspond

to the immediate causal dependency in 𝜎 , while dotted lines correspond as before to the causal

dependency from the game. The diagram in Figure 37 is a part of the strategy for:
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Example C.3. We introduce the term ⊢ strictness : (U→ U) → B, defined as

⊢ 𝜆𝑓 U→U . newref 𝑥 in 𝑓 (𝑥 := 1); not (iszero !𝑥)
: (U→ U) → B ,

using encapsulated state to test if a function 𝑓 calls its argument (run it here).

Figure 37 reads as follows: Opponent initiates computation with (𝓇⊸Q, [], •)− . This lets Player
call his argument with (ℓ⊸𝓇⊸Q, [♦], •)+. This lets Opponent return the call with (ℓ⊸𝓇⊸A, [♦],✓)− ,
or call its argument with (ℓ⊸ℓ⊸Q, [♦, e])− for any e ∈ E (in fact Opponent may call this argument

arbitrarily many times with distinct exponential signatures, but Figure 37 only represents one

call). But these events are not incompatible: though this behaviour is not realizable within IPA, our
model lets Opponent call its argument and return concurrently! In that case both 𝑥 := 1 and !𝑥 are

running, so there is a race. The conflicts in Figure 37 allow two outcomes, depending on who wins.

It remains to introduce the two conditions courteous and receptive: the former simply states that

a strategy has no control over Opponent moves, and must acknowledge each Opponent move 𝐴

uniquely. Courtesy entails that with respect to the immediate causal links of the game, a strategy

can only add new dependencies from negative to positive moves. This formalizes the idea that

strategies interact in an asynchronous environment, where e.g. causal links between positive moves

may not be preserved by propagation of moves through buffers – or through a Petri structure.

C.2.1 Isomorphic strategies. Strict equality of strategies is too strict to be useful; instead we use:

Definition C.4. Consider 𝜎, 𝜏 : 𝐴 two (pre)strategies on game 𝐴.

An isomorphism 𝜑 : 𝜎 � 𝜏 is an invertible map of es 𝜑 : 𝜎 → 𝜏 such that 𝜕𝜏 ◦ 𝜑 = 𝜕𝜎 .

We write 𝜎 � 𝜏 to mean that 𝜎 and 𝜏 are isomorphic, leaving the isomorphism unspecified.

Clearly, this is an equivalence relation. It is a basic fact from the theory of event structures that

isomorphisms between 𝜎 and 𝜏 are in one-to-one correspondence with order-isos 𝜑 : 𝒞(𝜎) � 𝒞(𝜏)
such that 𝜕𝜏 ◦𝜑 = 𝜕𝜎 , i.e. any such order-iso is given by a unique isomorphism of strategies – this is

convenient as it is often easier to construct a bijection between configurations rather than events.

For strategies, this can be simplified by ignoring trailing Opponent moves. A 𝑥 ∈ 𝒞(𝜎) is +-
covered if any𝑚 ∈ 𝑥 maximal in 𝑥 is positive; we write 𝒞

+(𝜎) for the +-covered configurations of

𝜎 . The action of an iso 𝜑 on +-covered configurations suffices to completely describe it:

Lemma C.5. Consider 𝜎, 𝜏 : 𝐴 two strategies, and 𝜑 : 𝒞
+(𝜎) � 𝒞+(𝜏) an order-iso s.t. 𝜕𝜏 ◦ 𝜑 = 𝜕𝜎 .

Then, there is a unique 𝜑 : 𝜎 � 𝜏 such that 𝜑 (𝑥) = 𝜑 (𝑥) for all 𝑥 ∈ 𝒞+(𝜎).

This is an application in the trivial case without symmetry of Lemma 5.11 from [Castellan and

Clairambault 2020], which will be very helpful in constructing isomorphisms in this paper.

C.2.2 Composition. Working towards an IPA-structure, we must first define composition.

A strategy 𝜎 from game 𝐴 to game 𝐵 is defined as a strategy 𝜎 : 𝐴 ⊢ 𝐵. Let us fix for now

games 𝐴, 𝐵 and 𝐶 and strategies 𝜎 : 𝐴 ⊢ 𝐵 and 𝜏 : 𝐵 ⊢ 𝐶 that we wish to compose to 𝜏 ⊙ 𝜎 : 𝐴 ⊢ 𝐶 .
Lemma C.5 puts the emphasis on +-covered configurations, so we investigate what should be

the +-covered configurations of 𝜏 ⊙ 𝜎 . It turns out that they correspond to pairs 𝑥𝜎 ∈ 𝒞+(𝜎) and
𝑥𝜏 ∈ 𝒞+(𝜏) whose synchronization of 𝑥𝜎 and 𝑥𝜏 through 𝐵 is “sound”, which we must now define.

We fix the convention that if 𝑥𝜎 ∈ 𝒞(𝜎) and 𝑥𝜏 ∈ 𝒞(𝜏), we write 𝜕𝜎𝑥
𝜎 = 𝑥𝜎

𝐴
⊢ 𝑥𝜎

𝐵
and

𝜕𝜏𝑥
𝜏 = 𝑥𝜏

𝐵
⊢ 𝑥𝜏

𝐶
where 𝑥𝜎

𝐴
∈ 𝒞(𝐴), 𝑥𝜎

𝐵
, 𝑥𝜏

𝐵
∈ 𝒞(𝐵), and 𝑥𝜏

𝐶
∈ 𝒞(𝐶). We say 𝑥𝜎 ∈ 𝒞(𝜎) and

𝑥𝜏 ∈ 𝒞(𝜏) are matching if 𝑥𝜎
𝐵
= 𝑥𝜏

𝐵
, in which case it is unambiguous to write 𝜕𝜎 (𝑥𝜎 ) = 𝑥𝐴 ⊢ 𝑥𝐵

and 𝜕𝜏 (𝑥𝜏 ) = 𝑥𝐵 ⊢ 𝑥𝐶 . So 𝑥𝜎 and 𝑥𝜏 reach the same state on 𝐵, but it remains to see if they do it
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!U U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [♦], •)+

(𝓇⊢ℓ⊸A, [♦],✓)−

(𝓇⊢𝓇⊸A, [],✓)+

⊸⊢

vs

!U U B

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [♦], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [♦],✓)+ (𝓇⊢A, [], tt)+

⊸ ⊢

Fig. 38. Matching, secured configurations

!U U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [♦], •)+

(𝓇⊢ℓ⊸A, [♦],✓)−

(𝓇⊢𝓇⊸A, [],✓)+

⊸⊢

vs

!U U B

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [♦], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [♦],✓)+ (𝓇⊢A, [], tt)+

⊸ ⊢

Fig. 39. Matching, non-secured configurations

(B U) U

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [], tt)+ (ℓ⊢ℓ⊸A, [], ff)+ (𝓇⊢A, [],✓)+

⊸ ⊢

⊙

⊢ B U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [], •)+

(𝓇⊢ℓ⊸A, [], tt)− (𝓇⊢ℓ⊸A, [], ff)−

(𝓇⊢𝓇⊸A, [],✓)+ (𝓇⊢𝓇⊸A, [],✓)+

⊸

=

(B U) U

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)

(ℓ⊢ℓ⊸Q, [], •)

(ℓ⊢ℓ⊸A, [], tt) (ℓ⊢ℓ⊸A, [], ff)

(ℓ⊢𝓇⊸A, [], tt) (ℓ⊢𝓇⊸A, [], ff)

(𝓇⊢A, [],✓)+ (𝓇⊢A, [],✓)+

⊸ ⊢

Fig. 40. Example of a composition

with compatible causal constraints. For that, we set 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 = ℓ (𝑥𝐴) ⊎𝓂(𝑥𝐵) ⊎ 𝓇(𝑥𝐶 ), and
𝜕ℓ𝜎 : 𝑥𝜎 → 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶

𝑚 ↦→ ℓ (𝑎) if 𝜕𝜎 (𝑚) = ℓ⊢ (𝑎),
𝑚 ↦→ 𝓂(𝑏) if 𝜕𝜎 (𝑚) = 𝓇⊢ (𝑏),

𝜕𝓇𝜏 : 𝑥𝜏 → 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶
𝑛 ↦→ 𝓂(𝑏) if 𝜕𝜏 (𝑛) = ℓ⊢ (𝑏),
𝑛 ↦→ 𝓇(𝑐) if 𝜕𝜏 (𝑛) = 𝓇⊢ (𝑐).

are variants of the display maps set to embed 𝑥𝜎 and 𝑥𝜏 in the common space 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 .
This lets us check the presence of deadlocks by importing all causal constraints to 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 :

Definition C.6. Consider 𝑥𝜎 ∈ 𝒞(𝜎) and 𝑥𝜏 ∈ 𝒞(𝜏) matching configurations.

They are causally compatible if the relation ◁ = ◁𝜎 ⊎ ◁𝜏 on 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 set with:

𝜕ℓ𝜎 (𝑚) ◁𝜎 𝜕ℓ𝜎 (𝑚′) for𝑚 <𝜎 𝑚
′

𝜕𝓇𝜏 (𝑛) ◁𝜏 𝜕𝓇𝜏 (𝑛′) for 𝑛 <𝜏 𝑛
′

is acyclic. We also say that the pair 𝑥𝜎 , 𝑥𝜏 is secured.

We show in Figures 38 and 39 examples of matching secured and non-secured pairs involved

in computing the composition of the strategy of Figure 37 with 𝜆𝑥U . 𝑥 . In Figure 39, a deadlock

directly arises from opposite causal constraints (highlighted in blue). This entails that the only

result arising from this composition will be tt from Figure 38, as expected since 𝜆𝑥. 𝑥 is strict.

Then 𝜏 ⊙ 𝜎 is the unique strategy with as +-covered configurations the causally compatible pairs:

Proposition C.7. Consider 𝐴, 𝐵,𝐶 games, and 𝜎 : 𝐴 ⊢ 𝐵 and 𝜏 : 𝐵 ⊢ 𝐶 strategies.
Then there is a strategy 𝜏 ⊙ 𝜎 : 𝐴 ⊢ 𝐶 , unique up to iso, s.t. there are order-isos:

(− ⊙ −) : {(𝑥𝜏 , 𝑥𝜎 ) ∈ 𝒞+(𝜏) ×𝒞+(𝜎) | causally compatible}
≃ 𝒞

+(𝜏 ⊙ 𝜎)
such that for any 𝑥𝜎 ∈ 𝒞+(𝜎) and 𝑥𝜏 ∈ 𝒞+(𝜏) causally compatible, 𝜕𝜏⊙𝜎 (𝑥𝜏 ⊙ 𝑥𝜎 ) = 𝑥𝜎𝐴 ⊢ 𝑥𝜏

𝐶
.

This is a simplification of Proposition 3.3.1 from [Castellan and Clairambault 2020].

Concretely, composition is performed by parallel interaction (via the synchronizing product of es

used by Winskel to model CCS [Winskel 1982]); followed by hiding which keeps the visible events

only. In this paper, the above characterization suffices for our purposes.
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Figure 40 shows an example composition which, ignoring exponentials, corresponds to:

J𝑓 : B→ U ⊢ 𝑓 coinK ⊙ J⊢ 𝜆𝑥B . if 𝑥 skip skipK : 1 ⊢ U .

Observe the resulting strategy has two distinct ways to converge, even though the two occur-

rences of (𝓇⊢A, [],✓)+ correspond to the same event of the left hand side strategy. Each event of the

composition carries its whole causal history, including the exact synchronizations that lead to it.

C.3 The IPA-structure Strat

C.3.1 Categorical structure. Section C.2 already contains the data of Strat, and composition. It

remains to define:

Copycat. Copycat may be defined on any game, but it is slightly simpler on arenas:

Definition C.8. For each arena 𝐴, the copycat strategy cc𝐴 : 𝐴 ⊢ 𝐴 is defined as having:

| cc𝐴 | = |𝐴 ⊢ 𝐴|
𝜕 cc𝐴 (𝑚) = 𝑚

𝒾(𝑎) ≤ cc𝐴
𝒾
′ (𝑎) ⇔ 𝑎 <𝐴 𝑎

′
; or 𝑎 = 𝑎′, pol(𝒾(𝑎)) = −

and pol(𝒾′ (𝑎)) = +
𝒾(𝑎) # cc𝐴

𝒾
′ (𝑎′) ⇔ 𝑎 #𝐴 𝑎

′ ,

where 𝒾, 𝒾′ ∈ {ℓ⊢, 𝓇⊢}.

Copycat acts as an asynchronous forwarder, simply receptive to all Opponent moves and prepared

to forward them to the other side as soon as they become available. This means that its +-covered
configurations, where all moves have been successfully forwarded, have a particularly simple shape:

Lemma C.9. Consider 𝐴 any arena. Then, we have 𝒞+( cc𝐴) = {𝑥𝐴 ⊢ 𝑥𝐴 ∈ 𝒞(𝐴 ⊢ 𝐴) | 𝑥𝐴 ∈ 𝒞(𝐴)}.

From LemmaC.5 this characterizes cc𝐴 uniquely up to iso, just like Proposition C.7 for composition.

It follows from these two facts that composition preserves isomorphisms, that it is associative and

that identities are neutral for composition up to isomorphism, see [Castellan et al. 2017] for details.

Corollary C.10. There is Strat, a category having arenas as objects, as morphisms from 𝐴 to 𝐵
the negative strategies on the game 𝐴 ⊢ 𝐵 up to isomorphism, and copycat strategies as identities.

Unlike PStruct or PStrat, Strat is a category satisfying the identity laws – though this fact will

not be directly useful for us in this paper.

C.3.2 Strat as an IPA-structure: Operations. We detail the different operations involved in the

IPA-structure.

Tensor. Fix 𝜎1 ∈ Strat(𝐴1, 𝐵1) and 𝜎2 ∈ Strat(𝐴2, 𝐵2). We define:

Definition C.11. We define 𝜎1 ⊗ 𝜎2 ∈ Strat(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) with:

|𝜎1 ⊗ 𝜎2 | = |𝜎1 | + |𝜎2 |
≤𝜎1⊗𝜎2 = ≤𝜎1 + ≤𝜎2

#𝜎1⊗𝜎2 = #𝜎1 + #𝜎2

𝜕𝜎1⊗𝜎2 (ℓ (𝑚)) = 𝜕𝜎1 (𝑚)
𝜕𝜎1⊗𝜎2 (𝓇(𝑚)) = 𝜕𝜎2 (𝑚)

The conditions for a strategy are straightforward, and so is:
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Proposition C.12. The strategy 𝜎1 ⊗ 𝜎2 ∈ Strat(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) satisfies:

(− ⊗ −) : 𝒞+(𝜎1) ×𝒞+(𝜎2) → 𝒞
+(𝜎1 ⊗ 𝜎2)

such that 𝜕𝜎1⊗𝜎2 (𝑥𝜎1 ⊗ 𝑥𝜎2 ) = (𝑥𝜎1
𝐴1

⊗ 𝑥𝜎2
𝐴2

) ⊢ (𝑥𝜎1
𝐵1

⊗ 𝑥𝜎2
𝐵2

) for all 𝑥𝜎1 ⊗ 𝑥𝜎2 ∈ 𝒞+(𝜎1 ⊗ 𝜎2).
Moreover, 𝜎1 ⊗ 𝜎2 is the unique strategy on 𝐴1 ⊗ 𝐴2 ⊢ 𝐵1 ⊗ 𝐵2 satisfying this property.

Proof. The property is a direct verification, and uniqueness follows from Lemma C.5. □

Currying. As for Petri structures, we start with renaming.

Definition C.13. Consider 𝜎 a strategy on game 𝐴, and 𝑓 : |𝐴| → |𝐵 |.
Then, we define the renaming to be as 𝜎 except 𝜕𝜎 [ 𝑓 ] (𝑚) = 𝑓 (𝜕𝜎 (𝑚)).

Without additional conditions, there is no reason why 𝜎 [𝑓 ] would be a strategy in general. A

convenient situation is when 𝑓 preserves sufficiently rigidly the rules of the game:

Proposition C.14. We say that 𝑓 : |𝐴| → |𝐵 | is valid if it is a map of es, additionally satisfying
hypotheses receptive and courteous from Definition 4.4

If 𝜎 : 𝐴 and 𝑓 is valid, then 𝜎 [𝑓 ] is a strategy on 𝐵.

Proof. Straightforward. □

However, we cannot use this directly for currying, because the function

ΛΓ,Δ
𝑥 :𝐴,𝑂

: | ! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝑂 | → | ! &[Γ,Δ] ⊢ !𝐴 ⊸ 𝑂 |
(m, s, d) ↦→ (Λ𝑥 (m), s, d)

using Λ𝑥 from Definition B.2, is not valid (a singleton configuration in 𝐴 on the left hand side is

indeed sent to a non-configuration on the right hand side). However, we do have:

Proposition C.15. Consider 𝜎 ∈ Strat(! &[Γ, 𝑥 : 𝐴,Δ],𝑂).
Then, there exists a unique Λ(𝜎) ∈ Strat(! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝑂) such that

𝜑 : 𝒞
+(𝜎) � 𝒞+(Λ(𝜎))

and satisfying that 𝜕Λ(𝜎 ) (𝜑 (𝑥𝜎 )) = ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝜕𝜎 (𝑥𝜎 )) for all 𝑥𝜎 ∈ 𝒞+(𝜎).

Proof. Existence. We set Λ(𝜎) as 𝜎 [ΛΓ,Δ
𝑥 :𝐴,𝑂

] even though ΛΓ,Δ
𝑥 :𝐴,𝑂

is not valid; that this is still

well-defined follows directly from 𝜎 negative (see [Castellan and Clairambault 2020, Lemma 4.25]).

Uniqueness. Direct from Lemma C.5. □

Promotion. Next we define the promotion of 𝜎 ∈ Strat(!𝐴, 𝐵).
First, for any arena 𝐴, we define the function

dig𝐴 : ‼𝐴 → !𝐴

e1 :: (e2 ::𝑚) ↦→ ⟨e1, e2⟩ ::𝑚

yielding a map of event structures. If 𝜎 is a strategy, we write 𝒞
+,≠∅ (𝜎) the set of +-covered,

non-empty configurations of 𝜎 . Finally, for 𝑋 a set we write Fam(𝑋 ) for the set of families (𝑥𝑖 )𝑖∈𝐼
where 𝑥𝑖 ∈ 𝑋 and 𝐼 ⊆ E is a finite subset of exponential signatures.

With these notations in place, we have:

Proposition C.16. There is a strategy 𝜎† ∈ Strat(!𝐴, !𝐵), unique up to iso, such that there is

[−] : Fam(𝒞+,≠∅ (𝜎)) � 𝒞+(𝜎†)
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satisfying that for all (𝑥e)e∈𝐸 ∈ Fam(𝒞+,≠∅ (𝜎)), we have

𝜕𝜎† ( [(𝑥e)e∈𝐸]) = dig

(⊎
e∈𝐸

e :: 𝑥e
!𝐴

)
⊢

(⊎
e∈𝐸

e :: 𝑥e𝐵

)
writing 𝜕𝜎 (𝑥e) = 𝑥e

!𝐴
⊢ 𝑥e

𝐵
for all e ∈ 𝐸.

Proof. Existence. Straightforward from [Castellan and Clairambault 2020, Definition 4.27] and

renaming following dig.
Uniqueness. Direct from Lemma C.5. □

C.3.3 Strat as an IPA-Structure: Primitives.

Copycat strategies. We first address the three primitives arising as copycat-like strategies: variable,

evaluation, and contraction.

Definition C.17. Consider Γ, 𝑥 : 𝐴,Δ a semantic context. Then we set VarΓ,Δ
𝑥 :𝐴

as cc𝐴 [Var𝑥 ] where

Var𝑥 : (𝐴 ⊢ 𝐴) → (! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝐴)
(𝓇⊢m, s, d) ↦→ (𝓇⊢m, s, d)
(ℓ⊢m, s, d) ↦→ (ℓ⊢𝒾𝑥& m, ♦ :: s, d)

Likewise, the evaluation morphism is simply by renaming.

Definition C.18. Consider 𝐴,𝑂 arenas with 𝑂 well-opened.

Then we set ev𝐴,𝑂 = cc𝐴⊸𝑂 [Ω] where Ω is that of Definition B.4 canonically extended to moves.

Finally, we define copycat. As in the main text, for simplicity we give the binary case.

Definition C.19. Consider 𝐴 an arena. Then we set c𝐴 = cc !𝐴⊗!𝐴 [c] ∈ Strat(!𝐴, !𝐴 ⊗ !𝐴) where
c : (!𝐴 ⊗ !𝐴 ⊢ !𝐴 ⊗ !𝐴) ⇀ (!𝐴 ⊢ !𝐴 ⊗ !𝐴)

(ℓ⊢ℓ⊗m, e :: s, d) ↦→ (ℓ⊢m, (ℓ!e) :: s, d)
(ℓ⊢𝓇⊗m, e :: s, d) ↦→ (ℓ⊢m, (𝓇!e) :: s, d)

(𝓇⊢m, s, d) ↦→ (𝓇⊢m, s, d)

For the unfolding, it will be convenient to have the following characterization:

Proposition C.20. For any arena 𝐴, 𝒞+(c𝐴) = {ℓ
!
(𝑥!𝐴) ⊎ 𝓇! (𝑦!𝐴) ⊢ 𝑥!𝐴 ⊗ 𝑦!𝐴 | 𝑥!𝐴, 𝑦!𝐴 ∈ 𝒞(!𝐴)}.

Proof. Immediate by Lemma C.9 and definition. □

Constants, conditional, queries. The strategies are displayed in Figure 41. Note that some of these

diagrams use a symbolic representation; whenever there is a branch starting with a negative move

with some data, there actually is a branch for any instance of the data allowed in the game.

Let. We illustrate the strategy let in Figure 42. Note that there is a similar call to !X for all

exponential signature e ∈ E.

Recursion. In [Castellan and Clairambault 2020; Castellan et al. 2019], the recursion combinator

is obtained via the usual recipe in denotational semantics, as the least fixed point of

𝐹 ↦→ (𝑓 : 𝑂 → 𝑂 ⊢ 𝐹 𝑓 ) .
Let us give a direct description of the strategy obtained (the recursive equation gives a different

choice of copy indices, which does not matter up to the equivalence of strategies in [Castellan and

Clairambault 2020; Castellan et al. 2019] – the choice we use here allows for a lighter presentation).
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U

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [],✓)+

(a) skip : U

B

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], tt)+

(b) tt : B

B

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], ff)+

(c) ff : B

N

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], 𝑛)+

(d) 𝑛 : N

X ⊗ Y ⊢ Z

(𝓇⊢Q, [], •)−
#nnt(ℓ⊢ℓ⊗Q, [], •)+

_���
(ℓ⊢ℓ⊗A, [], 𝑣)−

� ''.
(ℓ⊢𝓇⊗Q, [], •)+

_���
(ℓ⊢𝓇⊗A, [],𝑤)−

� ''.
(𝓇⊢A, [], f (𝑣,𝑤))+

(e) op(f)X,YZ : X ⊗ Y ⊢ Z

B ⊗ (X ⊗ X) ⊢ X

(𝓇⊢Q, [], •)−

#nnt(ℓ⊢ℓ⊗Q, [], •)+
2uu} � ��%

(ℓ⊢ℓ⊗A, [], tt)−

� &&-

(ℓ⊢ℓ⊗Q, [], ff)−

� ''.
(ℓ⊢𝓇⊗ℓ⊗Q, [], •)+

_���

(ℓ⊢𝓇⊗𝓇⊗Q, [], •)+
_���

(ℓ⊢𝓇⊗ℓ⊗A, [], 𝑣)−

� ''.

(ℓ⊢𝓇⊗𝓇⊗A, [],𝑤)−

� &&-(𝓇⊢A, [], 𝑣)+ (𝓇⊢A, [],𝑤)+

(f) ifX : B ⊗ (X ⊗ X) ⊢ X

V ⊗ N ⊢ U

(𝓇⊢Q, [], •)−
.ss{

(ℓ⊢𝓇⊗Q, [], •)+
_���

(ℓ⊢𝓇⊗A, [], 𝑛)−
+rry

(ℓ⊢ℓ⊗𝓌VQ, [], 𝑛)+
_���

(ℓ⊢ℓ⊗𝓌VA, [],✓)−

� ((/ (𝓇⊢A, [],✓)+

(g) assign : V ⊗ N ⊢ U

V ⊢ N

(𝓇⊢Q, [], •)−
*qqx

(ℓ⊢𝓇VQ, [], •)+

(ℓ⊢𝓇VA, [], 𝑛)−

� &&-
(𝓇⊢A, [], 𝑛)+

(h) deref : V ⊢ N

S ⊢ U

(𝓇⊢Q, [], •)−
)qqx

(ℓ⊢ℊSQ, [], •)+

_���
(ℓ⊢ℊSA, [],✓)−

� &&-
(𝓇⊢A, [],✓)+

(i) grab : S ⊢ U

S ⊢ U

(𝓇⊢Q, [], •)−
*qqx

(ℓ⊢𝓇SQ, [], •)+
_���

(ℓ⊢𝓇SA, [],✓)−

� &&-
(𝓇⊢A, [],✓)+

(j) release : S ⊢ U

Fig. 41. Basic strategies for IPA primitives

Let us start by drawing the strategy on U. We use particular exponential signatures generated by

() := ℓ
!
♦

(e𝑛+1, e𝑛, . . . , e1) := 𝓇
!
⟨e𝑛+1, (e𝑛, . . . , e1)⟩ ,

yielding (e𝑛, . . . , e1) ∈ E for each e1, . . . , e𝑛 ∈ E. With this convention, we draw the recursion

combinator for U in Figure 43. Again the representation is symbolic, with similar branches for all

e1, . . . , e𝑛+1 ∈ E. We leave in grey the answers, which always propagate back to the previous call.

We consider Y𝑂 for 𝑂 well-opened, so the recursion strategy in general has a spine exactly as

the black part of Figure 43. The rest of the strategy is simple copycat behaviour; which may be

simply described via the following direct characterization of the +-covered configurations of Y𝑂 :
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(!X ⊸ Y) ⊗ X ⊢ Y

(𝓇⊢Q, [], •)−

3uu~
(ℓ⊢𝓇⊗Q, [], •)+

_���
(ℓ⊢𝓇⊗A, [], 𝑣)−

1tt}
(ℓ⊢ℓ⊗𝓇⊸Q, [], •)+

_���
/ss{

(ℓ⊢ℓ⊗ℓ⊸Q, [e], •)−

_���

(ℓ⊢ℓ⊗𝓇⊸A, [],𝑤)−

� ''.
(ℓ⊢ℓ⊗ℓ⊸A, [e], 𝑣)+ (𝓇⊢A, [],𝑤)+

Fig. 42. letX,Y : (!X ⊸ Y) ⊗ X ⊢ Y

!(!U ⊸ U) ⊢ U

(𝓇⊢Q, [], •)−
'ppw

(ℓ⊢𝓇⊸Q, [()], •)+
%oou _���

(ℓ⊢ℓ⊸Q, [e1, ()], •)−

� ))/

(ℓ⊢𝓇⊸A, [()],✓)−

� ''.
(ℓ⊢𝓇⊸Q, [(𝑒1)], •)+

%oou _���

(𝓇⊢A, [],✓)+

(ℓ⊢ℓ⊸Q, [e2, (e1)], •)−

� ))/

(ℓ⊢𝓇⊸A, [(e1)],✓)−
%oou

(ℓ⊢ℓ⊸A, [e2, (e1)],✓)+ (ℓ⊢𝓇⊸Q, [(e2, e1)], •)+

. . .

(ℓ⊢𝓇⊸Q, [(e𝑛, . . . , e1)], •)+
%oou

(ℓ⊢ℓ⊸Q, [e𝑛+1, (e𝑛, . . . , e1)])−

� ))/
(ℓ⊢𝓇⊸Q, [(e𝑛+1, . . . , e1)], •)+

%oou
_���

. . . (ℓ⊢𝓇⊸A, [(e𝑛+1, . . . , e1)],✓)−
%oou

(ℓ⊢ℓ⊸A, [e𝑛+1, (e𝑛, . . . , e1)],✓)+

Fig. 43. Fixpoint combinator on U

Proposition C.21. For𝑂 a well-opened arena, the strategy Y𝑂 has events a subset |Y𝑂 | ⊆ |!(!𝑂 ⊸
𝑂) ⊢ 𝑂 |, and +-covered configurations the compatible unions of configurations of the form

∅ ⊸ (() :: 𝑥) ⊢ 𝑥

(e𝑛+1 :: (e𝑛, . . . , e1) :: 𝑥) ⊸ ((e𝑛+1, . . . , e1) :: 𝑥) ⊢ ∅ ,
for 𝑛 ∈ N, e1, . . . , e𝑛+1 ∈ E, 𝑥 ∈ 𝒞(𝑂); compatible means that the union is in 𝒞(!(!𝑂 ⊸ 𝑂) ⊢ 𝑂)).

We slightly reformulate this proposition to give a more explicit description of +-covered configu-
rations of Y𝑂 . In the next lemma, we use the injection of (·) : E∗ → E.

Lemma C.22. There is an order-isomorphism between𝒞+(Y𝑂 ) and tuples ⟨𝐽 ⊆ E+, 𝑧 ∈ 𝒞(𝑂), (𝑥s ∈
𝒞

≠∅ (𝑂))s∈ 𝐽 ⟩ such that 𝐽 is suffix-closed, and empty if 𝑧 is.1 The isomorphism sends ⟨𝐽 , 𝑧, (𝑥s)⟩ to
(∅ ⊸ () :: 𝑧) ⊎ (e :: (s) :: 𝑥e·s ⊸ (e · s) :: 𝑥e·s)e·s∈ 𝐽 ⊢ 𝑧 .

New reference. Next, we introduce the strategy for reference initialization.

The intuition is that newrefX : !V ⊸ X ⊢ X applies its argument to cell : !V, the memory cell,
which implements the stateful behaviour. Just like an actual memory, cell is inherently sequential:
it treats read and write requests in some sequential order. In order to define it, we first define, for

all 𝑛 ∈ N, cell𝑛 as the language of non-empty prefixes of the infinite tree cell∅𝑛 , defined as:

cell𝐸𝑛 = (𝓇VQ, [e], •)− · (𝓇VA, [e], 𝑛)+ · cell𝐸⊎{e}𝑛

| (𝓌VQ, [e], 𝑘)− · (𝓌VA, [e],✓)+ · cell𝐸⊎{e}𝑘
,

with e ∉ 𝐸. Intuitively, words in cell𝐸𝑛 are alternating (i.e. Opponent and Player alternate) executions
of read and write requests, for a memory cell initialized with value 𝑛: upon a read request, the

memory cell returns 𝑛 and carries on with cell𝑛 . Upon a write request for 𝑘 , the memory cell returns

an acknowledgement and proceeds as cell𝑘 . The set 𝐸 propagates the set of exponential signatures

already encountered: this lets us always pick fresh exponential signatures for new queries, ensuring

words in cell𝐸𝑛 are plays on !V in the sense of Definition 4.6. We may then define:

1
A stack in 𝐽 represents a call stack: a list e𝑛 · e𝑛−1 · . . . · e1 represents the calls made to the argument: e1 is the first call
made in the execution, and so on.
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Definition C.23. We define a prestrategy precell : !V with components:

|precell| = cell0
≤precell = ⊑

𝑠 #precell 𝑠
′ ⇔ ¬(𝑠 ⊑ 𝑠′ ∨ 𝑠′ ⊑ 𝑠)

𝜕precell (𝑠𝑎) = 𝑎 ,

where ⊑ is the prefix ordering.

It is easy to see that this indeed defines a prestrategy. An illustration may be found in [Castellan

and Clairambault 2020, Figure 39] (with a slightly different notation for moves). Next we define:

Definition C.24. We define a strategy cell : !V as: cell = cc !V ⊙ precell : !V.

Indeed, composition is well-defined on prestrategies, and the copycat envelope of a prestrategy

is always a strategy [Castellan et al. 2017]. Intuitively, this wraps the sequential behaviour of cell
by buffers, which exactly match the buffers of the Petri structure in Figure ??.

To obtain the strategy for newrefX, we must add a copycat behaviour on X:

Definition C.25. We define a strategy newrefX : !V ⊸ X ⊢ X with components:

|newrefX | = |cell| + | cc X |
≤newrefX = (≤cell + ≤ cc X )

⊎{(𝓇((𝓇⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |cell|}
⊎{(𝓇((ℓ⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |cell|}

#newrefX = #cell + # cc X

𝜕newrefX (ℓ (𝑚)) = ℓ⊢ℓ⊸𝜕cell (𝑚)
𝜕newrefX (𝓇(ℓ⊢𝑚)) = ℓ⊢𝓇⊸𝑚

𝜕newrefX (𝓇(𝓇⊢𝑚)) = 𝓇⊢𝑚

So cell is plugged after the first Player move of cc X. In other words, newrefX first plays as copycat

on X; and plays as cell on !V when it becomes available.

For the later unfolding, we shall use the following characterization of +-covered configurations:

Proposition C.26. There is an order-isomorphism:

⟨−,−⟩ : 𝒞+(precell) ×𝒞≠∅ (X) � 𝒞+,≠∅ (newrefX)
such that 𝜕newrefX (⟨𝑠, 𝑥⟩) = |𝑠 | ⊸ 𝑥 ⊢ 𝑥 ∈ 𝒞(!V ⊸ X ⊢ X).

Proof. By Definition C.25, the characterization of confs. of composition, and Lemma C.9. □

Above, we implicitly use the one-to-one correspondence between 𝒞
+(precell) and even-length

words in cell0; and if 𝑠 is an even length word in cell0, then |𝑠 | ∈ 𝒞(!V) is its set of events.
In a +-covered configuration of newref, all read andwrite requests have been successfully handled.

Proposition C.26 shows that besides the almost independent copycat behaviour on X, +-covered
configurations of newref exactly correspond to some sequential ordering of these requests.

New semaphore. The interpretation of semaphores work exactly as for references. We first define

the alternating behaviour of a semaphore as the language of non-empty prefixes of:

lock𝐸
0

= (ℊSQ, [e], •)− · (ℊSA, [e],✓)+ · lock𝐸⊎{e}
1

e ∉ 𝐸
lock𝐸𝑛 = (𝓇SQ, [e], •)− · (𝓇SA, [e],✓)+ · lock𝐸⊎{e}

0
e ∉ 𝐸, 𝑛 > 0

A semaphore with value 0 may be grabbed, carrying on with value 1. A semaphore with value

𝑛 > 0 may be released, carrying on with value 0. As for references, the next step is to form:
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Definition C.27. We define a prestrategy prelock : !S with components:

|prelock| = lock0
≤prelock = ⊑

𝑠 #prelock 𝑠
′ ⇔ ¬(𝑠 ⊑ 𝑠′ ∨ 𝑠′ ⊑ 𝑠)

𝜕prelock (𝑠𝑎) = 𝑎 .

Definition C.28. We define a strategy lock : !S as lock = cc !S ⊙ prelock : !S.

Definition C.29. We define a strategy newsemX : !S ⊸ X ⊢ X with components:

|newsemX | = |lock| + | cc X |
≤newrefX = (≤lock + ≤ cc X )

⊎{(𝓇((𝓇⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |lock|}
⊎{(𝓇((ℓ⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |lock|}

#newsemX = #lock + # cc X

𝜕newsemX (ℓ (𝑚)) = ℓ⊢ℓ⊸𝜕lock (𝑚)
𝜕newsemX (𝓇(ℓ⊢𝑚)) = ℓ⊢𝓇⊸𝑚

𝜕newsemX (𝓇(𝓇⊢𝑚)) = 𝓇⊢𝑚

And, finally, we have a similar characterization of (non-empty) +-covered configurations:

Proposition C.30. There is an order-isomorphism:

⟨−,−⟩ : 𝒞+(prelock) ×𝒞≠∅ (X) � 𝒞+,≠∅ (newsemX)
such that 𝜕newsemX (⟨𝑠, 𝑥⟩) = |𝑠 | ⊸ 𝑥 ⊢ 𝑥 ∈ 𝒞(!S ⊸ X ⊢ X).

This concludes the description of the IPA-structure of Strat.

C.3.4 Complement: on symmetry.

Games and strategies with symmetry. Thin concurrent games [Castellan et al. 2019] share with

AJM games the fact that strategies play explicit copy indices – in [Castellan et al. 2019] and AJM

games those are natural numbers, whereas here they are exponential signatures. The consequence

is that in order to satisfy required equational laws (typically, making ! a well-behaved exponential

modality), one must be able to consider strategies up to their choice of copy indices.

In concurrent games, this reindexing is handled by event structures with symmetry:

Definition C.31. A event structure with symmetry is 𝐸 = ( |𝐸 |, ≤𝐸, #𝐸,𝒮(𝐸)) is an es ( |𝐸 |, ≤𝐸

, #𝐸) with 𝒮(𝐸) a set of bijections between configurations:

𝜃 : 𝑥 �𝐸 𝑦

comprising all identity bijections, closed under composition and inverse, and satisfying further

bisimulation-like properties, omitted here [Castellan et al. 2019].

In [Castellan and Clairambault 2020; Castellan et al. 2019], both games and strategies are event

structures with symmetry. Intuitively, in a game 𝐴, we have 𝜃 : 𝑥 �𝐴 𝑦 in 𝒮(𝐴) when 𝜃 is an

order-isomorphism only affecting copy indices – in the terminology of this paper, it changes the

exponential signatures in the exponential stack, but leaves all other components unchanged.

The symmetry on the game yields a more permissive equivalence on strategies: namely, a weak
isomorphism 𝜑 : 𝜎 ≃ 𝜏 is an invertible map of event structure such that the triangle

𝜎
𝜑 //

𝜕𝜎 ��

𝜏

𝜕𝜏��
𝐴
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commutes up to symmetry, defined as {(𝜕𝜎𝑠, 𝜕𝜏 (𝜑 (𝑠))) | 𝑠 ∈ 𝑥} ∈ 𝒮(𝐴) for all 𝑥 ∈ 𝒞(𝜎). Weak

isomorphism makes the exponential satisfy all the required laws (typically, making each !𝐴 a

commutative comonoid), which were not satisfied up to plain isomorphism.

In turn, composition must preserve weak isomorphism. But that holds only for strategies that

are uniform, i.e. invariant under the choice of copy indices. In [Castellan and Clairambault 2020;

Castellan et al. 2019], uniformity of strategies is ensured by also adjoining them a symmetry. On

a strategy 𝜎 : 𝐴, the bisimulation-like properties of 𝒮(𝜎) ensures that if Opponent changes their
copy indices, 𝜎 may change its copy indices accordingly, but not more. This makes ≃ a congruence,

and strategies up to ≃ satisfy all the required equational laws to model higher-order languages.

This issue is discussed at length in [Castellan et al. 2019].

Removing symmetry. The model developed in [Castellan and Clairambault 2020] is a structure

StratSym with two equivalences � (standard isomorphism) and ≃ (weak isomorphism
2
). Both are

preserved by all constructions, but the laws of Seely categories are satisfied with respect to ≃ only.

Now, the first observation is that though ≃ is crucial in establishing adequacy for StratSym (for

instance, the 𝛽-law in IPA is validated by the interpretation only up to ≃), the statement itself

(Theorem 4.40 in [Castellan and Clairambault 2020]) is independent of the equivalence relation. So

once adequacy is established we can ignore ≃, and from [Castellan and Clairambault 2020] we get

an IPA-structure StratSym/� with an adequate interpretation of IPA.
The next point is that symmetries do not carry operational behaviour, they are merely there to

witness uniformity so that ≃ is a congruence. As mere uniformity witnesses, they can be safely

forgotten once ≃ is out of the picture. Concretely, in all operations involved in the interpretation,

symmetries of the operand strategies are used in computing the symmetries of the resulting strate-

gies only – the event structure itself never depends on the symmetries of operands. Consequently:

Proposition C.32. There is a symmetry-forgetting IPA-functor StratSym/�→ Strat.

From this, it follows by Lemma 3.3 that Strat is an adequate IPA-structure.
On a foundational level, it would be interesting to see how symmetries may be obtained by

unfolding just as plain strategies. It would require setting up symmetries between histories of runs

of Petri strategies as well. But this is not necessary for our purposes, so we leave that for later.

D THE IPA-STRUCTURE PStrat

D.1 The Precategory PStrat

The main step is to prove that Petri strategies are stable under composition.

D.1.1 Composition. Consider 𝐴, 𝐵,𝐶 arenas, 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies.

The idea is simple: as Petri strategies, both 𝝈 and 𝝉 abide by the rules of the game as long as the

external Opponent does so. As no agent can be the first to break the rules, the whole interaction

ends up correct. This kind of reasoning is very common in game semantics. To formalize it, the

difficulty is not conceptual but purely notational: we need tools to project a run 𝜌 on 𝝉 ⊙ 𝝈 to runs

on 𝝈 and 𝝉 , and to an interaction in more familiar game-semantic terms:

Definition D.1. Consider the set MInt = ℓ (Moves) ⊎𝓂(Moves) ⊎ 𝓇(Moves).
An interaction is a sequence 𝑢 ∈ MInt∗. We write Int for the set of all interactions.

As in traditional play-based game semantics, an interaction has three components: 𝝈 “plays” on

ℓ,𝓂, 𝝉 “plays” on𝓂, 𝓇, and the composite 𝝉 ⊙ 𝝈 “plays” on ℓ, 𝓇. Again as in game semantics, we

shall restrict interactions to these various components. In more generality, we define:

2
In fact, [Castellan and Clairambault 2020] uses a variant called positive iso, but the difference is irrelevant for this discussion.
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M : ℓ⊙ (𝛼) ↦−→𝝉⊙𝝈 ℓ
⊙ (𝛽)

𝑡0L𝛼M : 𝛼 ↦−→𝝉 𝛽

𝓇
⊙ (𝑡0)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) ↦−→𝝉⊙𝝈 𝓇

⊙ (𝛽)
𝑡+L𝛼M : 𝛼 ℓ⊢(𝑚)↦−→ 𝝈 ∅

ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M : ℓ⊙ (𝛼) ℓ⊢(𝑚)↦−→ 𝝉⊙𝝈 ∅

𝑡+L𝛼M : 𝛼 𝓇⊢(𝑚)↦−→𝝉 ∅

𝓇
⊙ (𝑡+)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) 𝓇⊢(𝑚)↦−→𝝉⊙𝝈 ∅

𝑡−L(s, d)M : ∅ ℓ⊢(𝑚)↦−→ 𝝈 𝛽

ℓ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢(𝑚)↦−→ 𝝉⊙𝝈 ℓ
⊙ (𝛽)

𝑡−L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→𝝉 𝛽

𝓇
⊙ (𝑡−)L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→𝝉⊙𝝈 𝓇

⊙ (𝛽)
𝑡+L𝛼M : 𝛼 𝓇⊢(𝑚)↦−→ ∅ 𝑡−L(s, d)M : ∅ ℓ⊢(𝑚)↦−→ 𝛽

(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝛼)M : ℓ⊙ (𝛼) ↦−→ 𝓇
⊙ (𝛽)

𝑡−L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→ 𝛽 𝑡+L𝛼M : 𝛼 ℓ⊢(𝑚)↦−→ ∅
(𝑡− ⊛ 𝑡+)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) ↦−→ ℓ⊙ (𝛽)

Fig. 44. Description of instantiated transitions of 𝝉 ⊙ 𝝈

lbl⊛ 𝜋𝝈 𝜋𝝉
ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M ↦→ 𝑡0L𝛼M
𝓇
⊙ (𝑡0)L𝓇⊙ (𝛼)M ↦→ 𝑡0L𝛼M
ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M ↦→ ℓ (𝑚) 𝑡+L𝛼M
𝓇
⊙ (𝑡+)L𝓇⊙ (𝛼)M ↦→ 𝓇(𝑚) 𝑡+L𝛼M
ℓ⊙ (𝑡−)L(s, d)M ↦→ ℓ (𝑚) 𝑡−L(s, d)M
𝓇
⊙ (𝑡−)L(s, d)M ↦→ 𝓇(𝑚) 𝑡−L(s, d)M

(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝛼)M ↦→ 𝓂(𝑚) 𝑡+L𝛼M 𝑡−L(s, d)M
(𝑡− ⊛ 𝑡+)L𝓇⊙ (𝛼)M ↦→ 𝓂(𝑚) 𝑡−L(s, d)M 𝑡+L𝛼M

Fig. 45. Projections of instantiated transitions

Definition D.2. Consider 𝑓 : 𝑋 ⇀ 𝑌 , and 𝑠 ∈ 𝑋 ∗
, we define 𝑠 ↾ 𝑓 ∈ 𝑌 ∗

the restriction of 𝑠
following 𝑠 as 𝜀 ↾ 𝑓 = 𝜀, 𝑠𝑎 ↾ 𝑓 = (𝑠 ↾ 𝑓 ) 𝑓 (𝑎) if 𝑓 (𝑎) is defined, and 𝑠𝑎 ↾ 𝑓 = 𝑠 ↾ 𝑓 otherwise.

A first direct application of this notion is to project 𝑢 ∈ Int to its various components with

𝑢𝝈 = 𝑢 ↾ ℓ⊢ℓ
∗ ∪ 𝓇⊢𝓂∗ , 𝑢𝝉 = 𝑢 ↾ ℓ⊢𝓂

∗ ∪ 𝓇⊢𝓇 , 𝑢𝝉⊙𝝈 = 𝑢 ↾ ℓ⊢ℓ
∗ ∪ 𝓇⊢𝓇∗

where ℓ∗ : ℓ (Moves) ⇀ Moves sends ℓ (𝑚) to𝑚 and is undefined otherwise, and likewise for𝓂
∗

and 𝓇
∗
. Juxtaposition is function composition, and ∪ is the union of their graph.

We also use restriction to extract from a run 𝜌 on 𝝉 ⊙ 𝝈 an interaction, and runs 𝜌𝝈 and 𝜌𝝉
on 𝝈 and 𝝉 respectively. But the partial functions involved are more complex, and require us to

understand better the shape of instantiated transitions of 𝝉 ⊙ 𝝈 :

Lemma D.3. Consider 𝝈 and 𝝉 Petri structures.
Then, instantiated transitions of 𝝉 ⊙ 𝝈 are exactly as in Figure 44 – in the sense that that there is a

one-to-one correspondence between instantiated transitions in the premises and in the conclusion.

Using this description, we define in Figure 45 partial functions lbl⊛ :ℰ𝝉⊙𝝈 ⇀ MInt, 𝜋𝝈 :ℰ𝝉⊙𝝈 ⇀

ℰ𝝈 and 𝜋𝝉 : ℰ𝝉⊙𝝈 ⇀ ℰ𝝉 extracting various data from instantiated transitions, following the

characterization of instantiated transitions of 𝝉 ⊙ 𝝈 given in Figure 44.
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Finally, those projection functions are extended to instantiated transitions in context via:

lbl⊛ : ℱ𝝉⊙𝝈 ⇀ MInt
e ⊎ 𝛾 ↦→ lbl⊛ (e)

𝜋𝝈 : ℱ𝝉⊙𝝈 ⇀ ℱ𝝈

e ⊎ (𝛾 +⊙ 𝛾 ′) ↦→ 𝜋𝝈 (e) ⊎ 𝛾
and symmetrically for 𝜋𝝉 : ℱ𝝉⊙𝝈 ⇀ ℱ𝝉 . Using these, from a run 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 we extract:

Int(𝜌) = 𝜌 ↾ lbl⊛ 𝜌𝝈 = 𝜌 ↾ 𝜋𝝈 , 𝜌𝝉 = 𝜌 ↾ 𝜋𝝉 ,

which allow us to prove the following property:

Lemma D.4. Consider 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 . Then, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 and

𝜌𝝈 : ∅ −→→ 𝛼𝝈 , 𝜌𝝉 : ∅ −→→ 𝛼𝝉

where play(𝜌) = Int(𝜌)𝝉⊙𝝈 , play(𝜌𝝈 ) = Int(𝜌)𝝈 and play(𝜌𝝉 ) = Int(𝜌)𝝉 .
Moreover, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ).

Proof. A lengthy and grindy induction on 𝜌 . For 𝜌 empty this is clear, otherwise we reason by

cases on the last instantiated transition in context of 𝜌 , following the Figure 44.

Consider first that we have 𝜌 ′ = 𝜌 (ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 ℓ
⊙ (𝜈) , ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽

with necessarily 𝛼 = ℓ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = ℓ⊙ (𝜈) ⊎ 𝛾 , and 𝑡0L𝜇M : 𝜇 ↦−→𝝈 𝜈 . By IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so in particular that entails that 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇 ⊎ 𝛾𝝈 . Now, we have
𝑡0L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈 −→𝝈 𝛽𝝈

writing 𝛽𝝈 = 𝜈 ⊎ 𝛾𝝈 . Writing 𝛽𝝉 = 𝛼𝝉 = 𝛾𝝉 , we have

(𝜌 (ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡0L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈

and (𝜌 (ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover play(𝜌 ′) = play(𝜌), Int(𝜌 ′) = Int(𝜌),
play(𝜌 ′𝝈 ) = play(𝜌𝝈 ) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making required properties obvious. Finally,

Coll(𝜌 ′) = Coll(𝜌) ∪ ℓ⊙ (𝜈), Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) ∪ 𝜈 and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ), so Coll(𝜌 ′) =

Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. The case of a neutral transition from 𝝉 is symmetric.

Next, consider that 𝜌 ′ = 𝜌 (ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ℓ⊢ (𝑚)↦−→ 𝝉⊙𝝈 ∅ , ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽

where necessarily 𝛼 = ℓ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = 𝛾 , and 𝑡+L𝜇M : 𝜇 ℓ⊢ (𝑚)↦−→ 𝝈 ∅. Now, by IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so in particular that entails 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇 ⊎ 𝛾𝝈 . Now, we have
𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈 −→𝝈 𝛽𝝈

writing 𝛽𝝈 = 𝛾𝝈 . Writing 𝛽𝝉 = 𝛼𝝉 = 𝛾𝝉 , we have

(𝜌 (ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈

and (𝜌 (ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover, play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚), Int(𝜌 ′) =

Int(𝜌)ℓ (𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )ℓ⊢ (𝑚) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making the required properties

clear. Finally, Coll(𝜌 ′) = Coll(𝜌),Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ), so Coll(𝜌 ′) =

Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. The case of a positive transition from 𝝉 is symmetric.
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Next, consider that we have 𝜌 ′ = 𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ ℓ⊙ (𝜈) , ℓ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽

where necessarily, 𝛼 = 𝛾 and 𝛽 = ℓ⊙ (𝜈) ⊎ 𝛾 , and 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝈 𝜈 . By IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so that 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛾𝝈 = 𝛼𝝈 , 𝛾𝝉 = 𝛼𝝉 . Writing 𝛽𝝈 = 𝛾𝝈 ⊎ 𝜈 and 𝛽𝝉 = 𝛾𝝉 = 𝛼𝝉 , we have

(𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡−L(s, d)M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈

and (𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover, play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚), Int(𝜌 ′) =

Int(𝜌)ℓ (𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )ℓ⊢ (𝑚) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making the required properties

clear. Finally, Coll(𝜌 ′) = Coll(𝜌) ∪ ℓ⊙ (𝜈), with Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) ∪ 𝜈 and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ),
so Coll(𝜌 ′) = Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. Negative transitions from 𝝉 are symmetric.

Consider finally 𝜌 ′ = 𝜌 ((𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M ⊎ 𝛾 : ∅ −→→𝜏⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 𝓇
⊙ (𝜈) , (𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽

where necessarily, 𝛼 = ℓ⊙ (𝜇) ⊎ 𝛾 , 𝛽 = 𝓇⊙ (𝜈) ⊎ 𝛾 , and where we necessarily have

𝑡+L𝜇M : 𝜇 𝓇⊢ (𝑚)↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝉 𝜈 ,

with 𝛿𝝈 ⟨𝑡+⟩(𝜇) = (s, d), ℓ⊢ (𝑚) = (ℓ⊢ (m), s, d) where ℓ⊢ (m) = 𝜕𝝈 (𝑡+); and 𝛿𝝉 ⟨𝑡−⟩(s, d) = 𝜈 . Now,
𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

for 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 by IH, and necessarily 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇⊎𝛾𝝈 and 𝛼𝝉 = 𝛾𝝉 . Writing 𝛽𝝈 = 𝛾𝝈
and 𝛽𝝉 = 𝛾𝝉 ⊎ 𝜈 , we have 𝛽 = 𝛽𝝈 ⊎ 𝛽𝝉 . Hence, we can form the projected runs

𝜌 ′𝝈 = 𝜌𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈 , 𝜌 ′𝝉 = 𝜌𝝉 (𝑡−L(s, d)M ⊎ 𝛾𝝉 ) : ∅ −→→𝝉 𝛽𝝉 ,

satisfying play(𝜌 ′) = play(𝜌), Int(𝜌 ′) = Int(𝜌)𝓂(𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )𝓇⊢ (𝑚) and play(𝜌 ′𝝉 ) =
play(𝜌𝝉 )ℓ⊢ (𝑚) from which the required verifications are immediate. Finally, Coll(𝜌 ′) = Coll(𝜌) ∪
𝓇
⊙ (𝜈) with Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ) ∪ 𝜈 , so Coll(𝜌 ′) = Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 )

follows from IH. The case 𝑡− ⊛ 𝑡+ is symmetric, concluding the proof. □

Using this lemma, we shall now prove that a valid run of 𝝉 ⊙ 𝝈 projects to valid runs on 𝝈 and 𝝉 .
For this we will also exploit the following easy lemma.

Lemma D.5. Consider 𝐴, 𝐵 arenas, and 𝑠 ∈ |𝐴 ⊢ 𝐵 |∗.
Then, 𝑠 ∈ Plays(𝐴 ⊢ 𝐵) iff 𝑠 ↾ ℓ∗⊢ ∈ Plays(𝐴) and 𝑠 ↾ 𝓇∗⊢ ∈ Plays(𝐵).

Proof. Straightforward. □

Lemma D.6. Consider 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 such that play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶).
Then, play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) and play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶).

Proof. By induction on 𝜌 . For 𝜌 empty this is clear.

Consider first that we have 𝜌 ′ = 𝜌 (ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 ℓ
⊙ (𝜈) , ℓ⊙ (𝑡0)Lℓ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽 ,

in that case play(𝜌 ′𝝈 ) = play(𝜌𝝈 ) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), so the property follows from IH. The

case of a neutral transition from 𝝉 is symmetric.

Consider next that 𝜌 ′ = 𝜌 (ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ℓ⊢ (𝑚)↦−→ 𝝉⊙𝝈 ∅ , ℓ⊙ (𝑡+)Lℓ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽
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where necessarily 𝛼 = ℓ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = 𝛾 , and 𝑡+L𝜇M : 𝜇 ℓ⊢ (𝑚)↦−→ 𝝈 ∅. By IH, we have

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶)
and as play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), we have play(𝜌 ′𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) as required. Now, we have

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
ℓ⊢ (𝑚)−→ 𝝈 𝛽𝝈

with components named as in the proof of Lemma D.4, and with 𝑠 = play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵).
Hence by condition valid of Petri strategies, 𝑠ℓ⊢ (𝑚) = play(𝜌 ′𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵), which concludes

this case. The case of a positive transition from 𝝉 is symmetric.

Consider next that 𝜌 ′ = 𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾) : ∅ −→→𝝉⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

ℓ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ ℓ⊙ (𝜈) , ℓ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽 ,

in that case play(𝜌 ′𝝈 ) = play(𝝈)ℓ⊢ (𝑚)− and play(𝜌 ′𝝉 ) = play(𝝉 ). By IH we have play(𝜌 ′𝝈 ) ∈
Plays(𝐴 ⊢ 𝐵) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶). But by hypothesis, we have play(𝜌 ′) =

play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶). By Lemma D.5, play(𝜌)ℓ⊢ (𝑚) ↾ ℓ∗⊢ = (play(𝜌) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐴).
But play(𝜌 ′𝝈 ) ↾ ℓ∗⊢ = (play(𝜌) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐴), and play(𝜌 ′𝝈 ) ↾ 𝓇∗⊢ = play(𝜌𝝈 ) ↾ 𝓇∗⊢ , so
play(𝜌 ′𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) by Lemma D.5. The case of a negative transition from 𝝉 is symmetric.

Consider finally 𝜌 ′ = 𝜌 ((𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M ⊎ 𝛾 : ∅ −→→𝜏⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 ,

(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 𝓇
⊙ (𝜈) , (𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M ⊎ 𝛾 : 𝛼 −→𝝉⊙𝝈 𝛽

where necessarily, 𝛼 = ℓ⊙ (𝜇) ⊎ 𝛾 , 𝛽 = 𝓇⊙ (𝜈) ⊎ 𝛾 , and where we necessarily have

𝑡+L𝜇M : 𝜇 𝓇⊢ (𝑚)↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝉 𝜈 ,

with 𝛿𝝈 ⟨𝑡+⟩(𝜇) = (s, d), ℓ⊢ (𝑚) = (ℓ⊢ (m), s, d) where ℓ⊢ (m) = 𝜕𝝈 (𝑡+); and 𝛿𝝉 ⟨𝑡−⟩(s, d) = 𝜈 . By IH,

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) .
Summing up the situation on the side of 𝝈 , we have

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
𝓇⊢ (𝑚)−→𝝈 𝛽𝝈

with components as in the proof of Lemma D.4. By condition valid of Petri strategies, play(𝜌 ′𝝈 ) =
play(𝜌𝝈 )𝓇⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). By Lemma D.5, this entails play(𝜌𝝈 )𝓇⊢ (𝑚) ↾ 𝓇∗⊢ = (play(𝜌𝝈 ) ↾
𝓇
∗

⊢ )𝑚 ∈ Plays(𝐵). Now, Lemma D.4 also entails play(𝜌 ′𝝈 ) = Int(𝜌)𝝈 and play(𝜌 ′𝝉 ) = Int(𝜌)𝝉 . So:
play(𝜌 ′𝝈 ) ↾ 𝓇∗⊢ = Int(𝜌) ↾𝓂∗ = play(𝜌 ′𝝉 ) ↾ ℓ∗⊢ ,

so that play(𝜌 ′𝝉 ) ↾ ℓ∗⊢ = (play(𝜌𝝈 ) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐵). Now, we also have play(𝜌 ′𝝉 ) ↾ 𝓇∗⊢ =

play(𝜌𝝉 ) ↾ 𝓇∗⊢ ∈ Plays(𝐶) by Lemma D.5; so by Lemma D.5 again we deduce play(𝜌 ′𝝉 ) ∈ Plays(𝐵 ⊢
𝐶) as required. The case of a synchronized transition 𝑡− ⊛ 𝑡+ is symmetric. □

We are finally in position to prove that Petri strategies are stable under composition.

Proposition D.7. If 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 are Petri strategies, then so is 𝝉 ⊙ 𝝈 : 𝐴 ⊢ 𝐶 .
Moreover, if 𝝈 and 𝝉 are negative, so is 𝝉 ⊙ 𝝈 .

Proof. Valid. Consider 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 with play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), and f+ : 𝛼
𝑚′
−→ 𝛽 .W.l.o.g.,

assume𝑚′ = ℓ⊢ (𝑚). By Lemma D.4, 𝛼 decomposes as 𝛼𝝈 +⊙ 𝛼𝝉 , and we have:

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 .

Now, f+ must have the form f+ = (ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M) ⊎ 𝛾 with 𝑡+L𝜇M : 𝜇 ℓ⊢(𝑚)↦−→ ∅, and 𝛽 = 𝛾 . Hence,

𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
ℓ⊢(𝑚)−→ 𝛽𝝈 ,
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with components named as in the proof of Lemma D.4. At this point we apply Lemma D.6, which

ensures that play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵). Hence since 𝝈 is valid, play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵) as
well. It follows by Lemma D.5 that play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶) as well.

Receptive. Consider 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 with 𝑠 = play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), and 𝑠𝑚′ ∈ Plays(𝐴 ⊢ 𝐶)
with𝑚′

negative – say w.l.o.g. that𝑚′ = ℓ⊢ (𝑚)− . By Lemma D.6, we have

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) ,

and by Lemma D.6 we may deduce that play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). By receptive, there is

e− = 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝈 𝛽

for 𝛽 ∩ 𝛼𝝈 = ∅. Hence ℓ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝉⊙𝝈 ℓ⊙ (𝛽) with ℓ⊙ (𝛽) ∩ 𝛼 = ∅. For uniqueness, if

e′ : ∅ ℓ⊢ (𝑚)↦−→ 𝝉⊙𝝈 𝛽
′

for some 𝛽 ′. Necessarily, e′ = ℓ⊙ (𝑡 ′)L(s′, d′)M for 𝑡 ′L(s′, d′)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝈 𝛽
′′
for 𝛽 ′ = ℓ⊙ (𝛽 ′′). But by

uniqueness of receptivity for 𝝈 , we have 𝑡 ′L(s′, d′)M = 𝑡L(s, d)M, so that 𝑡 = 𝑡 ′, (s, d) = (s′, d′).
Strongly safe. Consider 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 with play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), with a new instantiated

transition in context f – we distinguish cases depending on its form.

Assume first f = ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M ⊎ 𝛾 for 𝑡0L𝜇M : 𝜇 ↦−→𝝈 𝜈 . By Lemma D.6, we have play(𝜌𝝈 ) ∈
Plays(𝐴 ⊢ 𝐵), so that since 𝝈 is strongly safe, new(𝑡0L𝜇M) is fresh in 𝜌𝝈 . But new(ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M) =
ℓ⊙ (new(𝑡0L𝜇M)). Moreover, by Lemma D.4, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ). So it follows that

new(f) is fresh in 𝜌 as required. The case of a neutral transition from 𝝉 is symmetric.

Next assume f = ℓ⊙ (𝑡+)Lℓ⊙ (𝜇)M ⊎ 𝛾 . Then new(f) = ∅. Idem for a positive transition from 𝝉 .

Next assume f = ℓ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼
ℓ⊢ (𝑚)−→ 𝝉⊙𝝈 𝛽 with play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶). We have

𝑡−L(s, d)M : ∅ (ℓ⊢ (𝑚) )↦−→ 𝜈 ,

and by Lemma D.6, we have play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵). From play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶) and
play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵), it follows easily via Lemma D.5 that play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). So
since 𝝈 is strongly safe, new(𝑡−L(s, d)M) is fresh in 𝜌𝝈 . We conclude as in the neutral case using

Lemma D.4. The case of a negative transition from 𝝉 is similar.

Finally, assume f = (𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M ⊎ 𝛾 . Say that we have

(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 𝓇
⊙ (𝜈) ,

so that new(f) = 𝓇⊙ (𝜈) – assume 𝑡+L𝜇M : 𝜇
𝓇⊢ (𝑚)↦−→𝝈 ∅ and 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ 𝝉 𝜈 . By Lemma D.5,

play(𝜌𝝉 )ℓ⊢ (𝑚) ∈ Plays(𝐵 ⊢ 𝐶). Therefore since 𝝉 is strongly safe, new(𝑡−L(s, d)M) = 𝜈 is fresh in 𝜌𝝉 .

But by Lemma D.4, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ), so new(f) = 𝓇⊙ (𝜈) is fresh in 𝜌 as required.

The other synchronized case is symmetric.

Negative. Straightforward by inspection and negativity of 𝝈 and 𝝉 . □

D.1.2 Copycat. First, we characterize the markings of copycat reachable through a play:

Recall that L cc𝐴 = mult(𝐴), so that the set TokIL( cc𝐴) of tokils of cc𝐴 is in bijection with |𝐴|. This
lets us silently coerce a configuration 𝑥 ∈ 𝒞(𝐴) into a marking 𝑥 ∈ℳ( cc𝐴). In order to show that

copycat is a Petri strategy, we first characterize the markings reachable by rule-abiding runs:

Lemma D.8. Consider 𝐴 an arena, and 𝜌 : ∅ −→→ cc𝐴 𝛼 such that play(𝜌) ∈ Plays(𝐴 ⊢ 𝐴).
Then, |play(𝜌) | = 𝑥 ⊢ 𝑦 with 𝑥,𝑦 ∈ 𝒞(𝐴) and 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 ; and 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦).
Moreover, Coll(𝜌) = 𝑦− ⊎ 𝑥+, where 𝑥𝑝 is the subset of 𝑥 ∈ 𝒞(𝐴) whose moves have polarity 𝑝 .
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Proof. By induction on 𝜌 . For 𝜌 empty, this is clear. Consider 𝜌 ′ = 𝜌f : ∅ −→→ cc𝐴 𝛽 with

𝜌 : ∅ −→→ cc𝐴 𝛼 , and play(𝜌 ′) ∈ Plays(𝐴 ⊢ 𝐴). We also have play(𝜌) ∈ Plays(𝐴 ⊢ 𝐴), so by IH,

|play(𝜌) | = 𝑥 ⊢ 𝑦 , 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) ,
we reason by cases depending on f . If f = (m+, 𝓇)L{(s, d)@m}M ⊎ 𝛾 , then 𝛼 = {(s, d)@m} ⊎ 𝛾 , and

|play(𝜌 ′) | = 𝑥 ⊢ 𝑦 ⊎ {(m, s, d)}
𝛽 = 𝛼 \ {(s, d)@m} ;

since 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \𝑦), (s, d)@m ∈ 𝛼 and (m, s, d) is positive, (m, s, d) is positive and must be

in 𝑥 . It follows that the invariant is preserved. The case f = (m−, ℓ)L(s, d)@mM ⊎ 𝛾 is symmetric.

If f = (m−, 𝓇)L(s, d)M ⊎ 𝛾 , then 𝛼 = 𝛾 , and

|play(𝜌 ′) | = 𝑥 ⊢ (𝑦 ⊎ {(m, s, d)})
𝛽 = 𝛼 ⊎ {(s, d)@m} ;

and (m, s, d) is negative. Since |play(𝜌 ′) | = 𝑥 ⊢ (𝑦 ⊎ {(m, s, d)}), (m, s, d) ∉ 𝑦. So, it cannot be in 𝑥 .
The invariant directly follows. The case f = (m+, ℓ)L(s, d)@mM ⊎ 𝛾 is symmetric. □

It is a direct application of this lemma to prove that copycat is a Petri strategy:

Proposition D.9. For any arena 𝐴, cc𝐴 : 𝐴 ⊢ 𝐴 is a negative Petri strategy.

Proof. Valid. Consider 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) and

𝜌 : ∅ 𝑠−→→ 𝛼 , f+ : 𝛼
𝑚
−→ 𝛽 ,

and say w.l.o.g. that 𝑚 = 𝓇⊢𝑎 for 𝑎 ∈ |𝐴|. This means that f+ = (m+, 𝓇)L{(s, d)@m}M ⊎ 𝛾 , where
𝛼 = 𝛾 ⊎ {(s, d)@m}, and𝑚 = (𝓇⊢m, s, d). We must show that 𝑠 (𝓇⊢m, s, d) ∈ Plays(𝐴 ⊢ 𝐴).

By Lemma D.8, 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \𝑦) where |𝑠 | = 𝑥 ⊢ 𝑦. Asm ∈ mult+ (𝐴), (m, s, d) ∈ 𝑥+ \𝑦. As
(m, s, d) ∉ 𝑦, we have condition non-repetitive. Next, we show |𝑠𝑚 | = 𝑥 ⊢ (𝑦 ⊎ {𝑎}) is down-closed.
Consider 𝑎′ _𝐴 𝑎. Since 𝐴 is alternating, 𝑎′ is negative. Since 𝑥 ∈ 𝒞(𝐴) and 𝑎 ∈ 𝑥 , we must

have 𝑎′ ∈ 𝑥 as well. But by Lemma D.8 we have 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , so 𝑎′ ∈ 𝑦 as well. Finally, from

conditions locally conflicting, alternating and negative of arenas, pairs of events in minimal conflict

have the same polarity. Therefore, as 𝑥 ∩ 𝑦 ⊆− 𝑥 and 𝑥 ∩ 𝑦 ⊆+ 𝑦, we have 𝑥 ∪ 𝑦 consistent, so in

particular 𝑦 ∪ {𝑎} ∈ 𝒞(𝐴). It follows that 𝑠𝑚 ∈ Plays(𝐴 ⊢ 𝐴) as needed.
Receptive. Consider 𝜌 : ∅ −→→ cc𝐴 𝛼 with play(𝜌) = 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) and 𝑠𝑚− ∈ Plays(𝐴 ⊢ 𝐴).

W.l.o.g. consider 𝑚 = 𝓇⊢ (𝑎). Decompose 𝑎 = (m, s, d) for m− ∈ mult(𝐴) and token (s, d). By
inspection there is a unique matching instantiated transition, namely (m−, 𝓇)L(s, d)M : ∅

𝑚
↦−→

{(s, d)@m}. Moreover, by Lemma D.8 we have 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) where |𝑠 | = 𝑥 ⊢ 𝑦. But as
𝑠𝑚− ∈ Plays(𝐴 ⊢ 𝐴), by non-repetitive we have𝑚− ∉ 𝑦. It follows that (s, d)@m ∉ 𝛼 as required.

Strongly safe. Consider 𝜌 : ∅ −→→ cc𝐴 𝛼 with play(𝜌) = 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) extended with f . If f is
positive, then new(f) = ∅ and there is nothing to prove. Hence, considerw.l.o.g. f = (m−, 𝓇)L(s, d)M⊎
𝛼 with 𝑠 (𝓇⊢ (m), s, d)− ∈ Plays(𝐴 ⊢ 𝐴). Then, new(f) = {(s, d)@m}. Write |𝑠 | = 𝑥 ⊢ 𝑦 ∈ 𝒞(𝐴 ⊢ 𝐴).
By non-repetitive, (m, s, d) ∉ 𝑦. By Lemma D.8, Coll(𝜌) = 𝑦− ⊎ 𝑥+; but as (m, s, d) ∉ 𝑦 and

(m, s, d) ∉ 𝑥+ (for polarity reasons), it follows that {(s, d)@m} is fresh in 𝜌 .

Negative. Straightforward by inspection. □

We do not detail the clear fact that composition is stable under isomorphism of Petri strategies.

Altogether, this concludes the proof of:

Corollary D.10. There is PStrat, a precategory with objects arenas, and morphisms negative Petri
strategies up to isomorphism.
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

ℓ⊗ (𝑡0)Lℓ⊗ (𝛼)M : ℓ⊗ (𝛼) ↦−→𝝈⊗𝝉 ℓ
⊗ (𝛽)

𝑡0L𝛼M : 𝛼 ↦−→𝝉 𝛽

𝓇
⊗ (𝑡0)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼) ↦−→𝝈⊗𝝉 𝓇

⊗ (𝛽)
𝑡+L𝛼M : 𝛼 ℓ⊢𝑚↦−→𝝈 ∅

ℓ⊗ (𝑡+)Lℓ⊗ (𝛼)M : ℓ⊗ (𝛼) ℓ⊢ℓ⊗𝑚↦−→𝝈⊗𝝉 ∅

𝑡+L𝛼M : 𝛼 ℓ⊢𝑚↦−→𝝉 ∅

𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼) ℓ⊢𝓇⊗𝑚↦−→𝝈⊗𝝉 ∅

𝑡+L𝛼M : 𝛼
𝓇⊢𝑚↦−→𝝈 ∅

ℓ⊗ (𝑡+)Lℓ⊗ (𝛼)M : ℓ⊗ (𝛼) 𝓇⊢ℓ⊗𝑚↦−→𝝈⊗𝝉 ∅

𝑡+L𝛼M : 𝛼
𝓇⊢𝑚↦−→𝝉 ∅

𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼)

𝓇⊢𝓇⊗𝑚↦−→𝝈⊗𝝉 ∅
𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝈 𝛽

ℓ⊗ (𝑡−)L(s, d)M : ∅ ℓ⊢ℓ⊗𝑚↦−→𝝈⊗𝝉 ℓ
⊗ (𝛽)

𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝉 𝛽

𝓇
⊗ (𝑡−)L(s, d)M : ∅ ℓ⊢𝓇⊗𝑚↦−→𝝈⊗𝝉 𝓇

⊗ (𝛽)
𝑡−L(s, d)M : ∅

𝓇⊢𝑚↦−→𝝈 𝛽

ℓ⊗ (𝑡−)L(s, d)M : ∅ 𝓇⊢ℓ⊗𝑚↦−→𝝈⊗𝝉 ℓ
⊗ (𝛽)

𝑡−L(s, d)M : ∅
𝓇⊢𝑚↦−→𝝉 𝛽

𝓇
⊗ (𝑡−)L(s, d)M : ∅

𝓇⊢𝓇⊗𝑚↦−→𝝈⊗𝝉 𝓇
⊗ (𝛽)

Fig. 46. Description of instantiated transitions of 𝝈 ⊗ 𝝉

𝜋𝝈 𝜋𝝉
ℓ⊗ (𝑡0)Lℓ⊗ (𝛼)M ↦→ 𝑡0L𝛼M
ℓ⊗ (𝑡+)Lℓ⊗ (𝛼)M ↦→ 𝑡+L𝛼M
ℓ⊗ (𝑡−)L(s, d)M ↦→ 𝑡−L(s, d)M
𝓇
⊗ (𝑡0)L𝓇⊗ (𝛼)M ↦→ 𝑡0L𝛼M
𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M ↦→ 𝑡+L𝛼M
𝓇
⊗ (𝑡−)L(s, d)M ↦→ 𝑡−L(s, d)M

Fig. 47. Projections of instantiated transitions

D.2 PStrat as an IPA-Structure: Operations
We examine the operations involved in the IPA-structure, and show preservation of Petri strategies.

D.2.1 Tensor. The preservation of Petri strategies by the tensor operation is a simplification of

composition, without the synchronized events.

Lemma D.11. Consider 𝝈 and 𝝉 Petri structures.
Then, instantiated transitions of 𝝈 ⊗ 𝝉 are exactly as in Figure 46 – in the sense that there is a

one-to-one correspondence between instantiated transitions in the premises and in the conclusion.

Using this description, we define in Figure 47 partial functions 𝜋⊗
𝝈 : ℰ𝝈⊗𝝉 ⇀ ℰ𝝈 and 𝜋⊗

𝝉 :

ℰ𝝈⊗𝝉 ⇀ℰ𝝉 extracting various data from instantiated transitions, following the characterization of

instantiated transitions of 𝝈 ⊗ 𝝉 given in Figure 46.

Finally, those projection functions are extended to instantiated transitions in context via:

𝜋⊗
𝝈 : ℱ𝝈⊗𝝉 ⇀ ℱ𝝈

e ⊎ (𝛾 +⊗ 𝛾 ′) ↦→ 𝜋⊗
𝝈 (e) ⊎ 𝛾

𝜋⊗
𝝉 : ℱ𝝈⊗𝝉 ⇀ ℱ𝝉

e ⊎ (𝛾 +⊗ 𝛾 ′) ↦→ 𝜋⊗
𝝉 (e) ⊎ 𝛾 ′ .

Using these, from a run 𝜌 : ∅ −→→𝝈⊗𝝉 𝛼 we extract:

𝜌𝝈 = 𝜌 ↾ 𝜋⊗
𝝈 , 𝜌𝝉 = 𝜌 ↾ 𝜋⊗

𝝉 ,
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we will also use for restriction the partial functions

𝓊 : Moves ⇀ Moves
ℓ⊢ℓ⊗𝑚 ↦→ ℓ⊢𝑚

𝓇⊢ℓ⊗𝑚 ↦→ 𝓇⊢𝑚

𝒹 : Moves ⇀ Moves
ℓ⊢𝓇⊗𝑚 ↦→ ℓ⊢𝑚

𝓇⊢𝓇⊗𝑚 ↦→ 𝓇⊢𝑚

which allow us to prove the following property:

Lemma D.12. Consider 𝜌 : ∅ −→→𝝈⊗𝝉 𝛼 . Then, 𝛼 = 𝛼𝝈 +⊗ 𝛼𝝉 and

𝜌𝝈 : ∅ −→→ 𝛼𝝈 , 𝜌𝝉 : ∅ −→→ 𝛼𝝉 .

where play(𝜌𝝈 ) = play(𝜌) ↾ 𝓊 and play(𝜌𝝉 ) = play(𝜌) ↾ 𝒹.
Moreover, Coll(𝜌) = Coll(𝜌𝝈 ) +⊗ Coll(𝜌𝝉 ).
Proof. Exactly as for Lemma D.4, without synchronized transitions. □

Next, as for composition, we observe that these projections preserve valid plays. For that we

shall first need the following easy lemma:

Lemma D.13. Consider 𝐴, 𝐵 arenas, and 𝑠 ∈ |𝐴 ⊗ 𝐵 |∗.
Then, 𝑠 ∈ Plays(𝐴 ⊗ 𝐵) iff 𝑠 ↾ ℓ∗⊗ ∈ Plays(𝐴) and 𝑠 ↾ 𝓇∗⊗ ∈ Plays(𝐵).
Proof. Straightforward. □

Using this and Lemma D.12, we show that projections preserve valid runs. Consider 𝝈 : 𝐴1 ⊢ 𝐵1
and 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies.

Lemma D.14. Consider 𝜌 : ∅ −→→𝝈⊗𝝉 𝛼 such that play(𝜌) ∈ Plays(𝐴1 ⊗ 𝐴2 ⊢ 𝐵1 ⊗ 𝐵2).
Then, play(𝜌𝝈 ) ∈ Plays(𝐴1 ⊢ 𝐵1) and play(𝜌𝝉 ) ∈ Plays(𝐴2 ⊢ 𝐵2).
Proof. As for the proof of Lemma D.6 (without synchronization), using condition valid of Petri

strategies along with Lemma D.13. □

Using Lemmas D.12, D.13, and D.14, we prove as for Proposition D.7:

Proposition D.15. If 𝝈 : 𝐴1 ⊢ 𝐵1 and 𝝉 : 𝐴2 ⊢ 𝐵2 are Petri strategies, so is 𝝈 ⊗𝝉 : 𝐴1⊗𝐵1 ⊢ 𝐴2⊗𝐵2.
Moreover, if 𝝈 and 𝝉 are negative, so is 𝝈 ⊗ 𝝉 .

D.2.2 Renamings. Before we go on to currying and promotion, we introduce a technical tool useful

in ensuring that they preserve Petri strategies.

First, for any game𝐴 we write Plays− (𝐴) for the set of negative plays on𝐴, i.e. those 𝑠1 . . . 𝑠𝑛 ∈
Plays(𝐴) such that pol(𝑠1) = −. If 𝑓 : Moves ⇀ Moves and 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ Plays(𝐴) such that 𝑓

is defined on |𝐴|, then we write 𝑓 (𝑠) = 𝑓 (𝑠1) . . . 𝑓 (𝑠𝑛). In the sequel, we should be particularly

interested in such functions on moves that can be decomposed in 𝑓 and (𝑔m)m∈dom(𝑓 ) where

𝑓 : M ⇀ M , 𝑔m : Tok → Tok ,

in which case we obtain a partial function between moves set as

[𝑓 , (𝑔m)] : Moves ⇀ Moves
(m, s, d) ↦→ (𝑓 (m), s′, d′)

where (s′, d′) = 𝑔m (s, d).
Definition D.16. Consider 𝐴, 𝐵 games, 𝑓 , (𝑔m) s.t. [𝑓 , (𝑔m)] : Moves ⇀ Moves partial injection.
We say ℎ = [𝑓 , (𝑔m)] is a global renaming from 𝐴 to 𝐵, written [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, if:
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defined: for all 𝑎 ∈ |𝐴|, ℎ(𝑎) defined.
polarity-preserving: ∀𝑎 ∈ |𝐴|, pol(ℎ𝑎) = pol(𝑎)
validity: ∀𝑠 ∈ Plays− (𝐴), ℎ(𝑠) ∈ Plays− (𝐵)
receptivity: for all 𝑠 ∈ Plays− (𝐴), for all ℎ(𝑠)𝑏− ∈ Plays− (𝐵), there exists 𝑠𝑎− ∈ Plays− (𝐴)
such that ℎ(𝑎) = 𝑏.

courtesy: for all 𝑎 _𝐴 𝑏, either ℎ(𝑎) _𝐵 ℎ(𝑏) or (pol(𝑎), pol(𝑏)) = (−, +).

Global renamings are used to transport Petri strategies across games. The following definition,

first applied simply on Petri structures, extends Definition B.1 in that it also renames tokens rather

than merely rerouting visible transitions.

Definition D.17. Consider𝐴, 𝐵 games, 𝝈 a Petri structure onmult(𝐴), and ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.

We define the renaming 𝝈 [ℎ] on mult(𝐵), with the same components as 𝝈 , except:

𝜕𝝈 [ℎ] (𝑡) = 𝑓 (𝜕𝝈 (𝑡))
𝛿𝝈 [ℎ] ⟨𝑡+⟩(𝛼) = 𝑔m (𝛿𝝈 ⟨𝑡+⟩(𝛼)) for m = 𝜕𝝈 (𝑡+)

𝛿𝝈 [ℎ] ⟨𝑡−⟩(𝑔m (s, d)) = 𝛿𝝈 ⟨𝑡−⟩(s, d) for m = 𝜕𝝈 (𝑡−).

observing that by hypothesis, 𝑔m is injective for all m ∈ dom(𝑓 ).

In order to use global renaming to transport Petri strategies, we must transport valid runs.

Consider 𝐴, 𝐵 games, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝝈 : 𝐴 a Petri strategy. Then we set

−[ℎ] : ℰ𝝈 → ℰ𝝈 [ℎ]
𝑡0⟨𝛼⟩ ↦→ 𝑡0⟨𝛼⟩

𝑡− ⟨(s, d)⟩ ↦→ 𝑡− ⟨𝑔m (s, d)⟩ where m = 𝜕𝝈 (𝑡−)
𝑡+⟨𝛼⟩ ↦→ 𝑡+⟨𝛼⟩

extended to instantiated transitions in context with (e ⊎ 𝛾) [ℎ] = e[ℎ] ⊎ 𝛾 . It is immediate from

the definition that this substitution leaves pre- and post-conditions of instantiated transitions

unchanged, so that it lifts to runs: for any 𝜌 : ∅ −→→𝝈 𝛼 , 𝜌 [ℎ] : ∅ −→→𝝈 [ℎ] 𝛼 is defined pointwise.

We shall now prove that this preserves valid runs. First, an easy observation:

Lemma D.18. Consider 𝐴 a game, and 𝝈 : 𝐴 a negative Petri strategy.
Then, for all 𝜌 : ∅ −→→𝝈 𝛼 s.t. play(𝜌) ∈ Plays(𝐴), we have play(𝜌) ∈ Plays− (𝐴).

Proof. By negative, the first transition of 𝜌 cannot be positive or neutral (as those require at

least one tokil). Thus, it is negative. □

Lemma D.19. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 : ∅ −→→𝝈 𝛼 .
If play(𝜌) ∈ Plays− (𝐴), then play(𝜌 [ℎ]) = ℎ(play(𝜌)) ∈ Plays− (𝐵).

Proof. Straightforward by induction on 𝜌 . □

We shall also use a sort of reciprocal statement:

Lemma D.20. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 .
If play(𝜌 ′) ∈ Plays(𝐵), there is a unique 𝜌 : ∅ −→→𝝈 𝛼 s.t. play(𝜌) ∈ Plays(𝐴) and 𝜌 ′ = 𝜌 [ℎ].

Proof. Straightforward by induction on 𝜌 ′. □

Proposition D.21. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.
Then, 𝝈 [ℎ] : 𝐵 is a negative Petri strategy.
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Proof. Valid. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that play(𝜌 ′) ∈ Plays(𝐵). Consider f+ : 𝛼
𝑏−→𝝈 [ℎ]

𝛽 , write f = 𝑡+L𝜇M⊎𝛾 . By Lemma D.20, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that play(𝜌) ∈ Plays(𝐴)
and 𝜌 ′ = 𝜌 [ℎ]. By definition of transitions of 𝝈 [ℎ], we have 𝑏 = ℎ(𝑎) with

𝑡+L𝜇M ⊎ 𝛾 : 𝛼
𝑎−→ 𝛽

and play(𝜌)𝑎 ∈ Plays(𝐴) as 𝝈 is valid. Note actually play(𝜌)𝑎 ∈ Plays− (𝐴) by Lemma D.18. Hence,

ℎ(play(𝜌)𝑎) = play(𝜌 [ℎ])𝑏 ∈ Plays− (𝐵) by condition validity of global renamings, as required.

Receptive. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that 𝑠′ = play(𝜌 ′) ∈ Plays(𝐵). Consider 𝑠𝑏− ∈
Plays(𝐵). By Lemma D.20, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that 𝑠 = play(𝜌) ∈ Plays(𝐴) and
ℎ(𝑠) = 𝑠′. By condition receptivity of global renamings, there is 𝑠𝑎− ∈ Plays(𝐴) such that ℎ(𝑎) = 𝑏.
As 𝝈 is receptive, there is a unique e− ∈ ℰ𝝈 such that e− : ∅ 𝑎−↦−→𝝈 𝛽 for some 𝛽 . By definition of

𝝈 [ℎ], e− : ∅ 𝑏−↦−→𝝈 [ℎ] 𝛽 as required. Uniqueness follows immediately from uniqueness for 𝝈 .
Strongly safe. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that 𝑠′ = play(𝜌 ′) ∈ Plays(𝐵). By Lemma D.20,

there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that 𝑠 = play(𝜌) ∈ Plays(𝐴) and ℎ(𝑠) = 𝑠′. If f ′ : 𝛼 −→𝝈 [ℎ] 𝛽
then also f ′ : 𝛼 −→𝝈 𝛽 , and new(f ′) is fresh in 𝜌 , so fresh in 𝜌 ′. If f ′ : 𝛼 𝑏−→𝝈 [ℎ] 𝛽 with

𝑠′𝑏 ∈ Plays(𝐵), then again by Lemma D.20, f ′ = f [ℎ] and 𝑏 = ℎ(𝑎) for f : 𝛼
𝑎−→𝝈 𝛽 with

𝑠𝑎 ∈ Plays(𝐴). As 𝝈 is strongly safe, it follows that new(f) is fresh in 𝜌 , but new(f) = new(f ′) so
new(f ′) is fresh in 𝜌 ′ as required.

Negative. Straightforward from the fact that 𝝈 is negative. □

D.2.3 Currying. This is a simple application of global renaming.

Lemma D.22. Consider Γ, 𝑥 : 𝐴,Δ a list of variable/arena declarations, and 𝑂 well-opened. Then,

(Λ𝑥 , (id)) : (!(&[Γ, 𝑥 : 𝐴,Δ]) ⊢ 𝑂) ↷↷ (!(&[Γ,Δ]) ⊢ !𝐴 ⊸ 𝑂)

where Λ𝑥 is defined in Definition B.2.

Proof. Immediate verification. □

Corollary D.23. Consider 𝝈 : !(&[Γ, 𝑥 : 𝐴,Δ]) ⊢ 𝑂 a negative Petri strategy.
Then, ΛΓ,Δ

𝑥 :𝐴,𝑂
(𝝈) : !(&[Γ,Δ]) ⊢ !𝐴 ⊸ 𝑂 is a negative Petri strategy.

D.2.4 Functorial promotion. Rather than directly dealing with Definition 2.11, we decompose it:

first, a functorial promotion, and secondly, a renaming corresponding to digging.
We first define functorial promotion on Petri structures:

Definition D.24. Consider 𝝈 ∈ PStruct(𝑀, 𝑁 ). We set L!𝝈 = L𝝈 , T!𝝈 = T𝝈 with the same

polarities, 𝜕!𝝈 = 𝜕𝝈 , and pre- and post-conditions are also unchanged. Finally, the transition table is:

𝛿!𝝈 ⟨𝑡0⟩(e :: 𝛼) = e :: 𝛽 if 𝛿𝝈 ⟨𝑡⟩(𝛼) = 𝛽
𝛿!𝝈 ⟨𝑡+⟩(e :: 𝛼) = (e :: s, d) if 𝛿𝝈 ⟨𝑡⟩(𝛼) = (s, d)

𝛿!𝝈 ⟨𝑡−⟩(e :: s, d) = e :: 𝛼 if 𝛿𝝈 ⟨𝑡⟩(s, d) = 𝛼

where e :: 𝛼 is {(e :: s𝑖 , d𝑖 )@𝑙𝑖 | (s𝑖 , d𝑖 )@𝑙𝑖 ∈ 𝛼}.
With this definition, we obtain !𝝈 ∈ PStruct(!𝑀, !𝑁 ).

We prove that this operation preserves Petri strategies – the proof follows closely that of tensor,

of which the ! can be regarded as an infinitary version.

Lemma D.25. Consider 𝝈 a Petri structure.
Then, instantiated transitions of !𝝈 are exactly as in Figure 48 – in the sense that there is a one-to-one

correspondence between instantiated transitions in the premises and in the conclusion.
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

𝑡0Le :: 𝛼M : e :: 𝛼 ↦−→!𝝈 e :: 𝛽

𝑡−L(s, d)M : ∅ 𝑚↦−→𝝈 𝛽

𝑡−L(e :: s, d)M : ∅ e::𝑚↦−→!𝝈 e :: 𝛽

𝑡+L𝛼M : 𝛼 𝑚↦−→𝝈 ∅
𝑡+Le :: 𝛼M : e :: 𝛼 e::𝑚↦−→𝝈 ∅

Fig. 48. Description of instantiated transitions of !𝝈

Using this description, we define for each e ∈ E a partial function

𝜋 !

e : ℰ!𝝈 ⇀ ℰ𝝈

𝑡0Le :: 𝛼M ↦→ 𝑡0L𝛼M
𝑡−L(e :: s, d)M ↦→ 𝑡−L(s, d)M

𝑡+Le :: 𝛼M ↦→ 𝑡+L𝛼M

and undefined otherwise. In order to extend those to instantiated transitions in context, first define

o

𝑒∈E
𝛼𝑒 =

⊎
𝑒∈E

𝑒 :: 𝛼𝑒

for (𝛼e)e∈E a family of conditions empty almost everywhere. We may then set:

𝜋 !

e : ℱ!𝝈 ⇀ ℱ𝝈

e ⊎ (
g
e∈E 𝛾e) ↦→ 𝜋 !

e (e) ⊎ 𝛾e .
Using these, from a run 𝜌 : ∅ −→→!𝝈 𝛼 we extract, for all e ∈ E:

𝜌e = 𝜌 ↾ 𝜋
!

e ,

we will also use for restrictions the partial functions

e : Moves ⇀ Moves
(m, e :: s, d) ↦→ (m, s, d)

and undefined otherwise – the abuse of notations should not create confusion.

Now, as for the tensor we can prove:

Lemma D.26. Consider 𝜌 : ∅ −→→!𝝈 𝛼 . Then, 𝛼 =
g
e∈E 𝛼e and

𝜌e : ∅ −→→𝝈 𝛼e

for all e ∈ E, where play(𝜌e) = play(𝜌) ↾ e.
Moreover, Coll(𝜌) =

g
e∈E Coll(𝜌e).

Proof. The proof is the same as for Lemma D.4, without synchronized transitions. □

The construction goes on as for the tensor, with preservation of plays via projections:

Lemma D.27. Consider 𝐴 an arena and 𝑠 ∈ |!𝐴|∗.
Then, 𝑠 ∈ Plays(!𝐴) iff 𝑠 ↾ e ∈ Plays(𝐴) for all e ∈ E.

Proof. Straightforward. □

Consider now 𝝈 : 𝐴 ⊢ 𝐵 a Petri strategy.

Using Lemmas D.27 and D.26, we show that projections preserve valid runs.

Lemma D.28. Consider 𝜌 : ∅ −→→!𝝈 𝛼 such that play(𝜌) ∈ Plays(!𝐴 ⊢ !𝐵).
Then, for all e ∈ E, play(𝜌e) ∈ Plays(𝐴 ⊢ 𝐵).

Proof. As for the proof of Lemma D.6 (without synchronization), using condition valid of Petri

strategies along with Lemma D.27. □
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Using Lemmas D.26, D.27 and D.28, we prove as for Proposition D.7:

Proposition D.29. If 𝝈 : 𝐴 ⊢ 𝐵 is a Petri strategy, then so is !𝝈 : !𝐴 ⊢ !𝐵.
Moreover, if 𝝈 is negative then so is !𝝈 .

D.2.5 Local renamings. To match Definition 2.11, we must also rename following digging.
Recall that digging is the following map:

dig : Moves ⇀ Moves
(m, e :: e′ :: s, d) ↦→ (m, ⟨e, e′⟩ :: 𝑙, d)

and undefined otherwise. To rename a strategy following this, it is convenient to introduce:

Definition D.30. Consider 𝐴, 𝐵 arenas.

A (local) renaming from 𝐴 to 𝐵 is a partial injection 𝑓 : Moves ⇀ Moves defined on |𝐴|, s.t.:
validity: for all 𝑥 ∈ 𝒞(𝐴), 𝑓 𝑥 ∈ 𝒞(𝐵),
polarity-preserving: for all 𝑎 ∈ |𝐴|, pol(𝑓 (𝑎)) = pol(𝑎),
receptivity: for all 𝑥 ∈ 𝒞(𝐴), if 𝑓 (𝑥) ⊢𝐵 𝑏− , then there is 𝑥 ⊢𝐴 𝑎 such that 𝑓 (𝑎) = 𝑏,
courtesy: for all 𝑎 _𝐴 𝑎

′
, either 𝑓 (𝑎) _𝐵 𝑓 (𝑎′) or (pol(𝑎), pol(𝑎′)) = (−, +).

We write 𝑓 : 𝐴↷ 𝐵 to mean that 𝑓 is a renaming from 𝐴 to 𝐵.

It is clear in particular that dig : ‼𝐴⊥ → !𝐴 is a renaming, for any arena 𝐴. This is a variant of

Definition D.16, closer to the usual lifting operation used for this purpose in concurrent games.

Clearly, a local renaming is a global renaming. But local renamings are sometimes more con-

venient, because if 𝑓 : 𝐴⊥ ↷ 𝐵⊥ and 𝑔 : 𝐴′ ↷ 𝐵′ are local renaming, then it is obvious that

𝑓 ⊢ 𝑔 : 𝐴 ⊢ 𝐵 ↷ 𝐴′ ⊢ 𝐵′ (defined in the obvious way) is still a local renaming – this is not always

the case for global renamings for non-negative games.

Definition D.31. Consider 𝝈 : 𝐴 ⊢ 𝐵 a negative Petri strategy and 𝑓 : 𝐴⊥ ↷ 𝐴′⊥, 𝑔 : 𝐵 ↷ 𝐵′.
Then, we define 𝑔 · 𝝈 · 𝑓 = 𝝈 [𝑓 ⊢ 𝑔] : 𝐴′ ⊢ 𝐵′.

This yields a negative Petri strategy by Proposition D.21.

D.2.6 Digging. We may finally perform digging and deduce the correctness of promotion:

Proposition D.32. Consider 𝝈 : !𝐴 ⊢ 𝐵 a negative Petri strategy.
Then, 𝝈†

: !𝐴 ⊢ !𝐵 is a negative Petri strategy.

Proof. It is a direct verification that 𝝈† = (!𝝈) [dig ⊢ id], which is a negative Petri strategy by

Propositions D.29 and Definition D.31. □

D.3 PStrat as an IPA-Structure: Primitives
We now show that the Petri structures representing the primitives of IPA are indeed Petri strategies.

Given a Petri structure 𝝈 and a play 𝑠 of a game 𝐴, we say that 𝑠 is reachable by 𝝈 when there

exists a run 𝜌 of 𝝈 with play(𝜌) = 𝑠 . Given a game 𝐴, we define the Scott order on𝒞(𝐴) as follows:
𝑥 ⊑𝐴 𝑦 := (𝑥 ⊇−⊆+ 𝑦) which was already encountered in Lemma D.8 for copycat.

D.3.1 Variable and Evaluation. For variable, we notice that var𝑥 :𝑀 = cc𝑀 [𝒾𝑥
&
⊢ id] and we conclude

easily by D.21 since 𝒾
𝑥
&
: 𝑀⊥ ↷ [Γ, 𝑥 : 𝑀,Δ]⊥ is a local renaming. For the evaluation, the map Ω

defined in Section B.2 is a global renaming ((𝑀 ⊸ 𝑁 ) ⊢ (𝑀 ⊸ 𝑁 )) ↷↷ ((𝑀 ⊸ 𝑁 ) ⊗ 𝑀 ⊢ 𝑁 ).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 24. Publication date: January 2023.



The Geometry of Causality 24:57

D.3.2 Contraction. We now show that the Petri structure c𝐴 is a Petri strategy on !𝐴 ⊢ !𝐴 ⊗ !𝐴.

Given a move 𝑎, we write ℓ
!
(𝑎) for (m, ℓ

!
(e) :: s, d) for 𝑎 = (m, e :: s, d), and similarly for 𝓇

!
(𝑎). It

is not defined on moves with an empty stack.

Lemma D.33. Consider 𝑠 ∈ play(!𝐴 ⊢ !𝐴 ⊗ !𝐴) reachable by c𝐴.
Then, |𝑠 | = (ℓ

!
(𝑥1) ⊎ 𝓇! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2) and 𝑦𝑖 ⊑ 𝑥𝑖 .

Proof. We prove the implication by induction on the length of 𝑠 . It holds for all plays of length

zero. We assume the implication holds for all plays of length 𝑛.

Consider 𝑠′ = 𝑠 · 𝑎 reachable by 𝝈 and 𝑠 has length 𝑛. We apply the induction hypothesis to 𝑠

(which is reachable by 𝝈 ) and obtain that, writing |𝑠 | = (ℓ
!
(𝑥1) ⊎ ℓ! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2), we have 𝑦𝑖 ⊑ 𝑥𝑖 .

• If 𝑎 is negative, and on ℓ⊢, then the inequality for 𝑠′ holds by definition of ⊑.
• If 𝑎 is negative, and on 𝓇⊢, then because 𝑠′ is a play, the parent of 𝑎 must exist and belong to 𝑠 .

By induction, that parent must have an exponential stack of the form ℓ
!
e :: s or 𝓇

!
e :: s and we

can conclude.

• If 𝑎 is positive, and on the left, ie.𝑚 = ℓ⊢𝑚0: in the run producing 𝑎, there must be a token in

𝑚−
0
that triggered 𝑡 . That token must be (s, d) since 𝑡 has a trivial transition function. That

token can only be produced by one of the negative transitions 𝓇⊢ℓ⊗𝑚0 or 𝓇⊢𝓇⊗𝑚0 – assume the

former. This directly shows that s = ℓ
!
e :: s′ for some s′, and that (𝓇⊢ℓ⊗𝑚0, e :: s, d) ∈ |𝑠 |, which

implies that (𝑚0, e :: s, d) ∈ 𝑦. As a result |𝑠 | = (𝑥 ∪ {(𝑚0, ℓ!e :: s′, d)}) ⊢ 𝑦 ⊗ 𝑧 satisfies the
desired property.

• If 𝑎 is positive and on the right for instance𝑚 = 𝓇⊢ℓ⊗𝑚0. Then a similar line of reasoning

shows that s = e :: s′ and we must have (ℓ⊢𝑚0, ℓ!e :: s′, d) ∈ |𝑠 | which entails the desired

property. □

Lemma D.34. c𝐴 is a negative Petri strategy on !𝐴 ⊢ !𝐴 ⊗ !𝐴.

Proof. Negative. Simple inspection of the net.

Strong safety. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 with 𝑠 a play, and f : 𝛼
𝑎−→ 𝛽 with 𝑠𝑎 also a play (note

that there is no neutral transition). Note that positive transitions do not create tokens, so there is

nothing to check. For negative transitions, it follows from the injectivity of transition functions

and the fact that plays are non-repetitive.

Validity. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 a run of c𝐴 and 𝑠 a play of the game. Assume that 𝜌 can extend by

f+ : 𝛼
𝑎−→ 𝛽 . By Lemma D.33, we know that |𝑠 | = (ℓ

!
(𝑥1) ⊎ 𝓇! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2) with 𝑦𝑖 ⊑ 𝑥𝑖 . There are

three transitions, hence three cases. We detail the case for 𝑎 = ℓ⊢𝑎0: then by inspecting the net we

have that 𝑎0 must be of the form ℓ
!
(𝑎1) with 𝑎1 ∈ 𝑦 or 𝓇

!
(𝑎1) with 𝑎1 ∈ 𝑧 – assume the former. From

𝑎1 ∈ 𝑧, we deduce that the justifier of 𝑎 is already present in 𝑠 ; and moreover 𝑎 cannot conflict with

anything in 𝑠 . That 𝑠𝑎 is non-repetitive follows from strong safety and that transition functions are

injective.

Receptivity. Consider 𝑠𝑎− a play of !𝐴 ⊢ !𝐴 ⊗ !𝐴 and 𝜌 : ∅ 𝑠−→→ 𝛼 . If 𝑎 is on the right of ⊢, then
we can use the corresponding transition whose function domain is total on stacks of !𝐴. For 𝑎 on

the left, 𝑎 cannot be minimal so its justifier 𝑎0 must occur in 𝑠 . By Lemma D.33, its exponential

stack must start with ℓ
!
(e) or 𝓇

!
(e), and thus so must that of 𝑎. As a result, 𝑎 will be accepted by the

transition corresponding to its address. □

D.3.3 Fixpoint. We start by characterising the plays of Y𝑂 , where 𝑂 is a well-opened arena. We

reuse the same encodings as in Section C.3.3.

Lemma D.35. Let 𝜌 : ∅ 𝑠−→→ 𝛼 be a run of Y𝑂 such that 𝑠 is a play.
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Then there exists suffix-closed 𝐽 ⊆ E+, configurations 𝑧,𝑦𝜖 ∈ 𝒞(𝑂), (𝑦s)s∈ 𝐽 and (𝑧s ∈ 𝒞≠∅ (𝑂))s∈ 𝐽
with 𝐽 empty if 𝑦𝜖 is, 𝑧 ⊑ 𝑦𝜖 and 𝑧s ⊑ 𝑦s for all s and

|𝑠 | = (∅ ⊸ () :: 𝑦𝜖 ) ⊎ (e :: (s) :: 𝑧𝑒 ·s ⊸ (e · s) :: 𝑦s) ⊢ 𝑧,
plus if 𝑦𝜖 = ∅ then 𝐽 = ∅, and if 𝑒 · s ∈ 𝐽 , then 𝑦s ≠ ∅.

Proof. A direct induction over the run, using the transition table. □

Lemma D.36. Y𝑂 is a negative Petri strategy !(!𝑂 ⊸ 𝑂) ⊢ 𝑂 .

Proof. Negativity and receptivity are easily verified.

Validity. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 be a run of 𝑌𝑂 such that 𝑠 is a play of the game. Consider now an

extension of 𝜌 by the positive transition f : 𝛼 𝑎−→ 𝛽 . We show that 𝑠𝑎 is a valid play. First, if 𝑎 or a

conflicting move occurs already in 𝑠 , given the shape of the net, this means that Opponent played

twice the same move or two conflicting moves earlier in 𝑠 which is absurd. It remains to show that

the predecessor of 𝑎 occurs in 𝑠 , which is a consequence of Lemma D.35

Strong-safety. All negative transitions have injective transition functions, and the two negative

transitions 𝓇⊢m−
and ℓ⊢ℓ⊸m−

which have a common postcondition (m−
), have disjoint codomains,

hence Y𝑂 is strongly safe. □

D.3.4 Queries, Conditional, Constants. For these IPA structures defined on linear games, a simple

inspection shows that they define they are IPA strategies.

D.3.5 Let bindings. We now move on to showing that let is a Petri strategy on (!X ⊸ Y) ⊗ X ⊢ Y.

Lemma D.37. Let 𝜌 : ∅ 𝑠−→→ 𝛼 be a valid run for let. Then |𝑠 | = ((⊎e∈𝐼e :: 𝑥e) ⊸ 𝑦) ⊗ 𝑧 ⊢ 𝑤 with:
(1) if 𝑦 ≠ ∅ then 𝑧 is maximal in 𝒞(X); (2)𝑤 ⊑ 𝑦 and 𝑥e ⊆ 𝑧 for all e ∈ 𝐼 .

Proof. By induction on 𝜌 . □

Lemma D.38. let is a Petri strategy on (!X ⊸ Y) ⊗ X ⊢ Y.

Proof. As usual, receptivity and negativity are clear. Strong safety is clear on the forwarding

transitions. For the transition s, we note that the token in location 3 is never in eat(s), and the

other token at location 5 has a stack given by Opponent, so there cannot be any risk of confusion.

Validity follows from Lemma D.37. □

D.3.6 Newref and newsem. We now show that newref and newsem are valid Petri strategies. We

focus our attention on newref , the proof for newsem being similar.

We start by recovering, out of a run of newref , a memory trace. A memory trace is a word on

the alphabet Σ := E × {𝑟,𝑤} × D. There is a a partial function 𝜋 :ℰnewref ⇀ Σ as follows:

𝜋 (wL{([e], d)@3, _}M) = (e,𝑤, d)
𝜋 (rL{([e], _)@5, (_, d)@2}M) = (e, 𝑟 , d)

and undefined everywhere else. We write Tr(𝜌) = 𝜌 ↾ 𝜋 .
A memory trace is consistent when (1) exponential signatures occurring in it are all distinct,

and (2) each read reads the last value written before, or zero if there are no writes.

Lemma D.39. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 of newref such that 𝑠 is a play. Then:
• Tr(𝜌) is a consistent memory trace.
• If 𝜌 is not empty, then there is a unique tokil (s, d)@2 in 𝛼 such that: if Tr(𝜌) is empty then
s = [] and d = 0, otherwise s = [e] with e and d the components of the last operation in Tr(𝜌).

• |𝑠 | has the shape ((⊎e∈𝐼e :: 𝑥e) ⊸ 𝑦) ⊢ 𝑧 with 𝑧 ⊑ 𝑦 and 𝑥e ∈ 𝒞(V) such that:
– if 𝑥e is non-empty then e occurs in Tr(𝜌) and the value coincide in the case of a read.
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– For every signature e occurring in Tr(𝜌), 𝑥e is non-empty.

Proof. We proceed by induction on 𝜌 , the base case being trivial. We assume 𝜌 = 𝜌 ′ · f with
f : 𝛼 → 𝛽 . For the visible transitions 𝓇⊢ (−) and ℓ⊢𝓇⊸ (−), this is a proof similar to copycat.

• If f is on ℓ⊢ℓ⊸𝓌VQ
−
or ℓ⊢ℓ⊸𝓇VQ

−
, there is nothing to add to the induction hypothesis.

• If f = 𝛾 ⊎ w{([e], d)@2, ( [e′], d′)@3): then Tr(𝜌) = Tr(𝜌 ′) ( [e′],𝑤, d′) is still a consistent trace.
Moreover, from the tokil ( [e′], d′)@3

, we deduce that in 𝜌 ′ there must be a visible transition

with move (ℓ⊢ℓ⊸𝓌VQ
−, [e], d′).

• If f = 𝛾 ⊎ w{([e], d)@2, ( [e′], •)@5): the same line of reasoning works, except that Tr(𝜌) =
Tr(𝜌 ′) ( [e′, 𝑟 , d]) is no longer automatically consistent. However, by induction we know that

in 𝛼 there is a unique token at location 2, and that its value is the last value written or zero if

there is not any – which shows that Tr(𝜌) is indeed consistent.

• If f = 𝛾 ⊎ ℓ⊢ℓ⊸𝓌VA( [e, d]@4): the first two conditions are trivially true. Moreover, since

( [e], d)@4
belongs to 𝛼 , there must have been a transition w in 𝛼 before that put it there. That

shows that there must be an element in Tr(𝜌) with exponential token e as desired. □

Lemma D.40. newref is a Petri strategy on !V ⊸ X ⊢ X.
Proof. Negativity and receptivity follow by inspection of the net and transition tables.

Strong-safety. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 such that 𝑠 is a play, that can be extended by a transition

f : 𝛼 −→ 𝛽 that is negative or neutral, with play(𝜌f) being a play.

Initial question. If f is a negative transition 𝛼
𝑎−→ 𝛽 on the address 𝓇⊢Q

−
. Then necessarily

𝜌 = 𝜖 and so Coll(𝜌) = ∅.
Final return. If f is a negative transition 𝛼 𝑎−→ 𝛽 on the address ℓ⊢𝓇⊸A

−
: trivial since the function

of this transition is simply the identity, it follows from 𝑠𝑎 being a play hence non-repetitive.

Request. If f is a negative transition 𝛼 𝑎−→ 𝛽 on the address ℓ⊢ℓ⊸𝓌VQ
−
or ℓ⊢ℓ⊸𝓇VQ

−
. In both cases,

the transition function is again the identity, so we can conclude by the same argument.

Atomic operation. If f arises from w or r. The two cases being symmetric, we only show

for w. From the Petri structure, we get that 𝛼 = 𝛾 ⊎ {([e], 𝑑)@3, (s, d′)@2} and 𝛽 = 𝛾 ⊎
{([e], d)@2, ( [e],✓)@6}.
We show that new(f) is fresh in 𝜌 . For the token in location 6, which is always in new(f),
only the transition w writes to 6, so if the tokil ( [e],✓)@6

appeared before in 𝜌 , it means that

there would be already a tokil ( [e], d′′)@3
in Coll(𝜌). This is not possible because 3 is only

fed via the negative transition on ℓ⊢ℓ⊸𝓌VQ
−
. This means that Opponent would have played

(ℓ⊢ℓ⊸𝓌VQ
−, [e], d′′) which violates the fact that 𝑠 is non-repetitive (if d = d′′) or that 𝑠 is a

play (if d ≠ d′′ as those moves are in conflict).

Finally, if ( [e], d)@2
is in Coll(𝜌), then it means that a previous instance of w or r produced

it, which means that there must have been a tokil ( [e], d)@3
(for w) or ( [e], •)@5

(for r). That
implies there has been two Opponent moves on addresses of the form ℓ⊢ℓ⊸ (−) with the same

exponential address, which is not allowed by the game as they are all in conflict.

Valid. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 with 𝑠 a play, and a positive extension f : 𝛼 𝑎−→ 𝛽 . There are

several cases depending on the address of 𝑎:

• If 𝑎 is on 𝓇⊢A: easy since 𝜌 is non empty it must contain its justifying move. Moreover 𝑎 or

a conflicting move with 𝑎 cannot occur in 𝑠 , since we simply forward moves received from

address ℓ⊢𝓇⊸A.
• If 𝑎 is on ℓ⊢𝓇⊸Q: same reasoning.

• If 𝑎 is for instance on ℓ⊢ℓ⊸𝓌VA (the case for 𝓇V is similar). This means that in location 4, there

must be a tokil ( [e],✓)@4
. That tokil proves that, there must be an entry (e,𝑤, 𝑑) (for some 𝑑)

in Tr(𝜌). By Lemma D.39, we know that in 𝑠 there must be justifying move (ℓ⊢ℓ⊸𝓌VQ, [e], 𝑑).
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Moreover, if 𝑎 or a conflicting move would be already present in 𝑎, then we could apply the

same reasoning and find a contradiction with the fact that Tr(𝜌) cannot repeat twice the
same exponential token. □

E THE UNFOLDING
We provide some detailed proofs of the unfolding to strategies.

E.1 Construction of the Unfolding
Fix a game 𝐴, and a Petri strategy 𝝈 : 𝐴. First, for a valid run 𝜌 : ∅ −→→𝝈 𝛼 , we write post(𝜌) = 𝛼 .
If x ∈ Hist(𝝈), we write post(x) = post(𝜌) for any 𝜌 such that x =ℰ(𝜌). This is justified by:

Lemma E.1. Consider 𝜌 : ∅ −→→𝝈 𝛼 and 𝜌 ′ : ∅ −→→𝝈 𝛼
′ valid runs such thatℰ(𝜌) =ℰ(𝜌 ′).

Then, 𝛼 = 𝛼 ′.

Proof. Exploiting strong safety, it is immediate by induction on 𝜌 that:

𝛼 = (⊎{post(e) | e ∈ ℰ(𝜌)}) \ (⊎{pre(e) | e ∈ ℰ(𝜌)})
from which the result immediately follows. □

We aim to prove that valid runs exactly correspond to linearizations of histories. In this section,

we write ⪯𝜌 for (◁𝐴⊢𝐵 ∪ ◁𝝈 )∗.

Lemma E.2. Consider 𝜌 a valid run of 𝝈 of the form 𝜌 = 𝜌0 · (e ⊎ 𝛼) · (e′ ⊎ 𝛼 ′).
If e is maximal inℰ(𝜌) for ⪯𝜌 , then 𝜌0 · (e′ ⊎ 𝛽 ′) · (e ⊎ 𝛽) is a valid run for some 𝛽, 𝛽 ′.

Proof. First, we show that for 𝛽 ′ = post(𝜌0) \ pre(e′), 𝜌0 extends by e′ ⊎ 𝛽 ′ which means

showing:

(1) 𝛽 ′ ∩ pre(e′) = ∅
(2) pre(e′) ⊆ post(𝜌0)
(3) 𝛽 ′ ∩ post(e′) = ∅

First, (1) is by construction of 𝛽 ′. For (2), consider 𝑒 ∈ pre(e′). Then 𝑒 must either be in 𝛼 ⊆
post(𝜌0), or in post(e). If it is in post(e), then it cannot be a token produced by e (i.e. in new(e))
as e and e′ are incomparable. So it must be in pre(e) ⊆ post(𝜌0) as desired. For (3), consider
𝑒 ∈ 𝛽 ′ ∩ post(e′). The tokil 𝑒 must be in new(e′), which implies since e and e′ are incomparable

that 𝑒 does not appear in pre(e). Since 𝑒 ∈ post(𝜌0), it must be that 𝑒 ∈ 𝛼 . Since 𝛼 ′ must be disjoint

from post(e′), we have 𝑒 ∈ pre(e′) which is absurd. Hence, 𝜌1 = 𝜌0 · (e′ ⊎ 𝛽 ′) is indeed a valid run.

We now let 𝛽 = post(𝜌1) \ pre(e) and must prove (1) pre(e) ⊆ post(𝜌1); and (2) 𝛽 ∩ post(e) = ∅.
For (1), if 𝑒 ∈ pre(e), then 𝑒 is in post(𝜌0). As a result, either 𝑒 is not in pre(e′), which implies

that 𝑒 ∈ 𝛽 ′ hence 𝑒 ∈ post(𝜌1) (as desired), or 𝑒 ∈ pre(e′) as well. In the second case, we

have then 𝑒 ∈ pre(e) ∩ pre(e′). Because, in 𝜌 , e comes before e′, this implies that 𝑒 cannot

be eaten by e, in other words 𝑒 ∈ post(e). This implies 𝑒 ∉ eat(e′) as the two transitions are

incomparable, i.e. 𝑒 ∈ post(e′) ⊆ post(𝜌1). For (2), consider 𝑒 ∈ 𝛽 ∩ post(e), ie. in particular

𝑒 ∈ new(e). As 𝑒 ∈ post(𝜌1), 𝑒 either belongs to 𝛽 ′ or post(e′). In the first case, this means that

𝑒 ∈ post(𝜌0) ∩ post(e), which can only be if 𝑒 ∈ pre(e) which is absurd. In the second case, it

means that 𝑒 ∈ post(e′), which in turn means that 𝑒 ∈ pre(e′) as 𝑒 is produced by e so it cannot

be produced by e′ as well by strong safety. But that is not possible either as it would imply a

dependency from e to e′. □

Lemma E.3. Consider x ∈ Hist(𝝈) and e a maximal element of x.
Then, there exists a valid run 𝜌 ending in e ⊎ 𝛼 (for some context 𝛼) such thatℰ𝜌 = x.
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Proof. Consider a run 𝜌0 spanning x, which must have the shape:

𝜌0 = 𝜌1 · (e ⊎ 𝛼) · (e1 ⊎ 𝛼1) · . . . · (e𝑛 ⊎ 𝛼𝑛) .
We proceed by induction on 𝑛. If 𝑛 = 0, then e already occurs at the end of 𝜌 . For 𝑛 + 1, we

consider 𝜌 ′ the prefix of 𝜌 where the last transition has been removed. By IH, we get a run 𝜒 with

ℰ(𝜒) = x \ {e𝑛+1} and 𝜒 ends with e. By Lemma E.1, we have post(𝜒) = post(𝜌 ′); from that it is

immediate that 𝜒 · (e𝑛+1 ⊎ 𝛼𝑛+1) is a valid run, and we conclude by Lemma E.2. □

Lemma E.4. Consider x ∈ Hist(𝝈).
Then, valid runs 𝜌 such that x =ℰ(𝜌) exactly correspond to linearizations of x.

Proof. Clearly, all runs preserve ≤x. For the converse, for any transition e maximal inℰ(x), we
obtain a run where it is played last by taking any valid run 𝜌 such that x =ℰ𝜌 , and pushing e to
the end via local permutations – maximality of e ensures that there is no obstruction – see Lemma

E.3. Iterating this process, we can indeed obtain any linearization. □

We can now show the correctness of ⪯𝜌 :

Proposition 4.11. For 𝜌 a valid run of 𝝈 , ≤𝜌 = (◁𝐴⊢𝐵 ∪ ◁𝝈 )∗.

Proof. It is a simple corollary of Lemma E.4. Indeed suppose that e ⪯𝜌 e′. Then, all equivalent
𝜌 ′ are linearisations of ⪯𝜌 , i.e. in which e must occur before e′. Conversely, if e ≤𝜌 e′, then there

cannot be any linearisation of ⪯𝜌 where e′ occurs before e, which implies the desired result. □

E.2 Hiding
Rigid families seem to have remained in the concurrency theory folklore for a while and to have

first appeared in published form in [Castellan et al. 2014a,b; Hayman 2014].

Consider 𝓆 = ( |𝓆|, ≤𝓆) and 𝓅 = ( |𝓅|, ≤𝓅) finite partial orders. We say that 𝓆 is rigidly
included in 𝓅, written 𝓆 ↩→ 𝓅, if |𝓆| ⊆ |𝓅|, and if that inclusion: (1) preserves down-closed sets,

i.e. 𝒞(𝓆) ⊆ 𝒞(𝓅); and (2) preserves causality, i.e. for all 𝑒, 𝑒′ ∈ |𝓆|, if 𝑒 ≤𝓆 𝑒′ then 𝑒 ≤𝓅 𝑒′ as well.

Definition E.5. A rigid family F is a non-empty set of finite partial orders which is:

rigid-closed: if 𝓅 ∈ F and 𝓆 ↩→ 𝓅, then 𝓆 ∈ F ,

binary-compatible: if 𝑋 ⊆𝑓 F , then 𝑋 ↑ iff for all 𝓆,𝓅 ∈ 𝑋 , {𝓆,𝓅}↑.
where 𝑋 ↑means that there is 𝓇 ∈ F such that for all 𝓆 ∈ 𝑋 , 𝓆 ↩→ 𝓇.

We added binary-compatible to the definition, to match our event structures with binary conflict.

A rigid family F collects causal executions. Particularly interesting are the primes of F , i.e.
those 𝓆 ∈ F with a top element top(𝓆) = 𝑒: those can be thought of as a single event 𝑒 , with a

causal history leading to 𝑒 . Indeed, the reconstructed event structure will have the primes as events:

Proposition E.6. For F a rigid family, the data Pr(F ) = ( | Pr(F )|, ≤Pr(F) , #Pr(F) ) defined by:
| Pr(F )| = {𝓆 ∈ F | 𝓆 prime}

𝓆 ≤Pr(F) 𝓅 ⇔ 𝓆 ⊆ 𝓅
¬(𝓆 #Pr(F) 𝓅) ⇔ {𝓆,𝓅}↑ ,

is an event structure with 𝜒F : 𝒞(Pr(F )) � F an order-isomorphism.

The proof is routine – 𝜒F takes 𝑥 ∈ 𝒞(Pr(F )) to its sup ∨𝑥 ∈ F obtained as the (necessarily)

compatible union of all partial orders in 𝑥 , while 𝜒−1F takes 𝓆 ∈ F to the set of primes below 𝓆.

Proposition E.7. The set comprising allℰ(x) for x ∈ Hist(𝝈), is a rigid family writtenℰ(𝝈).
Moreover, 𝒞(𝝈) (ordered by rigid inclusion) is order-isomorphic to Hist(𝝈) (ordered by inclusion).
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Proof. First, the claimed order-isomorphism is clear by construction.

Rigid-closed. Now if 𝓅 ∈ ℰ(𝝈) and 𝓆 ↩→ 𝓅, by Lemma E.4 there is a valid run 𝜌 playing 𝓆 first.

Truncating 𝜌 after 𝓆, we get 𝜌 ′ such thatℰ(𝜌 ′) = 𝓆 by construction.

Binary-compatible. Take 𝑋 ⊆𝑓 Hist(𝝈). Clearly, if (1) there are x, y ∈ 𝑋 , visible instantiated

transitions e in x and e′ in y labelled by conflicting events of 𝐴 ⊢ 𝐵; or (2) there are x, y ∈ 𝑋 ,

e : 𝛼 −→𝝈 𝛽 in x and e′ : 𝛼 ′ −→𝝈 𝛽 ′ in y such that 𝛼 ∩ 𝛼 ′ ≠ ∅; then there cannot be a valid run

witnessing ∪𝑋 : (1) would contradict validity of the run, while (2) would contradict strong safety as

the same tokil would have to be consumed twice. Reciprocally, if we have neither (1) nor (2), then
any valid runs (𝜌x)x∈𝑋 may be directly “zipped” into a valid run witnessing ∪𝑋 ∈ Hist(𝝈).
This concludes the proof, as it brings compatibility of 𝑋 ⊆𝑓 ℰ(𝝈) to pairwise compatibility. □

Proposition E.8. The event structure𝒰(𝝈) = Pr(ℰ(𝝈)) ↓𝒱𝝈 , equipped with the display map

𝜕𝒰(𝝈 ) : |𝒰(𝝈) | → |𝐴 ⊢ 𝐵 |
𝓆 ↦→ 𝜕𝝈 (top(𝓆))

is a strategy in the sense of Definition 4.4. Moreover,𝒰(𝝈) is negative if 𝝈 is.

Proof. It remains to prove courteous, receptive and negative. From the order-isos 𝒞(𝒰(𝝈)) �
𝒞
𝒱𝝈 (Pr(ℰ(𝝈))) and 𝒞(Pr(ℰ(𝝈))) � ℰ(𝝈), we get an order-iso:

𝐾𝝈 : 𝒞(𝒰(𝝈)) � ℰ𝑉 (𝝈) (5)

We now prove the remaining conditions.

Courteous. Consider x1 _𝒰(𝝈 ) x2 such that pol(x1) = + or pol(x2) = −. So x1, x2 ∈ ℰ(𝝈) with
respective top elements top(x1) = e1 and top(x2) = e2, such that pol(e1) = + or pol(e2) = −. By
definition, x1 ↩→ x2, so that e1, e2 ∈ x2 with e1 <x2 e2. By definition, this means there is a sequence

e1 ◁x2 e
′
1
◁x2 . . . e

′
𝑛 ◁x2 e2

where, each ◁x2 is either ◁𝝈 or ◁𝐴. Now, seeking a contradiction, assume 𝑛 ≥ 1. Assume first that

e1 is positive. Then, we cannot have e1 ◁x2 e
′
1
as post(e1) = new(e1) = ∅. But we also cannot have

e1 ◁𝐴 e′
1
, as e1 is visible but not e′1. Assuming that e2 is negative is symmetric: we cannot have

e′𝑛 ◁x2 e2 as pre(e2) = eat(e2) = ∅, and we cannot have e′𝑛 ◁𝐴 e2 because e2 is visible but not e′𝑛 .
So, 𝑛 = 0 and we have e1 ◁x2 e2. But again, for the same reason this cannot be because e1 ◁𝝈 e2, so
e1 ◁𝐴 e2, which means 𝜕𝝈 (e1) _𝐴 𝜕𝝈 (e2). Hence, 𝜕𝒰(𝝈 ) _𝐴 𝜕𝒰(𝝈 ) .
Receptive. Consider 𝑥 ∈ 𝒞(𝒰(𝝈)) and 𝜕𝒰(𝝈 ) (𝑥) ⊢𝐴 𝑎− . So we have 𝐾𝝈 (𝑥) ∈ ℰ𝑉 (𝝈) with

𝜕𝝈 (𝐾𝝈 (𝑥)) ⊢𝐴 𝑎− . We show that there is a unique matching extension e− of 𝐾𝝈 (𝑥), and conclude by
the fact that 𝐾𝝈 is an order-isomorphism. For existence, consider 𝜌 : ∅ −→→𝝈 𝛼 a valid run such that

𝐾𝝈 (𝑥) =ℰ(𝜌). Consider 𝑠 ∈ play(𝜌), so in particular 𝑠 ∈ Plays(𝐴). By hypothesis, 𝑠𝑎 ∈ Plays(𝐴)
as well. So by condition receptive of Petri strategies, there is a unique e− : ∅ 𝑎−↦−→𝝈 𝛽 for some

𝛽 ∩ 𝛼 = ∅, so that 𝜌 ′ = 𝜌 (e− ⊎ 𝛾) is a valid run for some 𝛾 ; providing the expected extension of

𝐾𝝈 (𝑥). Uniqueness follows immediately from uniqueness of e− .
Negative. Consider x ∈ |𝒰(𝝈) | minimal. This means that x is a prime history with exactly one

visible event e, with e = top(x). So there is a run

f1 . . . f𝑛 (e ⊎ 𝛾) : ∅ −→→𝝈 𝛼 ,

but by condition negative of Petri strategies, f1 cannot be neutral and have no preconditions. So

𝑛 = 0, and we have a one-event run e : ∅ −→→𝝈 𝛼 . But likewise, by condition negative of Petri
strategies this entails that e is negative, so x is negative as required. □

Lemma E.9. The order-isomorphism (5) of Lemma E.8 specializes to 𝐾+
𝝈 : 𝒞

+(𝒰(𝝈)) � ℰ+ (𝝈) s.t.
for all 𝑥 ∈ 𝒞+(𝒰(𝝈)), we have 𝜕𝒰(𝝈 ) (𝑥) = 𝜕𝝈 (𝐾+

𝝈 (𝑥)) the labels of visible transitions in 𝐾+
𝝈 (𝑥).
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E.3 The Unfolding as a Functor
Proposition E.10. Consider 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies. Then, there is an order-iso:

(− ⊙ −) : {(x𝝉 , x𝝈 ) ∈ ℰ+ (𝝉 ) ×ℰ+ (𝝈)
| causally compatible}

� ℰ
+ (𝝉 ⊙ 𝝈)

such that for x𝝈 ∈ ℰ+ (𝝈), x𝝉 ∈ ℰ+ (𝝉 ) causally compatible, 𝜕𝝉⊙𝝈 (x𝝉 ⊙ x𝝈 ) = x𝝈
𝐴
⊢ x𝝉

𝐶
.

Proof. For x𝝈 ∈ ℰ(𝝈) and x𝝉 ∈ ℰ(𝝉 ), we set x𝝉 ⊙ x𝝈 as the set of instantiated transitions

obtained from x𝝈 and x𝝉 by the rules of Figure 44 (following Lemma D.3). We prove by induction

that for all x𝝈 ∈ ℰ(𝝈) and x𝝉 ∈ ℰ(𝝉 ) causally compatible, then x𝝉 ⊙ x𝝈 ∈ ℰ(𝝉 ⊙ 𝝈), and
post(x𝝉 ⊙ x𝝈 ) = post(x𝝈 ) +⊙ post(x𝝉 ) .

If x𝝉 ⊙ x𝝈 is empty, there is nothing to prove. If x𝝈 or x𝝉 have a maximal neutral instantiated

transition, say w.l.o.g. that it is x𝝈 with maximal e = 𝑡0L𝜇M ∈ x𝝈 . Then, setting y𝝈 = x𝝈 \ {e} yields
y𝝈 ∈ ℰ(𝝈) by Proposition E.7; and with also y𝝉 = x𝝉 , it is direct that y𝝈 and y𝝉 are still causally

compatible. By IH, we have y𝝉 ⊙ y𝝈 ∈ ℰ(𝝉 ⊙ 𝝈) and post(y𝝉 ⊙ y𝝈 ) = post(y𝝈 ) +⊙ post(y𝝉 ). This
means that there is a run 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 projecting to 𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 with 𝛼𝝈 = post(y𝝈 ). Since
e is enabled in post(y𝝈 ) it follows that ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M is enabled in y𝝉 ⊙ y𝝈 , and

𝜌 (ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M : ∅ −→→𝝉⊙𝝈 𝛽

where by construction 𝛽 = post(x𝝈 ) +⊙ post(x𝝉 ) as needed. The symmetric reasoning applies if x𝝉

has a maximal neutral instantiated transition – so assume all maximal transitions in x𝝈 , 𝑥𝝉 visible.

Now, by causal compatibility of x𝝈 and x𝝉 , there is an element of x𝐴 ∥ x𝐵 ∥ x𝐶 (following the

notations of Section C.2.2) which is maximal for ◁. If it is in x𝐴, it has the form 𝜕ℓ𝝈 (e) for e ∈ x𝝈

positive or negative. In both cases, the same argument as in the neutral case applies (with the

additional observation that the obtained run yields a valid play from the hypothesis). The reasoning

is the same if it is in x𝐶 . The last (key) case is if it is in x𝐵 . Then there are instantiated transitions

𝑡+L𝜇M : 𝜇 𝓇⊢𝑚↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝉 𝜈 ,

or the dual – symmetric – situation, respectivelymaximal in x𝝈 and x𝝉 ; and by necessity𝑚 = (m, s, d)
where 𝜕𝝈 (𝑡+) = 𝓇⊢m, 𝜕𝝉 (𝑡−) = ℓ⊢m, 𝛿 ⟨𝑡+⟩(𝜇) = (s, d) and 𝛿 ⟨𝑡−⟩(s, d) = 𝜈 . Setting y𝝈 \ {𝑡+L𝜇M} and
y𝝉 \ {𝑡−L(s, d)M}, it is straightforward that they are still causally compatible histories. By IH,

y𝝉 ⊙ y𝝈 ∈ ℰ(𝝉 ⊙ 𝝈) with post(y𝝉 ⊙ y𝝈 ) = post(y𝝈 ) +⊙ post(y𝝉 ). It follows that there is a run
𝜌 : ∅ −→→𝝉⊙𝝈 post(y𝝉 ⊙ y𝝈 ) .

Since x𝝈 ∈ ℰ(𝝈) with 𝑡+L𝜇M maximal and x𝝉 ∈ ℰ(𝝈) with 𝑡−L(s, d)M maximal, there are

𝜉𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 post(x𝝈 ) ,
𝜉𝝉 (𝑡−L(s, d)M ⊎ 𝛾𝝉 ) : ∅ −→→𝝉 post(x𝝉 ) ,

valid runs by Lemma E.3, with x𝝈 = ℰ𝜉𝝈 and x𝝉 = ℰ𝜉𝝉 . By Lemma E.1, post(𝜉𝝈 ) = post(𝜌𝝈 ) =

post(y𝝈 ) and post(𝜉𝝉 ) = post(𝜌𝝉 ) = post(y𝝉 ). It follows that the transition
(𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M : ℓ⊙ (𝜇) ↦−→𝝉⊙𝝈 𝓇

⊙ (𝜈)
is enabled in post(y𝝉 ⊙ y𝝈 ), hence it can be appended to 𝜌 , witnessing x𝝉 ⊙ x𝝈 ∈ ℰ(𝝉 ⊙ 𝝈).

In the other direction, given y ∈ ℰ(𝝉 ⊙ 𝝈), consider a valid run 𝜌 : ∅ −→→𝝉⊙𝝈 𝛼 such that y =ℰ𝜌 .

By Lemmas D.4 and D.6, we then have 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉
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valid runs. Recall that 𝜌𝝈 = 𝜌 ↾ 𝜋𝝈 and 𝜌𝝉 = 𝜌 ↾ 𝜋𝝉 – hence, setting x𝝈 = 𝜋𝝈 (y) and x𝝉 = 𝜋𝝉 (y),
we have x𝝈 =ℰ𝜌𝝈 and x𝝉 =ℰ𝜌𝝉 so that x𝝈 ∈ ℰ(𝝈) and x𝝉 ∈ ℰ(𝝉 ). Causal compatibility is direct as

𝜌 provides a linearization of ◁.
It is direct that these constructions are inverse; it remains to show that they preserve +-covered

histories. If x𝝈 and x𝝉 causally compatible are +-covered, then consider e maximal in x𝝉 ⊙ x𝝈 . If
e = ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M, this directly contradicts +-coveredness of x𝝈 , and likewise for 𝓇

⊙ (𝑡0)L𝓇⊙ (𝜇)M.
If e = ℓ⊙ (𝑡−)L(s, d)M, then 𝑡−L(s, d)M is maximal in x𝝈 , contradiction – likewise for 𝓇

⊙ (𝑡−)L(s, d)M.
If e = (𝑡+ ⊛ 𝑡−)Lℓ⊙ (𝜇)M with 𝑡+L𝜇M ∈ x𝝈 and 𝑡−L(s, d)M ∈ x𝝉 , then 𝑡−L(s, d)M is maximal in x𝝉 ,
contradiction – likewise, e = (𝑡− ⊛ 𝑡+)L𝓇⊙ (𝜇)M leads to a contradiction. So, x𝝉 ⊙ x𝝈 is +-covered.

Reciprocally, assume x𝝉 ⊙ x𝝈 +-covered. Consider e ∈ x𝝈 maximal. If e = 𝑡0L𝜇M, ℓ⊙ (𝑡0)Lℓ⊙ (𝜇)M is
maximal in x𝝉 ⊙ x𝝈 , contradiction. If e = 𝑡−L(s, d)M, then since x𝝉 ⊙ x𝝈 is +-covered, there is

ℓ⊙ (𝑡−)L(s, d)M _x𝝉 ⊙x𝝈 e′

and a direct case analysis shows that 𝜋𝝈e′ is defined with 𝑡−L(s, d)M _x𝝈 𝜋𝝈e′, contradicting the
maximality of e. The last case has e positive; and symmetrically, x𝝉 is +-covered. □

Proposition E.11. For 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies,𝒰(𝝉 ⊙ 𝝈) � 𝒰(𝝉 ) ⊙𝒰(𝝈).

Proof. We may deduce preservation of composition simply by manipulating isos:

𝒞
+(𝒰(𝝉 ⊙ 𝝈))

� ℰ
+ (𝝉 ⊙ 𝝈)

� {(x𝝈 , x𝝉 ) ∈ ℰ+ (𝝈) ×ℰ+ (𝝉 ) | causally compatible}
� {(𝑥𝒰(𝝈 ) , 𝑥𝒰(𝝉 ) ) ∈ 𝒞+(𝒰(𝝈)) ×𝒞+(𝒰(𝝉 ))

| causally compatible}
� 𝒞

+(𝒰(𝝉 ) ⊙𝒰(𝝈))

via Lemma E.9, Proposition E.10, and Lemma E.9 – preservation of causal compatibility follows

directly from the order-isomorphism. All these steps preserve displays to the game. By Proposition

C.7, it follows that𝒰(𝝉 ⊙ 𝝈) � 𝒰(𝝉 ) ⊙𝒰(𝝈) as required. □

As detailed in Proposition E.11, it follows that unfolding preserves composition up to iso.

Next, we show the same for copycat. If 𝐴 is an arena, then we have obvious bijections

ℰ
+
cc𝐴 � |𝐴 ⊢ 𝐴|+ ℰ

−
cc𝐴 � |𝐴 ⊢ 𝐴|− ,

and coercing silently through these, we have:

Lemma E.12. Consider 𝐴 an arena, and 𝜌 : ∅ −→→ cc𝐴 𝛼 a valid run.
Then,ℰ𝜌 = play(𝜌), with negative maximal transitions in bijection with 𝛼 .

Proof. Straightforward by induction on 𝜌 . □

Lemma E.13. Consider 𝐴 an arena. Then, we have the order-isomorphism

ℰ
+ ( cc𝐴) � {𝑥 ⊢ 𝑥 | 𝑥 ∈ 𝒞(𝐴)}

with 𝜕 cc𝐴 (𝑥 ⊢ 𝑥) = 𝑥 ⊢ 𝑥 .

Proof. The isomorphism simply applies the bijectionℰcc𝐴 ≃ |𝐴|. From left to right, recall first

that by Lemma D.8, for 𝜌 : ∅ −→→ cc𝐴 𝛼 a valid run, we have

|play(𝜌) | = 𝑥 ⊢ 𝑦 , 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) .
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By Lemma E.12, the history ℰ𝜌 is +-covered iff 𝛼 = ∅, i.e. 𝑦− ⊆ 𝑥 and 𝑥+ ⊆ 𝑦. But as 𝑦 ⊇−

𝑥 ∩ 𝑦 ⊆+ 𝑥 this entails 𝑥 = 𝑦. In that case, 𝜕 cc𝐴 (ℰ𝜌 ) = |play(𝜌) | = 𝑥 ⊢ 𝑥 as needed. Reciprocally,

for any 𝑥 ∈ 𝒞(𝐴), it is straightforward to build a valid run 𝜌 : ∅ −→→ cc𝐴 ∅ s.t. ℰ𝜌 = 𝑥 ⊢ 𝑥 as

required. □

From that, preservation of copycat follows:

Proposition E.14. Consider 𝐴 an arena. Then,𝒰( cc𝐴) � cc𝐴.

Proof. We compose label-preserving order-isomorphisms:

𝒞
+(𝒰( cc𝐴)) � ℰ

+ ( cc𝐴)
� {𝑥 ⊢ 𝑥 | 𝑥 ∈ 𝒞(𝐴)}
� 𝒞

+( cc𝐴)
by Lemmas E.9 and E.13. From this it follows that𝒰( cc𝐴) � cc𝐴 by Lemma C.5. □

Corollary E.15. We have a functor of precategories𝒰 : PStrat → Strat.

E.4 The Unfolding Preserves Operations
Next, we prove that the unfolding preserves all operations of the IPA-structure.

E.4.1 Tensor. Preservation of the tensor operation is easy via the following observation:

Lemma E.16. Consider 𝝈 : 𝐴1 ⊢ 𝐵1, 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies. Then, we have an order-isomorphism

(− ⊗ −) :ℰ+ (𝝈) ×ℰ+ (𝝉 ) � ℰ+ (𝝈 ⊗ 𝝉 )
s.t. 𝜕𝝈⊗𝝉 (x𝝈 ⊗ x𝝉 ) = (𝑥𝐴1

⊗ 𝑥𝐴2
) ⊢ (𝑥𝐵1

⊗ 𝑥𝐵2
) where 𝜕𝝈 (x𝝈 ) = 𝑥𝐴1

⊢ 𝑥𝐵1
and 𝜕𝝉 (x𝝉 ) = 𝑥𝐴2

⊢ 𝑥𝐵2
.

Proof. Consider x𝝈 ∈ ℰ+ (𝝈) and x𝝉 ∈ ℰ+ (𝝉 ). By definition, there are valid runs

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

such that x𝝈 =ℰ𝜌𝝈 and x𝝉 =ℰ𝜌𝝉 . We define the history x𝝈 ⊗ x𝝉 as

x𝝈 ⊗ x𝝉 = {ℓ⊗ (𝑡0,+)Lℓ⊗ (𝜇)M | 𝑡0,+L𝜇M ∈ x𝝈 }
⊎ {ℓ⊗ (𝑡−)L(s, d)M | 𝑡−L(s, d)M ∈ x𝝈 }
⊎ {𝓇⊗ (𝑡0,+)L𝓇⊗ (𝜇)M | 𝑡0,+L𝜇M ∈ x𝝉 }
⊎ {𝓇⊗ (𝑡−)L(s, d)M | 𝑡−L(s, d)M ∈ x𝝉 } .

This must be the history of a valid run – to show that, we build

ℓ⊗ (𝜌𝝈 ) : ∅ −→→𝝈⊗𝝉 ℓ⊗ (𝛼𝝈 ) ,
𝓇
⊗ (𝜌𝝉 ) ⊎ ℓ⊗ (𝛼𝝈 ) : ℓ⊗ (𝛼𝝈 ) −→→𝝈⊗𝝉 ℓ⊗ (𝛼𝝈 ) ⊎ 𝓇⊗ (𝛼𝝉 )

which by concatenation (and Lemma D.13) yields a valid run 𝜌𝝈 ⊗ 𝜌𝝉 : ∅ −→→𝝈⊗𝝉 𝛼𝝈 +⊗ 𝛼𝝉 ; and it

is immediate that x𝝉 ⊗ x𝝈 =ℰ𝜌𝝉 ⊗𝜌𝝈 . By definition of the causal ordering of instantiated transitions,

it is also immediate that x𝝉 ⊗ x𝝈 is +-covered; and that this preserves the labelling.

Reciprocally, for any x ∈ ℰ+ (𝝈 ⊗ 𝝉 ) we consider the projections
x𝝈 = 𝜋𝝈 (x) , x𝝉 = 𝜋𝝉 (x) ,

and it follows from Lemma D.14 that x𝝈 ∈ ℰ(𝝈) and x𝝉 ∈ ℰ(𝝉 ). From the definition of the causal

ordering of instantiated transitions, x𝝈 and x𝝉 are still +-covered.
Finally, these two transformations are inverses as required. □

Again, from this we can conclude that the unfolding preserves the tensor.
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Corollary E.17. Consider 𝝈 : 𝐴1 ⊢ 𝐵1, 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies.
Then, we have𝒰(𝝈 ⊗ 𝝉 ) � 𝒰(𝝈) ⊗𝒰(𝝉 ).

Proof. We compose label-preserving isomorphisms:

𝒞
+(𝒰(𝝈 ⊗ 𝝉 )) � ℰ

+ (𝝈 ⊗ 𝝉 )
� ℰ

+ (𝝈) ×ℰ+ (𝝉 )
� 𝒞

+(𝒰(𝝈)) ×𝒞+(𝒰(𝝉 ))
� 𝒞

+(𝒰(𝝈) ⊗𝒰(𝝉 ))
by Lemmas E.9, E.16, Lemma E.9 again, and Proposition C.12. □

E.4.2 Renaming. Before detailing the unfolding of currying and promotion, we show that it

preserves renaming. We have already established in Lemma D.19 that (global) renamings preserve

valid runs. In order for renamings to preserve the unfolding, we must ensure that the dependency

between instantiated transitions is preserved as well.

Lemma E.18. Consider 𝐴, 𝐵 games, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, 𝝈 : 𝐴, and 𝜌 : ∅ −→→𝝈 𝛼 valid.
For all e, e′ ∈ ℰ𝜌 , we have e ≤𝜌 e′ iff e[ℎ] ≤𝜌 [ℎ] e′ [ℎ].

Proof. Consider e _𝜌 e′.W.l.o.g. we assume that this dependency cannot be deduced otherwise

by transitivity. By Lemma E.4, we can assume that e and e′ appear subsequently in 𝜌 .

Assume first e _𝐴 e′. By definition,

e : 𝛼
𝑎

↦−→𝝈 𝛽 , e′ : 𝛼 ′ 𝑎′↦−→𝝈 𝛽
′

with 𝑎 _𝐴 𝑎′, while by construction, e[ℎ] : 𝛼
ℎ𝑎↦−→𝝈 [ℎ] 𝛽 and e′ [ℎ] : 𝛼 ′

ℎ𝑎′↦−→𝝈 [ℎ] 𝛽
′
. Now, we

distinguish cases depending on the polarity of 𝑎, 𝑎′. If pol𝐴 (𝑎) = + or pol𝐴 (𝑎′) = −, then by courtesy
we have ℎ𝑎 _𝐵 ℎ𝑎

′
, so that e[ℎ] _𝐵 e′ [ℎ]. If pol𝐴 (𝑎) = − and pol𝐴 (𝑎′) = +, then

e = 𝑡−L(s, d)M : ∅
𝑎

↦−→𝝈 𝛽 , e′ = 𝑡+L𝛼 ′M : 𝛼 ′ 𝑎′↦−→𝝈 ∅ .
Assume, seeking a contradiction, that 𝛽 ∩ 𝛼 ′ = ∅, and consider the prefix of 𝜌 :

𝜌 ′ (𝑡−L(s, d)M ⊎ 𝛾) (𝑡+L𝛼 ′M ⊎ 𝛾 ′) : ∅ −→→𝝈 𝜈 ,

but if indeed 𝛽 ∩ 𝛼 ′ = ∅, then e and e′ permute as in

𝜌 ′ (𝑡+L𝛼 ′M ⊎ 𝜇) (𝑡−L(s, d)M ⊎ 𝜇′) : ∅ −→→𝝈 𝜈

and by valid, this entails play(𝜌 ′)𝑎′ ∈ Plays(𝐴), contradicting 𝑎 _𝐴 𝑎
′
. Assume now e _𝝈 e′. This

comes either from new(e) ∩ pre(e′) ≠ ∅, or post(e) ∩ eat(e′) ≠ ∅. But the renaming of instantiated

transtions does not change pre- and post-conditions, so e[ℎ] _𝜌 [ℎ] e′ [ℎ] still.
Reciprocally, assume e[ℎ] ≤𝜌 [ℎ] e′ [ℎ]. Seeking a contradiction, assume ¬(e ≤𝜌 e′). By Lemma

E.4, we can assume that e′ appears before e in 𝜌 . Hence, e′ [ℎ] appears before e[ℎ] in 𝜌 [ℎ]. But by
Lemma D.19 𝜌 [ℎ] is valid, so by Lemma E.4 e[ℎ] must appear before e′ [ℎ], contradiction. □

Next, we need to show that valid runs are also reflected by renamings:

Lemma E.19. Consider 𝐴, 𝐵 games, 𝝈 : 𝐴, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 valid.
Then, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 valid such that 𝜌 ′ = 𝜌 [ℎ].

Proof. By induction on 𝜌 ′. If it is empty, this is clear. Consider 𝜌 ′f0 with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and

f0 = 𝑡0L𝜇M ⊎ 𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with 𝑡
0L𝜇M : 𝜇 ↦−→𝝈 [ℎ] 𝜈 . By IH, there is 𝜌 : ∅ −→→𝝈 𝛼 . By definition,

we still have 𝑡0L𝜇M ⊎ 𝛾 : 𝛼 −→𝝈 𝛽 , so 𝜌f0 : ∅ −→→𝝈 𝛽 and as required, (𝜌f0) [ℎ] = 𝜌 ′f0.
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Next, consider 𝜌 ′f+ with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and f+ = 𝑡+L𝜇M⊎𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with 𝑡
+L𝜇M : 𝜇 𝑏′↦−→𝝈 [ℎ]

∅. Necessarily, 𝑏′ = (𝑓 (m), d′, s′) for m = 𝜕𝝈 (𝑡+), and (d′, s′) = 𝑔m (d, s) for (d, s) = 𝛿 ⟨𝑡+⟩(𝜇) – so

𝑏 = ℎ(𝑏) for 𝑏 = (m, d, s). But then, by definition, 𝑡+L𝜇M : 𝜇 𝑏↦−→𝝈 ∅ as well, so f+ : 𝛼 −→𝝈 𝛽 . By IH,

there is 𝜌 : ∅ −→→𝝈 𝛼 such that 𝜌 [ℎ] = 𝜌 ′. By valid, 𝜌f+ is still valid, and (𝜌f+) [ℎ] = 𝜌 ′f+.
Finally, consider 𝜌 ′f− with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and f− = 𝑡−L(s′, d′)M ⊎ 𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with

𝑡−L(s′, d′)M : ∅ 𝑏′↦−→𝝈 [ℎ] 𝜈 . Here, necessarily, 𝑏
′ = (m′, s′, d′) where m′ = 𝑓 (m), m = 𝜕𝝈 (𝑡−),

(s′, d′) = 𝑔m (s, d). In other words, 𝑏′ = ℎ(𝑏) with 𝑏 = (m, s, d). Now, by IH we have 𝜌 : ∅ −→→𝝈 𝛼

with 𝜌 [ℎ] = 𝜌 ′. Besides, we have the transition 𝑡−L(s, d)M : ∅ 𝑏↦−→𝝈 𝜈 , so that (𝑡−L(s, d)M ⊎ 𝛾) :

𝛼 −→𝝈 𝛽 . Its validity follows immediately from receptivity of global renamings (and the fact that

they are injective). It is clear that (𝜌 (𝑡−L(s, d)M ⊎ 𝛾)) [ℎ] = 𝜌 ′f− as required.

Finally, uniqueness is immediate by induction and injectivity of ℎ. □

Lemma E.20. Consider 𝐴, 𝐵 games, 𝝈 : 𝐴 a Petri strategy, and ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.
Then,𝒰(𝝈 [ℎ]) � 𝒰(𝝈) [ℎ].

Proof. We construct an order-isomorphism

−[ℎ] :ℰ+ (𝝈) � ℰ+ (𝝈 [ℎ]) (6)

such that 𝜕𝝈 [ℎ] (x) = ℎ(𝜕𝝈 (x)) for all x ∈ ℰ+ (𝝈). Given x ∈ ℰ+ (𝝈), there is some 𝜌 a valid run in 𝝈
such that x =ℰ(𝜌). By Lemma D.19, 𝜌 [ℎ] is a valid run of 𝝈 [ℎ], so wemay consider x[ℎ] =ℰ(𝜌 [ℎ]).
By Lemma E.18, −[ℎ] on instantiated transitions is an order-isomorphism −[ℎ] : x � x[ℎ], so
x[ℎ] ∈ ℰ+ (𝝈 [ℎ]). Together with Lemma E.19, this easily entails that we get−[ℎ] :ℰ(𝝈) � ℰ(𝝈 [ℎ])
an order-isomorphism. By definition, for each x ∈ ℰ(𝝈) we have an order-iso x � x[ℎ] defined
by applying −[ℎ] on each transition – thus, −[ℎ] preserves and reflects +-covered histories. The

requirement w.r.t. labels is obvious by construction.

By Lemma E.9, we also obtain an order-isomorphism

−[ℎ] : 𝒞+(𝒰(𝝈)) � 𝒞+(𝒰(𝝈 [ℎ]))

such that 𝜕𝒰(𝝈 [ℎ] ) (𝑥 [ℎ]) = ℎ(𝜕𝒰(𝝈 ) (𝑥)) for any 𝑥 ∈ 𝒞+(𝒰(𝝈)), so, from Definition B.1, an order-

isomorphism −[ℎ] : 𝒞+(𝒰(𝝈) [ℎ]) � 𝒞+(𝒰(𝝈 [ℎ])) such that 𝜕𝒰(𝝈 [ℎ] ) (𝑥 [ℎ]) = 𝜕𝒰(𝝈 ) [ℎ] (𝑥) for all
𝑥 ∈ 𝒞+(𝒰(𝝈) [ℎ]). By Lemma E.9, it follows that𝒰(𝝈) [ℎ] and𝒰(𝝈 [ℎ]) are isomorphic. □

E.4.3 Currying. Follows from Lemma E.20, as currying is obtained with the same global renaming

both in PStrat and in Strat.

E.4.4 Promotion. Let us start with characterizing +-covered traces of the functorial promotion.

Lemma E.21. Consider 𝝈 : 𝐴 ⊢ 𝐵 a Petri strategy. Then, we have an order-iso

[−] : Fam(ℰ+,≠∅ (𝝈)) � ℰ+ (!𝝈)

satisfying that for all (xe)e∈𝐸 ∈ Fam(ℰ+,≠∅ (𝝈)), we have

𝜕!𝝈 ( [(xe)e∈𝐸]) =
(⊎
e∈𝐸

e :: 𝑥𝑒𝐴

)
⊢

(⊎
e∈𝐸

e :: 𝑥𝑒𝐵

)
writing 𝜕𝝈 (x𝑒 ) = 𝑥e𝐴 ⊢ 𝑥e

𝐵
for all e ∈ 𝐸.

Proof. This is a𝑛-ary adaptation of the proof of Lemma E.16. Consider (xe)e∈𝐸 ∈ Fam(ℰ+,≠∅ (𝝈)).
By definition, there is a valid run

𝜌e : ∅ −→→𝝈 𝛼
e
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for all e ∈ 𝐸 such that xe =ℰ𝜌e . We define the history [(xe)e∈𝐸] as
[xe | e ∈ 𝐸] = {𝑡0Le :: 𝛼M | e ∈ 𝐸, 𝑡0L𝛼M ∈ xe}

⊎ {𝑡+Le :: 𝛼M | e ∈ 𝐸, 𝑡+L𝛼M ∈ xe}
⊎ {𝑡−L(e :: s, d)M | e ∈ 𝐸, 𝑡−L(s, d)M ∈ xe} .

We construct a run 𝜌 obtained by concatenating all 𝜌es in the obvious way as in Lemma E.16.

Exploiting Lemma D.27, it is a valid run and [xe | e ∈ 𝐸] =ℰ(𝜌) by construction. By definition of

the causal ordering of instantiated transitions, it is also immediate that [xe | e ∈ 𝐸] is +-covered;
and that this preserves the labelling. Reciprocally, for any x ∈ ℰ(!𝝈), we consider the projections

xe = 𝜋 !

e (x)
and it follows from Lemma D.28 that xe ∈ ℰ(𝝈) for all e ∈ 𝐸. From the definition of the causal

ordering of instantiated transitions, each xe is still +-covered.
Finally, these two transformations are inverses as required. □

Corollary E.22. Consider 𝝈 : !𝐴 ⊢ 𝐵 a Petri strategy. Then, we have𝒰(𝝈†) � 𝒰(𝝈)†.

Proof. We exploit the following sequence of label-preserving order-isomorphisms:

𝒞
+(𝒰(𝝈†)) � ℰ

+ (𝝈†)
= ℰ

+ ((!𝝈) [dig ⊢ id])
� ℰ

+ (!𝝈)
� Fam(ℰ+,≠∅ (𝝈))
� Fam(𝒞+,≠∅ (𝒰(𝝈)))

using first Lemma E.9, then via a direct verification as in Proposition D.32, then applying (6),

followed by Lemma E.21, and then Lemma E.9 – with the obvious verification that it specializes to

an iso between non-empty configurations and histories. It is a direct verification that this sequence

of isomorphisms preserves display maps.

Consequently, it follows that𝒰(𝝈†) � 𝒰(𝝈)† from Proposition C.16. □

E.5 The Unfolding Preserves Primitives
E.5.1 Variable and Evaluation. Follows from Lemma E.20.

E.5.2 Queries, Conditional, Constants. It is a simple calculation to compute the unfolding for these

linear Petri strategies and check we obtain the desired finite strategy.

E.5.3 Fixpoint. We prove the following proposition:

Proposition E.23. For any well-opened arena 𝑂 ,𝒰(Y𝑂 ) � Y𝑂 .

Proof. Using Lemmas C.5 and E.9, the required isomorphism boils down to an order-iso

ℰ
+ (Y𝑂 ) � 𝒞+(Y𝑂 )

preserving display maps. We build it using Lemmas D.35 and C.22. It is clearly injective so we

simply have to show it is surjective. Consider a +-covered configuration 𝑥 of Y𝑂 represented as a

tuple ⟨𝐽 , 𝑧, (𝑦s)s∈ 𝐽 ⟩. We can construct a set of events realising 𝑥 as follows:

• For each (m, s, 𝑑)− ∈ 𝑧 we include the event 𝓇⊢mL(s, d)M, and ℓ⊢𝓇⊸L{(ℓ
!
♦ :: s, d)@m− }M

• For each (m, s, d)+ ∈ 𝑧, we include the events ℓ⊢𝓇⊸L(ℓ
!
♦ :: s, d)M and 𝓇⊢mL{(ℓ

!
♦ :: s, d)@m+ }M

• For each (m, s0, d)− ∈ 𝑦e·s, we include the events 𝓇⊢𝓇⊸mL(e :: (s) :: s0, d)M and 𝓇⊢𝓇⊸mL{((e · s) ::
s0, d)@m− }M.
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• For each (m, s0, d)+ ∈ 𝑦e·s, we include the events 𝓇⊢ℓ⊸mL((e · s) :: s0, d)M and 𝓇⊢ℓ⊸mL{((e · s) ::
s0, d)@m+ }M,

and it is easy to see that this set of transitions is reachable by a valid run of Y𝑂 . □

E.5.4 Contraction. The reasoning follows a similar and simpler route as for the fixpoint operator.

E.5.5 Let bindings. We first characterise the configurations of the strategy interpreting lets.

Lemma E.24. The +-covered configurations of let are order-isomorphic to tuples ⟨𝐼 ⊆ E, 𝑥 ∈
𝒞(X), 𝑦,𝑦′ ∈ 𝒞(Y)⟩ such that:
(1) 𝑦 ≠ ∅ iff 𝑥 ≠ ∅
(2) 𝑥 is maximal iff 𝑦′ ≠ ∅
(3) if 𝑦′ ≠ ∅, then 𝑦 = 𝑦′.
(4) if 𝑦′ = ∅, then 𝐼 = ∅.
The isomorphism sends such tuples to ((⊎e∈𝐼 (e :: 𝑥)) ⊸ 𝑦′) ⊗ 𝑥 ⊢ 𝑦.

Lemma E.25. We have𝒰(let) � let.

Proof. As before we rely on Lemmas C.5 and E.9 to build the isomorphism. Lemma D.37 together

with Lemma E.24 induce an injective map fromℰ
+ (let) into 𝒞+(let). We show it is surjective by

constructing a set of eventse of let from 𝑥 ∈ 𝒞+(let) corresponding to a ⟨𝐼 , 𝑥,𝑦,𝑦′⟩.
• If 𝑦 ≠ ∅, then we have events 𝓇⊢Q

−L( [], •)M and ℓ⊢𝓇⊗QL{([], •)@1M
• If 𝑥 has an event ( [], d) maximal in X, then we have the two events ℓ⊢𝓇⊗A

−L( [], d)M, and
ℓ⊢ℓ⊗𝓇⊸Q

+L{([], •)@2}M
• For every e ∈ 𝐼 , we have three events written ℓ⊢ℓ⊗ℓ⊸Q−L( [e], •)M, sL{([], •)@4, ( [], d)@3}M, and
ℓ⊢ℓ⊗ℓ⊸A

+L{([e], d)@5}M where d is the value of the maximal event in 𝑥 .

• If 𝑦′ has a maximal ( [], d), we have events ℓ⊢ℓ⊗𝓇⊸A−L( [], d)M and 𝓇⊢A+L{([], d]@6}M. □

E.5.6 Newref and newsem. We now show that the unfolding of the net for newref is indeed the

strategy newref. Our first step is to show that the consistent memory traces described in Section

D.3.6 correspond to +-covered configurations of newref :

Lemma E.26. There is an order-isomorphism between 𝒞+(precell) and the set of consistent memory
traces ordered by prefix.

Proof. Direct from the definition of precell. □

We now show the main result:

Proposition E.27. 𝒰(newref) � newref.

Proof. By Lemmas C.5 and E.9, this amounts to building an order-iso:

ℰ
+ (newref) � 𝒞+(newref).

From left-to-right. We focus on non-empty histories and configurations and use characterisation

of 𝒞
+(newref) from Proposition C.26.

Consider a non-empty history y ∈ ℰ+ (newref). It is reached by a run 𝜌 : ∅ 𝑠−→→ 𝛼 . By Lemma

D.39, we know that there Tr(𝜌) is a consistent memory trace, and that |𝑠 | must have the shape

((⊎e∈𝐼 (e :: 𝑥e)) ⊸ 𝑤) ⊢ 𝑧. Since y is +-covered, we observe that 𝑤 = 𝑧. We can thus map y
to ⟨Tr(𝜌),𝑤⟩ ∈ 𝒞+(newref) using the isomorphism of Proposition C.26. Note that by the side

conditions of Lemma D.39, the family (𝑥e)e∈𝐼 is entirely determined by Tr(𝜌): 𝐼 matches the length

of Tr(𝜌) and each 𝑥e is a two-event configuration corresponding to the memory operation Tr(𝜌)e.
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The last check it to show that this does not depend on the particular run 𝜌 chosen. Clearly 𝑥 only

depends on |𝑠 |. For Tr(𝜌), we observe that it is actually directly recoverable from the set of transitions

y. First, we define the set of memory operations 𝑂y to contain (𝑤, e, d) if w{([e], d)@3, _} ∈ y and

(𝑟, e, d) if r{([e], _)@5, (_, d)@2} ∈ y. Then, the causal order on y induces a linear order on 𝑂y due

to the threading of exponential signatures. The resulting trace is exactly Tr(𝜌).
From right-to-left. Consider now a ⟨𝜌, 𝑥⟩ ∈ 𝒞+,≠∅ (newref) where 𝜌 is a consistent memory trace.

We can build a history y containing the following instantiated transitions:

• The initial negative event on 𝓇⊢QL( [], •)M.
• The positive event ℓ⊢ℓ⊸QL{([], •)@1}M.
• If 𝑥 contains a move (A, [], 𝑑), then the events ℓ⊢𝓇⊸A

−L( [], d)M and 𝓇⊢A+L{([], d)@7}M.
• If 𝜌𝑖 = (𝑤, e, d) then the events ℓ⊢ℓ⊸𝓌VQ

−L( [e], d)M, wL{([e], d)@3, {[e′], d′}@2}M where: e′ is
the exponential token of 𝜌𝑖−1 (or [] if 𝑖 = 0), and d′ the value observed by 𝜌𝑖−1 (or zero if

𝑖 = 0); and ℓ⊢ℓ⊸𝓌VA
+L{([e],✓)@4}M.

• And similarly if 𝜌𝑖 = (𝑟, e, d).
From this description, it is easy to build a valid run reaching y establishing that y ∈ ℰ(newref).

An easy verification shows that all maximal events in y are positive. □
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