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The Concurrent Games Abstract Machine
Multi-Token Geometry of Interaction and its Causal Unfolding

SIMON CASTELLAN, Inria,Univ. de Rennes, CNRS, IRISA, France
PIERRE CLAIRAMBAULT, Univ Lyon, EnsL, UCBL, CNRS, LIP, LYON, France

We introduce the concurrent games abstract machine: a multi-token machine for Idealized Parallel Algol (IPA),
a higher-order concurrent programming language with shared state and semaphores. Our abstract machine

takes the shape of a compositional interpretation of terms as Petri structures, certain coloured Petri nets. For

the purely functional fragment, our machine is conceptually close to Geometry of Interaction token machines,

originating from Linear Logic and presenting higher-order computation as the low-level process of a token

walking through a graph (a proof net) representing the term. We pair here these ideas with folklore ideas on

the representation of first-order imperative concurrent programs as coloured Petri nets.

To prove our machine correct, we follow game semantics and represent types as certain games specifying

dependencies and conflict between computational events. We define Petri strategies as those Petri structures
obeying the rules of the game. In turn, we show how Petri strategies unfold to concurrent strategies in the

sense of concurrent games on event structures. This not only entails correctness and adequacy of our machine,

but also lets us generate operationally a causal description of the behaviour of programs at higher-order types.

Additional Key Words and Phrases: Geometry of Interaction, Game Semantics, Shared Memory Concurrency,

Coloured Petri Nets, Higher-Order Computation

1 INTRODUCTION
Interactive semantics, and in particular Game Semantics [Abramsky et al. 2000; Hyland and Ong

2000] or Geometry of Interaction (GoI) [Danos et al. 1996; Girard 1989], aim at describing formally the

execution of programs as an interactive process. They are particularly relevant in the presence of

programming features that impact the geometry of the control flow (e.g. concurrency, higher-order,
exceptions, etc), which pose a significant obstacle to modular reasoning. For example, Geometry of

Interaction has long been proposed as a basis for the compilation of functional programs [Ghica

2007; Mackie 1995], while structures from game semantics are behind recent work on compositional

certified compilation [Koenig and Shao 2020; Stewart et al. 2015; Xia et al. 2020].

GoI can be presented as an abstract machine: these GoI token machines seem to originate in

[Danos and Regnier 1996] (the Interaction Abstract Machine (IAM), for the 𝜆-calculus) and [Mackie

1995] (for PCF). Token machines usually present a program as a graph (a proof net) and its execution
as the walk of a token (standing for the control flow) through the graph, as determined by local rules.

Token machines were extended in multiple ways: tomulti-tokenmachines, for Linear Logic [Laurent

2001] (without synchronization) or for functional programs [Dal Lago et al. 2014, 2015] (including

in call-by-value) or interaction nets [Dal Lago et al. 2014]. They were redeveloped in a coalgebraic

setting supporting a range of algebraic effects (e.g. nondeterminism, probability, exception, global

states, interactive I/O, etc.) [Hoshino et al. 2014; Muroya et al. 2016]; and for quantitative effects up

to quantum primitives [Dal Lago et al. 2017; Hasuo and Hoshino 2017]. Despite this remarkable

breadth, many combinations of effects ubiquitous in realistic programming languages are missing,

including shared memory concurrency (a notable exception is Ghica’s geometry of synthesis [Ghica
2007], however for a language with a type discipline ensuring that state causes no race). This is

not due to an inherent restriction of GoI; but the usual correctness arguments (typically via cut
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elimination or realizability) may not extend well. This leaves open:

How to build a GoI token machine for a concurrent higher-order language with shared memory? (1)

In contrast, game semantics, after the initial models of PCF [Abramsky et al. 2000; Hyland and

Ong 2000], offered a wealth of fully abstract models for a wide range of programming features

among which local state [Abramsky and McCusker 1996], control operators [Laird 1997], exceptions

[Laird 2001], higher-order state [Abramsky et al. 1998] and many others, including in particular

higher-order shared memory concurrency [Ghica and Murawski 2008] – up to realistic languages

[Murawski and Tzevelekos 2021]. It seems fair to say that game semantics has historically been

more versatile than GoI. On the other hand, game semantics lack the direct operational flavour of

GoI. Though game semantics is effective and can be computed and manipulated from the source

code, the connection between a program and its semantics is quite remote and obfuscated by

the many-layered definition of the interpretation of a program into a denotational model; this is

an obstacle to it being used as formal basis in software tools, for validating optimizations or in

certified compilation. This led researchers to investigate more operational, direct descriptions of

the game semantics [Ghica and Tzevelekos 2012; Jaber 2015; Levy and Staton 2014] (though really,

connections between game and operational semantics date back to [Danos et al. 1996]), in essence

generating strategies by purely operational means. But such connections lack in generality; in

particular they only exist for a few sequential languages. So a second motivating open question is:

How best to link game semantics and operational semantics? (2)

In particular, can we construct such an operational-denotational connection for a language with

higher-order shared memory concurrency, say Idealized Parallel Algol (IPA)? Can we relate not

merely to the interleaving model of [Ghica and Murawski 2008] but to the interpretation in the

truly concurrent framework of concurrent games on event structures [Castellan and Clairambault

2020; Castellan et al. 2017, 2019], yielding an operational handle on causal reasoning?

Contributions. In this paper, we attack birds (1) and (2) with one stone. We give a multi-token

abstract machine, called the concurrent games abstract machine, for IPA. More precisely, we give an

interpretation of IPA transforming a program𝑀 into a coloured Petri net regarded as the concurrent
games abstract machine loaded with𝑀 . For PCF, the obtained Petri net is similar to the usual token

machine [Mackie 1995]; but our machine goes way beyond PCF.
Our correctness proof departs from usual GoI methods. We show that the multi-token machine

for𝑀 unfolds to the event structure serving as interpretation of𝑀 in the truly concurrent games

interpretation of [Castellan and Clairambault 2020; Castellan et al. 2019]; in the sense of the well-

known unfolding of Petri nets to event structures [Hayman and Winskel 2008b; Nielsen et al. 1981].

This is proved compositionally, by defining an unfolding that preserves all operations used in the

interpretation. Besides answering (2) for IPA, this also provides an answer to (1) as the correctness

of our token machine then follows from adequacy of the concurrent games model of IPA.
In fact, we regard this as bringing a contribution to a third question:

How can we best state correctness of GoI on higher-order types? (3)

Indeed, for many token machines, correctness is stated for programs of ground type only, which

is not ideal if GoI is to be thought of as a framework for compositional reasoning on programs.

Another approach is to link GoI with game semantics: Baillot proved [Baillot 1999] that GoI generates
the corresponding AJM-style strategy for IMELL. Ghica and Smith also prove the correctness of

Geometry of Synthesis by linking it to (interleaving) game semantics [Ghica and Smith 2010]. Our

result generalizes both, showing that our abstract machine generates the same causal structure as
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Γ ⊢ skip : U Γ ⊢ tt : B Γ ⊢ ff : B Γ ⊢ 𝑛 : N Γ, 𝑥 : 𝐴,Δ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴,Δ ⊢ 𝑀 : 𝑂

Γ,Δ ⊢ 𝜆𝑥𝐴 . 𝑀 : 𝐴 → 𝑂

Γ ⊢ 𝑀 : 𝐴 → 𝑂 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝑂

Γ ⊢ 𝑀 : 𝑂 → 𝑂

Γ ⊢ Y𝑀 : 𝑂

Γ ⊢ 𝑀 : B Γ ⊢ 𝑁1 : X Γ ⊢ 𝑁2 : X

Γ ⊢ if𝑀 𝑁1 𝑁2 : X

Γ ⊢ 𝑀 : X Γ ⊢ 𝑁 : Y

Γ ⊢ f (𝑀, 𝑁 ) : Z
(f : X × Y⇀ Z)

Γ, 𝑥 : X,Δ ⊢ 𝑀 : Y Γ,Δ ⊢ 𝑁 : X

Γ,Δ ⊢ let 𝑥 = 𝑁 in𝑀 : Y

Γ, 𝑟 : V,Δ ⊢ 𝑀 : X

Γ,Δ ⊢ newref 𝑟 in𝑀 : X

Γ ⊢ 𝑀 : V Γ ⊢ 𝑁 : N

Γ ⊢ 𝑀:=𝑁 : U

Γ ⊢ 𝑀 : V

Γ ⊢ !𝑀 : N

Γ, 𝑠 : S,Δ ⊢ 𝑀 : X

Γ,Δ ⊢ newsem 𝑠 in𝑀 : X

Γ ⊢ 𝑀 : S

Γ ⊢ grab𝑀 : U

Γ ⊢ 𝑁 : S

Γ ⊢ release𝑁 : U

Fig. 1. Typing rules for IPA

described by concurrent strategies (as related work, also note a recent GoI-like evaluation machine

generating simple strategies for linear recursion schemes [Clairambault and Murawski 2019]).

As a final contribution, our abstract machine is fully implemented and available here.

Other related work. Though Petri nets are widely regarded as a model for concurrent programs,

the literature is sparse on denotational interpretations of programs as Petri nets – a significant

exception is [Hayman and Winskel 2008a], which interprets a simple (first-order) concurrent

language. At the heart of such an interpretation lies a composition operation for Petri nets. In this

direction note also the open Petri nets of [Baez and Master 2020], and the compositional unfolding of

coloured Petri nets of [Chatain and Fabre 2010]. In these works, Petri nets synchronize on locations,

whereas our nets synchronize on transitions instead.

Outline. In Section 2, we introduce our variant of IPA and set up the structure we use for its

interpretation. In Section 3, we set up the concurrent games abstract machine as an interpretation of

terms of IPA as Petri structures, certain coloured Petri nets. In Section 4, we briefly recall the target of
the unfolding, (a symmetry-free version of) the concurrent game semantics of IPA in [Castellan and

Clairambault 2020]. In Section 5, we define Petri strategies as those Petri structures that respect the
game, and provide the unfolding. In Section 6, we briefly describe the implementation accompanying

the paper and comment on a few optimizations. Finally, in Section 7 we conclude.

2 IPA AND ITS COMPOSITIONAL INTERPRETATIONS
2.1 The language IPA

IPA is a higher-order call-by-name concurrent language with shared memory and semaphores,

serving as paradigmatic language for these features in the game semantics literature [Ghica and

Murawski 2008]. Our variant is more expressive in some ways (in particular, it has a let construct);

but it also has the restriction that variable and semaphore types should not appear at the right

hand side of an arrow. This simplifies the exposition without significantly harming expressiveness.

2.1.1 Types and terms. We first describe the types of IPA, generated by

𝐴, 𝐵,𝐶 ::= 𝑂 | V | S 𝑂 ::= U | B | N | 𝐴 → 𝑂

where types generated by 𝑂 are called well-opened. We have U a unit type, B and N respectively

types for booleans and natural numbers, a type V for integer references, and S for semaphores. The
split into standard types and well-opened types implements that V and S should not appear on the

right of an arrow. We refer to U,B and N as ground types, and use X,Y,Z to range over those.

https://ipatopetrinets.github.io/
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We define terms directly via typing rules – throughout this paper, we only consider well-typed

terms. Contexts are lists of typed variables 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , where variables come from a fixed

countable set Var. Typing judgments have the form Γ ⊢ 𝑀 : 𝐴, with Γ a context and 𝐴 a type.

The construction f (𝑀, 𝑁 ) applies to any computable partial function f : X × Y ⇀ Z (abusing
notations to treat the ground types X,Y,Z as the underlying sets), and its two operands are

intended to be evaluated in parallel. This covers many usual primitives: for instance, if Γ ⊢ 𝑀, 𝑁 : U,
we define 𝑀 ∥ 𝑁 = ∥(𝑀, 𝑁 ), with ∥ : U × U → U the trivial function – in fact, we shall use

implicitly ∥ : U × X→ X, so that parallel composition propagates a value. The usual predecessor,

successor, zero test primitives of PCF can be obtained similarly as particular cases of this operation.

Conditionals eliminate only to ground type, but as usual in call-by-name, a more general conditional

can be obtained as syntactic sugar. We refer to constants of ground type as values; we use 𝑣 to
range over values of any type, and 𝑛,𝑏 or 𝑐 to range over values of respective types N,B or U.

2.1.2 Examples. We include a few examples of simple IPA programs. First:

⊢ coin = newref 𝑟 in (𝑟 := 1 ∥ iszero !𝑟 ) : B

is a non-deterministic boolean – by convention newref automatically initializes 𝑟 to 0, so that coin
directly sets up a race. Though we have no primitive for sequential composition, for Γ ⊢ 𝑀 : X and

Γ ⊢ 𝑁 : Y, we define𝑀 ; 𝑁 as let 𝑥 = 𝑀 in 𝑁 : Y. Another interesting example is

𝑥 : U, 𝑦 : X ⊢ newsem 𝑠 in grab 𝑠; (𝑥 ; release 𝑠 ∥ grab 𝑠; 𝑦) : X

which behaves like sequential composition, using a semaphore for synchronization.

As a final example, IPA allows dynamic creation of references and semaphores: for instance,

⊢ (𝜆𝐹 . 𝐹 (𝜆𝑔N→N𝑛N. 𝑔 1); 𝐹 (𝜆𝑔N→N𝑛N . 𝑛)) (𝜆𝑓 (N→N)→N→N. newref 𝑟 in 𝑓 (𝜆𝑥 . 𝑟 := 𝑥 ; 0) !𝑟 ) : N

returns 0, because execution causes the initialization of two independent references. An unbounded

number of references can arise in this way if this happens within recursion.

We hope these show that though IPA is a toy language, it is a semantically highly non-trivial one

which poses realistic challenges. We chose IPA because of its historical importance in the game

semantics community, and because there already is a detailed concurrent games model ready for

this language [Castellan and Clairambault 2020]. But unlike in [Ghica and Murawski 2008], we

made sure to include a let construct to show that the concurrent games abstract machine does

handle an explicit control of the evaluation order more typical of call-by-value languages.

2.1.3 Operational semantics. The reference semantics for IPA is a small-step interleaving opera-

tional semantics following closely that of [Ghica and Murawski 2008].

We fix a countable set L of memory locations. A store is a partial map 𝑠 : L ⇀ N with finite

domain where N stands, overloading notations, for the set of natural numbers. Configurations
of the operational semantics are tuples ⟨𝑀, 𝑠⟩ where 𝑠 is a store with dom(𝑠) = {ℓ1, . . . , ℓ𝑛} and
Σ ⊢ 𝑀 : 𝐴 with Σ = ℓ1 : V, . . . , ℓ𝑖 : V, ℓ𝑖+1 : S, . . . , ℓ𝑛 : S. Reduction rules have the form

⟨𝑀, 𝑠⟩ { ⟨𝑀 ′, 𝑠 ′⟩

where dom(𝑠) = dom(𝑠 ′); we write{∗
for the reflexive transitive closure. If ⊢ 𝑀 : X, we write

𝑀 ⇓ if ⟨𝑀, ∅⟩ {∗ ⟨𝑣, ∅⟩ for some value 𝑣 . Then we say that𝑀 converges, else it diverges.
The detailed reduction rules are essentially as in [Ghica and Murawski 2008]. We postpone them

to Appendix A, as they will be referred to only indirectly in this paper (via Theorem 4.12).
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2.2 IPA-structures
We describe an abstract structure for the interpretation of IPA. The goal is not a categorical semantics

with a general soundness theorem, but merely to structure the compositional interpretation. An

IPA-structure is a category with just enough structure so that the interpretation may be defined

following the standard lines of the semantics of functional languages into an adequately equipped

model of Intuitionistic Linear Logic (say, a Seely category [Melliès 2009]). We call a precategory a

structure with the data of a category, an associative composition but no identity laws.

Definition 2.1. An IPA-structure is a precategory C, with a set C• of well-opened objects – we

use 𝐴, 𝐵,𝐶 to range over the set C0 of objects and 𝑂 to range over C• – and equipped with:

• Constructions.We have U,B,N ∈ C•, V, S ∈ C0, and constructions:

tensor: for any 𝐴, 𝐵 ∈ C0, there is 𝐴 ⊗ 𝐵 ∈ C0,

product: for any finite family (𝐴𝑥 )𝑥 ∈𝑉 with 𝑉 ⊆𝑓 Var, there is &𝑥 ∈𝑉𝐴𝑥 ∈ C0,

linear arrow: for any 𝐴 ∈ C0 and 𝑂 ∈ C•, there is 𝐴 ⊸ 𝑂 ∈ C•,
exponential: for any 𝐴 ∈ C0, there is !𝐴 ∈ C0,

where we write &∅ = ⊤ for the product of the empty family.

• Operations. We have the following three constructions on morphisms:

tensor: ⊗ : C(𝐴1, 𝐵1) × C(𝐴2, 𝐵2) → C(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2)
currying: ΛΓ,Δ

𝑥 :𝐴,𝑂
: C(!(&[Γ, 𝑥 : 𝐴,Δ]),𝑂) → C(!(&[Γ,Δ]), !𝐴 ⊸ 𝑂)

promotion: (−)† : C(!Γ,𝑂) → C(!Γ, !𝑂)
where, if Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 where 𝐴𝑖 ∈ C0 for all 𝑖 , we write [Γ] for (𝐴𝑥 )𝑥 ∈{𝑥1,...,𝑥𝑛 };

• Primitives. We have the basic morphisms listed in Figure 3, where ⊗0𝐴 = 1, ⊗1𝐴 = 𝐴,

⊗𝑛+2𝐴 = 𝐴 ⊗ (⊗𝑛+1𝐴), and writing w𝐴 ∈ C(!𝐴, 1) for c0
𝐴
and c𝐴 ∈ C(!𝐴, !𝐴 ⊗ !𝐴) for c2

𝐴
.

We shall soon define an interpretation of IPA in any IPA-structure – again, requiring no equation.

Besides structuring the interpretation, it also provides a clean way to relate interpretations:

Definition 2.2. Consider C and D two IPA-structures, and 𝐹 : C → D a functor.

Then, 𝐹 is a strict IPA-functor iff it preserves all structure on the nose.

2.3 Interpretation of IPA
The exact definition of the interpretation follows the standard lines of the interpretation of call-by-

name languages into models of intuitionistic linear logic. Fix C an IPA-structure.
We interpret the types of IPA as objects of C, with JUK = U, JBK = B, JNK = N, JVK = V, JSK = S,

and finally, J𝐴 → 𝐵K = !J𝐴K ⊸ J𝐵K. Note that well-opened types are mapped to well-opened

objects. Contexts are also interpreted as objects of C, with J𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛K =
˘

𝑥𝑖 ∈{𝑥1,...,𝑥𝑛 }J𝐴𝑖K.
To any typed term Γ ⊢ 𝑀 : 𝐴 we associate as interpretation a morphism JΓ ⊢ 𝑀 : 𝐴K ∈ C(!JΓK, J𝐴K)
sometimes shortened to J𝑀K, following the clauses of Figure 2. Finally, we have:

Lemma 2.3. Consider C,D two IPA-structures, and 𝐹 : C → D an IPA-functor. Then,

(1) for all type 𝐴 and context Γ, 𝐹 (J𝐴KC) = J𝐴KD and 𝐹 (JΓKC) = JΓKD ,
(2) for all term Γ ⊢ 𝑀 : 𝐴, we have 𝐹 (J𝑀KC) = J𝑀KD .

This follows by induction on the definition of the interpretation, applying at each step the preser-

vation property of 𝐹 – so strict IPA-functors list the proof obligations to relate two interpretations.

3 PETRI STRUCTURES FOR IPA

We start by describing the first and central IPA-structure of this paper, that of Petri structures.
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JΓ ⊢ skip : UK = skip ◦wΓ

JΓ ⊢ tt : BK = tt ◦wΓ

JΓ ⊢ ff : BK = ff ◦wΓ

JΓ, 𝑥 : 𝐴,Δ ⊢ 𝑥 : 𝐴K = varΓ,Δ
𝑥 :𝐴

JΓ,Δ ⊢ 𝜆𝑥𝐴 . 𝑀 : 𝐴 → 𝑂K = ΛΓ,Δ
𝑥 :𝐴,𝑂

(J𝑀K)
JΓ ⊢ 𝑀 𝑁 : 𝑂K = ev!𝐴,𝑂 ◦ (J𝑀K ⊗ J𝑁 K†) ◦ cΓ
JΓ ⊢ Y𝑀 : 𝑂K = Y𝑂 ◦ J𝑀K†

JΓ ⊢ if𝑀 𝑁1 𝑁2 : XK = ifX ◦ (J𝑀K ⊗ (J𝑁1K ⊗ J𝑁2K)) ◦ c3Γ
JΓ ⊢ f (𝑀, 𝑁 ) : ZK = op(f)X,YZ ◦ (J𝑀K ⊗ J𝑁 K) ◦ cΓ

JΓ,Δ ⊢ let 𝑥 = 𝑁 in𝑀 : YK = letX,Y ◦ (ΛΓ,Δ
X,Y (J𝑀K) ⊗ J𝑁 K) ◦ cΓ,Δ

JΓ,Δ ⊢ newref 𝑥 in𝑀 : XK = newrefX ◦ ΛΓ,Δ
V,X (J𝑀K)

JΓ ⊢ 𝑀:=𝑁 : UK = assign ◦ (J𝑀K ⊗ J𝑁 K) ◦ cΓ
JΓ ⊢!𝑀 : NK = deref ◦ J𝑀K

JΓ,Δ ⊢ newsem𝑥 in𝑀 : XK = newsemX ◦ ΛΓ,Δ
V,X (J𝑀K)

JΓ ⊢ grab𝑀 : UK = grab ◦ J𝑀K
JΓ ⊢ release𝑁 : UK = release ◦ J𝑁 K

Fig. 2. Interpretation of IPA in an IPA-structure

varΓ,Δ
𝑥 :𝐴

∈ C(!(&[Γ, 𝑥 : 𝐴,Δ]), 𝐴)
ev𝐴,𝑂 ∈ C((𝐴 ⊸ 𝑂) ⊗ 𝐴,𝑂)

c𝑛Γ ∈ C(!Γ, ⊗𝑛 (!Γ))
skip ∈ C(1,U)

tt ∈ C(1,B)
ff ∈ C(1,B)
n ∈ C(1,N)

Y𝑂 ∈ C(!(!𝑂 ⊸ 𝑂),𝑂)
ifX ∈ C(B ⊗ (X ⊗ X),X)

op(f)X,YZ ∈ C(X ⊗ Y,Z)
letX,Y ∈ C((!X ⊸ Y) ⊗ X,Y)

newrefX ∈ C(!V ⊸ X,X)
newsemX ∈ C(!S ⊸ X,X)

assign ∈ C(V ⊗ N,U)
deref ∈ C(V,N)
grab ∈ C(S,U)

release ∈ C(S,U)

Fig. 3. Primitives of IPA-structures

3.1 Definition and Examples
Consider fixed sets Tok andM, respectively called tokens (which will serve as colours), and addresses
(which will label certain transitions). Each m ∈ M has a polarity pol(m) ∈ {−, +}, specifying
whether it is a label for actions by the program (+) or the environment (−). We shall not give just

yet the definition of these data, which will not be necessary until later on.

We use ⊎ to denote the usual set-theoretic union, when it is known to be disjoint.

Definition 3.1. Consider𝑀 ⊆ M a finite subset of addresses.

A Petri structure on𝑀 is 𝝈 = ⟨L,T = T + ⊎ T 0 ⊎ T −, 𝜕, pre, post, 𝛿⟩ where:
L is a finite set of locations,
T is a finite set of transitions sorted by polarity +, 0 or −,
𝜕 is a labelling function T + ⊎ T − → 𝑀 such that 𝑡 ∈ T pol(𝜕 (𝑡 ))

for all 𝑡 ∈ T + ⊎ T −
,

pre is a function T → P(L) of pre-conditions,
post is a function T → P(L) of post-conditions,

such that pre(𝑡−) = ∅, post(𝑡+) = ∅ for all transitions with the indicated polarity; and 𝛿 assigns to

any 𝑡 ∈ T a partial function, the transition function, typed according to its polarity:

𝛿 ⟨𝑡0⟩ : cond(pre(𝑡)) ⇀ cond(post(𝑡)) ,
𝛿 ⟨𝑡−⟩ : Tok ⇀ cond(post(𝑡)) ,
𝛿 ⟨𝑡+⟩ : cond(pre(𝑡)) ⇀ Tok .

where cond(𝐿) = Tok𝐿 is the set of conditions with support 𝐿 – we write cond for all conditions.

In the terminology of coloured Petri nets, the set of colours is Tok, and is independent of the

location. Locations are internal buffers that may contain one or several tokens. Neutral transitions
correspond to internal computation: firing 𝑡0 takes one token from each location of pre(𝑡), puts
one token in each location of post(𝑡), acting on colours as prescribed by 𝛿 ⟨𝑡⟩. Negative and Positive
transitions, also called visible transitions, interact with the outside world. We shall see later on

the rules that govern this interaction. For now we focus on closed Petri structures, defined as Petri

structures on the set𝑀 = {Q−, A+} – here Q− initiates computation, while A+ terminates it.
For now we shall content ourselves with the informal description of the token game given above,

and build up intuition by considering examples of closed Petri structures.
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Q−

1

A−

Fig. 4

Q−

1 2

𝑎 𝑏

3 4

𝑐 𝑑

5 6

A+

𝛿 ⟨Q⟩ (•) = {•@1, •@2}
𝛿 ⟨𝑎⟩ ({•@1}) = {1@3}
𝛿 ⟨𝑏⟩ ({•@2}) = {1@4}
𝛿 ⟨𝑐⟩ ({1@3}) = {1@5}
𝛿 ⟨𝑑⟩ ({1@4}) = {1@6}
𝛿 ⟨A⟩ ({𝑛@5,𝑚@6}) = 𝑛 +𝑚

Fig. 5. Closed Petri structure for 1 + 1 : N

Q−

1 3

w

4

r

5

2

A+

𝛿 ⟨Q⟩ (•) = {1@1, 0@2, •@3}
𝛿 ⟨w⟩({𝑛@1, 𝑝@2}) = {✓@4

, 𝑛@2}
𝛿 ⟨r⟩ ({𝑛@2, •@3}) = {𝑛@2, 𝑛@5}
𝛿 ⟨A⟩ ({✓@4

, 𝑛@5}) = iszero(𝑛)

Fig. 6. Closed Petri structure for coin : B

3.1.1 Closed Petri structures. We temporarily fix Tok = {•} ⊎N – • is a token with no value, while

natural numbers stand for the corresponding value (we shall later settle on a more expressive Tok).
We draw a Petri structure 𝝈 following standard conventions from Petri nets: locations are circles,

while transitions are boxes. The graph drawn carries the information of L, T , pre and post, while
𝛿 is given separately as a transition table. Whenever unambiguous, we use as name of visible

transitions their label via 𝜕. If 𝐿 = {𝑙1, . . . , 𝑙𝑛} ⊆ L, a condition (t𝑖 )𝑙𝑖 ∈𝐿 ∈ cond(𝐿) is written
{t@𝑙1

1
, . . . , t@𝑙𝑛

𝑛 } where each 𝑙𝑖 ∈ 𝐿 appears exactly once. An individual t@𝑙
, where t ∈ Tok and 𝑙 ∈ L,

is called a token-in-location, or tokil for short – we write TokIL(𝝈) for the set of tokils.
We start with the closed Petri structure for the constant 1, in Figure 4. Upon being triggered by

Q−, the net immediately prepares value 1 in location 1 by 𝛿 ⟨Q−⟩(•) = {1@1}. This enables transition
A+, which outputs the value via 𝛿 ⟨A+⟩({𝑛@1}) = 𝑛. Figure 5 presents a parallel evaluation of 1 + 1.

When triggered the net throws two tokils •@1
and •@2

corresponding to evaluation requests for the

two constants. Both tokils are forwarded to an independent copy of the structure of Figure 4. Upon

receiving the two values in locations 5 and 6, the last transition fires and outputs the sum 1 + 1. The

example – or its closed variant as obtained by the interpretation – may be ran in the implementation

here. It illustrates how Petri structures handle basic calling and returning mechanisms, and displays

parallel computation. Those simple examples are not particularly original, and follow the usual

folklore lines along which coloured Petri nets may be used to represent programs.

Another well-known idea is that Petri nets can represent shared state: Figure 6 shows the closed

Petri structure for ⊢ coin : B as defined in Section 2.1.2. Upon initialization, the net throws three

tokens: the tokil 0
@2

initializes the variable to value 0; the tokil 1
@1

is a write request for the value

1; and •@3
is a read request. There is a race between the read and write requests: if r wins, the value

in location 5 ends up being 0, while if w then r reads value 1 instead. The final transition A+ waits
for the write acknowledgment and the result of the read to return the value read. The example – or

its close variant as obtained by the interpretation – may be ran in the implementation here.

3.1.2 Open Petri structures. Petri structures also handle open or higher-order programs.

For open programs interacting with their execution environment, Petri structures will have

a wider range of labels for visible transitions, reflecting the possible avenues of interaction. For

instance, Petri structures corresponding to programs typed with 𝑔 : U→ U, 𝑥 : U ⊢ U will use

M = {ℓ⊢𝒾𝑔& ℓ⊸Q−, ℓ⊢𝒾
𝑔
&
ℓ⊸A

+, ℓ⊢𝒾
𝑔
&
𝓇⊸Q

+, ℓ⊢𝒾
𝑔
&
𝓇⊸A

−, ℓ⊢𝒾
𝑥
&
Q+, ℓ⊢𝒾

𝑥
&
A−, 𝓇⊢Q

−, 𝓇⊢A
+}

where the injections ℓ⊢ and 𝓇⊢ indicate the two sides of ⊢; 𝒾𝑥
&
and 𝒾

𝑔
&
point to a variable name; ℓ⊸

and 𝓇⊸ point to either side of an arrow →; and Q and A stand for “Question” (call) or “Answer”

(return). Without Q and A, each of the addresses above corresponds to an occurrence of a base type

in 𝑔 : U→ U, 𝑥 : U ⊢ U, and then each base type occurrence admits a call and a return.
More generally, we shall use in this paper the following addresses:

https://ipatopetrinets.github.io/#0
https://ipatopetrinets.github.io/#1
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𝓇⊢Q

1

ℓ⊢𝒾
𝑔
&
𝓇⊸Q

ℓ⊢𝒾
𝑔
&
ℓ⊸Q

2

ℓ⊢𝒾
𝑥
&
Q

ℓ⊢𝒾
𝑥
&
A

3

ℓ⊢𝒾
𝑔
&
ℓ⊸A

ℓ⊢𝒾
𝑔
&
𝓇⊸A

4

𝓇⊢A

𝛿 ⟨𝓇⊢Q⟩ (•) = {•@1}
𝛿 ⟨ℓ⊢𝒾𝑔& ℓ⊸Q⟩(•) = {•@2}
𝛿 ⟨ℓ⊢𝒾𝑥& A⟩ (✓) = {✓@3}
𝛿 ⟨ℓ⊢𝒾𝑔& 𝓇⊸A⟩(✓) = {✓@4}

𝛿 ⟨ℓ⊢𝒾𝑔& 𝓇⊸Q⟩({•@1}) = •
𝛿 ⟨ℓ⊢𝒾𝑥& Q⟩ ({•@2}) = •
𝛿 ⟨ℓ⊢𝒾𝑔& ℓ⊸A⟩({✓@3}) = ✓
𝛿 ⟨𝓇⊢A⟩ ({✓@4}) = ✓

Fig. 7. An open Petri structure for 𝑔 : U→ U, 𝑥 : U ⊢ 𝑔 𝑥 : U

𝓇⊢Q

1 2

𝑎 𝑏

3

ℓ⊢𝒾
𝑥
&
Q

ℓ⊢𝒾
𝑥
&
A

4

𝑐 𝑑

5 6

𝓇⊢A

𝛿 ⟨𝓇⊢Q⟩ (([], •)) = {([♦], •)@1, ( [♦], •)@2}
𝛿 ⟨𝑎⟩ ({([e], d)@1}) = {([ℓ

!
e], d)@3}

𝛿 ⟨𝑏⟩ ({([e], d)@2}) = {([𝓇
!
e], d)@3}

𝛿 ⟨ℓ⊢𝒾𝑥& Q⟩({(s, d)@3}) = (s, d)
𝛿 ⟨ℓ⊢𝒾𝑥& A⟩(s, d) = {(s, d)@4}
𝛿 ⟨𝑐⟩ ({([ℓ

!
♦], d)@4}) = {([], d)@5}

𝛿 ⟨𝑑⟩ ({([𝓇
!
♦], d)@4}) = {([], d)@6}

𝛿 ⟨𝓇⊢A⟩ ({([], d)@5, ( [], d′)@6}) = ( [], d + d′)
Fig. 8. Petri structure for 𝑥 : N ⊢ 𝑥 + 𝑥 : N

Definition 3.2. We first define the setM of addresses as

M ::= ℓ⊗M | 𝓇⊗M | ℓ⊢M | 𝓇⊢M | ℓ⊸M | 𝓇⊸M | 𝒾𝑥
&
M | 𝓌VM | 𝓇VM | ℊSM | 𝓇SM | Q | A ,

for 𝑥 ∈ Var – we use m to range over addresses. These have a polarity defined as pol(Q) =

−, pol(A) = +, pol(ℓ⊢m) = −pol(m), pol(ℓ⊸m) = −pol(m), and preserved in all other cases.

In this way, we show in Figure 7 (a close variant of) the open Petri structure interpreting

𝑔 : U→ U, 𝑥 : U ⊢ 𝑔 𝑥 : U. Tokens are either • for a data request, or ✓ for the unique possible value

on U. Upon initialization with 𝓇⊢Q
−
, the net interrogates the return value of 𝑔. If 𝑔 calls its argument

with ℓ⊢𝒾
𝑔
&
ℓ⊸ Q−, the net interrogates the return value of 𝑥 . If 𝑥 returns a value with ℓ⊢𝒾

𝑥
&
A, this value

is propagated to the argument of 𝑔. Finally, if 𝑔 returns with ℓ⊢𝒾
𝑔
&
𝓇⊸A, the value is forwarded to the

right hand side. Readers familiar with proof nets will recognize the axiom links, readers familiar

with game semantics will recognize pairs of Opponent moves and induced Player responses.

The implementation has no preset choice for this example, though one may obtain it by manually

typing the program “g x” here – for clarity the implementation displays the hierarchical constraints

between calls and returns, even though those are not part of the Petri structure.

3.1.3 Handling duplications. Next we introduce a crucial aspect of Petri structures: the need for

thread indexing, leading to the exact definition of tokens. More precisely, we set:

Definition 3.3. The sets E of exponential signatures and D of data signatures are:

E ::= ℓ
!
E | 𝓇

!
E | ⟨E, E⟩ | ♦ D ::= 𝑛 | tt | ff | ✓ | • ,

and we also write E∗
for finite lists of exponential signatures, called exponential stacks. We use e

to range over exponential signatures, s to range over exponential stacks, and d for data signatures.

The set of tokens, written Tok, is simply defined as E∗ × D, ranged over by t.

Exponential stacks originate in standard GoI token machines [Danos and Regnier 1996]. An

exponential signature uniquely identifies a precise resource occurrence within the net and allows

us to route accesses to distinct resources via the same address. Figure 8 shows a net involving

duplication. Upon receiving 𝓇⊢Q
−
, the net throws two tokens corresponding to the evaluations of

𝑥 . Both tokens are redirected to location 3 enabling ℓ⊢𝒾
𝑥
&
Q, but with distinct exponential stacks.

Subsequently, returns ℓ⊢𝒾
𝑥
&
A are distributed according to their exponential signature. It requires

https://ipatopetrinets.github.io/
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Q−

𝑎 𝑏

𝑐 𝑑

A+

(𝓇⊢Q, [],•)−−−−−−−→

Q−

• •

𝑎 𝑏

𝑐 𝑑

A+

−−−−−→

Q−

•

𝑎 𝑏

1

𝑐 𝑑

A+

−−−−−→

Q−

•

𝑎 𝑏

𝑐 𝑑

1

A+

−−−−−→ . . .

Fig. 9. A run of a Petri structure

two instances of ℓ⊢𝒾
𝑥
&
A with s respectively set to [ℓ

!
♦] and [𝓇

!
♦], routed to locations 5 and 6, in order

to trigger the final return 𝓇⊢A
+
. The example may be ran in the implementation here.

3.1.4 The token game. Next, we formalize the token game on Petri structures.

As is familiar from the Petri net literature, a state of a Petri structure is called a marking:

Definition 3.4. Consider 𝝈 a Petri structure. A marking on 𝝈 is a finite subset of TokIL.
The set of markings on 𝝈 is writtenℳ(𝝈), and we use 𝛼, 𝛽,𝛾 as metavariables for markings.

We use the same notation for markings as for conditions, i.e. 𝛼 = {([], •)@1, ( [], •)@2, ( [♦],✓)@2}
is a (non-reachable) marking for the Petri structure of Figure 8. Unlike for conditions, markings

allow several tokens on the same location; however we cannot have the same token twice on

the same location – markings are sets, not multisets. It should be clear from this notation that

conditions may be regarded as markings, and we shall do so silently from now on.

We define the token game, i.e. execution, as a walk on a labelled transition system on markings.

While neutral transitions act onmarkings only, visible transitions send or receive tokens on addresses,
regarded as channels. Together, an address and a token form a move – we define Moves = M ×
E∗ ×D ≃ M × Tok. We use𝑚 to range over moves – notice the different font fromm for addresses.

We now define the transition system, in two steps. For 𝝈 a Petri structure, we set:

Definition 3.5. We define the instantiated transitions (itransitions for short) as one of:

𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽 if 𝛼 ∈ cond(pre(𝑡)) and 𝛿 ⟨𝑡⟩(𝛼) = 𝛽 ,
𝑡+L𝛼M : 𝛼

𝑚↦−→𝝈 ∅ if 𝛼 ∈ cond(pre(𝑡)), 𝛿 ⟨𝑡⟩(𝛼) = (s, d) and𝑚 = (𝜕(𝑡), s, d),
𝑡−L(s, d)M : ∅ 𝑚↦−→𝝈 𝛽 if𝑚 = (𝜕(𝑡), s, d) with 𝛿 ⟨𝑡⟩(s, d) = 𝛽 ,

where 𝑡 ∈ T has the indicated polarity; we set 𝜕(𝑡L−M) =𝑚 the move labelling a visible itransition.

We write IT𝝈 the set of itransitions of 𝝈 , and use t to range over those.

A visible itransition t is labelled with a move𝑚 = (m, s, d) = 𝜕(t). For negative itransitions we
read this as the token (s, d) being received on m, while for positive itransitions, (s, d) is sent on m.

The actual token game is played by instantiated transitions in context:

Definition 3.6. An instantiated transition in context (ictransition for short) is one of:

t0 ⊎ 𝛾 : 𝛼 ⊎ 𝛾 −→𝝈 𝛽 ⊎ 𝛾 if t : 𝛼 ↦−→𝝈 𝛽 ,

t+ ⊎ 𝛾 : 𝛼 ⊎ 𝛾 m−→𝝈 𝛾 if t : 𝛼 m↦−→𝝈 ∅,
t− ⊎ 𝛾 : 𝛾 m−→𝝈 𝛾 ⊎ 𝛽 if t : ∅ m↦−→𝝈 𝛽 ,

for 𝛾 ∈ℳ(𝝈) with 𝛾 ∩ 𝛼 = 𝛾 ∩ 𝛽 = ∅.
We write ITC𝝈 for the set of ictransitions of 𝝈 , ranged over by 𝔱 (note the different font).

https://ipatopetrinets.github.io/#3
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Definition 3.7. A run in 𝝈 is a sequence 𝜌 = 𝔱1 . . . 𝔱𝑛 of ictransitions s.t. 𝔱𝑖 : 𝛼𝑖 −→𝝈 𝛼𝑖+1 or
𝔱𝑖 : 𝛼𝑖

m−→𝝈 𝛼𝑖+1 with 𝛼1 = ∅. We write 𝜌 : ∅ −→→𝝈 𝛼𝑛+1 or 𝜌 : ∅ 𝑠−→→𝝈 𝛼𝑛+1, where 𝑠 = m1 . . .m𝑝

lists the labels appearing in 𝜌 . We also write 𝑠 = play(𝜌) and call 𝑠 the play of 𝜌 .

For example, the following is a run 𝜌 for (the variant with full tokens of) Figure 5:

∅ (Q, [],•)−→ {([], •)@1, ( [], •)@2} −→ {([], 1)@3, ( [], •)@2} −→ {([], 1)@5, ( [], •)@2}
−→ {([], 1)@5, ( [], 1)@4} −→ {([], 1)@5, ( [], 1)@6} (A, [],2)−→ ∅

with play(𝜌) = (Q, [], •)(A, [], 1). It may be visualized as tokens walking through the Petri net as in

Figure 9, ignoring the exponential stacks (which are always [] in this example).

Among other things, this lets us define a notion of may-convergence for closed Petri structures:

Definition 3.8. Consider 𝝈 a closed Petri structure. We say 𝝈 may converge, written 𝝈 ⇓, iff
there is a run 𝜌 : ∅ −→→𝝈 𝛼 such that play(𝜌) = (Q, [], •)(A, [], d) for some d ≠ •.

Next, we set toward defining the interpretation of IPA with Petri structures; i.e. following Section
2.2, constructing an IPA-structure with Petri structures as morphisms. The conceptual core of this

endeavour is the definition of a precategory of Petri structures, and in particular their composition.

3.2 The Precategory PStruct

We build a precategory PStruct. Its objects are finite sets 𝑀 ⊆ M, considered as interfaces. A
morphism from𝑀 to 𝑁 is a Petri structure on𝑀 +⊢ 𝑁 = ℓ⊢ (𝑀) ⊎ 𝓇⊢ (𝑁 ), up to isomorphism:

Definition 3.9. Consider 𝝈 ,𝝉 two Petri structures on 𝑀 ⊆ M. An isomorphism 𝜑 : 𝝈 � 𝝉
consists of bijections 𝜑L : L𝝈 ≃ L𝝉 and 𝜑T : T𝝈 ≃ T𝝉 compatible with all structure.

3.2.1 Composition of Petri structures. Fix 𝝈 ∈ PStruct(𝑀, 𝑁 ) and 𝝉 ∈ PStruct(𝑁, 𝑃) two Petri

structures; we aim to define 𝝉 ⊙ 𝝈 ∈ PStruct(𝑀, 𝑃), their composition. Composing 𝝈 and 𝝉 amounts

to synchronizing 𝝈 ’s visible transitions on the right with 𝝉 ’s visible transitions on the left:

Definition 3.10. Visible transitions 𝑡𝝈 ∈ T +
𝝈 ⊎ T −

𝝈 and 𝑡𝝉 ∈ T +
𝝉 ⊎ T −

𝝉 are synchronizable if they
have opposite polarities; and 𝜕𝝈 (𝑡𝝈 ) = 𝓇⊢m while 𝜕𝝉 (𝑡𝝉 ) = ℓ⊢m for some m ∈ 𝑁 . We define the set

T𝝉 ⊛ T𝝈 = {ℓ ⊙ (𝑡) | 𝑡 ∈ T 0

𝝈 ⊎ T 𝑝,ℓ⊢
𝝈 } ⊎ {𝓇⊙ (𝑡) | 𝑡 ∈ T 0

𝝉 ⊎ T 𝑝,𝓇⊢
𝝉 } ⊎

{𝑡𝝈 ⊛ 𝑡𝝉 | 𝑡𝝈 ∈ T𝝈 , 𝑡𝝉 ∈ T𝝉 synchronizable.}

with T 𝑝,𝒾
𝝈 transitions of polarity 𝑝 ∈ {−, +} and label 𝜕(𝑡) = 𝒾m for some m ∈ M; idem for T 𝑝,𝒾

𝝉 .

Intuitively, T𝝉 ⊛ T𝝈 imports an unsynchronized transition 𝑡 from 𝝈 as ℓ ⊙ (𝑡), an unsynchronized

transition 𝑡 from 𝝉 as 𝓇
⊙ (𝑡), but also has a new transition 𝑡𝝈 ⊛ 𝑡𝝉 for every synchronizable pair.

We have used ℓ ⊙ and 𝓇
⊙
to keep transitions from 𝝈 and 𝝉 disjoint. From now on, if 𝑋 and 𝑌 are

sets, we write 𝑋 +⊙ 𝑌 = ℓ ⊙ (𝑋 ) ⊎ 𝓇⊙ (𝑌 ). We shall use the same convention with other tags later on

– or simply write 𝑋 + 𝑌 = ℓ (𝑋 ) ⊎ 𝓇(𝑌 ). Now, we may finally define the composition 𝝉 ⊙ 𝝈 as:

Definition 3.11. We set L𝝉 ⊙𝝈 = L𝝈 +⊙ L𝝉 ; T𝝉 ⊙𝝈 = T𝝉 ⊛ T𝝈 ; T 𝑝

𝝉 ⊙𝝈 = T 𝑝,ℓ⊢
𝝈 +⊙ T 𝑝,𝓇⊢

𝝉 where

𝑝 ∈ {+,−}; 𝜕𝝉 ⊙𝝈 (ℓ ⊙ (𝑡)) = 𝜕𝝈 (𝑡) and 𝜕𝝉 ⊙𝝈 (𝓇⊙ (𝑡)) = 𝜕𝝉 (𝑡). Conditions are in Figure 10, and:

𝛿𝝉 ⊙𝝈 ⟨ℓ ⊙ (𝑡)⟩(ℓ ⊙ (𝛼)) = ℓ ⊙ (𝛿𝝈 ⟨𝑡⟩(𝛼))
𝛿𝝉 ⊙𝝈 ⟨𝓇⊙ (𝑡)⟩(𝓇⊙ (𝛽)) = 𝓇

⊙ (𝛿𝝉 ⟨𝑡⟩(𝛽))
𝛿𝝉 ⊙𝝈 ⟨𝑡+ ⊛ 𝑡−⟩(ℓ ⊙ (𝛼)) = 𝓇

⊙ ((𝛿𝝉 ⟨𝑡−⟩ ◦ 𝛿𝝈 ⟨𝑡+⟩)(𝛼))
𝛿𝝉 ⊙𝝈 ⟨𝑡− ⊛ 𝑡+⟩(𝓇⊙ (𝛽)) = ℓ ⊙ ((𝛿𝝈 ⟨𝑡−⟩ ◦ 𝛿𝝉 ⟨𝑡+⟩)(𝛽))

where ℓ ⊙ and 𝓇
⊙
are applied to 𝛼 ∈ cond𝝈 and 𝛽 ∈ cond𝝉 by retagging locations, i.e. with ℓ ⊙ (𝛼) =

{(s, d)@ℓ⊙ (𝑙) | (s, d)@𝑙 ∈ 𝛼} ∈ cond𝝉 ⊙𝝈 and 𝓇
⊙ (𝛽) = {(s, d)@𝓇⊙ (𝑙) | (s, d)@𝑙 ∈ 𝛽} ∈ cond𝝉 ⊙𝝈 .
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pre𝝉 ⊙𝝈 (ℓ ⊙ (𝑡)) = ℓ ⊙ (pre𝝈 (𝑡))
pre𝝉 ⊙𝝈 (𝓇⊙ (𝑡)) = 𝓇

⊙ (pre𝝉 (𝑡))
pre𝝉 ⊙𝝈 (𝑡+ ⊛ 𝑡−) = ℓ ⊙ (pre𝝈 (𝑡+))
pre𝝉 ⊙𝝈 (𝑡− ⊛ 𝑡+) = 𝓇

⊙ (pre𝝉 (𝑡+))

post𝝉 ⊙𝝈 (ℓ ⊙ (𝑡)) = ℓ ⊙ (post𝝈 (𝑡))
post𝝉 ⊙𝝈 (𝓇⊙ (𝑡)) = 𝓇

⊙ (post𝝉 (𝑡))
post𝝉 ⊙𝝈 (𝑡+ ⊛ 𝑡−) = 𝓇

⊙ (post𝝉 (𝑡−))
post𝝉 ⊙𝝈 (𝑡− ⊛ 𝑡+) = ℓ ⊙ (post𝝈 (𝑡−))

Fig. 10. Pre-conditions and post-conditions for the composition

𝓇⊢Q
−

1 2

ℓ⊢ℓ⊗Q
+ ℓ⊢𝓇⊗Q

+

ℓ⊢ℓ⊗A
− ℓ⊢𝓇⊗A

−

3 4

𝓇⊢A
+

⊙

𝓇⊢ℓ⊗Q
−

𝓇⊢𝓇⊗Q
−

1 2

𝓇⊢ℓ⊗A
+

𝓇⊢𝓇⊗A
+

Fig. 11. A composition yielding Figure 5

𝓇⊢𝓇⊸Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢𝓇⊸A
−

2

𝓇⊢𝓇⊸A
+

ℓ⊢ℓ⊸Q
−

3

𝓇⊢ℓ⊸Q
+

𝓇⊢ℓ⊸A
−

4

ℓ⊢ℓ⊸A
+

Fig. 12. The Petri structure cc !N⊸N

We show in Figure 11 an example composition, yielding (up to iso) the structure of Figure 5 –

we omit the transition tables in order to save space. Notice how the two copies of Figure 4 glue
together the disconnected components – for calls and returns – of the left hand side operand.

Intuitively, runs on 𝝉 ⊙ 𝝈 happen as follows: tokens first appear via negative transitions on

either side. The token game is, at first, played independently in 𝝈 and 𝝉 . As soon as 𝝈 wishes

to play a positive transition on the right (resp. 𝝉 wishes to play a positive transition on the left),

it synchronizes with the matching negative transition on the other side – if it exists – and the

resulting (neutral) transition has transition function the composite as for the two compounds. The

effect of that synchronization is that tokens “jump” between 𝝈 and 𝝉 , following the control flow.

3.2.2 The copycat Petri structure. Next, PStruct requires an identity: the copycat Petri structure.
Copycat exchanges tokens between left and right, forwarding negative moves on either side to

the matching positive move on the other side, keeping tokens otherwise unchanged.

Definition 3.12. For𝑀 ⊆ M finite, we define the copycat Petri structure on𝑀 , written cc𝑀 .

Its locations are L cc𝑀 = 𝑀 , its transitions are Tcc𝑀 = 𝑀 × {ℓ, 𝓇} with polarities as in

T +
cc𝑀 = (𝑀+ × {𝓇}) ⊎ (𝑀− × {ℓ}) T −

cc𝑀 = (𝑀− × {𝓇}) ⊎ (𝑀+ × {ℓ})

and no neutral transition. We set 𝜕(m, ℓ) = ℓ⊢m and 𝜕(m, 𝓇) = 𝓇⊢m; we set pre(m+, 𝓇), pre(m−, ℓ),
post(m−, 𝓇) and post(m+, ℓ) to {m} and pre and post returning ∅ elsewhere. Finally:

𝛿 ⟨(m+, 𝓇)⟩({(s, d)@m}) = (s, d)
𝛿 ⟨(m−, ℓ)⟩({(s, d)@m}) = (s, d)

𝛿 ⟨(m−, 𝓇)⟩(s, d) = {(s, d)@m}
𝛿 ⟨(m+, ℓ)⟩(s, d) = {(s, d)@m} .

As an example, we show in Figure 12 the Petri structure cc !N⊸N, writing !N ⊸ N for the set

{ℓ⊸Q+, ℓ⊸A−, 𝓇⊸Q−, 𝓇⊸A+} which shall arise as the interpretation of N→ N.
Associativity of composition up to iso is direct, which makes PStruct a precategory. Note that

copycat is not neutral for composition up to iso: composing with copycat yields a structure with

strictly more nodes – it is in fact the reason why we based IPA-structures on precategories rather

than categories. Copycat will be neutral for composition only w.r.t. unfolding, see Section 5.2.

3.3 PStruct as an IPA-structure: Constructions, Operations
Now, we introduce the IPA-structure operations for Petri structures, following Definition 2.1.

For PStruct we fix PStruct• = PStruct0: we do not need to distinguish well-opened objects.
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pre𝝈 ⊗𝝉 (ℓ ⊗ (𝑡)) = ℓ ⊗ (pre𝝈 (𝑡))
pre𝝈 ⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇

⊗ (pre𝝉 (𝑡))
post𝝈 ⊗𝝉 (ℓ ⊗ (𝑡)) = ℓ ⊗ (post𝝈 (𝑡))
post𝝈 ⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇

⊗ (post𝝉 (𝑡))

Fig. 13. Pre-conditions and post-conditions for the tensor operation

3.3.1 Constructions. First of all, the constructions of Definition 2.1 are applied to finite sets of

addresses simply by applying the corresponding injections from Definition 3.2. In other words we

set𝑀 ⊗ 𝑁 = 𝑀 +⊗ 𝑁 ; &𝑥 ∈𝑉𝑀𝑥 = ⊎𝑥 ∈𝑉 𝒾𝑥& (𝑀𝑥 );𝑀 ⊸ 𝑁 = 𝑀 +⊸ 𝑁 and !𝑀 = 𝑀 .

For basic types, we set U,B and N as G = {Q−, A+}. We postpone V and S to Section 3.5.

3.3.2 Tensor. Next, we define tensor of Petri structures. Fix 𝝈 ,𝝉 Petri structures:

Definition 3.13. Consider 𝝈 ∈ PStruct(𝑀1, 𝑁1) and 𝝉 ∈ PStruct(𝑀2, 𝑁2).
We set L𝝈 ⊗𝝉 = L𝝈 +⊗ L𝝉 ; T𝝈 ⊗𝝉 = T𝝈 +⊗ T𝝉 with T 𝑝

𝝈 ⊗𝝉 = T 𝑝
𝝈 +⊗ T 𝑝

𝝉 for 𝑝 ∈ {+,−};
𝜕𝝈 ⊗𝝉 (ℓ ⊗ (𝑡)) = ℓ⊢ℓ⊗m (𝜕𝝈 (𝑡) = ℓ⊢m)
𝜕𝝈 ⊗𝝉 (ℓ ⊗ (𝑡)) = 𝓇⊢ℓ⊗m (𝜕𝝈 (𝑡) = 𝓇⊢m)

𝜕𝝈 ⊗𝝉 (𝓇⊗ (𝑡)) = ℓ⊢𝓇⊗m (𝜕𝝉 (𝑡) = ℓ⊢m)
𝜕𝝈 ⊗𝝉 (𝓇⊗ (𝑡)) = 𝓇⊢𝓇⊗m (𝜕𝝉 (𝑡) = 𝓇⊢m)

pre- and post-conditions in Figure 13, and for the transition table we set:

𝛿𝝈 ⊗𝝉 ⟨ℓ ⊗ (𝑡)⟩(ℓ ⊗ (𝛼)) = ℓ ⊗ (𝛿𝝈 ⟨𝑡⟩(𝛼)) 𝛿𝝈 ⊗𝝉 ⟨𝓇⊗ (𝑡)⟩(𝓇⊗ (𝛼)) = 𝓇⊗ (𝛿𝝉 ⟨𝑡⟩(𝛼))
with ℓ ⊗, 𝓇⊗

applied on conditions as in Definition 3.11. This yields𝝈⊗𝝉 ∈ PStruct(𝑀1⊗𝑀2, 𝑁1⊗𝑁2).

This simply puts 𝝈 and 𝝉 side by side without interaction. As an example, the Petri structure on

the right hand side of the composition symbol in Figure 11 is 𝝈 ⊗ 𝝈 for 𝝈 in Figure 4.

3.3.3 Currying. Rather than merely introducing currying, we introduce a general operation to

rename the addresses associated with visible transitions in a Petri structure:

Definition 3.14. Take 𝝈 a Petri structure on𝑀 and 𝑓 : M ⇀ M s.t.𝑀 ⊆ dom(𝑓 ), 𝑓 (𝑀) ⊆ 𝑁 .

The renaming 𝝈 [𝑓 ], a Petri structure on 𝑁 , is as 𝝈 except for 𝜕𝝈 [𝑓 ] (𝑡) = 𝑓 (𝜕𝝈 (𝑡)).

The net itself is not affected by the change, only the labelling function for visible transition. Now:

Definition 3.15. Consider 𝝈 ∈ PStruct(!(&[Γ, 𝑥 : 𝐴,Δ]),𝑂). We define the function Λ𝑥 : M⊢ ⇀
M⊢ by Λ𝑥 (𝓇⊢m) = 𝓇⊢𝓇⊸m, Λ𝑥 (ℓ⊢𝒾𝑥& m) = 𝓇⊢ℓ⊸m, and Λ𝑥 (m) = m otherwise.

Then, setting ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝝈) = 𝝈 [Λ𝑥 ], we obtain ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝝈) ∈ PStruct(!(&[Γ,Δ]), !𝐴 ⊸ 𝑂).

This reassigns visible transitions corresponding to variable 𝑥 to the left hand side of⊸ on the

right hand side of ⊢. Transitions initially assigned to the right hand side must also be relabelled,

but the rest are unchanged. The net itself (i.e. the graph) remains the same.

3.3.4 Promotion. The final operation on Petri strategies is promotion, for a Petri structure 𝝈 :

Definition 3.16. Consider 𝝈 ∈ PStruct(!𝑀, 𝑁 ). We set L𝝈† = L𝝈 , T𝝈† = T𝝈 with the same

polarities, 𝜕𝝈† = 𝜕𝝈 , and pre- and post-conditions are also unchanged. Finally, the transition table is:

𝛿𝝈† ⟨𝑡0⟩(e :: 𝛼) = e :: 𝛽 if 𝛿𝝈 ⟨𝑡⟩(𝛼) = 𝛽
𝛿𝝈† ⟨𝑡+⟩(e :: 𝛼) = (e :: s, d) if 𝜕𝝈 (𝑡) = 𝓇⊢− and 𝛿𝝈 ⟨𝑡⟩(𝛼) = (s, d)
𝛿𝝈† ⟨𝑡+⟩(e :: 𝛼) = (⟨e, e′⟩ :: s, d) if 𝜕𝝈 (𝑡) = ℓ⊢− and 𝛿𝝈 ⟨𝑡⟩(𝛼) = (e′ :: s, d)

𝛿𝝈† ⟨𝑡−⟩(e :: s, d) = e :: 𝛼 if 𝜕𝝈 (𝑡) = 𝓇⊢− and 𝛿𝝈 ⟨𝑡⟩(s, d) = 𝛼
𝛿𝝈† ⟨𝑡−⟩(⟨e, e′⟩ :: s, d) = e :: 𝛼 if 𝜕𝝈 (𝑡) = ℓ⊢− and 𝛿𝝈 ⟨𝑡⟩(e′ :: s, d) = 𝛼

where 𝜕𝝈 (𝑡) = 𝒾−means 𝜕𝝈 (𝑡) = 𝒾m for somem ∈ M, and e :: 𝛼 is {(e :: s𝑖 , d𝑖 )@𝑙𝑖 | (s𝑖 , d𝑖 )@𝑙𝑖 ∈ 𝛼}.
With this definition, we obtain 𝝈† ∈ PStruct(!𝑀, !𝑁 ).
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In contrast with currying, promotion only affects the transition table, not the other components:

promotion only manipulates the exponential signatures, which are only present in the tokens.

Those rules are similar to those dealing with promotion in standard GoI token machines [Danos

and Regnier 1996]; their behaviour is somewhat subtle. The central idea is that 𝝈†
has – implicitly

– countably many copies of 𝝈 running in parallel. In reality all tokens flow through the same net,

but copies are kept apart by the exponential signature added as a new layer of the exponential

stack (the rest of the exponential stack concerns promotions deeper within the net). Finally, when

interacting with the outside world on the left, this new layer of the exponential stack must be

merged with the previous top of the stack (an effect known as digging in linear logic jargon).

3.4 PStruct as an IPA-structure: Stateless Primitives
Next, we describe all the primitives involved in the interpretation of the 𝜆-calculus and recursion.

3.4.1 Variable, evaluation. First, the variable is simply a copycat set to component 𝒾
𝑥
&
of the context.

Definition 3.17. Consider𝑀 ⊆ M finite, and 𝑥 ∈ Var.
We define var𝑥 :𝑀 as Lvar𝑥 :𝑀 = L cc𝑀 , Tvar𝑥 :𝑀 = Tcc𝑀 , with the same pre- and post-conditions as for

cc𝑀 . We set 𝜕var𝑥 :𝑀 (m, ℓ) = ℓ⊢𝒾𝑥& m and 𝜕var𝑥 :𝑀 (m, 𝓇) = 𝓇⊢m. Finally, the transition table is:

𝛿 ⟨(m+, 𝓇)⟩({(s, d)@m}) = (s, d)
𝛿 ⟨(m−, ℓ)⟩({(s, d)@m}) = (♦ :: s, d)

𝛿 ⟨(m−, 𝓇)⟩(s, d) = {(s, d)@m}
𝛿 ⟨(m+, ℓ)⟩(♦ :: s, d) = {(s, d)@m} .

Recall that terms Γ ⊢ 𝑀 : 𝐴 are meant to be interpreted as morphisms J𝑀K ∈ C(!JΓK, J𝐴K). The !
explains the ♦ in the transition table, which corresponds to dereliction in linear logic terminology.

Note that the top two of these transitions do not affect the token: they only forward it following the

structure of the net. From now on, we call trivial such transitions and omit them for succinctness.

Evaluation, used for application, is also a copycat:

Definition 3.18. For𝑀, 𝑁 ⊆ M finite sets, ev𝑀,𝑁 = cc𝑀⊸𝑁 [Ω], whereΩ : M ⇀ M isΩ(𝓇⊢𝓇⊸m) =
𝓇⊢m, Ω(𝓇⊢ℓ⊸m) = ℓ⊢𝓇⊗m, Ω(ℓ⊢𝓇⊸m) = ℓ⊢ℓ⊗𝓇⊸m, Ω(ℓ⊢ℓ⊸m) = ℓ⊢ℓ⊗ℓ⊸m, and Ω(m) = m otherwise.

3.4.2 Other stateless primitives. For finite 𝑀 ⊆ M, the (binary) contraction c𝑀 has Lc𝑀 = 𝑀 ,

transitions Tc𝑀 = 𝑀 +⊢ (𝑀 +⊗ 𝑀) with polarity as in Definition 3.2. The net (i.e. pre- and post-

conditions) appears in Figure 15a, and the transition rules in Figure 14. The Petri structure behaves

as in Figure 8, using the injections ℓ
!
and 𝓇

!
from exponential signatures to record the routing back

to the node from which a request originates. The 𝑛-ary contraction, defined likewise, is omitted –

it may also be obtained by induction, composing binary contractions.

The fixpoint combinator Y𝑀 is similar: it has LY𝑀
= 𝑀 , TY𝑀

= (𝑀 +⊸ 𝑀) +⊢ 𝑀 , net in Figure

15b and transition rules in Figure 14. The net has no loops, but loops may arise by composition.

Constants, conditionals and operations are introduced in Figures 15d, 15e and 15c respec-

tively, with transition rules in Figure 14. Hopefully their behaviour is clear at this point.

Finally, the let has net in Figure 15f and transition rules in Figure 14. We explain its behaviour,

which is more subtle. Recall that Definition 2.1 requires letX,Y ∈ C((!X ⊸ Y) ⊗ X,Y), and in this

case let ∈ PStruct((!G ⊸ G) ⊗ G,G). Upon being called with 𝓇⊢Q
−
, let triggers the evaluation

of its argument at ℓ⊢𝓇⊗Q
+
– this evaluation is performed once, and will never happen again. Upon

receiving a value with ℓ⊢𝓇⊗A
−
, let does two things: it gives the control to its function argument at

ℓ⊢ℓ⊗𝓇⊸Q
+
. In parallel, it memoizes the value by storing it into location 3. This value is then read each

time the function calls its argument. In essence, let is a read-only memory cell.
This naturally brings us to our final primitives, dealing with mutable state and semaphores.
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𝛿c𝑀 ⟨𝓇⊢ℓ⊗m−⟩(e :: s, d) = {(ℓ
!
e :: s, d)@m− }

𝛿c𝑀 ⟨𝓇⊢𝓇⊗m−⟩(e :: s, d) = {(𝓇
!
e :: s, d)@m− }

𝛿c𝑀 ⟨𝓇⊢ℓ⊗m+⟩({(ℓ
!
e :: s, d)@m+ }) = (e :: s, d)

𝛿c𝑀 ⟨𝓇⊢𝓇⊗m+⟩({(𝓇
!
e :: s, d)@m+ }) = (e :: s, d)

𝛿if ⟨ℓ⊢𝓇⊗ℓ⊗Q+⟩({([], tt)@2}) = ( [], •)
𝛿if ⟨ℓ⊢𝓇⊗ℓ⊗Q+⟩({([], ff)@2}) = ( [], •)

𝛿newref ⟨𝓇⊢Q−⟩([], •) = {([], •)@1, ( [], 0)@2}
𝛿newref ⟨w⟩({([e], d)@3, (_, _)@2}) = {([e], d)@2, ( [e],✓)@4}
𝛿newref ⟨r⟩({([e], •)@5, (_, d)@2}) = {([e], d)@2, ( [e], d)@6}

𝛿let⟨ℓ⊢𝓇⊗A−⟩([], d) = {([], d)@2, ( [], d)@3

𝛿Y𝑀
⟨𝓇⊢m−⟩(s, d) = {(ℓ

!
♦ :: s, d)@m− }

𝛿Y𝑀
⟨ℓ⊢ℓ⊸m−⟩(e1 :: e2 :: s, d) = {(𝓇

!
⟨e1, e2⟩ :: s, d)@m− }

𝛿Y𝑀
⟨𝓇⊢m+⟩({(ℓ

!
♦ :: s, d)@m+ }) = (s, d)

𝛿Y𝑀
⟨ℓ⊢ℓ⊸m+⟩({(𝓇

!
⟨𝑒1, 𝑒2⟩ :: s, d)@m+ }) = (e1 :: e2 :: s, d)

𝛿op(f) ⟨𝓇⊢Q−⟩([], d) = {([], d)@1, ( [], d)@2}
𝛿op(f) ⟨𝓇⊢A+⟩({([], d)@3, ( [], d′)@4) = ( [], f (d, d′))

𝛿newsem⟨𝓇⊢Q−⟩([], •) = {([], •)@1, ( [], tt)@2}
𝛿newsem⟨g⟩({([e], •)@3, (_, tt)@2}) = {([e], ff)@2, ( [e],✓)@4}
𝛿newsem⟨r⟩({([e], •)@3, (_, ff)@2}) = {([e], tt)@2, ( [e],✓)@6}

𝛿let⟨s⟩({([], d)@3, (s, •)@4}) = {([], d)@3, (s, d)@5}

Fig. 14. Transition tables for IPA-structure primitives

𝓇⊢ℓ⊗m−
𝓇⊢𝓇⊗m−

m−

ℓ⊢m+

ℓ⊢m−

m+

𝓇⊢ℓ⊗m+
𝓇⊢ℓ⊗m+

(a) Contraction c𝑀

𝓇⊢m− ℓ⊢ℓ⊸m−

m−

ℓ⊢𝓇⊸m+

ℓ⊢𝓇⊸m−

m+

𝓇⊢m+ ℓ⊢ℓ⊸m+

(b) Fixpoint combinator Y𝑀

𝓇⊢Q
−

1 2

ℓ⊢ℓ⊗Q
+ ℓ⊢𝓇⊗Q

+

ℓ⊢ℓ⊗A
− ℓ⊢𝓇⊗A

−

3 4

𝓇⊢A
+

(c) Operator op(f)

𝓇⊢Q
−

1

𝓇⊢A
+

(d) Constant

𝓇⊢Q
−

1

ℓ⊢ℓ⊗Q
+

ℓ⊢ℓ⊗A
−

2

ℓ⊢𝓇⊗ℓ⊗Q
+ ℓ⊢𝓇⊗𝓇⊗Q

+

ℓ⊢𝓇⊗ℓ⊗A
− ℓ⊢𝓇⊗𝓇⊗A

−

3

𝓇⊢A
+

(e) Petri structure for if

𝓇⊢Q
−

1

ℓ⊢𝓇⊗Q
+

ℓ⊢𝓇⊗A
−

2 3

ℓ⊢ℓ⊗𝓇⊸Q
+

ℓ⊢ℓ⊗ℓ⊸Q
−

4s

5 ℓ⊢ℓ⊗ℓ⊸A
+

ℓ⊢ℓ⊗𝓇⊸A
−

6

𝓇⊢A
+

(f) Petri structure for let

𝓇⊢Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢ℓ⊸𝓌VQ
−

3

w

4

ℓ⊢ℓ⊸𝓌VA
+

ℓ⊢ℓ⊸𝓇VQ
−

5

r

6

2

ℓ⊢ℓ⊸𝓇VA
+

ℓ⊢𝓇⊸A
−

7

𝓇⊢A
+

(g) Petri structure for newref

𝓇⊢Q
−

1

ℓ⊢𝓇⊗Q
+

ℓ⊢𝓇⊗A
−

2

ℓ⊢ℓ⊗𝓌VQ
+

ℓ⊢ℓ⊗𝓌VA
−

2

𝓇⊢A
+

(h) Petri structure assign

𝓇⊢Q
−

1

ℓ⊢𝓇⊸Q
+

ℓ⊢ℓ⊸ℊSQ
−

3

g

4

ℓ⊢ℓ⊸ℊSA
+

ℓ⊢ℓ⊸𝓇SQ
−

5

r

6

2

ℓ⊢ℓ⊸𝓇SA
+

ℓ⊢𝓇⊸A
−

7

𝓇⊢A
+

(i) Petri structure for newsem

Fig. 15. The nets of Petri structures for IPA primitives

3.5 PStruct as an IPA-structure: Stateful Primitives
For typesV and Swe have addresses V = {𝓌VQ

−,𝓌VA
+, 𝓇VQ−, 𝓇VA+} and S = {ℊSQ−,ℊSA+, 𝓇SQ−, 𝓇SA+},

where𝓌V is the address for write requests, 𝓇V for read requests, ℊS for grab, 𝓇S for release.

3.5.1 Reference and semaphore queries. Recall that Definition 2.1 requires primitives

assign ∈ C(V ⊗ N,U) , deref ∈ C(V,N) , grab ∈ C(S,U) , release ∈ C(S,U)

for reference and semaphore queries. Among these, we set deref = cc N [ℓ⊢m ↦→ ℓ⊢𝓇Vm, 𝓇⊢m ↦→
𝓇⊢m], grab = cc U [ℓ⊢m ↦→ ℓ⊢ℊSm, 𝓇⊢m ↦→ 𝓇⊢m] and release = cc U [ℓ⊢m ↦→ ℓ⊢𝓇Sm, 𝓇⊢m ↦→ 𝓇⊢m] copycat
strategies simply accessing the matching component of the reference or semaphore.
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The remaining query assign is more elaborate: upon being evaluated, it sends an evaluation

request to its integer argument. Upon receiving a value, it sends the write request, and propagates

the acknowledgement. The net is in Figure 15h and its transition rules are trivial.

3.5.2 Initialization. The actual stateful behaviour is provided by newref ∈ C(!V ⊸ X,X) and
newsem ∈ C(!S ⊸ X,X) with nets in Figures 15g and 15i, non-trivial transitions in Figure 14.

The Petri structure newref takes as an argument !V ⊸ X, i.e. a “program of type X” that may

query a reference. Location 2 stores the current value. Upon initialization with 𝓇⊢Q
−
, newref : (1)

initializes the reference, setting a token with data 0 in location 2; (2) in parallel, gives control to the

argument via ℓ⊢𝓇⊸Q
+
. Write and read requests arrive respectively in locations 3 and 5. The neutral

transitions w and r perform the memory update and reading. In the normal operation, there is ever

at most one token in location 2, forcing reads and writes to be handled in some sequential order.

The net for newsem is essentially the same. In normal operation, location 2 contains exactly one

token with data either tt or ff, encoding if the semaphore is free. The transitions g and r grab and
release the semaphore, and may only fire if the semaphore currently has the adequate state.

3.6 Wrapping up the Interpretation
With the above, we have completed the construction for:

Corollary 3.19. PStruct is an IPA-structure.

Following Section 2.3, we obtain the interpretation of a type 𝐴 of IPA as a finite set J𝐴K ⊆ M of

addresses, likewise for a context, and of a term Γ ⊢ 𝑀 : 𝐴 as J𝑀K ∈ PStruct(!JΓK, J𝐴K) which we

regard as the concurrent games abstract machine with 𝑀 loaded. In particular, a closed program

⊢ 𝑀 : X is interpreted as a Petri structure J𝑀K on set of addresses {𝓇⊢Q−, 𝓇⊢A+}, i.e. a closed Petri

structure up to the obvious renaming. It will follow from the later results of this paper that:

Theorem 3.20 (Adeqacy). For any closed program ⊢ 𝑀 : U, we have𝑀 ⇓ iff J𝑀K ⇓.

This is the standard way of stating that at ground type and with respect to may-convergence, the

concurrent games abstract machine is faithful to standard operational semantics. But here adequacy

shall follow from a much more powerful result, also giving a proper account of higher-order: we

shall prove that the Petri structure J𝑀K unfolds to the concurrent strategy interpreting𝑀 .

4 CONCURRENT STRATEGIES
Before we describe this unfolding, we must recall its target. So we include a brief reminder of

the concurrent games model and its adequate semantics of IPA. The model and its interpretation

of IPA is first described in [Castellan et al. 2019], with improvements and a detailed adequacy

proof in [Castellan and Clairambault 2020]. With respect to this, the present model differs in two

ways. Firstly, our moves follow Petri structures and use exponential signatures rather than natural

numbers as copy indices. Secondly, unlike in [Castellan and Clairambault 2020], our games and

strategies come without symmetry – we discuss this further in Appendix B.4.

4.1 Types and Contexts as Games
The first step is to introduce games: a game collects the moves one may encounter during an

execution on a given type, and organizes them according to their causal dependencies and conflict.

In concurrent games, both games and strategies are certain event structures:

4.1.1 Event structures. Event structures are a well-known model from concurrency theory, pre-

senting a system by specifying causal dependency and conflict between computational events:
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U =
(Q, [], •)−

(A, [],✓)+
B =

(Q, [], •)−

(A, [], tt)+ (A, [], ff)+
N =

(Q, [], •)−

(A, [], 0)+ (A, [], 1)+ (A, [], 2)+ . . .

Fig. 16. Interpretation of IPA ground types

Definition 4.1. An event structure (es) is a triple 𝐸 = ( |𝐸 |, ≤𝐸, #𝐸), where |𝐸 | is a (countable) set
of events, ≤𝐸 is a partial order and #𝐸 is an irreflexive symmetric binary relation, satisfying:

finite causes: ∀𝑒 ∈ |𝐸 |, [𝑒]𝐸 = {𝑒 ′ ∈ |𝐸 | | 𝑒 ′ ≤𝐸 𝑒} is finite
conflict inheritance: ∀𝑒1 #𝐸 𝑒2, ∀𝑒2 ≤𝐸 𝑒

′
2
, 𝑒1 #𝐸 𝑒

′
2
,

and we call #𝐸 and ≤𝐸 respectively conflict and causal dependency.

We write _𝐸 for the immediate dependency relation induced by ≤𝐸 , i.e. 𝑒 _𝐸 𝑒
′
iff 𝑒 <𝐸 𝑒

′

with no other event strictly in between. An event structure 𝐸 naturally comes with a notion of

state, its (finite) configurations: those are finite sets 𝑥 ⊆𝑓 |𝐸 | which are down-closed for ≤𝐸 and

compatible, in the sense that if 𝑒, 𝑒 ′ ∈ 𝑥 , then ¬(𝑒 #𝐸 𝑒 ′). We write 𝒞(𝐸) the set of configurations
of 𝐸. If 𝑥 ∈ 𝒞(𝐸) and 𝑒 ∉ 𝑥 satisfies 𝑥 ∪ {𝑒} ∈ 𝒞(𝐸), we say that 𝑥 enables 𝑒 and write 𝑥 ⊢𝐸 𝑒 .

4.1.2 Games and arenas. Games are event structures composed of moves:

Definition 4.2. A game is an es 𝐴 = ( |𝐴|, ≤𝐴, #𝐴) s.t. |𝐴| ⊆ Moves and satisfying:

finite addresses: the set mult(𝐴) = {m ∈ M | ∃(m, s, d) ∈ |𝐴|} is finite.
This is the usual notion of concurrent games, with the small difference that moves are taken

in Moves. Consequently, polarity is inherited and no longer part of the data – we still display

polarities in diagrams. The condition ensures that mult(𝐴) is an object of PStruct for any 𝐴.
In Figure 16, we show the interpretation for ground types. In diagrams for games, the dotted lines

indicate immediate causal dependency, flowing from top to bottom. Wiggly lines indicate conflict
– in the diagram for N it is understood that all moves in the second row are in pairwise conflict,

some being omitted to alleviate notations. As usual in game semantics for call-by-name languages,

these diagrams formalize a protocol where the environment initiates computation by playing the

negative move (a question), following which Player may respond a value (via an answer). All the
moves in Figure 16 have a trivial address without injections: non-trivial addresses will arise only

with constructors. Likewise, they all have trivial exponential stacks as the types do not contain a !.

Finally, the data signature matches the return value whenever relevant, and is • otherwise.
It will be helpful in the sequel to have a tighter grasp on the shape of games arising from types:

Definition 4.3. An arena is a game (𝐴, ≤𝐴, #𝐴) satisfying:
alternating: if 𝑎1 _𝐴 𝑎2, then pol(𝑎1) ≠ pol(𝑎2),

forestial: if 𝑎1 ≤𝐴 𝑎 and 𝑎2 ≤𝐴 𝑎, then 𝑎1 ≤𝐴 𝑎2 or 𝑎2 ≤𝐴 𝑎1,

locally conflicting: if 𝑎1, 𝑎2 ∈ |𝐴| are in minimal conflict, then they are both minimal,

or have the same (necessarily unique) predecessor.

negative: if 𝑎 ∈ min(𝐴), then pol(𝑎) = −,
wheremin(𝐴) comprises the minimal events of𝐴. Finally,𝐴 iswell-opened ifmin(𝐴) is a singleton.

This used the notion of minimal conflict: in an event structure 𝐸, 𝑒1, 𝑒2 ∈ |𝐸 | are in minimal
conflict if 𝑒1 #𝐸 𝑒2, while if 𝑒 ′1 ≤𝐸 𝑒1 and 𝑒

′
2
≤𝐸 𝑒2 with at least one of these being strict, ¬(𝑒 ′

1
#𝐸 𝑒

′
2
)

– so the conflict is not inherited. In that case we write 𝑒1 𝐸 𝑒2; note that minimal conflict is what

is represented throughout this paper in event structure diagrams.

Types and contexts shall be interpreted as arenas, via the constructions introduced next.
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|𝐴 ⊸ 𝑂 | = ℓ⊸ ( |𝐴|) ⊎ 𝓇⊸ ( |𝑂 |)
≤𝐴⊸𝑂 = ℓ⊸ (≤𝐴) ⊎ 𝓇⊸ (≤𝑂 )

⊎ 𝓇⊸ (min(𝑂)) × ℓ⊸ ( |𝐴|)
#𝐴⊸𝑂 = ℓ⊸ (#𝐴) ⊎ 𝓇⊸ (#𝑂 )

(a) Arrow construction

| & (𝐴𝑥 )𝑥 ∈𝑉 | =
⊎

𝑥 ∈𝑉 𝒾
𝑥
&
( |𝐴𝑥 |)

≤&(𝐴𝑥 )𝑥∈𝑉 =
⊎

𝑥 ∈𝑉 𝒾
𝑥
&
(≤𝐴𝑥

)
𝒾
𝑥
&
(𝑎) # 𝒾𝑦

&
(𝑎′) ⇔ (𝑥 = 𝑦 ∧ 𝑎 #𝐴𝑥

𝑎′)
∨(𝑥 ≠ 𝑦)

(b) Product construction

|!𝐴| =
⊎

e∈E e :: |𝐴|
≤!𝐴 =

⊎
e∈E e :: (≤𝐴)

#!𝐴 =
⊎

e∈E e :: (#𝐴)

(c) Bang construction

Fig. 17. Arena constructions

V =
(𝓌VQ, [], 0)− (𝓌VQ, [], 1)− . . . (𝓇VQ, [], •)−

(𝓌VA, [],✓)+ (𝓌VA, [],✓)+ . . . (𝓇VA, [], 0)+ (𝓇VA, [], 1)+ . . .

S =
(ℊSQ, [], •)− (𝓇SQ, [], •)−

(ℊSA, [],✓)+ (𝓇SA, [],✓)+

Fig. 18. Arenas for references and semaphores

4.1.3 Basic game constructions. We write either 1 or ⊤ for the empty arena.

If (m, s, d) ∈ Moves, we write ℓ⊗ ((m, s, d)) = (ℓ⊗ (m), s, d) and likewise for all injections appearing
in the definition of addresses. This extends to sets of moves by direct image. Address injections

also apply to binary relations on moves in the obvious way, e.g. ℓ⊗ (𝑅) = {(ℓ⊗ (𝑚), ℓ⊗ (𝑚′)) | 𝑚𝑅𝑚′}.

Definition 4.4. Consider 𝐴, 𝐵 games. Then we set games 𝐴 ⊗ 𝐵 and 𝐴 ⊢ 𝐵 with components:

|𝐴 ⊗ 𝐵 | = ℓ⊗ ( |𝐴|) ⊎ 𝓇⊗ ( |𝐵 |)
≤𝐴⊗𝐵 = ℓ⊗ (≤𝐴) ⊎ 𝓇⊗ (≤𝐵)
#𝐴⊗𝐵 = ℓ⊗ (#𝐴) ⊎ 𝓇⊗ (#𝐵)

|𝐴 ⊢ 𝐵 | = ℓ⊢ ( |𝐴|) ⊎ 𝓇⊢ ( |𝐵 |)
≤𝐴⊢𝐵 = ℓ⊢ (≤𝐴) ⊎ 𝓇⊢ (≤𝐵)
#𝐴⊢𝐵 = ℓ⊢ (#𝐴) ⊎ 𝓇⊢ (#𝐵)

𝐴 ⊗ 𝐵 is called the tensor, and 𝐴 ⊢ 𝐵 is called the hom-game.

If 𝐴, 𝐵 are arenas, so is 𝐴 ⊗ 𝐵. In contrast, 𝐴 ⊢ 𝐵 is never an arena unless 𝐴 is empty. Formally,

both constructions are defined in the same way, but with a distinct injection – remember from

Definition 3.2 that ℓ⊢ inverts polarity, so that in 𝐴 ⊢ 𝐵 the polarity is inverted in 𝐴.

From the definition, configurations of𝐴⊗𝐵 have a restricted shape: any 𝑥 ∈ 𝒞(𝐴⊗𝐵) decomposes

uniquely as 𝑥 = ℓ⊗ (𝑥𝐴) ⊎ 𝓇⊗ (𝑥𝐵) with 𝑥𝐴 ∈ 𝒞(𝐴) and 𝑥𝐵 ∈ 𝒞(𝐵) – we write 𝑥 = 𝑥𝐴 ⊗ 𝑥𝐵 . Likewise,
any configuration 𝑥 ∈ 𝒞(𝐴 ⊢ 𝐵) decomposes as 𝑥 = 𝑥𝐴 ⊢ 𝑥𝐵 = ℓ⊢ (𝑥𝐴) ⊎ 𝓇⊢ (𝑥𝐵).

4.1.4 Further arena constructions. We give the remaining constructions required by Definition 2.1.

First a new notation: for𝑚 = (m, s, d) ∈ Moves and e ∈ E, we write e ::𝑚 = (m, e :: s, d), i.e. the
exponential signature implicitly applies to the exponential stack of𝑚. This is an injection, and

accordingly we apply it to sets and relations as with the injections from addresses.

Definition 4.5. We define three other constructions on arenas:

linear arrow: for 𝐴,𝑂 arenas with 𝑂 well-opened, we define 𝐴 ⊸ 𝑂 well-opened in Figure 17a.

product: for (𝐴𝑥 )𝑥 ∈𝑉 a family of arenas with 𝑉 ⊆ Var, we define
˘

𝑥 ∈𝑉 𝐴𝑥 in Figure 17b.

bang: for 𝐴 an arena, we define !𝐴 in Figure 17c.

It remains to give the arenas for references and semaphores, in Figure 18.

The arrow 𝐴 ⊸ 𝑂 enforces that an argument cannot be called before the function has been

called. The bang !𝐴 creates countably many independent copies of 𝐴, one for each exponential

signature, for thread indexing (for that, [Castellan and Clairambault 2020] uses integers).
A more elaborate example of arena is in Figure 19. The representation is symbolic: from the

exponentials in the construction, the full arena is infinite and comprises moves as in the diagram

for all exponential signatures e, e′ ∈ E. However, we have e.g. (ℓ⊸𝓇⊸Q, [𝑒], •) ≤ (ℓ⊸ℓ⊸Q, [e1, e2], •)
only when 𝑒 = 𝑒1 – in an exponential stack, the first element corresponds to the outermost !(−).
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(𝓇⊸Q, [], •)−

(ℓ⊸𝓇⊸Q, [e], •)+ (𝓇⊸A, [], tt)+ (𝓇⊸A, [], ff)+

(ℓ⊸ℓ⊸Q, [e, e′], •)− (ℓ⊸𝓇⊸A, [e],✓)−

(ℓ⊸ℓ⊸A, [e, e′],✓)+

Fig. 19. Arena !(!U ⊸ U) ⊸ B

(𝓇⊸Q, [], •)−

(ℓ⊸𝓇⊸Q, [♦], •)+

(ℓ⊸ℓ⊸Q, [♦, e], •)− (ℓ⊸𝓇⊸A, [♦],✓)−

(ℓ⊸ℓ⊸A, [♦, e],✓)+ (ℓ⊸ℓ⊸A, [♦, e],✓)+ (𝓇⊸A, [], tt)+ (𝓇⊸A, [], ff)+

Fig. 20. Part of a concurrent strategy

4.2 The Category of Arenas and Strategies
4.2.1 Definition. In concurrent games, strategies are also event structures, labelled by the game:

Definition 4.6. A prestrategy 𝜎 : 𝐴 on game 𝐴 comprises an es ( |𝜎 |, ≤𝜎 , #𝜎 ) with 𝜕 : |𝜎 | → |𝐴| a
function called the display map, subject to the following conditions:

rule-abiding: for all 𝑥 ∈ 𝒞(𝜎), 𝜕(𝑥) ∈ 𝒞(𝐴),
locally injective: for all 𝑠1, 𝑠2 ∈ 𝑥 ∈ 𝒞(𝜎), if 𝜕(𝑠1) = 𝜕(𝑠2) then 𝑠1 = 𝑠2.

We say that 𝜎 is a strategy if it satisfies the further two conditions:

courteous: for all 𝑠1 _𝜎 𝑠2, if pol(𝑠1) = + or pol(𝑠2) = − then 𝜕(𝑠1) _𝐴 𝜕(𝑠2),
receptive: for all 𝑥 ∈ 𝒞(𝜎), for all 𝜕(𝑥) ⊢𝐴 𝑎−,

there is a unique 𝑥 ⊢𝜎 𝑠 ∈ 𝒞(𝜎) such that 𝜕(𝑠) = 𝑎,
and additionally it is negative if for all 𝑠 ∈ |𝜎 |, if 𝑠 is minimal then 𝑠 is negative.

Rule-abiding and locally injective together amount to 𝜕 : 𝜎 → 𝐴 being amap of event structure.
Events of 𝜎 inherit a polarity from pol𝜎 (𝑠) = pol(𝜕(𝑠)) – a definition used implicitly from now

on. Again, this definition is as in [Castellan and Clairambault 2020] without the component and

conditions – unnecessary for this paper – pertaining to symmetry (see Appendix B.4 for more).

The event structure 𝜎 presents observable computational events along with their causal depen-

dencies and conflicts. Events of 𝜎 are not moves of the game, but they do correspond to moves

via the action of 𝜕. This permits an explicit representation of non-deterministic branching: several

events of 𝜎 may correspond to the same move if they are conflicting and so belong to separate

branches of the execution. The strategy keeps them separate, even if they cannot be distinguished.

We show in Figure 20 (part of) a concurrent strategy playing on the game in Figure 19. In such

diagrams we represent the strategy and the explored part of the arena in a single picture. Nodes

correspond to events of the strategy, drawn directly as their display through 𝜕 – this means that

two conflicting nodes may have the same label, as happens in Figure 20. Arrows _ correspond

to the immediate causal dependency in 𝜎 , while dotted lines correspond as before to the causal

dependency from the game. The diagram in Figure 20 is a part of the strategy for:

Example 4.7. We introduce the term ⊢ strictness : (U→ U) → B, defined as

⊢ 𝜆𝑓 U→U . newref 𝑥 in 𝑓 (𝑥 := 1); not (iszero !𝑥) : (U→ U) → B ,
using encapsulated state to test if a function 𝑓 calls its argument (run it here).

Figure 20 reads as follows: Opponent initiates computation with (𝓇⊸Q, [], •)−. This lets Player
call his argument with (ℓ⊸𝓇⊸Q, [♦], •)+. This lets Opponent return the call with (ℓ⊸𝓇⊸A, [♦],✓)−,
or call its argument with (ℓ⊸ℓ⊸Q, [♦, e])− for any e ∈ E (in fact Opponent may call this argument

arbitrarily many times with distinct exponential signatures, but Figure 20 only represents one

call). But these events are not incompatible: though this behaviour is not realizable within IPA, our

https://ipatopetrinets.github.io/#12
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model lets Opponent call its argument and return concurrently! In that case both 𝑥 := 1 and !𝑥 are

running, so there is a race. The conflicts in Figure 20 allow two outcomes, depending on who wins.

It remains to introduce the two conditions courteous and receptive: the former simply states that

a strategy has no control over Opponent moves, and must acknowledge each Opponent move 𝐴

uniquely. Courtesy entails that with respect to the immediate causal links of the game, a strategy

can only add new dependencies from negative to positive moves. This formalizes the idea that

strategies interact in an asynchronous environment, where e.g. causal links between positive moves

may not be preserved by propagation of moves through buffers – or through a Petri structure.

4.2.2 Isomorphic strategies. Strict equality of strategies is too strict to be useful; instead we use:

Definition 4.8. Consider 𝜎, 𝜏 : 𝐴 two (pre)strategies on game 𝐴.

An isomorphism 𝜑 : 𝜎 � 𝜏 is an invertible map of es 𝜑 : 𝜎 → 𝜏 such that 𝜕𝜏 ◦ 𝜑 = 𝜕𝜎 .

We write 𝜎 � 𝜏 to mean that 𝜎 and 𝜏 are isomorphic, leaving the isomorphism unspecified.

Clearly, this is an equivalence relation. It is a basic fact from the theory of event structures that

isomorphisms between 𝜎 and 𝜏 are in one-to-one correspondence with order-isos 𝜑 : 𝒞(𝜎) � 𝒞(𝜏)
such that 𝜕𝜏 ◦𝜑 = 𝜕𝜎 , i.e. any such order-iso is given by a unique isomorphism of strategies – this is

convenient as it is often easier to construct a bijection between configurations rather than events.

For strategies, this can be simplified by ignoring trailing Opponent moves. A 𝑥 ∈ 𝒞(𝜎) is +-
covered if any𝑚 ∈ 𝑥 maximal in 𝑥 is positive; we write 𝒞

+(𝜎) for the +-covered configurations of

𝜎 . The action of an iso 𝜑 on +-covered configurations suffices to completely describe it:

Lemma 4.9. Consider 𝜎, 𝜏 : 𝐴 two strategies, and 𝜑 : 𝒞
+(𝜎) � 𝒞+(𝜏) an order-iso s.t. 𝜕𝜏 ◦ 𝜑 = 𝜕𝜎 .

Then, there is a unique 𝜑 : 𝜎 � 𝜏 such that 𝜑 (𝑥) = 𝜑 (𝑥) for all 𝑥 ∈ 𝒞+(𝜎).
This is an application in the trivial case without symmetry of Lemma 5.11 from [Castellan and

Clairambault 2020], which will be very helpful in constructing isomorphisms in this paper.

4.2.3 Composition. Working towards an IPA-structure, we must first define composition.

A strategy 𝜎 from game 𝐴 to game 𝐵 is defined as a strategy 𝜎 : 𝐴 ⊢ 𝐵. Let us fix for now

games 𝐴, 𝐵 and 𝐶 and strategies 𝜎 : 𝐴 ⊢ 𝐵 and 𝜏 : 𝐵 ⊢ 𝐶 that we wish to compose to 𝜏 ⊙ 𝜎 : 𝐴 ⊢ 𝐶 .
Lemma 4.9 puts the emphasis on +-covered configurations, so we investigate what should be

the +-covered configurations of 𝜏 ⊙ 𝜎 . It turns out that they correspond to pairs 𝑥𝜎 ∈ 𝒞+(𝜎) and
𝑥𝜏 ∈ 𝒞+(𝜏) whose synchronization of 𝑥𝜎 and 𝑥𝜏 through 𝐵 is “sound”, which we must now define.

We fix the convention that if 𝑥𝜎 ∈ 𝒞(𝜎) and 𝑥𝜏 ∈ 𝒞(𝜏), we write 𝜕𝜎𝑥
𝜎 = 𝑥𝜎

𝐴
⊢ 𝑥𝜎

𝐵
and

𝜕𝜏𝑥
𝜏 = 𝑥𝜏

𝐵
⊢ 𝑥𝜏

𝐶
where 𝑥𝜎

𝐴
∈ 𝒞(𝐴), 𝑥𝜎

𝐵
, 𝑥𝜏

𝐵
∈ 𝒞(𝐵), and 𝑥𝜏

𝐶
∈ 𝒞(𝐶). We say 𝑥𝜎 ∈ 𝒞(𝜎) and

𝑥𝜏 ∈ 𝒞(𝜏) are matching if 𝑥𝜎
𝐵
= 𝑥𝜏

𝐵
, in which case it is unambiguous to write 𝜕𝜎 (𝑥𝜎 ) = 𝑥𝐴 ⊢ 𝑥𝐵

and 𝜕𝜏 (𝑥𝜏 ) = 𝑥𝐵 ⊢ 𝑥𝐶 . So 𝑥𝜎 and 𝑥𝜏 reach the same state on 𝐵, but it remains to see if they do it

with compatible causal constraints. For that, we set 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 = ℓ (𝑥𝐴) ⊎𝓂(𝑥𝐵) ⊎ 𝓇(𝑥𝐶 ), and
𝜕ℓ𝜎 : 𝑥𝜎 → 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶

𝑚 ↦→ ℓ (𝑎) if 𝜕𝜎 (𝑚) = ℓ⊢ (𝑎),
𝑚 ↦→ 𝓂(𝑏) if 𝜕𝜎 (𝑚) = 𝓇⊢ (𝑏),

𝜕𝓇𝜏 : 𝑥𝜏 → 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶
𝑛 ↦→ 𝓂(𝑏) if 𝜕𝜏 (𝑛) = ℓ⊢ (𝑏),
𝑛 ↦→ 𝓇(𝑐) if 𝜕𝜏 (𝑛) = 𝓇⊢ (𝑐).

are variants of the display maps set to embed 𝑥𝜎 and 𝑥𝜏 in the common space 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 .
This lets us check the presence of deadlocks by importing all causal constraints to 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 :
Definition 4.10. Consider 𝑥𝜎 ∈ 𝒞(𝜎) and 𝑥𝜏 ∈ 𝒞(𝜏) matching configurations.

They are causally compatible if the relation ◁ = ◁𝜎 ⊎ ◁𝜏 on 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 set with:

𝜕ℓ𝜎 (𝑚) ◁𝜎 𝜕ℓ𝜎 (𝑚′) for𝑚 <𝜎 𝑚
′

𝜕𝓇𝜏 (𝑛) ◁𝜏 𝜕𝓇𝜏 (𝑛′) for 𝑛 <𝜏 𝑛
′

is acyclic. We also say that the pair 𝑥𝜎 , 𝑥𝜏 is secured.
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!U U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [♦], •)+

(𝓇⊢ℓ⊸A, [♦],✓)−

(𝓇⊢𝓇⊸A, [],✓)+

⊸⊢

vs

!U U B

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [♦], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [♦],✓)+ (𝓇⊢A, [], tt)+

⊸ ⊢

Fig. 21. Matching, secured configurations

!U U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [♦], •)+

(𝓇⊢ℓ⊸A, [♦],✓)−

(𝓇⊢𝓇⊸A, [],✓)+

⊸⊢

vs

!U U B

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [♦], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [♦],✓)+ (𝓇⊢A, [], tt)+

⊸ ⊢

Fig. 22. Matching, non-secured configurations

(B U) U

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)+

(ℓ⊢ℓ⊸Q, [], •)− (ℓ⊢𝓇⊸A, [],✓)−

(ℓ⊢ℓ⊸A, [], tt)+ (ℓ⊢ℓ⊸A, [], ff)+ (𝓇⊢A, [],✓)+

⊸ ⊢

⊙

⊢ B U

(𝓇⊢𝓇⊸Q, [], •)−

(𝓇⊢ℓ⊸Q, [], •)+

(𝓇⊢ℓ⊸A, [], tt)− (𝓇⊢ℓ⊸A, [], ff)−

(𝓇⊢𝓇⊸A, [],✓)+ (𝓇⊢𝓇⊸A, [],✓)+

⊸

=

(B U) U

(𝓇⊢Q, [], •)−

(ℓ⊢𝓇⊸Q, [], •)

(ℓ⊢ℓ⊸Q, [], •)

(ℓ⊢ℓ⊸A, [], tt) (ℓ⊢ℓ⊸A, [], ff)

(ℓ⊢𝓇⊸A, [], tt) (ℓ⊢𝓇⊸A, [], ff)

(𝓇⊢A, [],✓)+ (𝓇⊢A, [],✓)+

⊸ ⊢

Fig. 23. Example of a composition

We show in Figures 21 and 22 examples of matching secured and non-secured pairs involved

in computing the composition of the strategy of Figure 20 with 𝜆𝑥U . 𝑥 . In Figure 22, a deadlock

directly arises from opposite causal constraints (highlighted in blue). This entails that the only

result arising from this composition will be tt from Figure 21, as expected since 𝜆𝑥. 𝑥 is strict.

Then 𝜏 ⊙ 𝜎 is the unique strategy with as +-covered configurations the causally compatible pairs:

Proposition 4.11. Consider 𝐴, 𝐵,𝐶 games, and 𝜎 : 𝐴 ⊢ 𝐵 and 𝜏 : 𝐵 ⊢ 𝐶 strategies.
Then there is a strategy 𝜏 ⊙ 𝜎 : 𝐴 ⊢ 𝐶 , unique up to iso, s.t. there are order-isos:

(− ⊙ −) : {(𝑥𝜏 , 𝑥𝜎 ) ∈ 𝒞+(𝜏) ×𝒞+(𝜎) | causally compatible} ≃ 𝒞
+(𝜏 ⊙ 𝜎)

such that for any 𝑥𝜎 ∈ 𝒞+(𝜎) and 𝑥𝜏 ∈ 𝒞+(𝜏) causally compatible, 𝜕𝜏⊙𝜎 (𝑥𝜏 ⊙ 𝑥𝜎 ) = 𝑥𝜎𝐴 ⊢ 𝑥𝜏
𝐶
.

This is a simplification of Proposition 3.3.1 from [Castellan and Clairambault 2020].

Concretely, composition is performed by parallel interaction (via the synchronizing product of

es used by Winskel to model CCS [Winskel 1982]); followed by hiding (Lemma 5.11) which keeps

the visible events only. In this paper, the above characterization suffices for our purposes.

Figure 23 shows an example composition which, ignoring exponentials, corresponds to:

J𝑓 : B→ U ⊢ 𝑓 coinK ⊙ J⊢ 𝜆𝑥B . if 𝑥 skip skipK : 1 ⊢ U .
Observe the resulting strategy has two distinct ways to converge, even though the two occur-

rences of (𝓇⊢A, [],✓)+ correspond to the same event of the left hand side strategy. Each event of the

composition carries its whole causal history, including the exact synchronizations that lead to it.

4.3 An IPA-structure
The remaining structure required for the interpretation of IPA follows [Castellan and Clairambault

2020; Castellan et al. 2019]. We must omit the details for lack of space, but they can be found in

Appendix B. Altogether, and with Theorem 4.40 of [Castellan and Clairambault 2020]:

Theorem 4.12. The category Strat forms an IPA-structure.
Moreover, for any closed program ⊢ 𝑀 : U, J𝑀KStrat ⇓ iff𝑀 ⇓.
In the statement above, we say that 𝜎 : U converges, written 𝜎 ⇓, iff it has a positive move.

Of course, Strat is most interesting not for programs of ground types, but for higher-order

programs: there, it gives a complete account of the underlying causal structure behind observable

computational actions – along with the non-deterministic branching information.
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In the remainder of this paper we show that though J𝑀KStrat is computed by definition denota-
tionally by induction on terms following the corresponding operations on strategies, it may also be

computed from the execution by unfolding the Petri structure interpreting𝑀 .

5 PETRI STRATEGIES AND UNFOLDING
Whereas concurrent strategies follow the rules of a game, unrestricted Petri structures are too

liberal; they may play moves that are not accessible yet, or even meaningless (e.g. a boolean on a

unit type). Before we unfold, we must capture, among Petri structures, those that respect the rules.

5.1 Strategic Petri Structures
5.1.1 Definition. Fix 𝐴 a game, and 𝝈 a Petri structure onmult(𝐴). Intuitively, 𝝈 is a Petri strategy
on 𝐴 if its runs follow the rules specified by 𝐴, i.e. form valid plays on 𝐴:

Definition 5.1. Consider 𝐴 a game. A sequence 𝑠1 . . . 𝑠𝑛 ∈ Moves∗ is a play on 𝐴 if

valid: for all 1 ≤ 𝑖 ≤ 𝑛, |𝑠1 . . . 𝑠𝑖 | = {𝑠1, . . . , 𝑠𝑖 } ∈ 𝒞(𝐴),
non-repetitive: for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, if 𝑠𝑖 = 𝑠 𝑗 then 𝑖 = 𝑗 ,

we write Plays(𝐴) for the set of plays on game 𝐴.

Recall that any run 𝜌 : ∅ −→→𝝈 𝛼 on 𝝈 generates a sequence of moves play(𝜌) obtained by

collecting the labels of visible moves in 𝜌 . Requiring that play(𝜌) ∈ Plays(𝐴) for every run 𝜌 is too

brutal; we shall ask only that 𝝈 behaves as prescribed by the game as long as Opponent does. But

we shall also need a safety condition, required for the forthcoming unfolding. For that, we set:

Definition 5.2. Consider t : 𝛼 ↦−→𝝈 𝛽 an itransition of 𝝈 . We call pre(t) = 𝛼 the pre-condition
of t, and post(t) = 𝛽 the post-condition of t. The set new(t) = 𝛽 \𝛼 contains the tokils produced
by t; and eat(t) = 𝛼 \ 𝛽 those consumed. Those extend to ictransitions in the obvious way.

The distinction between post(𝔱) and new(𝔱) matters for let: its transition in Figure 14 requires

( [], d)@3
to fire, but leaves it unchanged. So ( [], d)@3

is both a pre-condition and a post-condition, but
is not produced by the transition. Other than for let, pre- and post-conditions are always disjoint.

Our safety constraint uses the notion of collection of the tokils encountered in a run:

Definition 5.3. Consider 𝜌 = 𝔱1 . . . 𝔱𝑛 : ∅ −→→𝝈 𝛼𝑖+1, a run of 𝝈 , with 𝔱𝑖 : 𝛼𝑖 −→ 𝛼𝑖+1.
The collection of 𝜌 is Coll(𝜌) = ⋃

1≤𝑖≤𝑛+1 𝛼𝑖 . We say 𝛼 ∈ cond𝝈 is fresh in 𝜌 iff 𝛼∩Coll(𝜌) = ∅.
This lets us finally give the definition of Petri strategies on a game 𝐴:

Definition 5.4. We say that 𝝈 is a Petri strategy on 𝐴, written 𝝈 : 𝐴, if for all 𝜌 : ∅ 𝑠−→→𝝈 𝛼 :

valid: if 𝑠 ∈ Plays(𝐴) and 𝔱+ : 𝛼
𝑎−→ 𝛽 , then 𝑠𝑎 ∈ Plays(𝐴),

receptive: ∀𝑠𝑎− ∈ Plays(𝐴), ∃!t− ∈ IT𝝈 s.t. t− : ∅ 𝑎−↦−→ 𝛽 for some 𝛽 ∩ 𝛼 = ∅,
strongly safe: if 𝑠 ∈ Plays(𝐴) and 𝔱 : 𝛼 −→ 𝛽 , or 𝔱 : 𝛼

𝑎−→ 𝛽 with 𝑠𝑎 ∈ Plays(𝐴),
then new(𝔱) is fresh in 𝜌 ,

and additionally it is negative iff for all t0 : 𝛼 ↦−→ 𝛽 or t+ : 𝛼
𝑎↦−→ ∅, we have 𝛼 ≠ ∅.

Strong safety entails that in a given execution, a tokil can occur at most once: it cannot appear,

then be consumed, only to reappear later. The main consequence of this is that tokils in a run of a

Petri strategy have a canonical causal partial ordering, which will be central in the unfolding of

Petri strategies to actual strategies – we direct to Section 5.2 for more on this.

Examples of Petri strategies abound in this paper so far – since it shall follow from this section

that for all term Γ ⊢ 𝑀 : 𝐴, the Petri structure J𝑀K is a Petri strategy on !JΓK ⊢ J𝐴K. In contrast, the

Petri structure 1 of Section 3.1.1 does not satisfy 1 : U, as there is a clear failure of condition valid.
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5.1.2 An IPA-structure. This lets us refine PStruct as follows:

Proposition 5.5. There is an IPA-structure PStrat, with objects arenas (with the associated con-
structions), and morphisms from 𝐴 to 𝐵 the negative Petri strategies 𝝈 : 𝐴 ⊢ 𝐵 up to iso.

There is a strict 𝐹 : PStrat → PStruct sending an arena 𝐴 to mult(𝐴) and preserving morphisms.

Proof. We must show that all primitives are Petri strategies, and that all operations preserve

those. The main technical challenge is composition: there we show any 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 projects to

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

with 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 . If 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 and if additionally in play(𝜌), the external Opponent
respects the game, none of Opponent, 𝝈 and 𝝉 can be the first to break the rules; and we get by

induction play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) and play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶). This is
the crux from which all conditions follow. See details in Appendix C. □

5.2 The Unfolding of a Petri Strategy
It is well-known that standard Petri nets unfold to event structures [Hayman and Winskel 2008b;

Nielsen et al. 1981]. Usually, unfolding is an elaborate inductive unwinding process, yielding first an

occurrence net which is then converted to an event structure. Here instead we leverage the presence

of colours and in particular our strong safety condition to give a much more direct definition.

A strategy is a global object, putting together all possible executions with explicit causal and

branching information. In this paper, we approach the construction of a strategy more locally: we

first perform a causal analysis of individual runs, obtaining a structure called a rigid family. We

then apply an already existing construction to get an event structure from this rigid family.

5.2.1 On rigid families. Rigid families seem to have remained in the concurrency theory folklore

for a while and to have first appeared in published form in [Castellan et al. 2014a,b; Hayman 2014].

Consider 𝓆 = ( |𝓆|, ≤𝓆) and 𝓅 = ( |𝓅|, ≤𝓅) finite partial orders. We say that 𝓆 is rigidly
included in 𝓅, written 𝓆 ↩→ 𝓅, if |𝓆| ⊆ |𝓅|, and if that inclusion: (1) preserves down-closed sets,

i.e. 𝒞(𝓆) ⊆ 𝒞(𝓅); and (2) preserves causality, i.e. for all 𝑒, 𝑒 ′ ∈ |𝓆|, if 𝑒 ≤𝓆 𝑒 ′ then 𝑒 ≤𝓅 𝑒 ′ as well.

Definition 5.6. A rigid family F is a non-empty set of finite partial orders which is:

rigid-closed: if 𝓅 ∈ F and 𝓆 ↩→ 𝓅, then 𝓆 ∈ F ,

binary-compatible: if 𝑋 ⊆𝑓 F , then 𝑋 ↑ iff for all 𝓆,𝓅 ∈ 𝑋 , {𝓆,𝓅}↑.
where 𝑋 ↑means that there is 𝓇 ∈ F such that for all 𝓆 ∈ 𝑋 , 𝓆 ↩→ 𝓇.

We added binary-compatible to the definition, to match our event structures with binary conflict.

A rigid family F collects causal executions. Particularly interesting are the primes of F , i.e.
those 𝓆 ∈ F with a top element top(𝓆) = 𝑒: those can be thought of as a single event 𝑒 , with a

causal history leading to 𝑒 . Indeed, the reconstructed event structure will have the primes as events:

Proposition 5.7. For F a rigid family, the data Pr(F ) = ( | Pr(F )|, ≤Pr(F) , #Pr(F) ) defined by:

| Pr(F )| = {𝓆 ∈ F | 𝓆 prime}
𝓆 ≤Pr(F) 𝓅 ⇔ 𝓆 ⊆ 𝓅

¬(𝓆 #Pr(F) 𝓅) ⇔ {𝓆,𝓅}↑ ,
is an event structure with 𝜒F : 𝒞(Pr(F )) � F an order-isomorphism.

The proof is routine – 𝜒F takes 𝑥 ∈ 𝒞(Pr(F )) to its sup ∨𝑥 ∈ F obtained as the (necessarily)

compatible union of all partial orders in 𝑥 , while 𝜒−1F takes 𝓆 ∈ F to the set of primes below 𝓆.
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5.2.2 Causal analysis of runs. Now, fix a Petri strategy 𝝈 : 𝐴 ⊢ 𝐵. From 𝝈 we shall extract a rigid

family with one partial order for each run generating a valid play. Our first definition is:

Definition 5.8. Consider 𝜌 : ∅ −→→𝝈 𝛾 a valid run on 𝐴 ⊢ 𝐵, i.e. s.t. play(𝜌) ∈ Plays(𝐴 ⊢ 𝐵).
Write IT𝜌 the set of t ∈ IT𝝈 s.t. t ⊎ 𝛾 appears in 𝜌 for some 𝛾 . We set binary relations on IT𝜌 :

t ◁𝐴 t′ ⇔ t : 𝛼 𝑎↦−→ 𝛽, t′ : 𝛼 ′ 𝑎′↦−→ 𝛽 ′, 𝑎 _𝐴 𝑎
′ ,

t ◁𝝈 t′ ⇔ new(t) ∩ pre(t′) ≠ ∅ ∨ post(t) ∩ eat(t′) ≠ ∅
Then, we set ◁𝜌 = ◁𝐴 ∪ ◁𝝈 .

It is obvious that ◁𝜌 is acyclic, because if t ◁𝜌 t′, by definition tmust appear before t′ in 𝜌 . Hence
its reflexive transitive closure is a partial order, yielding a poset𝒯(𝜌) = (IT𝜌 , ≤𝜌 ).

The poset𝒯(𝜌) is generated by two kinds of basic causal dependencies. Firstly, ◁𝐴 imports the

“static” immediate causal links enforced by the game. Secondly, ◁𝝈 carries the “dynamic” immediate

causal links imposed by the token game itself: t ◁𝝈 t′ if t′ expects some tokils produced by t; or if t
requires the presence of some tokils later destroyed by t′.
We show that the set of all𝒯(𝜌) forms a rigid family – this rests on a few observations. First:

Lemma 5.9. Consider 𝜌, 𝜌 ′ two valid runs on 𝝈 . If IT𝜌 = IT𝜌′ , then𝒯(𝜌) = 𝒯(𝜌 ′).

This is immediate since Definition 5.8 does not depend on the order of transitions in 𝜌 .

This lemma draws interest to the sets of itransitions arising from valid runs. If x ⊆𝑓 IT𝝈 , x is a
history of𝝈 , written x ∈ Hist(𝝈), if there is 𝜌 : ∅ −→→𝝈 𝛼 valid s.t. x = IT𝜌 (note the change of fonts,
to distinguish x from a configuration). By Lemma 5.9, Definition 5.8 yields a poset𝒯(x) = (x, ≤x)
for all x ∈ Hist(𝝈) – as ≤x is fully induced by x, we also refer to𝒯(x) as the history.

Proposition 5.10. The set comprising all𝒯(x) for x ∈ Hist(𝝈), is a rigid family written𝒯(𝝈).
Moreover,𝒯(𝝈) (ordered by rigid inclusion) is order-isomorphic to Hist(𝝈) (ordered by inclusion).

See Appendix D.1. Propositions 5.7 and 5.10 give Pr(𝒯(𝝈)), with 𝒞(Pr(𝒯(𝝈))) � Hist(𝝈).

5.2.3 Construction of a strategy. The above gives us an event structure Pr(𝒯(𝝈)) but not quite
the right one for a strategy: its events correspond to all itransitions, but that includes neutral
itransitions not accounted for by strategies. To remove them, we use projection:

Lemma 5.11. Consider 𝐸 an event structure, and 𝑉 ⊆ |𝐸 | any set of events.
Then the projection 𝐸 ↓ 𝑉 is an event structure, with components: events, |𝐸 ↓ 𝑉 | = 𝑉 ; causality,

𝑒 ≤𝐸↓𝑉 𝑒
′ iff 𝑒 ≤𝐸 𝑒

′; conflict, 𝑒 #𝐸↓𝑉 𝑒 ′ iff 𝑒 #𝐸 𝑒 ′. Moreover, we have an order-isomorphism

𝒞(𝐸 ↓ 𝑉 ) � 𝒞𝑉 (𝐸)
where 𝒞𝑉 (𝐸) is the maximally visible configurations, i.e. the 𝑥 ∈ 𝒞(𝐸) with maximal events in 𝑉 .

Proof. Direct; the order-iso sends 𝑥 ∈ 𝒞(𝐸 ↓ 𝑉 ) to [𝑥]𝐸 = {𝑒 ′ ∈ |𝐸 | | ∃𝑒 ∈ 𝑥, 𝑒 ′ ≤𝐸 𝑒}. □

Say x ∈ 𝒯(𝝈) is visible if its top element is a visible itransition written t : 𝛼 𝑚↦−→ 𝛽 – in that

case we write t = top(x) (and recall 𝜕𝝈 (t) =𝑚). We write𝒱𝝈 the set of visible x ∈ 𝒯(𝝈).
We are finally in position to unfold a Petri strategy 𝝈 : 𝐴 ⊢ 𝐵:

Proposition 5.12. The event structure𝒰(𝝈) = Pr(𝒯(𝝈)) ↓𝒱𝝈 , equipped with the display map

𝜕𝒰(𝝈 ) : |𝒰(𝝈) | → |𝐴 ⊢ 𝐵 |
𝓆 ↦→ 𝜕𝝈 (top(𝓆))

is a strategy in the sense of Definition 4.6. Moreover,𝒰(𝝈) is negative if 𝝈 is.
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Proof. From the order-isos 𝒞(𝒰(𝝈)) � 𝒞𝒱𝝈 (Pr(𝒯(𝝈))) and 𝒞(Pr(𝒯(𝝈))) � 𝒯(𝝈), we get

𝐾𝝈 : 𝒞(𝒰(𝝈)) � 𝒯𝑉 (𝝈) (4)

an order-iso with 𝒯
𝑉 (𝝈) the set of histories whose maximal elements are visible. It sends 𝑥 ∈

𝒞(𝒰(𝝈)) to ∨𝑥 ∈ 𝒯𝑉 (𝝈), and its inverse sends 𝓆 ∈ 𝒯𝑉 (𝝈) to {𝓅 ↩→ 𝓆 | 𝓅 ∈ 𝒱𝝈 prime}.
Rule-abiding. For 𝑥 ∈ 𝒞(𝒰(𝝈)), 𝜕𝒰(𝝈 ) (𝑥) is easily characterized as the set of labels of visible

itransitions in 𝐾𝝈 (𝑥) ∈ 𝒯(𝝈) – a configuration of 𝐴 ⊢ 𝐵, since histories originate in valid runs.

Locally injective. Likewise, through 𝐾𝝈 this boils down to the fact that no two visible itransitions

of 𝐾𝝈 (𝑥) may have the same label, as that would contradict condition non-repetitive of plays.
Courteous, receptive, negative. See Appendix D.1 for details. □

Finally, to prove its functoriality, the following straightforward lemma will be helpful – where

𝒯
+ (𝝈), the +-covered histories of 𝝈 , are those histories whose maximal transitions are positive.

Lemma 5.13. The order-isomorphism (4) of Lemma 5.12 specializes to 𝐾+
𝝈 : 𝒞

+(𝒰(𝝈)) � 𝒯+ (𝝈)
s.t. for all 𝑥 ∈ 𝒞+(𝒰(𝝈)), we have 𝜕𝒰(𝝈 ) (𝑥) = 𝜕𝝈 (𝐾+

𝝈 (𝑥)) the labels of visible transitions in 𝐾+
𝝈 (𝑥).

5.3 Unfolding as an IPA-functor
We show unfolding preserves the interpretation of IPA – the main challenge is composition.

5.3.1 Preservation of composition. Recall from Proposition 4.11 that given strategies 𝜎 : 𝐴 ⊢ 𝐵
and 𝜏 : 𝐵 ⊢ 𝐶 , +-covered configurations of 𝜏 ⊙ 𝜎 exactly correspond to causally compatible pairs of
𝑥𝜎 ∈ 𝒞+(𝜎) and 𝑥𝜏 ∈ 𝒞+(𝜏) such that 𝑥𝜎 and 𝑥𝜏 match on 𝐵 (through their respective display maps),

and such that the induced synchronization is secured, i.e. deadlock-free. The crux of preservation of

composition is a corresponding statement for histories of the composition of Petri strategies.

For Petri strategies 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 , we repeat the constructions of Section 4.2.3. Given

x𝝈 ∈ 𝒯+ (𝝈), write 𝜕𝝈 (x𝝈 ) = x𝝈
𝐴
⊢ x𝝈

𝐵
. Histories x𝝈 ∈ 𝒯+ (𝝈) and x𝝉 ∈ 𝒯+ (𝝉 ) are matching if

x𝝈
𝐵
= x𝝉

𝐵
; so it is unambiguous to write 𝜕𝝈 (x𝝈 ) = 𝑥𝐴 ⊢ 𝑥𝐵 and 𝜕𝝉 (x𝝉 ) = 𝑥𝐵 ⊢ 𝑥𝐶 . We set

𝜕ℓ𝝈 : x𝝈 ⇀ 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶
t ↦→ ℓ (𝑎) if 𝜕𝝈 (t) = ℓ⊢ (𝑎),
t ↦→ 𝓂(𝑏) if 𝜕𝝈 (t) = 𝓇⊢ (𝑏),

𝜕𝓇𝝉 : x𝝉 ⇀ 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶
t ↦→ 𝓂(𝑏) if 𝜕𝝉 (t) = ℓ⊢ (𝑏),
t ↦→ 𝓇(𝑐) if 𝜕𝝉 (t) = 𝓇⊢ (𝑐).

and undefined otherwise (i.e. for neutral itransitions). We define:

Definition 5.14. Consider x𝝈 ∈ 𝒯+ (𝝈) and x𝝉 ∈ 𝒯+ (𝝉 ) matching.

They are causally compatible if the relation ◁ = ◁𝝈 ⊎ ◁𝝉 on 𝑥𝐴 ∥ 𝑥𝐵 ∥ 𝑥𝐶 set with:

𝜕ℓ𝝈 (t) ◁𝝈 𝜕ℓ𝝈 (t′) for t <x𝝈 t′

𝜕𝓇𝝉 (t) ◁𝝉 𝜕𝓇𝝉 (t′) for t <x𝝉 t′

is acyclic. We also say that the pair x𝜎 , x𝜏 is secured.

This is by design almost a copy of Definition 4.10. As for strategies, we have (see Appendix D.2):

Proposition 5.15. Consider 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies. Then, there is an order-iso:

(− ⊙ −) : {(x𝝉 , x𝝈 ) ∈ 𝒯+ (𝝉 ) ×𝒯+ (𝝈) | causally compatible} � 𝒯+ (𝝉 ⊙ 𝝈)

such that for x𝝈 ∈ 𝒯+ (𝝈), x𝝉 ∈ 𝒯+ (𝝉 ) causally compatible, 𝜕𝝉 ⊙𝝈 (x𝝉 ⊙ x𝝈 ) = x𝝈
𝐴
⊢ x𝝉

𝐶
.

Proposition 5.16. For 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies,𝒰(𝝉 ⊙ 𝝈) � 𝒰(𝝉 ) ⊙𝒰(𝝈).
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Proof. We may deduce preservation of composition simply by manipulating isos:

𝒞
+(𝒰(𝝉 ⊙ 𝝈)) � 𝒯

+ (𝝉 ⊙ 𝝈)
� {(x𝝈 , x𝝉 ) ∈ 𝒯+ (𝝈) ×𝒯+ (𝝉 ) | causally compatible}
� {(𝑥𝒰(𝝈 ) , 𝑥𝒰(𝝉 ) ) ∈ 𝒞+(𝒰(𝝈)) ×𝒞+(𝒰(𝝉 )) | causally compatible}
� 𝒞

+(𝒰(𝝉 ) ⊙𝒰(𝝈))

via Lemma 5.13, Proposition 5.15, and Lemma 5.13 – preservation of causal compatibility follows

directly from the order-isomorphism. All these steps preserve displays to the game. By Proposition

4.11, it follows that𝒰(𝝉 ⊙ 𝝈) � 𝒰(𝝉 ) ⊙𝒰(𝝈) as required. □

5.3.2 Wrapping up. For other operations (tensor, currying, promotion), their preservation by the

unfolding is much more direct; primitives are shown to unfold to the adequate strategy via a

characterization of their +-covered histories – details appear in Appendices D.3 and D.4. Altogether:

Theorem 5.17. Unfolding yields an IPA-functor𝒰 : PStrat → Strat.

Following [Castellan and Clairambault 2020; Castellan et al. 2019], a formal description of the

causal behaviour of any Γ ⊢ 𝑀 : 𝐴 as an event structure can be obtained by its interpretation

J𝑀KStrat ∈ Strat(!JΓK, J𝐴K). Theorem 5.17 shows that it can also be obtained more directly by purely

operational means, through the unfolding of the abstract machine initialized on𝑀 , i.e. J𝑀KPStrat.
Finally, Theorem 3.20 follows from Theorems 4.12 and 5.17, Proposition 5.5, and Lemma 2.3.

6 IMPLEMENTATION
We implemented our translation from IPA to Petri strategies in an interactive web application

available here with some documentation here. The interface lets the user enter a IPA program (or

choose from a list of examples) and then displays the Petri strategy. The user can then simulate

runs by firing available transitions and see the tokens flow through the net. The implementation

only displays the data component of a token, but the exponential stack can be obtained by hovering

the mouse above the token. Likewise, transition rules are displayed by hovering the mouse above

transitions, though written in an undocumented stack language.

a

ℓ

b0

. . . . . .

. . .

{

c

. . .

Our translation, following the categorical semantics, tends to generate large

Petri strategies. To keep the nets at a reasonable size, we have implemented several

optimisations. The first optimisation is to eliminate locations and transitions that

are unreachable from a negative transition, or that never reach a positive transition.

Such “dead code” can occur during the composition. Moreover, when we have

several transitions occurring in a simple sequence, we combine them into one by

composing their transition functions and eliminate the intermediate transitions

and locations. One example of such optimisation is represented on the right,

where we merge a and b0 and remove the location ℓ . The new transition c has

pre(c) = pre(a) and post(c) = post(a) \ {ℓ} ∪ post(c) and transition function:

𝛿 ⟨c⟩(𝛼) = 𝛿 ⟨a⟩(𝛼) \ {t} ∪ 𝛿 ⟨b⟩({t}), where t denotes the tokil at ℓ in 𝛿 ⟨a⟩(𝛼).
There are minor inconsistencies between examples given in the paper and the implementation:

firstly, optimization choices are not unique. In the paper, they are chosen so as to make transition

functions more intuitive, which sometimes leads to different choices (compare e.g. Figure 6 with
this). Secondly, in some examples we simplify the exponential signatures used by a strategy rather

than using directly those arising from the interpretation (compare e.g. Figure 20 with this).

https://ipatopetrinets.github.io/
https://ipatopetrinets.github.io/doc.html
https://ipatopetrinets.github.io/#1
https://ipatopetrinets.github.io/index.html#12
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7 CONCLUSION
Though this is a theoretical contribution, we believe it is worth exploring applications to the

compilation and analysis of higher-order, concurrent, effectful programming languages.

Firstly, our translation cleanly confines the infinity to tokens (data and exponential signatures).
Forgetting colours, we immediately obtain a finitary over-approximation of the behaviour of

programs, a Petri net in the usual sense, that may be used to prove e.g. safety properties. This may

be refined by, rather than getting entirely rid of the infinite behaviour, handling it symbolically or

over-approximating via abstract interpretation – perhaps offering a new truly concurrent basis for

the static analysis of higher-order concurrent programs.

Secondly, GoI has been proposed in the past as an approach for the compilation of functional

languages, suggested in particular by connections with Lamping’s optimal reduction for the 𝜆-

calculus [Asperti et al. 1994; Gonthier et al. 1992; Lamping 1990]. Perhaps this work suggests a way

to reap the rewards of this connection beyond purely functional languages.

Thirdly, another merit in using Petri strategies as an intermediate language is that the unfolding

theorem (Theorem 5.17) provides clean and formal semantics which may serve as guide or semantic

justification for optimizations, including those that rely on causal information.

IPA is of course hardly a realistic programming language, but we do not foresee any fundamental

obstacle in generalizing this approach. In earlier work on GoI, handling call-by-value has sometimes

proved a challenge, e.g. requiring repeating computation [Dal Lago et al. 2015], which breaks the

expected cost model – this motivated the recent dynamic GoI of [Muroya and Ghica 2019]. In

contrast, Petri strategies support a controlled evaluation order usingmemoizationwithout repetition,

as already illustrated in the let binding included in our version of IPA.
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Basic red. for PCF

(𝜆𝑥𝐴 . 𝑀) 𝑁 { 𝑀 [𝑁 /𝑥]
if 𝑏 𝑁tt 𝑁ff { 𝑁𝑏

Y𝑀 { 𝑀 (Y𝑀)
let 𝑥 = 𝑣 in𝑀 { 𝑀 [𝑣/𝑥]

f (𝑣1, 𝑣2) { 𝑣

(if f (𝑣1, 𝑣2) = 𝑣)

Basic reductions for references and semaphores
newref 𝑥 in 𝑣 { 𝑣

newsem𝑥 in 𝑣 { 𝑣

Stateful reductions
⟨!ℓ, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑛, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩

⟨ℓ:=𝑛, 𝑠 ⊎ {ℓ ↦→ _}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩
⟨grab(ℓ), 𝑠 ⊎ {ℓ ↦→ 0}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 1}⟩

⟨release(ℓ), 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨skip, 𝑠 ⊎ {ℓ ↦→ 0}⟩ (𝑛 > 0)

Stateless context rules
𝑀 { 𝑀 ′

𝑀 𝑁 { 𝑀 ′𝑁

𝑀 { 𝑀 ′

if𝑀 𝑁1 𝑁2 { if𝑀 ′𝑁1 𝑁2

𝑀 { 𝑀 ′

!𝑀 { !𝑀 ′
𝑁 { 𝑁 ′

𝑀:=𝑁 { 𝑀:=𝑁 ′

𝑀 { 𝑀 ′

grab(𝑀) { grab(𝑀 ′)
𝑀 { 𝑀 ′

release(𝑀) { release(𝑀 ′)
𝑀 { 𝑀 ′

𝑀:=𝑣 { 𝑀 ′
:=𝑣

𝑁 { 𝑁 ′

let 𝑥 = 𝑁 in𝑀 { let 𝑥 = 𝑁 ′ in𝑀

𝑀1 { 𝑀 ′
1

f (𝑀1, 𝑀2) { f (𝑀 ′
1
, 𝑀2)

𝑀2 { 𝑀 ′
2

f (𝑀1, 𝑀2) { f (𝑀1, 𝑀
′
2
)

Stateful context rules

⟨𝑀 [ℓ/𝑥], 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑀 ′[ℓ/𝑥], 𝑠 ′ ⊎ {ℓ ↦→ 𝑛′}⟩
⟨newref 𝑥:=𝑛 in𝑀, 𝑠⟩ { ⟨newref 𝑥:=𝑛′ in𝑀 ′, 𝑠 ′⟩

(ℓ ∈ L fresh)

⟨𝑀 [ℓ/𝑥], 𝑠 ⊎ {ℓ ↦→ 𝑛}⟩ { ⟨𝑀 ′[ℓ/𝑥], 𝑠 ′ ⊎ {ℓ ↦→ 𝑛′}⟩
⟨newsem𝑥:=𝑛 in𝑀, 𝑠⟩ { ⟨newsem𝑥:=𝑛′ in𝑀 ′, 𝑠 ′⟩

(ℓ ∈ L fresh)

Fig. 24. Operational semantics of IPA

A OPERATIONAL SEMANTICS
We include in Figure 24 the operational semantics of IPA. Here,𝑀 { 𝑁 stands for

⟨𝑀, 𝑠⟩ { ⟨𝑁, 𝑠⟩ ,

i.e. all rules operate on configurations ⟨𝑀, 𝑠⟩, but only the relevant part of the tuple is shown.

B THE IPA-STRUCTURE Strat

B.1 Categorical structure
Section 4.2 already contains the data of Strat, and composition. It remains to define:

B.1.1 Copycat. Copycat may be defined on any game, but it is slightly simpler on arenas:

Definition B.1. For each arena 𝐴, the copycat strategy cc𝐴 : 𝐴 ⊢ 𝐴 is defined as having:

| cc𝐴 | = |𝐴 ⊢ 𝐴|
𝜕 cc𝐴 (𝑚) = 𝑚

𝒾(𝑎) ≤ cc𝐴
𝒾
′(𝑎) ⇔ 𝑎 <𝐴 𝑎

′
; or 𝑎 = 𝑎′, pol(𝒾(𝑎)) = − and pol(𝒾′(𝑎)) = +

𝒾(𝑎) # cc𝐴
𝒾
′(𝑎′) ⇔ 𝑎 #𝐴 𝑎

′ ,

where 𝒾, 𝒾′ ∈ {ℓ⊢, 𝓇⊢}.
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Copycat acts as an asynchronous forwarder, simply receptive to all Opponent moves and prepared

to forward them to the other side as soon as they become available. This means that its +-covered
configurations, where all moves have been successfully forwarded, have a particularly simple shape:

Lemma B.2. Consider 𝐴 any arena. Then, we have 𝒞+( cc𝐴) = {𝑥𝐴 ⊢ 𝑥𝐴 ∈ 𝒞(𝐴 ⊢ 𝐴) | 𝑥𝐴 ∈ 𝒞(𝐴)}.

From Lemma 4.9 this characterizes cc𝐴 uniquely up to iso, just like Proposition 4.11 for composition.

It follows from these two facts that composition preserves isomorphisms, that it is associative and

that identities are neutral for composition up to isomorphism, see [Castellan et al. 2017] for details.

Corollary B.3. There is Strat, a category having arenas as objects, as morphisms from 𝐴 to 𝐵 the
negative strategies on the game 𝐴 ⊢ 𝐵 up to isomorphism, and copycat strategies as identities.

Unlike PStruct or PStrat, Strat is a category satisfying the identity laws – though this fact will

not be directly useful for us in this paper.

B.2 Strat as an IPA-structure: Operations
We detail the different operations involved in the IPA-structure.

B.2.1 Tensor. Fix 𝜎1 ∈ Strat(𝐴1, 𝐵1) and 𝜎2 ∈ Strat(𝐴2, 𝐵2). We define:

Definition B.4. We define 𝜎1 ⊗ 𝜎2 ∈ Strat(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) with:
|𝜎1 ⊗ 𝜎2 | = |𝜎1 | + |𝜎2 |
≤𝜎1⊗𝜎2 = ≤𝜎1 + ≤𝜎2

#𝜎1⊗𝜎2 = #𝜎1 + #𝜎2

𝜕𝜎1⊗𝜎2 (ℓ (𝑚)) = 𝜕𝜎1 (𝑚)
𝜕𝜎1⊗𝜎2 (𝓇(𝑚)) = 𝜕𝜎2 (𝑚)

The conditions for a strategy are straightforward, and so is:

Proposition B.5. The strategy 𝜎1 ⊗ 𝜎2 ∈ Strat(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) satisfies:
(− ⊗ −) : 𝒞+(𝜎1) ×𝒞+(𝜎2) → 𝒞

+(𝜎1 ⊗ 𝜎2)
such that 𝜕𝜎1⊗𝜎2 (𝑥𝜎1 ⊗ 𝑥𝜎2 ) = (𝑥𝜎1

𝐴1

⊗ 𝑥𝜎2
𝐴2

) ⊢ (𝑥𝜎1
𝐵1

⊗ 𝑥𝜎2
𝐵2

) for all 𝑥𝜎1 ⊗ 𝑥𝜎2 ∈ 𝒞+(𝜎1 ⊗ 𝜎2).
Moreover, 𝜎1 ⊗ 𝜎2 is the unique strategy on 𝐴1 ⊗ 𝐴2 ⊢ 𝐵1 ⊗ 𝐵2 satisfying this property.

Proof. The property is a direct verification, and uniqueness follows from Lemma 4.9. □

B.2.2 Currying. As for Petri structures, we start with renaming.

Definition B.6. Consider 𝜎 a strategy on game 𝐴, and 𝑓 : |𝐴| → |𝐵 |.
Then, we define the renaming to be as 𝜎 except 𝜕𝜎 [𝑓 ] (𝑚) = 𝑓 (𝜕𝜎 (𝑚)).

Without additional conditions, there is no reason why 𝜎 [𝑓 ] would be a strategy in general. A

convenient situation is when 𝑓 preserves sufficiently rigidly the rules of the game:

Proposition B.7. We say that 𝑓 : |𝐴| → |𝐵 | is valid if it is a map of es, additionally satisfying
hypotheses receptive and courteous from Definition 4.6

If 𝜎 : 𝐴 and 𝑓 is valid, then 𝜎 [𝑓 ] is a strategy on 𝐵.

Proof. Straightforward. □

However, we cannot use this directly for currying, because the function

ΛΓ,Δ
𝑥 :𝐴,𝑂

: | ! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝑂 | → | ! &[Γ,Δ] ⊢ !𝐴 ⊸ 𝑂 |
(m, s, d) ↦→ (Λ𝑥 (m), s, d)
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using Λ𝑥 from Definition 3.15, is not valid (a singleton configuration in 𝐴 on the left hand side is

indeed sent to a non-configuration on the right hand side). However, we do have:

Proposition B.8. Consider 𝜎 ∈ Strat(! &[Γ, 𝑥 : 𝐴,Δ],𝑂).
Then, there exists a unique Λ(𝜎) ∈ Strat(! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝑂) such that

𝜑 : 𝒞
+(𝜎) � 𝒞+(Λ(𝜎))

and satisfying that 𝜕Λ(𝜎) (𝜑 (𝑥𝜎 )) = ΛΓ,Δ
𝑥 :𝐴,𝑂

(𝜕𝜎 (𝑥𝜎 )) for all 𝑥𝜎 ∈ 𝒞+(𝜎).

Proof. Existence. We set Λ(𝜎) as 𝜎 [ΛΓ,Δ
𝑥 :𝐴,𝑂

] even though ΛΓ,Δ
𝑥 :𝐴,𝑂

is not valid; that this is still

well-defined follows directly from 𝜎 negative (see [Castellan and Clairambault 2020, Lemma 4.25]).

Uniqueness. Direct from Lemma 4.9. □

B.2.3 Promotion. Next we define the promotion of 𝜎 ∈ Strat(!𝐴, 𝐵).
First, for any arena 𝐴, we define the function

dig𝐴 : ‼𝐴 → !𝐴

e1 :: (e2 ::𝑚) ↦→ ⟨e1, e2⟩ ::𝑚

yielding a map of event structures. If 𝜎 is a strategy, we write 𝒞
+,≠∅ (𝜎) the set of +-covered,

non-empty configurations of 𝜎 . Finally, for 𝑋 a set we write Fam(𝑋 ) for the set of families (𝑥𝑖 )𝑖∈𝐼
where 𝑥𝑖 ∈ 𝑋 and 𝐼 ⊆ E is a finite subset of exponential signatures.

With these notations in place, we have:

Proposition B.9. There is a strategy 𝜎† ∈ Strat(!𝐴, !𝐵), unique up to iso, such that there is

[−] : Fam(𝒞+,≠∅ (𝜎)) � 𝒞+(𝜎†)
satisfying that for all (𝑥e)e∈𝐸 ∈ Fam(𝒞+,≠∅ (𝜎)), we have

𝜕𝜎† ( [(𝑥e)e∈𝐸]) = dig

(⊎
e∈𝐸

e :: 𝑥e
!𝐴

)
⊢

(⊎
e∈𝐸

e :: 𝑥e𝐵

)
writing 𝜕𝜎 (𝑥e) = 𝑥e

!𝐴
⊢ 𝑥e

𝐵
for all e ∈ 𝐸.

Proof. Existence. Straightforward from [Castellan and Clairambault 2020, Definition 4.27] and

renaming following dig.
Uniqueness. Direct from Lemma 4.9. □

B.3 Strat as an IPA-Structure: Primitives
B.3.1 Copycat strategies. We first address the three primitives arising as copycat-like strategies:

variable, evaluation, and contraction.

Definition B.10. Consider Γ, 𝑥 : 𝐴,Δ a semantic context. Then we set VarΓ,Δ
𝑥 :𝐴

as cc𝐴 [Var𝑥 ] where

Var𝑥 : (𝐴 ⊢ 𝐴) → (! &[Γ, 𝑥 : 𝐴,Δ] ⊢ 𝐴)
(𝓇⊢m, s, d) ↦→ (𝓇⊢m, s, d)
(ℓ⊢m, s, d) ↦→ (ℓ⊢𝒾𝑥& m, ♦ :: s, d)

Likewise, the evaluation morphism is simply by renaming.

Definition B.11. Consider 𝐴,𝑂 arenas with 𝑂 well-opened.

Then we set ev𝐴,𝑂 = cc𝐴⊸𝑂 [Ω] where Ω is that of Definition 3.18 canonically extended to moves.

Finally, we define copycat. As in the main text, for simplicity we give the binary case.
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Definition B.12. Consider 𝐴 an arena. Then we set c𝐴 = cc !𝐴⊗!𝐴 [c] ∈ Strat(!𝐴, !𝐴 ⊗ !𝐴) where
c : (!𝐴 ⊗ !𝐴 ⊢ !𝐴 ⊗ !𝐴) ⇀ (!𝐴 ⊢ !𝐴 ⊗ !𝐴)

(ℓ⊢ℓ⊗m, e :: s, d) ↦→ (ℓ⊢m, (ℓ!e) :: s, d)
(ℓ⊢𝓇⊗m, e :: s, d) ↦→ (ℓ⊢m, (𝓇!e) :: s, d)

(𝓇⊢m, s, d) ↦→ (𝓇⊢m, s, d)

For the unfolding, it will be convenient to have the following characterization:

Proposition B.13. For any arena 𝐴, 𝒞+(c𝐴) = {ℓ
!
(𝑥!𝐴) ⊎ 𝓇! (𝑦!𝐴) ⊢ 𝑥!𝐴 ⊗ 𝑦!𝐴 | 𝑥!𝐴, 𝑦!𝐴 ∈ 𝒞(!𝐴)}.

Proof. Immediate by Lemma B.2 and definition. □

B.3.2 Constants, conditional, queries. The strategies are displayed in Figure 25. Note that some of

these diagrams use a symbolic representation; whenever there is a branch starting with a negative

move with some data, there actually is a branch for any instance of the data allowed in the game.

B.3.3 Let. We illustrate the strategy let in Figure 26. Note that there is a similar call to !X for all

exponential signature e ∈ E.

B.3.4 Recursion. In [Castellan and Clairambault 2020; Castellan et al. 2019], the recursion combi-

nator is obtained via the usual recipe in denotational semantics, as the least fixed point of

𝐹 ↦→ (𝑓 : 𝑂 → 𝑂 ⊢ 𝐹 𝑓 ) .
Let us give a direct description of the strategy obtained (the recursive equation gives a different

choice of copy indices, which does not matter up to the equivalence of strategies in [Castellan and

Clairambault 2020; Castellan et al. 2019] – the choice we use here allows for a lighter presentation).

Let us start by drawing the strategy on U. We use particular exponential signatures generated by

() := ℓ
!
♦

(e𝑛+1, e𝑛, . . . , e1) := 𝓇
!
⟨e𝑛+1, (e𝑛, . . . , e1)⟩ ,

yielding (e𝑛, . . . , e1) ∈ E for each e1, . . . , e𝑛 ∈ E. With this convention, we draw the recursion

combinator for U in Figure 27. Again the representation is symbolic, with similar branches for all

e1, . . . , e𝑛+1 ∈ E. We leave in grey the answers, which always propagate back to the previous call.

We consider Y𝑂 for 𝑂 well-opened, so the recursion strategy in general has a spine exactly as

the black part of Figure 27. The rest of the strategy is simple copycat behaviour; which may be

simply described via the following direct characterization of the +-covered configurations of Y𝑂 :

Proposition B.14. For𝑂 a well-opened arena, the strategy Y𝑂 has events a subset |Y𝑂 | ⊆ |!(!𝑂 ⊸
𝑂) ⊢ 𝑂 |, and +-covered configurations the compatible unions of configurations of the form

∅ ⊸ (() :: 𝑥) ⊢ 𝑥

(e𝑛+1 :: (e𝑛, . . . , e1) :: 𝑥) ⊸ ((e𝑛+1, . . . , e1) :: 𝑥) ⊢ ∅ ,
for 𝑛 ∈ N, e1, . . . , e𝑛+1 ∈ E, 𝑥 ∈ 𝒞(𝑂); compatible means that the union is in 𝒞(!(!𝑂 ⊸ 𝑂) ⊢ 𝑂)).

We slightly reformulate this proposition to give a more explicit description of +-covered configu-
rations of Y𝑂 . In the next lemma, we use the injection of (·) : E∗ → E.

Lemma B.15. There is an order-isomorphism between 𝒞+(Y𝑂 ) and tuples ⟨𝐽 ⊆ E+, 𝑧 ∈ 𝒞(𝑂), (𝑥s ∈
𝒞

≠∅ (𝑂))s∈𝐽 ⟩ such that 𝐽 is suffix-closed, and empty if 𝑧 is.1 The isomorphism sends ⟨𝐽 , 𝑧, (𝑥s)⟩ to
(∅ ⊸ () :: 𝑧) ⊎ (e :: (s) :: 𝑥e·s ⊸ (e · s) :: 𝑥e·s)e·s∈𝐽 ⊢ 𝑧 .

1
A stack in 𝐽 represents a call stack: a list e𝑛 · e𝑛−1 · . . . · e1 represents the calls made to the argument: e1 is the first call
made in the execution, and so on.
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U

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [],✓)+

(a) skip : U

B

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], tt)+

(b) tt : B

B

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], ff)+

(c) ff : B

N

(𝓇⊢Q, [], •)−

_���
(𝓇⊢A, [], 𝑛)+

(d) 𝑛 : N

X ⊗ Y ⊢ Z

(𝓇⊢Q, [], •)−
#nnt

(ppw
(ℓ⊢ℓ⊗Q, [], •)+

_���
(ℓ⊢𝓇⊗Q, [], •)+

_���
(ℓ⊢ℓ⊗A, [], 𝑣)−

� **0
(ℓ⊢𝓇⊗A, [],𝑤)−

� ''.
(𝓇⊢A, [], f (𝑣,𝑤))+

(e) op(f)X,YZ : X ⊗ Y ⊢ Z

B ⊗ (X ⊗ X) ⊢ X

(𝓇⊢Q, [], •)−

#nnt(ℓ⊢ℓ⊗Q, [], •)+
2uu} � ��%

(ℓ⊢ℓ⊗A, [], tt)−

� &&-

(ℓ⊢ℓ⊗Q, [], ff)−

� ''.
(ℓ⊢𝓇⊗ℓ⊗Q, [], •)+

_���

(ℓ⊢𝓇⊗𝓇⊗Q, [], •)+
_���

(ℓ⊢𝓇⊗ℓ⊗A, [], 𝑣)−

� ''.

(ℓ⊢𝓇⊗𝓇⊗A, [],𝑤)−

� &&-(𝓇⊢A, [], 𝑣)+ (𝓇⊢A, [],𝑤)+

(f) ifX : B ⊗ (X ⊗ X) ⊢ X

V ⊗ N ⊢ U

(𝓇⊢Q, [], •)−
.ss{

(ℓ⊢𝓇⊗Q, [], •)+
_���

(ℓ⊢𝓇⊗A, [], 𝑛)−
+rry

(ℓ⊢ℓ⊗𝓌VQ, [], 𝑛)+
_���

(ℓ⊢ℓ⊗𝓌VA, [],✓)−

� ((/ (𝓇⊢A, [],✓)+

(g) assign : V ⊗ N ⊢ U

V ⊢ N

(𝓇⊢Q, [], •)−
*qqx

(ℓ⊢𝓇VQ, [], •)+

(ℓ⊢𝓇VA, [], 𝑛)−

� &&-
(𝓇⊢A, [], 𝑛)+

(h) deref : V ⊢ N

S ⊢ U

(𝓇⊢Q, [], •)−
*qqx

(ℓ⊢ℊSQ, [], •)+

_���
(ℓ⊢ℊSA, [],✓)−

� &&-
(𝓇⊢A, [],✓)+

(i) grab : S ⊢ U

S ⊢ U

(𝓇⊢Q, [], •)−
*qqx

(ℓ⊢𝓇SQ, [], •)+
_���

(ℓ⊢𝓇SA, [],✓)−

� &&-
(𝓇⊢A, [],✓)+

(j) release : S ⊢ U

Fig. 25. Basic strategies for IPA primitives

B.3.5 New reference. Next, we introduce the strategy for reference initialization.

The intuition is that newrefX : !V ⊸ X ⊢ X applies its argument to cell : !V, the memory cell,
which implements the stateful behaviour. Just like an actual memory, cell is inherently sequential:
it treats read and write requests in some sequential order. In order to define it, we first define, for

all 𝑛 ∈ N, cell𝑛 as the language of non-empty prefixes of the infinite tree cell∅𝑛 , defined as:

cell𝐸𝑛 = (𝓇VQ, [e], •)− · (𝓇VA, [e], 𝑛)+ · cell𝐸⊎{e}𝑛 | (𝓌VQ, [e], 𝑘)− · (𝓌VA, [e],✓)+ · cell𝐸⊎{e}𝑘
,

with e ∉ 𝐸. Intuitively, words in cell𝐸𝑛 are alternating (i.e. Opponent and Player alternate) executions
of read and write requests, for a memory cell initialized with value 𝑛: upon a read request, the

memory cell returns 𝑛 and carries on with cell𝑛 . Upon a write request for 𝑘 , the memory cell returns

an acknowledgement and proceeds as cell𝑘 . The set 𝐸 propagates the set of exponential signatures

already encountered: this lets us always pick fresh exponential signatures for new queries, ensuring

words in cell𝐸𝑛 are plays on !V in the sense of Definition 5.1. We may then define:
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(!X ⊸ Y) ⊗ X ⊢ Y

(𝓇⊢Q, [], •)−

3uu~
(ℓ⊢𝓇⊗Q, [], •)+

_���
(ℓ⊢𝓇⊗A, [], 𝑣)−

1tt}
(ℓ⊢ℓ⊗𝓇⊸Q, [], •)+

_���
/ss{

(ℓ⊢ℓ⊗ℓ⊸Q, [e], •)−

_���

(ℓ⊢ℓ⊗𝓇⊸A, [],𝑤)−

� ''.
(ℓ⊢ℓ⊗ℓ⊸A, [e], 𝑣)+ (𝓇⊢A, [],𝑤)+

Fig. 26. letX,Y : (!X ⊸ Y) ⊗ X ⊢ Y

!(!U ⊸ U) ⊢ U

(𝓇⊢Q, [], •)−
'ppw

(ℓ⊢𝓇⊸Q, [()], •)+
%oou _���

(ℓ⊢ℓ⊸Q, [e1, ()], •)−

� ))/

(ℓ⊢𝓇⊸A, [()],✓)−

� ''.
(ℓ⊢𝓇⊸Q, [(𝑒1)], •)+

%oou _���

(𝓇⊢A, [],✓)+

(ℓ⊢ℓ⊸Q, [e2, (e1)], •)−

� ))/

(ℓ⊢𝓇⊸A, [(e1)],✓)−
%oou

(ℓ⊢ℓ⊸A, [e2, (e1)],✓)+ (ℓ⊢𝓇⊸Q, [(e2, e1)], •)+

. . .

(ℓ⊢𝓇⊸Q, [(e𝑛, . . . , e1)], •)+
%oou

(ℓ⊢ℓ⊸Q, [e𝑛+1, (e𝑛, . . . , e1)])−

� ))/
(ℓ⊢𝓇⊸Q, [(e𝑛+1, . . . , e1)], •)+

%oou
_���

. . . (ℓ⊢𝓇⊸A, [(e𝑛+1, . . . , e1)],✓)−
%oou

(ℓ⊢ℓ⊸A, [e𝑛+1, (e𝑛, . . . , e1)],✓)+

Fig. 27. Fixpoint combinator on U

Definition B.16. We define a prestrategy precell : !V with components:

|precell| = cell0
≤precell = ⊑

𝑠 #precell 𝑠
′ ⇔ ¬(𝑠 ⊑ 𝑠 ′ ∨ 𝑠 ′ ⊑ 𝑠)

𝜕precell (𝑠𝑎) = 𝑎 ,

where ⊑ is the prefix ordering.

It is easy to see that this indeed defines a prestrategy. An illustration may be found in [Castellan

and Clairambault 2020, Figure 39] (with a slightly different notation for moves). Next we define:

Definition B.17. We define a strategy cell : !V as: cell = cc !V ⊙ precell : !V.

Indeed, composition is well-defined on prestrategies, and the copycat envelope of a prestrategy

is always a strategy [Castellan et al. 2017]. Intuitively, this wraps the sequential behaviour of cell
by buffers, which exactly match the buffers of the Petri structure in Figure 15g.

To obtain the strategy for newrefX, we must add a copycat behaviour on X:

Definition B.18. We define a strategy newrefX : !V ⊸ X ⊢ X with components:

|newrefX | = |cell| + | cc X |
≤newrefX = (≤cell + ≤ cc X )

⊎{(𝓇((𝓇⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |cell|}
⊎{(𝓇((ℓ⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |cell|}

#newrefX = #cell + # cc X

𝜕newrefX (ℓ (𝑚)) = ℓ⊢ℓ⊸𝜕cell (𝑚)
𝜕newrefX (𝓇(ℓ⊢𝑚)) = ℓ⊢𝓇⊸𝑚

𝜕newrefX (𝓇(𝓇⊢𝑚)) = 𝓇⊢𝑚

So cell is plugged after the first Player move of cc X. In other words, newrefX first plays as copycat

on X; and plays as cell on !V when it becomes available.

For the later unfolding, we shall use the following characterization of +-covered configurations:
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Proposition B.19. There is an order-isomorphism:

⟨−,−⟩ : 𝒞+(precell) ×𝒞≠∅ (X) � 𝒞+,≠∅ (newrefX)

such that 𝜕newrefX (⟨𝑠, 𝑥⟩) = |𝑠 | ⊸ 𝑥 ⊢ 𝑥 ∈ 𝒞(!V ⊸ X ⊢ X).

Proof. By Definition B.18, the characterization of confs. of composition, and Lemma B.2. □

Above, we implicitly use the one-to-one correspondence between 𝒞
+(precell) and even-length

words in cell0; and if 𝑠 is an even length word in cell0, then |𝑠 | ∈ 𝒞(!V) is its set of events.
In a +-covered configuration of newref, all read andwrite requests have been successfully handled.

Proposition B.19 shows that besides the almost independent copycat behaviour on X, +-covered
configurations of newref exactly correspond to some sequential ordering of these requests.

B.3.6 New semaphore. The interpretation of semaphores work exactly as for references. We first

define the alternating behaviour of a semaphore as the language of non-empty prefixes of:

lock𝐸
0

= (ℊSQ, [e], •)− · (ℊSA, [e],✓)+ · lock𝐸⊎{e}
1

e ∉ 𝐸
lock𝐸𝑛 = (𝓇SQ, [e], •)− · (𝓇SA, [e],✓)+ · lock𝐸⊎{e}

0
e ∉ 𝐸, 𝑛 > 0

A semaphore with value 0 may be grabbed, carrying on with value 1. A semaphore with value

𝑛 > 0 may be released, carrying on with value 0. As for references, the next step is to form:

Definition B.20. We define a prestrategy prelock : !S with components:

|prelock| = lock0
≤prelock = ⊑

𝑠 #prelock 𝑠
′ ⇔ ¬(𝑠 ⊑ 𝑠 ′ ∨ 𝑠 ′ ⊑ 𝑠)

𝜕prelock (𝑠𝑎) = 𝑎 .

Definition B.21. We define a strategy lock : !S as lock = cc !S ⊙ prelock : !S.

Definition B.22. We define a strategy newsemX : !S ⊸ X ⊢ X with components:

|newsemX | = |lock| + | cc X |
≤newrefX = (≤lock + ≤ cc X )

⊎{(𝓇((𝓇⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |lock|}
⊎{(𝓇((ℓ⊢Q, [], •)), ℓ (𝑠)) | 𝑚 ∈ |lock|}

#newsemX = #lock + # cc X

𝜕newsemX (ℓ (𝑚)) = ℓ⊢ℓ⊸𝜕lock (𝑚)
𝜕newsemX (𝓇(ℓ⊢𝑚)) = ℓ⊢𝓇⊸𝑚

𝜕newsemX (𝓇(𝓇⊢𝑚)) = 𝓇⊢𝑚

And, finally, we have a similar characterization of (non-empty) +-covered configurations:

Proposition B.23. There is an order-isomorphism:

⟨−,−⟩ : 𝒞+(prelock) ×𝒞≠∅ (X) � 𝒞+,≠∅ (newsemX)

such that 𝜕newsemX (⟨𝑠, 𝑥⟩) = |𝑠 | ⊸ 𝑥 ⊢ 𝑥 ∈ 𝒞(!S ⊸ X ⊢ X).

This concludes the description of the IPA-structure of Strat.
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B.4 Complement: on symmetry
B.4.1 Games and strategies with symmetry. Thin concurrent games [Castellan et al. 2019] share with

AJM games the fact that strategies play explicit copy indices – in [Castellan et al. 2019] and AJM

games those are natural numbers, whereas here they are exponential signatures. The consequence

is that in order to satisfy required equational laws (typically, making ! a well-behaved exponential

modality), one must be able to consider strategies up to their choice of copy indices.

In concurrent games, this reindexing is handled by event structures with symmetry:

Definition B.24. A event structure with symmetry is 𝐸 = ( |𝐸 |, ≤𝐸, #𝐸,𝒮(𝐸)) is an es ( |𝐸 |, ≤𝐸

, #𝐸) with 𝒮(𝐸) a set of bijections between configurations:

𝜃 : 𝑥 �𝐸 𝑦

comprising all identity bijections, closed under composition and inverse, and satisfying further

bisimulation-like properties, omitted here [Castellan et al. 2019].

In [Castellan and Clairambault 2020; Castellan et al. 2019], both games and strategies are event

structures with symmetry. Intuitively, in a game 𝐴, we have 𝜃 : 𝑥 �𝐴 𝑦 in 𝒮(𝐴) when 𝜃 is an

order-isomorphism only affecting copy indices – in the terminology of this paper, it changes the

exponential signatures in the exponential stack, but leaves all other components unchanged.

The symmetry on the game yields a more permissive equivalence on strategies: namely, a weak
isomorphism 𝜑 : 𝜎 ≃ 𝜏 is an invertible map of event structure such that the triangle

𝜎
𝜑 //

𝜕𝜎 ��

𝜏

𝜕𝜏��
𝐴

commutes up to symmetry, defined as {(𝜕𝜎𝑠, 𝜕𝜏 (𝜑 (𝑠))) | 𝑠 ∈ 𝑥} ∈ 𝒮(𝐴) for all 𝑥 ∈ 𝒞(𝜎). Weak

isomorphism makes the exponential satisfy all the required laws (typically, making each !𝐴 a

commutative comonoid), which were not satisfied up to plain isomorphism.

In turn, composition must preserve weak isomorphism. But that holds only for strategies that

are uniform, i.e. invariant under the choice of copy indices. In [Castellan and Clairambault 2020;

Castellan et al. 2019], uniformity of strategies is ensured by also adjoining them a symmetry. On

a strategy 𝜎 : 𝐴, the bisimulation-like properties of 𝒮(𝜎) ensures that if Opponent changes their
copy indices, 𝜎 may change its copy indices accordingly, but not more. This makes ≃ a congruence,

and strategies up to ≃ satisfy all the required equational laws to model higher-order languages.

This issue is discussed at length in [Castellan et al. 2019].

B.4.2 Removing symmetry. Themodel developed in [Castellan and Clairambault 2020] is a structure

StratSym with two equivalences � (standard isomorphism) and ≃ (weak isomorphism
2
). Both are

preserved by all constructions, but the laws of Seely categories are satisfied with respect to ≃ only.

Now, the first observation is that though ≃ is crucial in establishing adequacy for StratSym (for

instance, the 𝛽-law in IPA is validated by the interpretation only up to ≃), the statement itself

(Theorem 4.40 in [Castellan and Clairambault 2020]) is independent of the equivalence relation. So

once adequacy is established we can ignore ≃, and from [Castellan and Clairambault 2020] we get

an IPA-structure StratSym/� with an adequate interpretation of IPA.
The next point is that symmetries do not carry operational behaviour, they are merely there to

witness uniformity so that ≃ is a congruence. As mere uniformity witnesses, they can be safely

forgotten once ≃ is out of the picture. Concretely, in all operations involved in the interpretation,

2
In fact, [Castellan and Clairambault 2020] uses a variant called positive iso, but the difference is irrelevant for this discussion.
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symmetries of the operand strategies are used in computing the symmetries of the resulting strate-

gies only – the event structure itself never depends on the symmetries of operands. Consequently:

Proposition B.25. There is a symmetry-forgetting IPA-functor StratSym/�→ Strat.

From this, it follows by Lemma 2.3 that Strat is an adequate IPA-structure.
On a foundational level, it would be interesting to see how symmetries may be obtained by

unfolding just as plain strategies. It would require setting up symmetries between histories of runs

of Petri strategies as well. But this is not necessary for our purposes, so we leave that for later.

C THE IPA-STRUCTURE PStrat

C.1 The Precategory PStrat

The main step is to prove that Petri strategies are stable under composition.

C.1.1 Composition. Consider 𝐴, 𝐵,𝐶 arenas, 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies.

The idea is simple: as Petri strategies, both 𝝈 and 𝝉 abide by the rules of the game as long as the

external Opponent does so. As no agent can be the first to break the rules, the whole interaction

ends up correct. This kind of reasoning is very common in game semantics. To formalize it, the

difficulty is not conceptual but purely notational: we need tools to project a run 𝜌 on 𝝉 ⊙ 𝝈 to runs

on 𝝈 and 𝝉 , and to an interaction in more familiar game-semantic terms:

Definition C.1. Consider the set MInt = ℓ (Moves) ⊎𝓂(Moves) ⊎ 𝓇(Moves).
An interaction is a sequence 𝑢 ∈ MInt∗. We write Int for the set of all interactions.

As in traditional play-based game semantics, an interaction has three components: 𝝈 “plays” on

ℓ,𝓂, 𝝉 “plays” on𝓂, 𝓇, and the composite 𝝉 ⊙ 𝝈 “plays” on ℓ, 𝓇. Again as in game semantics, we

shall restrict interactions to these various components. In more generality, we define:

Definition C.2. Consider 𝑓 : 𝑋 ⇀ 𝑌 , and 𝑠 ∈ 𝑋 ∗
, we define 𝑠 ↾ 𝑓 ∈ 𝑌 ∗

the restriction of 𝑠
following 𝑠 as 𝜀 ↾ 𝑓 = 𝜀, 𝑠𝑎 ↾ 𝑓 = (𝑠 ↾ 𝑓 ) 𝑓 (𝑎) if 𝑓 (𝑎) is defined, and 𝑠𝑎 ↾ 𝑓 = 𝑠 ↾ 𝑓 otherwise.

A first direct application of this notion is to project 𝑢 ∈ Int to its various components with

𝑢𝝈 = 𝑢 ↾ ℓ⊢ℓ
∗ ∪ 𝓇⊢𝓂∗ , 𝑢𝝉 = 𝑢 ↾ ℓ⊢𝓂

∗ ∪ 𝓇⊢𝓇 , 𝑢𝝉 ⊙𝝈 = 𝑢 ↾ ℓ⊢ℓ
∗ ∪ 𝓇⊢𝓇∗

where ℓ∗ : ℓ (Moves) ⇀ Moves sends ℓ (𝑚) to𝑚 and is undefined otherwise, and likewise for𝓂
∗

and 𝓇
∗
. Juxtaposition is function composition, and ∪ is the union of their graph.

We also use restriction to extract from a run 𝜌 on 𝝉 ⊙ 𝝈 an interaction, and runs 𝜌𝝈 and 𝜌𝝉
on 𝝈 and 𝝉 respectively. But the partial functions involved are more complex, and require us to

understand better the shape of instantiated transitions of 𝝉 ⊙ 𝝈 :

Lemma C.3. Consider 𝝈 and 𝝉 Petri structures.
Then, instantiated transitions of 𝝉 ⊙ 𝝈 are exactly as in Figure 28 – in the sense that that there is a

one-to-one correspondence between instantiated transitions in the premises and in the conclusion.

Using this description, we define in Figure 29 partial functions lbl⊛ : IT𝝉 ⊙𝝈 ⇀ MInt, 𝜋𝝈 :

IT𝝉 ⊙𝝈 ⇀ IT𝝈 and 𝜋𝝉 : IT𝝉 ⊙𝝈 ⇀ IT𝝉 extracting various data from instantiated transitions, following

the characterization of instantiated transitions of 𝝉 ⊙ 𝝈 given in Figure 28.

Finally, those projection functions are extended to instantiated transitions in context via:

lbl⊛ : ITC𝝉 ⊙𝝈 ⇀ MInt
t ⊎ 𝛾 ↦→ lbl⊛ (t)

𝜋𝝈 : ITC𝝉 ⊙𝝈 ⇀ ITC𝝈

t ⊎ (𝛾 +⊙ 𝛾 ′) ↦→ 𝜋𝝈 (t) ⊎ 𝛾
and symmetrically for 𝜋𝝉 : ITC𝝉 ⊙𝝈 ⇀ ITC𝝉 . Using these, from a run 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 we extract:

Int(𝜌) = 𝜌 ↾ lbl⊛ 𝜌𝝈 = 𝜌 ↾ 𝜋𝝈 , 𝜌𝝉 = 𝜌 ↾ 𝜋𝝉 ,
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M : ℓ ⊙ (𝛼) ↦−→𝝉 ⊙𝝈 ℓ
⊙ (𝛽)

𝑡0L𝛼M : 𝛼 ↦−→𝝉 𝛽

𝓇
⊙ (𝑡0)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) ↦−→𝝉 ⊙𝝈 𝓇

⊙ (𝛽)
𝑡+L𝛼M : 𝛼 ℓ⊢(𝑚)↦−→𝝈 ∅

ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M : ℓ ⊙ (𝛼) ℓ⊢(𝑚)↦−→𝝉 ⊙𝝈 ∅

𝑡+L𝛼M : 𝛼 𝓇⊢(𝑚)↦−→𝝉 ∅

𝓇
⊙ (𝑡+)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) 𝓇⊢(𝑚)↦−→𝝉 ⊙𝝈 ∅

𝑡−L(s, d)M : ∅ ℓ⊢(𝑚)↦−→𝝈 𝛽

ℓ ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢(𝑚)↦−→𝝉 ⊙𝝈 ℓ
⊙ (𝛽)

𝑡−L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→𝝉 𝛽

𝓇
⊙ (𝑡−)L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→𝝉 ⊙𝝈 𝓇

⊙ (𝛽)
𝑡+L𝛼M : 𝛼 𝓇⊢(𝑚)↦−→ ∅ 𝑡−L(s, d)M : ∅ ℓ⊢(𝑚)↦−→ 𝛽

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝛼)M : ℓ ⊙ (𝛼) ↦−→ 𝓇
⊙ (𝛽)

𝑡−L(s, d)M : ∅ 𝓇⊢(𝑚)↦−→ 𝛽 𝑡+L𝛼M : 𝛼 ℓ⊢(𝑚)↦−→ ∅
(𝑡− ⊛ 𝑡+)L𝓇⊙ (𝛼)M : 𝓇⊙ (𝛼) ↦−→ ℓ ⊙ (𝛽)

Fig. 28. Description of instantiated transitions of 𝝉 ⊙ 𝝈

lbl⊛ 𝜋𝝈 𝜋𝝉
ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M ↦→ 𝑡0L𝛼M
𝓇
⊙ (𝑡0)L𝓇⊙ (𝛼)M ↦→ 𝑡0L𝛼M
ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M ↦→ ℓ (𝑚) 𝑡+L𝛼M
𝓇
⊙ (𝑡+)L𝓇⊙ (𝛼)M ↦→ 𝓇(𝑚) 𝑡+L𝛼M
ℓ ⊙ (𝑡−)L(s, d)M ↦→ ℓ (𝑚) 𝑡−L(s, d)M
𝓇
⊙ (𝑡−)L(s, d)M ↦→ 𝓇(𝑚) 𝑡−L(s, d)M

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝛼)M ↦→ 𝓂(𝑚) 𝑡+L𝛼M 𝑡−L(s, d)M
(𝑡− ⊛ 𝑡+)L𝓇⊙ (𝛼)M ↦→ 𝓂(𝑚) 𝑡−L(s, d)M 𝑡+L𝛼M

Fig. 29. Projections of instantiated transitions

which allow us to prove the following property:

Lemma C.4. Consider 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 . Then, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 and

𝜌𝝈 : ∅ −→→ 𝛼𝝈 , 𝜌𝝉 : ∅ −→→ 𝛼𝝉

where play(𝜌) = Int(𝜌)𝝉 ⊙𝝈 , play(𝜌𝝈 ) = Int(𝜌)𝝈 and play(𝜌𝝉 ) = Int(𝜌)𝝉 .
Moreover, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ).

Proof. A lengthy and grindy induction on 𝜌 . For 𝜌 empty this is clear, otherwise we reason by

cases on the last instantiated transition in context of 𝜌 , following the Figure 28.

Consider first that we have 𝜌 ′ = 𝜌 (ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 ℓ
⊙ (𝜈) , ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

with necessarily 𝛼 = ℓ ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = ℓ ⊙ (𝜈) ⊎ 𝛾 , and 𝑡0L𝜇M : 𝜇 ↦−→𝝈 𝜈 . By IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so in particular that entails that 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇 ⊎ 𝛾𝝈 . Now, we have
𝑡0L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈 −→𝝈 𝛽𝝈

writing 𝛽𝝈 = 𝜈 ⊎ 𝛾𝝈 . Writing 𝛽𝝉 = 𝛼𝝉 = 𝛾𝝉 , we have

(𝜌 (ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡0L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈
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and (𝜌 (ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover play(𝜌 ′) = play(𝜌), Int(𝜌 ′) = Int(𝜌),
play(𝜌 ′𝝈 ) = play(𝜌𝝈 ) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making required properties obvious. Finally,

Coll(𝜌 ′) = Coll(𝜌) ∪ ℓ ⊙ (𝜈), Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) ∪ 𝜈 and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ), so Coll(𝜌 ′) =

Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. The case of a neutral transition from 𝝉 is symmetric.

Next, consider that 𝜌 ′ = 𝜌 (ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ℓ⊢ (𝑚)↦−→𝝉 ⊙𝝈 ∅ , ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

where necessarily 𝛼 = ℓ ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = 𝛾 , and 𝑡+L𝜇M : 𝜇 ℓ⊢ (𝑚)↦−→𝝈 ∅. Now, by IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so in particular that entails 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇 ⊎ 𝛾𝝈 . Now, we have
𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈 −→𝝈 𝛽𝝈

writing 𝛽𝝈 = 𝛾𝝈 . Writing 𝛽𝝉 = 𝛼𝝉 = 𝛾𝝉 , we have

(𝜌 (ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈

and (𝜌 (ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover, play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚), Int(𝜌 ′) =

Int(𝜌)ℓ (𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )ℓ⊢ (𝑚) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making the required properties

clear. Finally, Coll(𝜌 ′) = Coll(𝜌),Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ), so Coll(𝜌 ′) =

Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. The case of a positive transition from 𝝉 is symmetric.

Next, consider that we have 𝜌 ′ = 𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ ℓ ⊙ (𝜈) , ℓ ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

where necessarily, 𝛼 = 𝛾 and 𝛽 = ℓ ⊙ (𝜈) ⊎ 𝛾 , and 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝈 𝜈 . By IH, 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 ,

so that 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛾𝝈 = 𝛼𝝈 , 𝛾𝝉 = 𝛼𝝉 . Writing 𝛽𝝈 = 𝛾𝝈 ⊎ 𝜈 and 𝛽𝝉 = 𝛾𝝉 = 𝛼𝝉 , we have

(𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾))𝝈 = 𝜌𝝈 (𝑡−L(s, d)M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈

and (𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾))𝝉 = 𝜌𝝉 : ∅ −→→𝝉 𝛽𝝉 . Moreover, play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚), Int(𝜌 ′) =

Int(𝜌)ℓ (𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )ℓ⊢ (𝑚) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), making the required properties

clear. Finally, Coll(𝜌 ′) = Coll(𝜌) ∪ ℓ ⊙ (𝜈), with Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) ∪ 𝜈 and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ),
so Coll(𝜌 ′) = Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 ) follows from IH. Negative transitions from 𝝉 are symmetric.

Consider finally 𝜌 ′ = 𝜌 ((𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M ⊎ 𝛾 : ∅ −→→𝜏⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 𝓇
⊙ (𝜈) , (𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

where necessarily, 𝛼 = ℓ ⊙ (𝜇) ⊎ 𝛾 , 𝛽 = 𝓇⊙ (𝜈) ⊎ 𝛾 , and where we necessarily have

𝑡+L𝜇M : 𝜇 𝓇⊢ (𝑚)↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝉 𝜈 ,

with 𝛿𝝈 ⟨𝑡+⟩(𝜇) = (s, d), ℓ⊢ (𝑚) = (ℓ⊢ (m), s, d) where ℓ⊢ (m) = 𝜕𝝈 (𝑡+); and 𝛿𝝉 ⟨𝑡−⟩(s, d) = 𝜈 . Now,
𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

for 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 by IH, and necessarily 𝛾 = 𝛾𝝈 +⊙ 𝛾𝝉 with 𝛼𝝈 = 𝜇 ⊎ 𝛾𝝈 and 𝛼𝝉 = 𝛾𝝉 . Writing

𝛽𝝈 = 𝛾𝝈 and 𝛽𝝉 = 𝛾𝝉 ⊎ 𝜈 , we have 𝛽 = 𝛽𝝈 ⊎ 𝛽𝝉 . Hence, we can form the projected runs

𝜌 ′𝝈 = 𝜌𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 𝛽𝝈 , 𝜌 ′𝝉 = 𝜌𝝉 (𝑡−L(s, d)M ⊎ 𝛾𝝉 ) : ∅ −→→𝝉 𝛽𝝉 ,

satisfying play(𝜌 ′) = play(𝜌), Int(𝜌 ′) = Int(𝜌)𝓂(𝑚), play(𝜌 ′𝝈 ) = play(𝜌𝝈 )𝓇⊢ (𝑚) and play(𝜌 ′𝝉 ) =
play(𝜌𝝉 )ℓ⊢ (𝑚) from which the required verifications are immediate. Finally, Coll(𝜌 ′) = Coll(𝜌) ∪
𝓇
⊙ (𝜈) with Coll(𝜌 ′𝝈 ) = Coll(𝜌𝝈 ) and Coll(𝜌 ′𝝉 ) = Coll(𝜌𝝉 ) ∪ 𝜈 , so Coll(𝜌 ′) = Coll(𝜌 ′𝝈 ) +⊙ Coll(𝜌 ′𝝉 )

follows from IH. The case 𝑡− ⊛ 𝑡+ is symmetric, concluding the proof. □
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Using this lemma, we shall now prove that a valid run of 𝝉 ⊙ 𝝈 projects to valid runs on 𝝈 and 𝝉 .
For this we will also exploit the following easy lemma.

Lemma C.5. Consider 𝐴, 𝐵 arenas, and 𝑠 ∈ |𝐴 ⊢ 𝐵 |∗.
Then, 𝑠 ∈ Plays(𝐴 ⊢ 𝐵) iff 𝑠 ↾ ℓ∗⊢ ∈ Plays(𝐴) and 𝑠 ↾ 𝓇∗⊢ ∈ Plays(𝐵).

Proof. Straightforward. □

Lemma C.6. Consider 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 such that play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶).
Then, play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) and play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶).

Proof. By induction on 𝜌 . For 𝜌 empty this is clear.

Consider first that we have 𝜌 ′ = 𝜌 (ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 ℓ
⊙ (𝜈) , ℓ ⊙ (𝑡0)Lℓ ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽 ,

in that case play(𝜌 ′𝝈 ) = play(𝜌𝝈 ) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), so the property follows from IH. The

case of a neutral transition from 𝝉 is symmetric.

Consider next that 𝜌 ′ = 𝜌 (ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ℓ⊢ (𝑚)↦−→𝝉 ⊙𝝈 ∅ , ℓ ⊙ (𝑡+)Lℓ ⊙ (𝛼)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

where necessarily 𝛼 = ℓ ⊙ (𝜇) ⊎ 𝛾 and 𝛽 = 𝛾 , and 𝑡+L𝜇M : 𝜇 ℓ⊢ (𝑚)↦−→𝝈 ∅. By IH, we have

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶)

and as play(𝜌 ′𝝉 ) = play(𝜌𝝉 ), we have play(𝜌 ′𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) as required. Now, we have

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
ℓ⊢ (𝑚)−→𝝈 𝛽𝝈

with components named as in the proof of Lemma C.4, and with 𝑠 = play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵).
Hence by condition valid of Petri strategies, 𝑠ℓ⊢ (𝑚) = play(𝜌 ′𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵), which concludes

this case. The case of a positive transition from 𝝉 is symmetric.

Consider next that 𝜌 ′ = 𝜌 (𝓇⊙ (𝑡−)L(s, d)M ⊎ 𝛾) : ∅ −→→𝝉 ⊙𝝈 𝛽 , where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

ℓ ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→ ℓ ⊙ (𝜈) , ℓ ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽 ,

in that case play(𝜌 ′𝝈 ) = play(𝝈)ℓ⊢ (𝑚)− and play(𝜌 ′𝝉 ) = play(𝝉 ). By IH we have play(𝜌 ′𝝈 ) ∈
Plays(𝐴 ⊢ 𝐵) and play(𝜌 ′𝝉 ) = play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶). But by hypothesis, we have play(𝜌 ′) =

play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶). By Lemma C.5, play(𝜌)ℓ⊢ (𝑚) ↾ ℓ∗⊢ = (play(𝜌) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐴).
But play(𝜌 ′𝝈 ) ↾ ℓ∗⊢ = (play(𝜌) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐴), and play(𝜌 ′𝝈 ) ↾ 𝓇∗⊢ = play(𝜌𝝈 ) ↾ 𝓇∗⊢ , so
play(𝜌 ′𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) by Lemma C.5. The case of a negative transition from 𝝉 is symmetric.

Consider finally 𝜌 ′ = 𝜌 ((𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M ⊎ 𝛾 : ∅ −→→𝜏⊙𝝈 𝛽 where 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 ,

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 𝓇
⊙ (𝜈) , (𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M ⊎ 𝛾 : 𝛼 −→𝝉 ⊙𝝈 𝛽

where necessarily, 𝛼 = ℓ ⊙ (𝜇) ⊎ 𝛾 , 𝛽 = 𝓇⊙ (𝜈) ⊎ 𝛾 , and where we necessarily have

𝑡+L𝜇M : 𝜇 𝓇⊢ (𝑚)↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝉 𝜈 ,

with 𝛿𝝈 ⟨𝑡+⟩(𝜇) = (s, d), ℓ⊢ (𝑚) = (ℓ⊢ (m), s, d) where ℓ⊢ (m) = 𝜕𝝈 (𝑡+); and 𝛿𝝉 ⟨𝑡−⟩(s, d) = 𝜈 . By IH,

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) .

Summing up the situation on the side of 𝝈 , we have

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
𝓇⊢ (𝑚)−→𝝈 𝛽𝝈
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with components as in the proof of Lemma C.4. By condition valid of Petri strategies, play(𝜌 ′𝝈 ) =
play(𝜌𝝈 )𝓇⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). By Lemma C.5, this entails play(𝜌𝝈 )𝓇⊢ (𝑚) ↾ 𝓇∗⊢ = (play(𝜌𝝈 ) ↾
𝓇
∗

⊢ )𝑚 ∈ Plays(𝐵). Now, Lemma C.4 also entails play(𝜌 ′𝝈 ) = Int(𝜌)𝝈 and play(𝜌 ′𝝉 ) = Int(𝜌)𝝉 . So:
play(𝜌 ′𝝈 ) ↾ 𝓇∗⊢ = Int(𝜌) ↾𝓂∗ = play(𝜌 ′𝝉 ) ↾ ℓ∗⊢ ,

so that play(𝜌 ′𝝉 ) ↾ ℓ∗⊢ = (play(𝜌𝝈 ) ↾ ℓ∗⊢ )𝑚 ∈ Plays(𝐵). Now, we also have play(𝜌 ′𝝉 ) ↾ 𝓇∗⊢ =

play(𝜌𝝉 ) ↾ 𝓇∗⊢ ∈ Plays(𝐶) by Lemma C.5; so by Lemma C.5 again we deduce play(𝜌 ′𝝉 ) ∈ Plays(𝐵 ⊢
𝐶) as required. The case of a synchronized transition 𝑡− ⊛ 𝑡+ is symmetric. □

We are finally in position to prove that Petri strategies are stable under composition.

Proposition C.7. If 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 are Petri strategies, then so is 𝝉 ⊙ 𝝈 : 𝐴 ⊢ 𝐶 .
Moreover, if 𝝈 and 𝝉 are negative, so is 𝝉 ⊙ 𝝈 .

Proof. Valid. Consider 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 with play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), and 𝔱+ : 𝛼
𝑚′
−→ 𝛽 .W.l.o.g.,

assume𝑚′ = ℓ⊢ (𝑚). By Lemma C.4, 𝛼 decomposes as 𝛼𝝈 +⊙ 𝛼𝝉 , and we have:

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉 .

Now, 𝔱+ must have the form 𝔱+ = (ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M) ⊎ 𝛾 with 𝑡+L𝜇M : 𝜇 ℓ⊢(𝑚)↦−→ ∅, and 𝛽 = 𝛾 . Hence,

𝑡+L𝜇M ⊎ 𝛾𝝈 : 𝛼𝝈
ℓ⊢(𝑚)−→ 𝛽𝝈 ,

with components named as in the proof of Lemma C.4. At this point we apply Lemma C.6, which

ensures that play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵). Hence since 𝝈 is valid, play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵) as
well. It follows by Lemma C.5 that play(𝜌 ′) = play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶) as well.

Receptive. Consider 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 with 𝑠 = play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), and 𝑠𝑚′ ∈ Plays(𝐴 ⊢ 𝐶)
with𝑚′

negative – say w.l.o.g. that𝑚′ = ℓ⊢ (𝑚)−. By Lemma C.6, we have

play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵) , play(𝜌𝝉 ) ∈ Plays(𝐵 ⊢ 𝐶) ,
and by Lemma C.6 we may deduce that play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). By receptive, there is

t− = 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝈 𝛽

for 𝛽 ∩ 𝛼𝝈 = ∅. Hence ℓ ⊙ (𝑡−)L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝉 ⊙𝝈 ℓ ⊙ (𝛽) with ℓ ⊙ (𝛽) ∩ 𝛼 = ∅. For uniqueness, if

t′ : ∅ ℓ⊢ (𝑚)↦−→𝝉 ⊙𝝈 𝛽
′

for some 𝛽 ′. Necessarily, t′ = ℓ ⊙ (𝑡 ′)L(s′, d′)M for 𝑡 ′L(s′, d′)M : ∅ ℓ⊢ (𝑚)↦−→𝝈 𝛽
′′
for 𝛽 ′ = ℓ ⊙ (𝛽 ′′). But by

uniqueness of receptivity for 𝝈 , we have 𝑡 ′L(s′, d′)M = 𝑡L(s, d)M, so that 𝑡 = 𝑡 ′, (s, d) = (s′, d′).
Strongly safe. Consider 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 with play(𝜌) ∈ Plays(𝐴 ⊢ 𝐶), with a new instantiated

transition in context 𝔱 – we distinguish cases depending on its form.

Assume first 𝔱 = ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M ⊎ 𝛾 for 𝑡0L𝜇M : 𝜇 ↦−→𝝈 𝜈 . By Lemma C.6, we have play(𝜌𝝈 ) ∈
Plays(𝐴 ⊢ 𝐵), so that since 𝝈 is strongly safe, new(𝑡0L𝜇M) is fresh in 𝜌𝝈 . But new(ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M) =
ℓ ⊙ (new(𝑡0L𝜇M)). Moreover, by Lemma C.4, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ). So it follows that

new(𝔱) is fresh in 𝜌 as required. The case of a neutral transition from 𝝉 is symmetric.

Next assume 𝔱 = ℓ ⊙ (𝑡+)Lℓ ⊙ (𝜇)M ⊎ 𝛾 . Then new(𝔱) = ∅. Idem for a positive transition from 𝝉 .

Next assume 𝔱 = ℓ ⊙ (𝑡−)L(s, d)M ⊎ 𝛾 : 𝛼
ℓ⊢ (𝑚)−→𝝉 ⊙𝝈 𝛽 with play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶). We have

𝑡−L(s, d)M : ∅ (ℓ⊢ (𝑚))↦−→ 𝜈 ,

and by Lemma C.6, we have play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵). From play(𝜌)ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐶) and
play(𝜌𝝈 ) ∈ Plays(𝐴 ⊢ 𝐵), it follows easily via Lemma C.5 that play(𝜌𝝈 )ℓ⊢ (𝑚) ∈ Plays(𝐴 ⊢ 𝐵). So
since 𝝈 is strongly safe, new(𝑡−L(s, d)M) is fresh in 𝜌𝝈 . We conclude as in the neutral case using

Lemma C.4. The case of a negative transition from 𝝉 is similar.
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Finally, assume 𝔱 = (𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M ⊎ 𝛾 . Say that we have

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 𝓇
⊙ (𝜈) ,

so that new(𝔱) = 𝓇⊙ (𝜈) – assume 𝑡+L𝜇M : 𝜇
𝓇⊢ (𝑚)↦−→𝝈 ∅ and 𝑡−L(s, d)M : ∅ ℓ⊢ (𝑚)↦−→𝝉 𝜈 . By Lemma C.5,

play(𝜌𝝉 )ℓ⊢ (𝑚) ∈ Plays(𝐵 ⊢ 𝐶). Therefore since 𝝉 is strongly safe, new(𝑡−L(s, d)M) = 𝜈 is fresh in 𝜌𝝉 .

But by Lemma C.4, Coll(𝜌) = Coll(𝜌𝝈 ) +⊙ Coll(𝜌𝝉 ), so new(𝔱) = 𝓇⊙ (𝜈) is fresh in 𝜌 as required.

The other synchronized case is symmetric.

Negative. Straightforward by inspection and negativity of 𝝈 and 𝝉 . □

C.1.2 Copycat. First, we characterize the markings of copycat reachable through a play:

Recall that L cc𝐴 = mult(𝐴), so that the set TokIL( cc𝐴) of tokils of cc𝐴 is in bijection with |𝐴|. This
lets us silently coerce a configuration 𝑥 ∈ 𝒞(𝐴) into a marking 𝑥 ∈ℳ( cc𝐴). In order to show that

copycat is a Petri strategy, we first characterize the markings reachable by rule-abiding runs:

Lemma C.8. Consider 𝐴 an arena, and 𝜌 : ∅ −→→ cc𝐴 𝛼 such that play(𝜌) ∈ Plays(𝐴 ⊢ 𝐴).
Then, |play(𝜌) | = 𝑥 ⊢ 𝑦 with 𝑥,𝑦 ∈ 𝒞(𝐴) and 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 ; and 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦).
Moreover, Coll(𝜌) = 𝑦− ⊎ 𝑥+, where 𝑥𝑝 is the subset of 𝑥 ∈ 𝒞(𝐴) whose moves have polarity 𝑝 .

Proof. By induction on 𝜌 . For 𝜌 empty, this is clear. Consider 𝜌 ′ = 𝜌𝔱 : ∅ −→→ cc𝐴 𝛽 with

𝜌 : ∅ −→→ cc𝐴 𝛼 , and play(𝜌 ′) ∈ Plays(𝐴 ⊢ 𝐴). We also have play(𝜌) ∈ Plays(𝐴 ⊢ 𝐴), so by IH,

|play(𝜌) | = 𝑥 ⊢ 𝑦 , 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) ,
we reason by cases depending on 𝔱. If 𝔱 = (m+, 𝓇)L{(s, d)@m}M ⊎ 𝛾 , then 𝛼 = {(s, d)@m} ⊎ 𝛾 , and

|play(𝜌 ′) | = 𝑥 ⊢ 𝑦 ⊎ {(m, s, d)}
𝛽 = 𝛼 \ {(s, d)@m} ;

since 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \𝑦), (s, d)@m ∈ 𝛼 and (m, s, d) is positive, (m, s, d) is positive and must be

in 𝑥 . It follows that the invariant is preserved. The case 𝔱 = (m−, ℓ)L(s, d)@mM ⊎ 𝛾 is symmetric.

If 𝔱 = (m−, 𝓇)L(s, d)M ⊎ 𝛾 , then 𝛼 = 𝛾 , and

|play(𝜌 ′) | = 𝑥 ⊢ (𝑦 ⊎ {(m, s, d)})
𝛽 = 𝛼 ⊎ {(s, d)@m} ;

and (m, s, d) is negative. Since |play(𝜌 ′) | = 𝑥 ⊢ (𝑦 ⊎ {(m, s, d)}), (m, s, d) ∉ 𝑦. So, it cannot be in 𝑥 .
The invariant directly follows. The case 𝔱 = (m+, ℓ)L(s, d)@mM ⊎ 𝛾 is symmetric. □

It is a direct application of this lemma to prove that copycat is a Petri strategy:

Proposition C.9. For any arena 𝐴, cc𝐴 : 𝐴 ⊢ 𝐴 is a negative Petri strategy.

Proof. Valid. Consider 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) and

𝜌 : ∅ 𝑠−→→ 𝛼 , 𝔱+ : 𝛼
𝑚
−→ 𝛽 ,

and say w.l.o.g. that 𝑚 = 𝓇⊢𝑎 for 𝑎 ∈ |𝐴|. This means that 𝔱+ = (m+, 𝓇)L{(s, d)@m}M ⊎ 𝛾 , where
𝛼 = 𝛾 ⊎ {(s, d)@m}, and𝑚 = (𝓇⊢m, s, d). We must show that 𝑠 (𝓇⊢m, s, d) ∈ Plays(𝐴 ⊢ 𝐴).

By Lemma C.8, 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \𝑦) where |𝑠 | = 𝑥 ⊢ 𝑦. Asm ∈ mult+ (𝐴), (m, s, d) ∈ 𝑥+ \𝑦. As
(m, s, d) ∉ 𝑦, we have condition non-repetitive. Next, we show |𝑠𝑚 | = 𝑥 ⊢ (𝑦 ⊎ {𝑎}) is down-closed.
Consider 𝑎′ _𝐴 𝑎. Since 𝐴 is alternating, 𝑎′ is negative. Since 𝑥 ∈ 𝒞(𝐴) and 𝑎 ∈ 𝑥 , we must

have 𝑎′ ∈ 𝑥 as well. But by Lemma C.8 we have 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , so 𝑎′ ∈ 𝑦 as well. Finally, from

conditions locally conflicting, alternating and negative of arenas, pairs of events in minimal conflict

have the same polarity. Therefore, as 𝑥 ∩ 𝑦 ⊆− 𝑥 and 𝑥 ∩ 𝑦 ⊆+ 𝑦, we have 𝑥 ∪ 𝑦 consistent, so in

particular 𝑦 ∪ {𝑎} ∈ 𝒞(𝐴). It follows that 𝑠𝑚 ∈ Plays(𝐴 ⊢ 𝐴) as needed.
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

ℓ ⊗ (𝑡0)Lℓ ⊗ (𝛼)M : ℓ ⊗ (𝛼) ↦−→𝝈 ⊗𝝉 ℓ
⊗ (𝛽)

𝑡0L𝛼M : 𝛼 ↦−→𝝉 𝛽

𝓇
⊗ (𝑡0)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼) ↦−→𝝈 ⊗𝝉 𝓇

⊗ (𝛽)
𝑡+L𝛼M : 𝛼 ℓ⊢𝑚↦−→𝝈 ∅

ℓ ⊗ (𝑡+)Lℓ ⊗ (𝛼)M : ℓ ⊗ (𝛼) ℓ⊢ℓ⊗𝑚↦−→𝝈 ⊗𝝉 ∅

𝑡+L𝛼M : 𝛼 ℓ⊢𝑚↦−→𝝉 ∅

𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼) ℓ⊢𝓇⊗𝑚↦−→𝝈 ⊗𝝉 ∅

𝑡+L𝛼M : 𝛼
𝓇⊢𝑚↦−→𝝈 ∅

ℓ ⊗ (𝑡+)Lℓ ⊗ (𝛼)M : ℓ ⊗ (𝛼) 𝓇⊢ℓ⊗𝑚↦−→𝝈 ⊗𝝉 ∅

𝑡+L𝛼M : 𝛼
𝓇⊢𝑚↦−→𝝉 ∅

𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M : 𝓇⊗ (𝛼)

𝓇⊢𝓇⊗𝑚↦−→𝝈 ⊗𝝉 ∅
𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝈 𝛽

ℓ ⊗ (𝑡−)L(s, d)M : ∅ ℓ⊢ℓ⊗𝑚↦−→𝝈 ⊗𝝉 ℓ
⊗ (𝛽)

𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝉 𝛽

𝓇
⊗ (𝑡−)L(s, d)M : ∅ ℓ⊢𝓇⊗𝑚↦−→𝝈 ⊗𝝉 𝓇

⊗ (𝛽)
𝑡−L(s, d)M : ∅

𝓇⊢𝑚↦−→𝝈 𝛽

ℓ ⊗ (𝑡−)L(s, d)M : ∅ 𝓇⊢ℓ⊗𝑚↦−→𝝈 ⊗𝝉 ℓ
⊗ (𝛽)

𝑡−L(s, d)M : ∅
𝓇⊢𝑚↦−→𝝉 𝛽

𝓇
⊗ (𝑡−)L(s, d)M : ∅

𝓇⊢𝓇⊗𝑚↦−→𝝈 ⊗𝝉 𝓇
⊗ (𝛽)

Fig. 30. Description of instantiated transitions of 𝝈 ⊗ 𝝉

Receptive. Consider 𝜌 : ∅ −→→ cc𝐴 𝛼 with play(𝜌) = 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) and 𝑠𝑚− ∈ Plays(𝐴 ⊢ 𝐴).
W.l.o.g. consider 𝑚 = 𝓇⊢ (𝑎). Decompose 𝑎 = (m, s, d) for m− ∈ mult(𝐴) and token (s, d). By
inspection there is a unique matching instantiated transition, namely (m−, 𝓇)L(s, d)M : ∅

𝑚
↦−→

{(s, d)@m}. Moreover, by Lemma C.8 we have 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) where |𝑠 | = 𝑥 ⊢ 𝑦. But as
𝑠𝑚− ∈ Plays(𝐴 ⊢ 𝐴), by non-repetitive we have𝑚− ∉ 𝑦. It follows that (s, d)@m ∉ 𝛼 as required.

Strongly safe. Consider 𝜌 : ∅ −→→ cc𝐴 𝛼 with play(𝜌) = 𝑠 ∈ Plays(𝐴 ⊢ 𝐴) extended with 𝔱. If 𝔱 is

positive, then new(𝔱) = ∅ and there is nothing to prove. Hence, considerw.l.o.g. 𝔱 = (m−, 𝓇)L(s, d)M⊎
𝛼 with 𝑠 (𝓇⊢ (m), s, d)− ∈ Plays(𝐴 ⊢ 𝐴). Then, new(𝔱) = {(s, d)@m}. Write |𝑠 | = 𝑥 ⊢ 𝑦 ∈ 𝒞(𝐴 ⊢ 𝐴). By
non-repetitive, (m, s, d) ∉ 𝑦. By Lemma C.8, Coll(𝜌) = 𝑦− ⊎𝑥+; but as (m, s, d) ∉ 𝑦 and (m, s, d) ∉ 𝑥+
(for polarity reasons), it follows that {(s, d)@m} is fresh in 𝜌 .

Negative. Straightforward by inspection. □

We do not detail the clear fact that composition is stable under isomorphism of Petri strategies.

Altogether, this concludes the proof of:

Corollary C.10. There is PStrat, a precategory with objects arenas, and morphisms negative Petri
strategies up to isomorphism.

C.2 PStrat as an IPA-Structure: Operations
We examine the operations involved in the IPA-structure, and show preservation of Petri strategies.

C.2.1 Tensor. The preservation of Petri strategies by the tensor operation is a simplification of

composition, without the synchronized events.

Lemma C.11. Consider 𝝈 and 𝝉 Petri structures.
Then, instantiated transitions of 𝝈 ⊗ 𝝉 are exactly as in Figure 30 – in the sense that there is a

one-to-one correspondence between instantiated transitions in the premises and in the conclusion.

Using this description, we define in Figure 31 partial functions 𝜋 ⊗
𝝈 : IT𝝈 ⊗𝝉 ⇀ IT𝝈 and 𝜋 ⊗

𝝉 :

IT𝝈 ⊗𝝉 ⇀ IT𝝉 extracting various data from instantiated transitions, following the characterization

of instantiated transitions of 𝝈 ⊗ 𝝉 given in Figure 30.
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𝜋𝝈 𝜋𝝉
ℓ ⊗ (𝑡0)Lℓ ⊗ (𝛼)M ↦→ 𝑡0L𝛼M
ℓ ⊗ (𝑡+)Lℓ ⊗ (𝛼)M ↦→ 𝑡+L𝛼M
ℓ ⊗ (𝑡−)L(s, d)M ↦→ 𝑡−L(s, d)M
𝓇
⊗ (𝑡0)L𝓇⊗ (𝛼)M ↦→ 𝑡0L𝛼M

𝓇
⊗ (𝑡+)L𝓇⊗ (𝛼)M ↦→ 𝑡+L𝛼M
𝓇
⊗ (𝑡−)L(s, d)M ↦→ 𝑡−L(s, d)M

Fig. 31. Projections of instantiated transitions

Finally, those projection functions are extended to instantiated transitions in context via:

𝜋 ⊗
𝝈 : ITC𝝈 ⊗𝝉 ⇀ ITC𝝈

t ⊎ (𝛾 +⊗ 𝛾 ′) ↦→ 𝜋 ⊗
𝝈 (t) ⊎ 𝛾

𝜋 ⊗
𝝉 : ITC𝝈 ⊗𝝉 ⇀ ITC𝝉

t ⊎ (𝛾 +⊗ 𝛾 ′) ↦→ 𝜋 ⊗
𝝉 (t) ⊎ 𝛾 ′ .

Using these, from a run 𝜌 : ∅ −→→𝝈 ⊗𝝉 𝛼 we extract:

𝜌𝝈 = 𝜌 ↾ 𝜋 ⊗
𝝈 , 𝜌𝝉 = 𝜌 ↾ 𝜋 ⊗

𝝉 ,

we will also use for restriction the partial functions

𝓊 : Moves ⇀ Moves
ℓ⊢ℓ⊗𝑚 ↦→ ℓ⊢𝑚

𝓇⊢ℓ⊗𝑚 ↦→ 𝓇⊢𝑚

𝒹 : Moves ⇀ Moves
ℓ⊢𝓇⊗𝑚 ↦→ ℓ⊢𝑚

𝓇⊢𝓇⊗𝑚 ↦→ 𝓇⊢𝑚

which allow us to prove the following property:

Lemma C.12. Consider 𝜌 : ∅ −→→𝝈 ⊗𝝉 𝛼 . Then, 𝛼 = 𝛼𝝈 +⊗ 𝛼𝝉 and

𝜌𝝈 : ∅ −→→ 𝛼𝝈 , 𝜌𝝉 : ∅ −→→ 𝛼𝝉 .

where play(𝜌𝝈 ) = play(𝜌) ↾ 𝓊 and play(𝜌𝝉 ) = play(𝜌) ↾ 𝒹.
Moreover, Coll(𝜌) = Coll(𝜌𝝈 ) +⊗ Coll(𝜌𝝉 ).

Proof. Exactly as for Lemma C.4, without synchronized transitions. □

Next, as for composition, we observe that these projections preserve valid plays. For that we

shall first need the following easy lemma:

Lemma C.13. Consider 𝐴, 𝐵 arenas, and 𝑠 ∈ |𝐴 ⊗ 𝐵 |∗.
Then, 𝑠 ∈ Plays(𝐴 ⊗ 𝐵) iff 𝑠 ↾ ℓ∗⊗ ∈ Plays(𝐴) and 𝑠 ↾ 𝓇∗⊗ ∈ Plays(𝐵).

Proof. Straightforward. □

Using this and Lemma C.12, we show that projections preserve valid runs. Consider 𝝈 : 𝐴1 ⊢ 𝐵1
and 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies.

Lemma C.14. Consider 𝜌 : ∅ −→→𝝈 ⊗𝝉 𝛼 such that play(𝜌) ∈ Plays(𝐴1 ⊗ 𝐴2 ⊢ 𝐵1 ⊗ 𝐵2).
Then, play(𝜌𝝈 ) ∈ Plays(𝐴1 ⊢ 𝐵1) and play(𝜌𝝉 ) ∈ Plays(𝐴2 ⊢ 𝐵2).

Proof. As for the proof of Lemma C.6 (without synchronization), using condition valid of Petri

strategies along with Lemma C.13. □

Using Lemmas C.12, C.13, and C.14, we prove as for Proposition C.7:

Proposition C.15. If 𝝈 : 𝐴1 ⊢ 𝐵1 and 𝝉 : 𝐴2 ⊢ 𝐵2 are Petri strategies, so is 𝝈 ⊗𝝉 : 𝐴1⊗𝐵1 ⊢ 𝐴2⊗𝐵2.
Moreover, if 𝝈 and 𝝉 are negative, so is 𝝈 ⊗ 𝝉 .
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C.2.2 Renamings. Before we go on to currying and promotion, we introduce a technical tool useful

in ensuring that they preserve Petri strategies.

First, for any game𝐴 we write Plays− (𝐴) for the set of negative plays on𝐴, i.e. those 𝑠1 . . . 𝑠𝑛 ∈
Plays(𝐴) such that pol(𝑠1) = −. If 𝑓 : Moves ⇀ Moves and 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ Plays(𝐴) such that 𝑓

is defined on |𝐴|, then we write 𝑓 (𝑠) = 𝑓 (𝑠1) . . . 𝑓 (𝑠𝑛). In the sequel, we should be particularly

interested in such functions on moves that can be decomposed in 𝑓 and (𝑔m)m∈dom(𝑓 ) where

𝑓 : M ⇀ M , 𝑔m : Tok → Tok ,

in which case we obtain a partial function between moves set as

[𝑓 , (𝑔m)] : Moves ⇀ Moves
(m, s, d) ↦→ (𝑓 (m), s′, d′) where (s′, d′) = 𝑔m (s, d).

Definition C.16. Consider 𝐴, 𝐵 games, 𝑓 , (𝑔m) s.t. [𝑓 , (𝑔m)] : Moves ⇀ Moves partial injection.
We say ℎ = [𝑓 , (𝑔m)] is a global renaming from 𝐴 to 𝐵, written [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, if:

defined: for all 𝑎 ∈ |𝐴|, ℎ(𝑎) defined.
polarity-preserving: ∀𝑎 ∈ |𝐴|, pol(ℎ𝑎) = pol(𝑎)

validity: ∀𝑠 ∈ Plays− (𝐴), ℎ(𝑠) ∈ Plays− (𝐵)
receptivity: for all 𝑠 ∈ Plays− (𝐴), for all ℎ(𝑠)𝑏− ∈ Plays− (𝐵),

there exists 𝑠𝑎− ∈ Plays− (𝐴) such that ℎ(𝑎) = 𝑏.
courtesy: for all 𝑎 _𝐴 𝑏, either ℎ(𝑎) _𝐵 ℎ(𝑏) or (pol(𝑎), pol(𝑏)) = (−, +).

Global renamings are used to transport Petri strategies across games. The following definition,

first applied simply on Petri structures, extends Definition 3.14 in that it also renames tokens rather

than merely rerouting visible transitions.

Definition C.17. Consider𝐴, 𝐵 games, 𝝈 a Petri structure onmult(𝐴), and ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.

We define the renaming 𝝈 [ℎ] on mult(𝐵), with the same components as 𝝈 , except:

𝜕𝝈 [ℎ] (𝑡) = 𝑓 (𝜕𝝈 (𝑡))
𝛿𝝈 [ℎ] ⟨𝑡+⟩(𝛼) = 𝑔m (𝛿𝝈 ⟨𝑡+⟩(𝛼)) for m = 𝜕𝝈 (𝑡+)

𝛿𝝈 [ℎ] ⟨𝑡−⟩(𝑔m (s, d)) = 𝛿𝝈 ⟨𝑡−⟩(s, d) for m = 𝜕𝝈 (𝑡−).
observing that by hypothesis, 𝑔m is injective for all m ∈ dom(𝑓 ).

In order to use global renaming to transport Petri strategies, we must transport valid runs.

Consider 𝐴, 𝐵 games, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝝈 : 𝐴 a Petri strategy. Then we set

−[ℎ] : IT𝝈 → IT𝝈 [ℎ]
𝑡0⟨𝛼⟩ ↦→ 𝑡0⟨𝛼⟩

𝑡−⟨(s, d)⟩ ↦→ 𝑡−⟨𝑔m (s, d)⟩ where m = 𝜕𝝈 (𝑡−)
𝑡+⟨𝛼⟩ ↦→ 𝑡+⟨𝛼⟩

extended to instantiated transitions in context with (t ⊎ 𝛾) [ℎ] = t[ℎ] ⊎ 𝛾 . It is immediate from

the definition that this substitution leaves pre- and post-conditions of instantiated transitions

unchanged, so that it lifts to runs: for any 𝜌 : ∅ −→→𝝈 𝛼 , 𝜌 [ℎ] : ∅ −→→𝝈 [ℎ] 𝛼 is defined pointwise.

We shall now prove that this preserves valid runs. First, an easy observation:

Lemma C.18. Consider 𝐴 a game, and 𝝈 : 𝐴 a negative Petri strategy.
Then, for all 𝜌 : ∅ −→→𝝈 𝛼 s.t. play(𝜌) ∈ Plays(𝐴), we have play(𝜌) ∈ Plays− (𝐴).

Proof. By negative, the first transition of 𝜌 cannot be positive or neutral (as those require at

least one tokil). Thus, it is negative. □
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Lemma C.19. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 : ∅ −→→𝝈 𝛼 .
If play(𝜌) ∈ Plays− (𝐴), then play(𝜌 [ℎ]) = ℎ(play(𝜌)) ∈ Plays− (𝐵).

Proof. Straightforward by induction on 𝜌 . □

We shall also use a sort of reciprocal statement:

Lemma C.20. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 .
If play(𝜌 ′) ∈ Plays(𝐵), there is a unique 𝜌 : ∅ −→→𝝈 𝛼 s.t. play(𝜌) ∈ Plays(𝐴) and 𝜌 ′ = 𝜌 [ℎ].

Proof. Straightforward by induction on 𝜌 ′. □

Proposition C.21. Consider 𝐴 a game, 𝝈 : 𝐴 negative, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.
Then, 𝝈 [ℎ] : 𝐵 is a negative Petri strategy.

Proof. Valid. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that play(𝜌 ′) ∈ Plays(𝐵). Consider 𝔱+ : 𝛼
𝑏−→𝝈 [ℎ]

𝛽 , write 𝔱 = 𝑡+L𝜇M⊎𝛾 . By Lemma C.20, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that play(𝜌) ∈ Plays(𝐴)
and 𝜌 ′ = 𝜌 [ℎ]. By definition of transitions of 𝝈 [ℎ], we have 𝑏 = ℎ(𝑎) with

𝑡+L𝜇M ⊎ 𝛾 : 𝛼
𝑎−→ 𝛽

and play(𝜌)𝑎 ∈ Plays(𝐴) as 𝝈 is valid. Note actually play(𝜌)𝑎 ∈ Plays− (𝐴) by Lemma C.18. Hence,

ℎ(play(𝜌)𝑎) = play(𝜌 [ℎ])𝑏 ∈ Plays− (𝐵) by condition validity of global renamings, as required.

Receptive. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that 𝑠 ′ = play(𝜌 ′) ∈ Plays(𝐵). Consider 𝑠𝑏− ∈
Plays(𝐵). By Lemma C.20, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that 𝑠 = play(𝜌) ∈ Plays(𝐴) and
ℎ(𝑠) = 𝑠 ′. By condition receptivity of global renamings, there is 𝑠𝑎− ∈ Plays(𝐴) such that ℎ(𝑎) = 𝑏.
As 𝝈 is receptive, there is a unique t− ∈ IT𝝈 such that t− : ∅ 𝑎−↦−→𝝈 𝛽 for some 𝛽 . By definition of

𝝈 [ℎ], t− : ∅ 𝑏−↦−→𝝈 [ℎ] 𝛽 as required. Uniqueness follows immediately from uniqueness for 𝝈 .
Strongly safe. Consider 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 such that 𝑠 ′ = play(𝜌 ′) ∈ Plays(𝐵). By Lemma C.20,

there is a unique 𝜌 : ∅ −→→𝝈 𝛼 such that 𝑠 = play(𝜌) ∈ Plays(𝐴) and ℎ(𝑠) = 𝑠 ′. If 𝔱′ : 𝛼 −→𝝈 [ℎ] 𝛽
then also 𝔱′ : 𝛼 −→𝝈 𝛽 , and new(𝔱′) is fresh in 𝜌 , so fresh in 𝜌 ′. If 𝔱′ : 𝛼 𝑏−→𝝈 [ℎ] 𝛽 with

𝑠 ′𝑏 ∈ Plays(𝐵), then again by Lemma C.20, 𝔱′ = 𝔱[ℎ] and 𝑏 = ℎ(𝑎) for 𝔱 : 𝛼
𝑎−→𝝈 𝛽 with

𝑠𝑎 ∈ Plays(𝐴). As 𝝈 is strongly safe, it follows that new(𝔱) is fresh in 𝜌 , but new(𝔱) = new(𝔱′) so
new(𝔱′) is fresh in 𝜌 ′ as required.

Negative. Straightforward from the fact that 𝝈 is negative. □

C.2.3 Currying. This is a simple application of global renaming.

Lemma C.22. Consider Γ, 𝑥 : 𝐴,Δ a list of variable/arena declarations, and 𝑂 well-opened. Then,

(Λ𝑥 , (id)) : (!(&[Γ, 𝑥 : 𝐴,Δ]) ⊢ 𝑂) ↷↷ (!(&[Γ,Δ]) ⊢ !𝐴 ⊸ 𝑂)

where Λ𝑥 is defined in Definition 3.15.

Proof. Immediate verification. □

Corollary C.23. Consider 𝝈 : !(&[Γ, 𝑥 : 𝐴,Δ]) ⊢ 𝑂 a negative Petri strategy.
Then, ΛΓ,Δ

𝑥 :𝐴,𝑂
(𝝈) : !(&[Γ,Δ]) ⊢ !𝐴 ⊸ 𝑂 is a negative Petri strategy.

C.2.4 Functorial promotion. Rather than directly dealing with Definition 3.16, we decompose it:

first, a functorial promotion, and secondly, a renaming corresponding to digging.
We first define functorial promotion on Petri structures:
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𝑡0L𝛼M : 𝛼 ↦−→𝝈 𝛽

𝑡0Le :: 𝛼M : e :: 𝛼 ↦−→!𝝈 e :: 𝛽

𝑡−L(s, d)M : ∅ 𝑚↦−→𝝈 𝛽

𝑡−L(e :: s, d)M : ∅ e::𝑚↦−→!𝝈 e :: 𝛽

𝑡+L𝛼M : 𝛼 𝑚↦−→𝝈 ∅
𝑡+Le :: 𝛼M : e :: 𝛼 e::𝑚↦−→𝝈 ∅

Fig. 32. Description of instantiated transitions of !𝝈

Definition C.24. Consider 𝝈 ∈ PStruct(𝑀, 𝑁 ). We set L!𝝈 = L𝝈 , T!𝝈 = T𝝈 with the same

polarities, 𝜕!𝝈 = 𝜕𝝈 , and pre- and post-conditions are also unchanged. Finally, the transition table is:

𝛿!𝝈 ⟨𝑡0⟩(e :: 𝛼) = e :: 𝛽 if 𝛿𝝈 ⟨𝑡⟩(𝛼) = 𝛽
𝛿!𝝈 ⟨𝑡+⟩(e :: 𝛼) = (e :: s, d) if 𝛿𝝈 ⟨𝑡⟩(𝛼) = (s, d)

𝛿!𝝈 ⟨𝑡−⟩(e :: s, d) = e :: 𝛼 if 𝛿𝝈 ⟨𝑡⟩(s, d) = 𝛼

where e :: 𝛼 is {(e :: s𝑖 , d𝑖 )@𝑙𝑖 | (s𝑖 , d𝑖 )@𝑙𝑖 ∈ 𝛼}.
With this definition, we obtain !𝝈 ∈ PStruct(!𝑀, !𝑁 ).

We prove that this operation preserves Petri strategies – the proof follows closely that of tensor,

of which the ! can be regarded as an infinitary version.

Lemma C.25. Consider 𝝈 a Petri structure.
Then, instantiated transitions of !𝝈 are exactly as in Figure 32 – in the sense that there is a one-to-one

correspondence between instantiated transitions in the premises and in the conclusion.

Using this description, we define for each e ∈ E a partial function

𝜋 !

e : IT!𝝈 ⇀ IT𝝈
𝑡0Le :: 𝛼M ↦→ 𝑡0L𝛼M

𝑡−L(e :: s, d)M ↦→ 𝑡−L(s, d)M
𝑡+Le :: 𝛼M ↦→ 𝑡+L𝛼M

and undefined otherwise. In order to extend those to instantiated transitions in context, first define

o

𝑒∈E
𝛼𝑒 =

⊎
𝑒∈E

𝑒 :: 𝛼𝑒

for (𝛼e)e∈E a family of conditions empty almost everywhere. We may then set:

𝜋 !

e : ITC!𝝈 ⇀ ITC𝝈

t ⊎ (
g
e∈E 𝛾e) ↦→ 𝜋 !

e (t) ⊎ 𝛾e .
Using these, from a run 𝜌 : ∅ −→→!𝝈 𝛼 we extract, for all e ∈ E:

𝜌e = 𝜌 ↾ 𝜋
!

e ,

we will also use for restrictions the partial functions

e : Moves ⇀ Moves
(m, e :: s, d) ↦→ (m, s, d)

and undefined otherwise – the abuse of notations should not create confusion.

Now, as for the tensor we can prove:

Lemma C.26. Consider 𝜌 : ∅ −→→!𝝈 𝛼 . Then, 𝛼 =
g
e∈E 𝛼e and

𝜌e : ∅ −→→𝝈 𝛼e

for all e ∈ E, where play(𝜌e) = play(𝜌) ↾ e.
Moreover, Coll(𝜌) =

g
e∈E Coll(𝜌e).
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Proof. The proof is the same as for Lemma C.4, without synchronized transitions. □

The construction goes on as for the tensor, with preservation of plays via projections:

Lemma C.27. Consider 𝐴 an arena and 𝑠 ∈ |!𝐴|∗.
Then, 𝑠 ∈ Plays(!𝐴) iff 𝑠 ↾ e ∈ Plays(𝐴) for all e ∈ E.

Proof. Straightforward. □

Consider now 𝝈 : 𝐴 ⊢ 𝐵 a Petri strategy.

Using Lemmas C.27 and C.26, we show that projections preserve valid runs.

Lemma C.28. Consider 𝜌 : ∅ −→→!𝝈 𝛼 such that play(𝜌) ∈ Plays(!𝐴 ⊢ !𝐵).
Then, for all e ∈ E, play(𝜌e) ∈ Plays(𝐴 ⊢ 𝐵).

Proof. As for the proof of Lemma C.6 (without synchronization), using condition valid of Petri

strategies along with Lemma C.27. □

Using Lemmas C.26, C.27 and C.28, we prove as for Proposition C.7:

Proposition C.29. If 𝝈 : 𝐴 ⊢ 𝐵 is a Petri strategy, then so is !𝝈 : !𝐴 ⊢ !𝐵.
Moreover, if 𝝈 is negative then so is !𝝈 .

C.2.5 Local renamings. To match Definition 3.16, we must also rename following digging.
Recall that digging is the following map:

dig : Moves ⇀ Moves
(m, e :: e′ :: s, d) ↦→ (m, ⟨e, e′⟩ :: 𝑙, d)

and undefined otherwise. To rename a strategy following this, it is convenient to introduce:

Definition C.30. Consider 𝐴, 𝐵 arenas.

A (local) renaming from 𝐴 to 𝐵 is a partial injection 𝑓 : Moves ⇀ Moves defined on |𝐴|, s.t.:

validity: for all 𝑥 ∈ 𝒞(𝐴), 𝑓 𝑥 ∈ 𝒞(𝐵),
polarity-preserving: for all 𝑎 ∈ |𝐴|, pol(𝑓 (𝑎)) = pol(𝑎),

receptivity: for all 𝑥 ∈ 𝒞(𝐴), if 𝑓 (𝑥) ⊢𝐵 𝑏−,
then there is 𝑥 ⊢𝐴 𝑎 such that 𝑓 (𝑎) = 𝑏,

courtesy: for all 𝑎 _𝐴 𝑎
′
, either 𝑓 (𝑎) _𝐵 𝑓 (𝑎′) or (pol(𝑎), pol(𝑎′)) = (−, +).

We write 𝑓 : 𝐴↷ 𝐵 to mean that 𝑓 is a renaming from 𝐴 to 𝐵.

It is clear in particular that dig : ‼𝐴⊥ → !𝐴 is a renaming, for any arena 𝐴. This is a variant of

Definition C.16, closer to the usual lifting operation used for this purpose in concurrent games.

Clearly, a local renaming is a global renaming. But local renamings are sometimes more con-

venient, because if 𝑓 : 𝐴⊥ ↷ 𝐵⊥ and 𝑔 : 𝐴′ ↷ 𝐵′
are local renaming, then it is obvious that

𝑓 ⊢ 𝑔 : 𝐴 ⊢ 𝐵 ↷ 𝐴′ ⊢ 𝐵′
(defined in the obvious way) is still a local renaming – this is not always

the case for global renamings for non-negative games.

Definition C.31. Consider 𝝈 : 𝐴 ⊢ 𝐵 a negative Petri strategy and 𝑓 : 𝐴⊥ ↷ 𝐴′⊥, 𝑔 : 𝐵 ↷ 𝐵′
.

Then, we define 𝑔 · 𝝈 · 𝑓 = 𝝈 [𝑓 ⊢ 𝑔] : 𝐴′ ⊢ 𝐵′
.

This yields a negative Petri strategy by Proposition C.21.
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C.2.6 Digging. We may finally perform digging and deduce the correctness of promotion:

Proposition C.32. Consider 𝝈 : !𝐴 ⊢ 𝐵 a negative Petri strategy.
Then, 𝝈†

: !𝐴 ⊢ !𝐵 is a negative Petri strategy.

Proof. It is a direct verification that 𝝈† = (!𝝈) [dig ⊢ id], which is a negative Petri strategy by

Propositions C.29 and Definition C.31. □

C.3 PStrat as an IPA-Structure: Primitives
We now show that the Petri structures representing the primitives of IPA are indeed Petri strategies.

Given a Petri structure 𝝈 and a play 𝑠 of a game 𝐴, we say that 𝑠 is reachable by 𝝈 when there

exists a run 𝜌 of 𝝈 with play(𝜌) = 𝑠 . Given a game 𝐴, we define the Scott order on𝒞(𝐴) as follows:
𝑥 ⊑𝐴 𝑦 := (𝑥 ⊇−⊆+ 𝑦) which was already encountered in Lemma C.8 for copycat.

C.3.1 Variable and Evaluation. For variable, we notice that var𝑥 :𝑀 = cc𝑀 [𝒾𝑥
&
⊢ id] and we conclude

easily by C.21 since 𝒾
𝑥
&
: 𝑀⊥ ↷ [Γ, 𝑥 : 𝑀,Δ]⊥ is a local renaming. For the evaluation, the map Ω

defined in Section 3.4 is a global renaming ((𝑀 ⊸ 𝑁 ) ⊢ (𝑀 ⊸ 𝑁 )) ↷↷ ((𝑀 ⊸ 𝑁 ) ⊗ 𝑀 ⊢ 𝑁 ).

C.3.2 Contraction. We now show that the Petri structure c𝐴 is a Petri strategy on !𝐴 ⊢ !𝐴 ⊗ !𝐴.

Given a move 𝑎, we write ℓ
!
(𝑎) for (m, ℓ

!
(e) :: s, d) for 𝑎 = (m, e :: s, d), and similarly for 𝓇

!
(𝑎). It

is not defined on moves with an empty stack.

Lemma C.33. Consider 𝑠 ∈ play(!𝐴 ⊢ !𝐴 ⊗ !𝐴) reachable by c𝐴.
Then, |𝑠 | = (ℓ

!
(𝑥1) ⊎ 𝓇! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2) and 𝑦𝑖 ⊑ 𝑥𝑖 .

Proof. We prove the implication by induction on the length of 𝑠 . It holds for all plays of length

zero. We assume the implication holds for all plays of length 𝑛.

Consider 𝑠 ′ = 𝑠 · 𝑎 reachable by 𝝈 and 𝑠 has length 𝑛. We apply the induction hypothesis to 𝑠

(which is reachable by 𝝈 ) and obtain that, writing |𝑠 | = (ℓ
!
(𝑥1) ⊎ ℓ! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2), we have 𝑦𝑖 ⊑ 𝑥𝑖 .

• If 𝑎 is negative, and on ℓ⊢, then the inequality for 𝑠 ′ holds by definition of ⊑.
• If 𝑎 is negative, and on 𝓇⊢, then because 𝑠 ′ is a play, the parent of 𝑎 must exist and belong to 𝑠 .

By induction, that parent must have an exponential stack of the form ℓ
!
e :: s or 𝓇

!
e :: s and we

can conclude.

• If 𝑎 is positive, and on the left, ie.𝑚 = ℓ⊢𝑚0: in the run producing 𝑎, there must be a token in

𝑚−
0
that triggered 𝑡 . That token must be (s, d) since 𝑡 has a trivial transition function. That

token can only be produced by one of the negative transitions 𝓇⊢ℓ⊗𝑚0 or 𝓇⊢𝓇⊗𝑚0 – assume the

former. This directly shows that s = ℓ
!
e :: s′ for some s′, and that (𝓇⊢ℓ⊗𝑚0, e :: s, d) ∈ |𝑠 |, which

implies that (𝑚0, e :: s, d) ∈ 𝑦. As a result |𝑠 | = (𝑥 ∪ {(𝑚0, ℓ!e :: s′, d)}) ⊢ 𝑦 ⊗ 𝑧 satisfies the
desired property.

• If 𝑎 is positive and on the right for instance𝑚 = 𝓇⊢ℓ⊗𝑚0. Then a similar line of reasoning

shows that s = e :: s′ and we must have (ℓ⊢𝑚0, ℓ!e :: s′, d) ∈ |𝑠 | which entails the desired

property. □

Lemma C.34. c𝐴 is a negative Petri strategy on !𝐴 ⊢ !𝐴 ⊗ !𝐴.

Proof. Negative. Simple inspection of the net.

Strong safety. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 with 𝑠 a play, and 𝔱 : 𝛼
𝑎−→ 𝛽 with 𝑠𝑎 also a play (note that

there is no neutral transition). Note that positive transitions do not create tokens, so there is nothing

to check. For negative transitions, it follows from the injectivity of transition functions and the fact

that plays are non-repetitive.

Validity. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 a run of c𝐴 and 𝑠 a play of the game. Assume that 𝜌 can extend by

𝔱+ : 𝛼
𝑎−→ 𝛽 . By Lemma C.33, we know that |𝑠 | = (ℓ

!
(𝑥1) ⊎ 𝓇! (𝑥2) ⊢ 𝑦1 ⊗ 𝑦2) with 𝑦𝑖 ⊑ 𝑥𝑖 . There are
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three transitions, hence three cases. We detail the case for 𝑎 = ℓ⊢𝑎0: then by inspecting the net we

have that 𝑎0 must be of the form ℓ
!
(𝑎1) with 𝑎1 ∈ 𝑦 or 𝓇

!
(𝑎1) with 𝑎1 ∈ 𝑧 – assume the former. From

𝑎1 ∈ 𝑧, we deduce that the justifier of 𝑎 is already present in 𝑠 ; and moreover 𝑎 cannot conflict with

anything in 𝑠 . That 𝑠𝑎 is non-repetitive follows from strong safety and that transition functions are

injective.

Receptivity. Consider 𝑠𝑎− a play of !𝐴 ⊢ !𝐴 ⊗ !𝐴 and 𝜌 : ∅ 𝑠−→→ 𝛼 . If 𝑎 is on the right of ⊢, then
we can use the corresponding transition whose function domain is total on stacks of !𝐴. For 𝑎 on

the left, 𝑎 cannot be minimal so its justifier 𝑎0 must occur in 𝑠 . By Lemma C.33, its exponential

stack must start with ℓ
!
(e) or 𝓇

!
(e), and thus so must that of 𝑎. As a result, 𝑎 will be accepted by the

transition corresponding to its address. □

C.3.3 Fixpoint. We start by characterising the plays of Y𝑂 , where 𝑂 is a well-opened arena. We

reuse the same encodings as in Section B.3.4.

Lemma C.35. Let 𝜌 : ∅ 𝑠−→→ 𝛼 be a run of Y𝑂 such that 𝑠 is a play.
Then there exists suffix-closed 𝐽 ⊆ E+, configurations 𝑧,𝑦𝜖 ∈ 𝒞(𝑂), (𝑦s)s∈𝐽 and (𝑧s ∈ 𝒞≠∅ (𝑂))s∈𝐽

with 𝐽 empty if 𝑦𝜖 is, 𝑧 ⊑ 𝑦𝜖 and 𝑧s ⊑ 𝑦s for all s and

|𝑠 | = (∅ ⊸ () :: 𝑦𝜖 ) ⊎ (e :: (s) :: 𝑧𝑒 ·s ⊸ (e · s) :: 𝑦s) ⊢ 𝑧,

plus if 𝑦𝜖 = ∅ then 𝐽 = ∅, and if 𝑒 · s ∈ 𝐽 , then 𝑦s ≠ ∅.

Proof. A direct induction over the run, using the transition table. □

Lemma C.36. Y𝑂 is a negative Petri strategy !(!𝑂 ⊸ 𝑂) ⊢ 𝑂 .

Proof. Negativity and receptivity are easily verified.

Validity. Consider 𝜌 : ∅ 𝑠−→→ 𝛼 be a run of 𝑌𝑂 such that 𝑠 is a play of the game. Consider now an

extension of 𝜌 by the positive transition 𝔱 : 𝛼
𝑎−→ 𝛽 . We show that 𝑠𝑎 is a valid play. First, if 𝑎 or a

conflicting move occurs already in 𝑠 , given the shape of the net, this means that Opponent played

twice the same move or two conflicting moves earlier in 𝑠 which is absurd. It remains to show that

the predecessor of 𝑎 occurs in 𝑠 , which is a consequence of Lemma C.35

Strong-safety. All negative transitions have injective transition functions, and the two negative

transitions 𝓇⊢m−
and ℓ⊢ℓ⊸m−

which have a common postcondition (m−
), have disjoint codomains,

hence Y𝑂 is strongly safe. □

C.3.4 Queries, Conditional, Constants. For these IPA structures defined on linear games, a simple

inspection shows that they define they are IPA strategies.

C.3.5 Let bindings. We now move on to showing that let is a Petri strategy on (!X ⊸ Y) ⊗ X ⊢ Y.

Lemma C.37. Let 𝜌 : ∅ 𝑠−→→ 𝛼 be a valid run for let. Then |𝑠 | = ((⊎e∈𝐼e :: 𝑥e) ⊸ 𝑦) ⊗ 𝑧 ⊢ 𝑤 with:
(1) if 𝑦 ≠ ∅ then 𝑧 is maximal in 𝒞(X); (2)𝑤 ⊑ 𝑦 and 𝑥e ⊆ 𝑧 for all e ∈ 𝐼 .

Proof. By induction on 𝜌 . □

Lemma C.38. let is a Petri strategy on (!X ⊸ Y) ⊗ X ⊢ Y.

Proof. As usual, receptivity and negativity are clear. Strong safety is clear on the forwarding

transitions. For the transition s, we note that the token in location 3 is never in eat(s), and the

other token at location 5 has a stack given by Opponent, so there cannot be any risk of confusion.

Validity follows from Lemma C.37. □
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C.3.6 Newref and newsem. We now show that newref and newsem are valid Petri strategies. We

focus our attention on newref , the proof for newsem being similar.

We start by recovering, out of a run of newref , a memory trace. A memory trace is a word on

the alphabet Σ := E × {𝑟,𝑤} × D. There is a a partial function 𝜋 : ITnewref ⇀ Σ as follows:

𝜋 (wL{([e], d)@3, _}M) = (e,𝑤, d) 𝜋 (rL{([e], _)@5, (_, d)@2}M) = (e, 𝑟 , d),
and undefined everywhere else. We write Tr(𝜌) = 𝜌 ↾ 𝜋 .
A memory trace is consistent when (1) exponential signatures occurring in it are all distinct,

and (2) each read reads the last value written before, or zero if there are no writes.

Lemma C.39. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 of newref such that 𝑠 is a play. Then:
• Tr(𝜌) is a consistent memory trace.
• If 𝜌 is not empty, then there is a unique tokil (s, d)@2 in 𝛼 such that: if Tr(𝜌) is empty then
s = [] and d = 0, otherwise s = [e] with e and d the components of the last operation in Tr(𝜌).

• |𝑠 | has the shape ((⊎e∈𝐼e :: 𝑥e) ⊸ 𝑦) ⊢ 𝑧 with 𝑧 ⊑ 𝑦 and 𝑥e ∈ 𝒞(V) such that:
– if 𝑥e is non-empty then e occurs in Tr(𝜌) and the value coincide in the case of a read.
– For every signature e occurring in Tr(𝜌), 𝑥e is non-empty.

Proof. We proceed by induction on 𝜌 , the base case being trivial. We assume 𝜌 = 𝜌 ′ · 𝔱 with
𝔱 : 𝛼 → 𝛽 . For the visible transitions 𝓇⊢ (−) and ℓ⊢𝓇⊸ (−), this is a proof similar to copycat.

• If 𝔱 is on ℓ⊢ℓ⊸𝓌VQ
−
or ℓ⊢ℓ⊸𝓇VQ

−
, there is nothing to add to the induction hypothesis.

• If 𝔱 = 𝛾 ⊎ w{([e], d)@2, ( [e′], d′)@3): then Tr(𝜌) = Tr(𝜌 ′) ( [e′],𝑤, d′) is still a consistent trace.
Moreover, from the tokil ( [e′], d′)@3

, we deduce that in 𝜌 ′ there must be a visible transition

with move (ℓ⊢ℓ⊸𝓌VQ
−, [e], d′).

• If 𝔱 = 𝛾 ⊎ w{([e], d)@2, ( [e′], •)@5): the same line of reasoning works, except that Tr(𝜌) =
Tr(𝜌 ′) ( [e′, 𝑟 , d]) is no longer automatically consistent. However, by induction we know that

in 𝛼 there is a unique token at location 2, and that its value is the last value written or zero if

there is not any – which shows that Tr(𝜌) is indeed consistent.

• If 𝔱 = 𝛾 ⊎ ℓ⊢ℓ⊸𝓌VA( [e, d]@4): the first two conditions are trivially true. Moreover, since

( [e], d)@4
belongs to 𝛼 , there must have been a transition w in 𝛼 before that put it there. That

shows that there must be an element in Tr(𝜌) with exponential token e as desired. □

Lemma C.40. newref is a Petri strategy on !V ⊸ X ⊢ X.

Proof. Negativity and receptivity follow by inspection of the net and transition tables.

Strong-safety. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 such that 𝑠 is a play, that can be extended by a transition

𝔱 : 𝛼 −→ 𝛽 that is negative or neutral, with play(𝜌𝔱) being a play.

Initial question. If 𝔱 is a negative transition 𝛼 𝑎−→ 𝛽 on the address 𝓇⊢Q
−
. Then necessarily

𝜌 = 𝜖 and so Coll(𝜌) = ∅.
Final return. If 𝔱 is a negative transition 𝛼

𝑎−→ 𝛽 on the address ℓ⊢𝓇⊸A
−
: trivial since the

function of this transition is simply the identity, it follows from 𝑠𝑎 being a play hence

non-repetitive.

Request. If 𝔱 is a negative transition 𝛼
𝑎−→ 𝛽 on the address ℓ⊢ℓ⊸𝓌VQ

−
or ℓ⊢ℓ⊸𝓇VQ

−
. In both

cases, the transition function is again the identity, so we can conclude by the same argument.

Atomic operation. If 𝔱 arises from w or r. The two cases being symmetric, we only show

for w. From the Petri structure, we get that 𝛼 = 𝛾 ⊎ {([e], 𝑑)@3, (s, d′)@2} and 𝛽 = 𝛾 ⊎
{([e], d)@2, ( [e],✓)@6}.
We show that new(𝔱) is fresh in 𝜌 . For the token in location 6, which is always in new(𝔱),
only the transition w writes to 6, so if the tokil ( [e],✓)@6

appeared before in 𝜌 , it means that
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there would be already a tokil ( [e], d′′)@3
in Coll(𝜌). This is not possible because 3 is only

fed via the negative transition on ℓ⊢ℓ⊸𝓌VQ
−
. This means that Opponent would have played

(ℓ⊢ℓ⊸𝓌VQ
−, [e], d′′) which violates the fact that 𝑠 is non-repetitive (if d = d′′) or that 𝑠 is a

play (if d ≠ d′′ as those moves are in conflict).

Finally, if ( [e], d)@2
is in Coll(𝜌), then it means that a previous instance of w or r produced

it, which means that there must have been a tokil ( [e], d)@3
(for w) or ( [e], •)@5

(for r). That
implies there has been two Opponent moves on addresses of the form ℓ⊢ℓ⊸ (−) with the same

exponential address, which is not allowed by the game as they are all in conflict.

Valid. Consider a run 𝜌 : ∅ 𝑠−→→ 𝛼 with 𝑠 a play, and a positive extension 𝔱 : 𝛼
𝑎−→ 𝛽 . There are

several cases depending on the address of 𝑎:

• If 𝑎 is on 𝓇⊢A: easy since 𝜌 is non empty it must contain its justifying move. Moreover 𝑎 or

a conflicting move with 𝑎 cannot occur in 𝑠 , since we simply forward moves received from

address ℓ⊢𝓇⊸A.
• If 𝑎 is on ℓ⊢𝓇⊸Q: same reasoning.

• If 𝑎 is for instance on ℓ⊢ℓ⊸𝓌VA (the case for 𝓇V is similar). This means that in location 4, there

must be a tokil ( [e],✓)@4
. That tokil proves that, there must be an entry (e,𝑤, 𝑑) (for some 𝑑)

in Tr(𝜌). By Lemma C.39, we know that in 𝑠 there must be justifying move (ℓ⊢ℓ⊸𝓌VQ, [e], 𝑑).
Moreover, if 𝑎 or a conflicting move would be already present in 𝑎, then we could apply the

same reasoning and find a contradiction with the fact that Tr(𝜌) cannot repeat twice the
same exponential token. □

D THE UNFOLDING
We provide some detailed proofs of the unfolding to strategies.

D.1 Construction of the Unfolding
Fix a game 𝐴, and a Petri strategy 𝝈 : 𝐴. First, for a valid run 𝜌 : ∅ −→→𝝈 𝛼 , we write post(𝜌) = 𝛼 .
If x ∈ Hist(𝝈), we write post(x) = post(𝜌) for any 𝜌 such that x = IT𝜌 . This is justified by:

Lemma D.1. Consider 𝜌 : ∅ −→→𝝈 𝛼 and 𝜌 ′ : ∅ −→→𝝈 𝛼
′ valid runs such that IT𝜌 = IT𝜌′ .

Then, 𝛼 = 𝛼 ′.

Proof. Exploiting strong safety, it is immediate by induction on 𝜌 that:

𝛼 =
(
⊎{post(t) | t ∈ IT𝜌 }

)
\
(
⊎{pre(t) | t ∈ IT𝜌 }

)
from which the result immediately follows. □

We aim to prove that valid runs exactly correspond to linearizations of histories. The first step is:

Lemma D.2. Consider 𝜌 a valid run of 𝝈 of the form 𝜌 = 𝜌0 · (t ⊎ 𝛼) · (t′ ⊎ 𝛼 ′).
If t is maximal in IT𝜌 , then 𝜌0 · (t′ ⊎ 𝛽 ′) · (t ⊎ 𝛽) is a valid run for some 𝛽, 𝛽 ′.

Proof. First, we show that for 𝛽 ′ = post(𝜌0) \pre(t′), 𝜌0 extends by t′⊎𝛽 ′ which means showing:

(1) 𝛽 ′ ∩ pre(t′) = ∅
(2) pre(t′) ⊆ post(𝜌0)
(3) 𝛽 ′ ∩ post(t′) = ∅

First, (1) is by construction of 𝛽 ′. For (2), consider 𝑒 ∈ pre(t′). Then 𝑒 must either be in 𝛼 ⊆
post(𝜌0), or in post(t). If it is in post(t), then it cannot be a token produced by t (i.e. in new(t))
as t and t′ are incomparable. So it must be in pre(t) ⊆ post(𝜌0) as desired. For (3), consider
𝑒 ∈ 𝛽 ′ ∩ post(t′). The tokil 𝑒 must be in new(t′), which implies since t and t′ are incomparable
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that 𝑒 does not appear in pre(t). Since 𝑒 ∈ post(𝜌0), it must be that 𝑒 ∈ 𝛼 . Since 𝛼 ′
must be disjoint

from post(t′), we have 𝑒 ∈ pre(t′) which is absurd. Hence, 𝜌1 = 𝜌0 · (t′ ⊎ 𝛽 ′) is indeed a valid run.

We now let 𝛽 = post(𝜌1) \ pre(t) and must prove (1) pre(t) ⊆ post(𝜌1); and (2) 𝛽 ∩ post(t) = ∅.
For (1), if 𝑒 ∈ pre(t), then 𝑒 is in post(𝜌0). As a result, either 𝑒 is not in pre(t′), which implies

that 𝑒 ∈ 𝛽 ′ hence 𝑒 ∈ post(𝜌1) (as desired), or 𝑒 ∈ pre(t′) as well. In the second case, we have

then 𝑒 ∈ pre(t) ∩ pre(t′). Because, in 𝜌 , t comes before t′, this implies that 𝑒 cannot be eaten by

t, in other words 𝑒 ∈ post(t). This implies 𝑒 ∉ eat(t′) as the two transitions are incomparable,

i.e. 𝑒 ∈ post(t′) ⊆ post(𝜌1). For (2), consider 𝑒 ∈ 𝛽 ∩ post(t), ie. in particular 𝑒 ∈ new(t). As
𝑒 ∈ post(𝜌1), 𝑒 either belongs to 𝛽 ′ or post(t′). In the first case, thismeans that 𝑒 ∈ post(𝜌0)∩post(t),
which can only be if 𝑒 ∈ pre(t) which is absurd. In the second case, it means that 𝑒 ∈ post(t′),
which in turn means that 𝑒 ∈ pre(t′) as 𝑒 is produced by t so it cannot be produced by t′ as well by
strong safety. But that is not possible either as it would imply a dependency from t to t′. □

Lemma D.3. Consider x ∈ Hist(𝝈) and t a maximal element of x.
Then, there exists a valid run 𝜌 ending in t ⊎ 𝛼 (for some context 𝛼) such that IT𝜌 = x.

Proof. Consider a run 𝜌0 spanning x, which must have the shape:

𝜌0 = 𝜌1 · (t ⊎ 𝛼) · (t1 ⊎ 𝛼1) · . . . · (t𝑛 ⊎ 𝛼𝑛) .
We proceed by induction on 𝑛. If 𝑛 = 0, then t already occurs at the end of 𝜌 . For 𝑛 + 1, we

consider 𝜌 ′ the prefix of 𝜌 where the last transition has been removed. By IH, we get a run 𝜒 with

IT𝜒 = x \ {t𝑛+1} and 𝜒 ends with t. By Lemma D.1, we have post(𝜒) = post(𝜌 ′); from that it is

immediate that 𝜒 · (t𝑛+1 ⊎ 𝛼𝑛+1) is a valid run, and we conclude by Lemma D.2. □

Lemma D.4. Consider x ∈ Hist(𝝈).
Then, valid runs 𝜌 such that x = IT𝜌 exactly correspond to linearizations of x.

Proof. Clearly, all runs preserve ≤x. For the converse, for any transition t maximal in𝒯(x), we
obtain a run where it is played last by taking any valid run 𝜌 such that x = IT𝜌 , and pushing t to
the end via local permutations – maximality of t ensures that there is no obstruction – see Lemma

D.3. Iterating this process, we can indeed obtain any linearization. □

Proposition 5.10. The set comprising all𝒯(x) for x ∈ Hist(𝝈), is a rigid family written𝒯(𝝈).
Moreover,𝒯(𝝈) (ordered by rigid inclusion) is order-isomorphic to Hist(𝝈) (ordered by inclusion).

Proof. First, the claimed order-isomorphism is clear by construction.

Rigid-closed. Now if 𝓅 ∈ 𝒯(𝝈) and 𝓆 ↩→ 𝓅, by Lemma D.4 there is a valid run 𝜌 playing 𝓆 first.

Truncating 𝜌 after 𝓆, we get 𝜌 ′ such that𝒯(𝜌 ′) = 𝓆 by construction.

Binary-compatible. Take 𝑋 ⊆𝑓 Hist(𝝈). Clearly, if (1) there are x, y ∈ 𝑋 , visible instantiated

transitions t in x and t′ in y labelled by conflicting events of 𝐴 ⊢ 𝐵; or (2) there are x, y ∈ 𝑋 ,

t : 𝛼 −→𝝈 𝛽 in x and t′ : 𝛼 ′ −→𝝈 𝛽 ′ in y such that 𝛼 ∩ 𝛼 ′ ≠ ∅; then there cannot be a valid run

witnessing ∪𝑋 : (1) would contradict validity of the run, while (2) would contradict strong safety as

the same tokil would have to be consumed twice. Reciprocally, if we have neither (1) nor (2), then
any valid runs (𝜌x)x∈𝑋 may be directly “zipped” into a valid run witnessing ∪𝑋 ∈ Hist(𝝈).

This concludes the proof, as it brings compatibility of 𝑋 ⊆𝑓 𝒯(𝝈) to pairwise compatibility. □

Proposition 5.12. The event structure𝒰(𝝈) = Pr(𝒯(𝝈)) ↓𝒱𝝈 , equipped with the display map

𝜕𝒰(𝝈 ) : |𝒰(𝝈) | → |𝐴 ⊢ 𝐵 |
𝓆 ↦→ 𝜕𝝈 (top(𝓆))

is a strategy in the sense of Definition 4.6. Moreover,𝒰(𝝈) is negative if 𝝈 is.
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Proof. It remains to prove courteous, receptive and negative. Recall the order-isomorphism

𝐾𝝈 : 𝒞(𝒰(𝝈)) � 𝒯𝑉 (𝝈)

obtained in (4). We now prove the remaining conditions.

Courteous. Consider x1 _𝒰(𝝈 ) x2 such that pol(x1) = + or pol(x2) = −. So x1, x2 ∈ 𝒯(𝝈) with
respective top elements top(x1) = t1 and top(x2) = t2, such that pol(t1) = + or pol(t2) = −. By
definition, x1 ↩→ x2, so that t1, t2 ∈ x2 with t1 <x2 t2. By definition, this means there is a sequence

t1 ◁x2 t
′
1
◁x2 . . . t

′
𝑛 ◁x2 t2

where, following Definition 5.8, each ◁x2 is either ◁𝝈 or ◁𝐴. Now, seeking a contradiction, assume

𝑛 ≥ 1. Assume first that t1 is positive. Then, we cannot have t1 ◁x2 t
′
1
as post(t1) = new(t1) = ∅. But

we also cannot have t1 ◁𝐴 t′
1
, as t1 is visible but not t′1. Assuming that t2 is negative is symmetric:

we cannot have t′𝑛 ◁x2 t2 as pre(t2) = eat(t2) = ∅, and we cannot have t′𝑛 ◁𝐴 t2 because t2 is visible
but not t′𝑛 . So, 𝑛 = 0 and we have t1 ◁x2 t2. But again, for the same reason this cannot be because

t1 ◁𝝈 t2, so t1 ◁𝐴 t2, which means 𝜕𝝈 (t1) _𝐴 𝜕𝝈 (t2). Hence, 𝜕𝒰(𝝈 ) _𝐴 𝜕𝒰(𝝈 ) .
Receptive. Consider 𝑥 ∈ 𝒞(𝒰(𝝈)) and 𝜕𝒰(𝝈 ) (𝑥) ⊢𝐴 𝑎−. So we have 𝐾𝝈 (𝑥) ∈ 𝒯

𝑉 (𝝈) with
𝜕𝝈 (𝐾𝝈 (𝑥)) ⊢𝐴 𝑎−. We show that there is a unique matching extension t− of 𝐾𝝈 (𝑥), and conclude by
the fact that 𝐾𝝈 is an order-isomorphism. For existence, consider 𝜌 : ∅ −→→𝝈 𝛼 a valid run such that

𝐾𝝈 (𝑥) = 𝒯(𝜌). Consider 𝑠 ∈ play(𝜌), so in particular 𝑠 ∈ Plays(𝐴). By hypothesis, 𝑠𝑎 ∈ Plays(𝐴)
as well. So by condition receptive of Petri strategies, there is a unique t− : ∅ 𝑎−↦−→𝝈 𝛽 for some

𝛽 ∩ 𝛼 = ∅, so that 𝜌 ′ = 𝜌 (t− ⊎ 𝛾) is a valid run for some 𝛾 ; providing the expected extension of

𝐾𝝈 (𝑥). Uniqueness follows immediately from uniqueness of t−.
Negative. Consider x ∈ |𝒰(𝝈) | minimal. This means that x is a prime history with exactly one

visible itransition t, with t = top(x). So there is a run

∅𝔱1 . . . 𝔱𝑛 (t ⊎ 𝛾) : ∅ −→→𝝈 𝛼 ,

but by condition negative of Petri strategies, 𝔱1 cannot be neutral and have no preconditions. So

𝑛 = 0, and we have a one-itransition run t : ∅ −→→𝝈 𝛼 . But likewise, by condition negative of Petri
strategies this entails that t is negative, so x is negative as required. □

D.2 The Unfolding as a Functor
Proposition 5.15. Consider 𝝈 : 𝐴 ⊢ 𝐵 and 𝝉 : 𝐵 ⊢ 𝐶 Petri strategies. Then, there is an order-iso:

(− ⊙ −) : {(x𝝉 , x𝝈 ) ∈ 𝒯+ (𝝉 ) ×𝒯+ (𝝈) | causally compatible} � 𝒯+ (𝝉 ⊙ 𝝈)

such that for x𝝈 ∈ 𝒯+ (𝝈), x𝝉 ∈ 𝒯+ (𝝉 ) causally compatible, 𝜕𝝉 ⊙𝝈 (x𝝉 ⊙ x𝝈 ) = x𝝈
𝐴
⊢ x𝝉

𝐶
.

Proof. For x𝝈 ∈ 𝒯(𝝈) and x𝝉 ∈ 𝒯(𝝉 ), we set x𝝉 ⊙ x𝝈 as the set of instantiated transitions

obtained from x𝝈 and x𝝉 by the rules of Figure 28 (following Lemma C.3). We prove by induction

that for all x𝝈 ∈ 𝒯(𝝈) and x𝝉 ∈ 𝒯(𝝉 ) causally compatible, then x𝝉 ⊙ x𝝈 ∈ 𝒯(𝝉 ⊙ 𝝈), and

post(x𝝉 ⊙ x𝝈 ) = post(x𝝈 ) +⊙ post(x𝝉 ) .

If x𝝉 ⊙ x𝝈 is empty, there is nothing to prove. If x𝝈 or x𝝉 have a maximal neutral instantiated

transition, say w.l.o.g. that it is x𝝈 with maximal t = 𝑡0L𝜇M ∈ x𝝈 . Then, setting y𝝈 = x𝝈 \ {t} yields
y𝝈 ∈ 𝒯(𝝈) by Proposition 5.10; and with also y𝝉 = x𝝉 , it is direct that y𝝈 and y𝝉 are still causally

compatible. By IH, we have y𝝉 ⊙ y𝝈 ∈ 𝒯(𝝉 ⊙ 𝝈) and post(y𝝉 ⊙ y𝝈 ) = post(y𝝈 ) +⊙ post(y𝝉 ). This
means that there is a run 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 projecting to 𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 with 𝛼𝝈 = post(y𝝈 ). Since
t is enabled in post(y𝝈 ) it follows that ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M is enabled in y𝝉 ⊙ y𝝈 , and

𝜌 (ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M : ∅ −→→𝝉 ⊙𝝈 𝛽
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where by construction 𝛽 = post(x𝝈 ) +⊙ post(x𝝉 ) as needed. The symmetric reasoning applies if x𝝉

has a maximal neutral instantiated transition – so assume all maximal transitions in x𝝈 , 𝑥𝝉 visible.

Now, by causal compatibility of x𝝈 and x𝝉 , there is an element of x𝐴 ∥ x𝐵 ∥ x𝐶 (following the

notations of Section 5.3.1) which is maximal for ◁. If it is in x𝐴, it has the form 𝜕ℓ𝝈 (t) for t ∈ x𝝈

positive or negative. In both cases, the same argument as in the neutral case applies (with the

additional observation that the obtained run yields a valid play from the hypothesis). The reasoning

is the same if it is in x𝐶 . The last (key) case is if it is in x𝐵 . Then there are instantiated transitions

𝑡+L𝜇M : 𝜇 𝓇⊢𝑚↦−→𝝈 ∅ , 𝑡−L(s, d)M : ∅ ℓ⊢𝑚↦−→𝝉 𝜈 ,

or the dual – symmetric – situation, respectivelymaximal in x𝝈 and x𝝉 ; and by necessity𝑚 = (m, s, d)
where 𝜕𝝈 (𝑡+) = 𝓇⊢m, 𝜕𝝉 (𝑡−) = ℓ⊢m, 𝛿 ⟨𝑡+⟩(𝜇) = (s, d) and 𝛿 ⟨𝑡−⟩(s, d) = 𝜈 . Setting y𝝈 \ {𝑡+L𝜇M} and
y𝝉 \ {𝑡−L(s, d)M}, it is straightforward that they are still causally compatible histories. By IH,

y𝝉 ⊙ y𝝈 ∈ 𝒯(𝝉 ⊙ 𝝈) with post(y𝝉 ⊙ y𝝈 ) = post(y𝝈 ) +⊙ post(y𝝉 ). It follows that there is a run
𝜌 : ∅ −→→𝝉 ⊙𝝈 post(y𝝉 ⊙ y𝝈 ) .

Since x𝝈 ∈ 𝒯(𝝈) with 𝑡+L𝜇M maximal and x𝝉 ∈ 𝒯(𝝈) with 𝑡−L(s, d)M maximal, there are

𝜉𝝈 (𝑡+L𝜇M ⊎ 𝛾𝝈 ) : ∅ −→→𝝈 post(x𝝈 ) , 𝜉𝝉 (𝑡−L(s, d)M ⊎ 𝛾𝝉 ) : ∅ −→→𝝉 post(x𝝉 ) ,
valid runs by Lemma D.3, with x𝝈 = IT𝜉𝝈 and x𝝉 = IT𝜉𝝉 . By Lemma D.1, post(𝜉𝝈 ) = post(𝜌𝝈 ) =
post(y𝝈 ) and post(𝜉𝝉 ) = post(𝜌𝝉 ) = post(y𝝉 ). It follows that the transition

(𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M : ℓ ⊙ (𝜇) ↦−→𝝉 ⊙𝝈 𝓇
⊙ (𝜈)

is enabled in post(y𝝉 ⊙ y𝝈 ), hence it can be appended to 𝜌 , witnessing x𝝉 ⊙ x𝝈 ∈ 𝒯(𝝉 ⊙ 𝝈).
In the other direction, given y ∈ 𝒯(𝝉 ⊙ 𝝈), consider a valid run 𝜌 : ∅ −→→𝝉 ⊙𝝈 𝛼 such that

y = IT𝜌 . By Lemmas C.4 and C.6, we then have 𝛼 = 𝛼𝝈 +⊙ 𝛼𝝉 with

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

valid runs. Recall that 𝜌𝝈 = 𝜌 ↾ 𝜋𝝈 and 𝜌𝝉 = 𝜌 ↾ 𝜋𝝉 – hence, setting x𝝈 = 𝜋𝝈 (y) and x𝝉 = 𝜋𝝉 (y),
we have x𝝈 = IT𝜌𝝈 and x𝝉 = IT𝜌𝝉 so that x𝝈 ∈ 𝒯(𝝈) and x𝝉 ∈ 𝒯(𝝉 ). Causal compatibility is direct

as 𝜌 provides a linearization of ◁.
It is direct that these constructions are inverse; it remains to show that they preserve +-covered

histories. If x𝝈 and x𝝉 causally compatible are +-covered, then consider t maximal in x𝝉 ⊙ x𝝈 . If
t = ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M, this directly contradicts +-coveredness of x𝝈 , and likewise for 𝓇

⊙ (𝑡0)L𝓇⊙ (𝜇)M.
If t = ℓ ⊙ (𝑡−)L(s, d)M, then 𝑡−L(s, d)M is maximal in x𝝈 , contradiction – likewise for 𝓇

⊙ (𝑡−)L(s, d)M.
If t = (𝑡+ ⊛ 𝑡−)Lℓ ⊙ (𝜇)M with 𝑡+L𝜇M ∈ x𝝈 and 𝑡−L(s, d)M ∈ x𝝉 , then 𝑡−L(s, d)M is maximal in x𝝉 ,
contradiction – likewise, t = (𝑡− ⊛ 𝑡+)L𝓇⊙ (𝜇)M leads to a contradiction. So, x𝝉 ⊙ x𝝈 is +-covered.

Reciprocally, assume x𝝉 ⊙ x𝝈 +-covered. Consider t ∈ x𝝈 maximal. If t = 𝑡0L𝜇M, ℓ ⊙ (𝑡0)Lℓ ⊙ (𝜇)M is
maximal in x𝝉 ⊙ x𝝈 , contradiction. If t = 𝑡−L(s, d)M, then since x𝝉 ⊙ x𝝈 is +-covered, there is

ℓ ⊙ (𝑡−)L(s, d)M _x𝝉 ⊙x𝝈 t′

and a direct case analysis shows that 𝜋𝝈 t′ is defined with 𝑡−L(s, d)M _x𝝈 𝜋𝝈 t′, contradicting the
maximality of t. The last case has t positive; and symmetrically, x𝝉 is +-covered. □

As detailed in Proposition 5.16, it follows that unfolding preserves composition up to iso.

Next, we show the same for copycat. If 𝐴 is an arena, then we have obvious bijections

IT+cc𝐴 � |𝐴 ⊢ 𝐴|+ IT−cc𝐴 � |𝐴 ⊢ 𝐴|− ,
and coercing silently through these, we have:

Lemma D.5. Consider 𝐴 an arena, and 𝜌 : ∅ −→→ cc𝐴 𝛼 a valid run.
Then, IT𝜌 = play(𝜌), with negative maximal transitions in bijection with 𝛼 .
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Proof. Straightforward by induction on 𝜌 . □

Lemma D.6. Consider 𝐴 an arena. Then, we have the order-isomorphism

𝒯
+ ( cc𝐴) � {𝑥 ⊢ 𝑥 | 𝑥 ∈ 𝒞(𝐴)}

with 𝜕 cc𝐴 (𝑥 ⊢ 𝑥) = 𝑥 ⊢ 𝑥 .

Proof. The isomorphism simply applies the bijection IT cc𝐴 ≃ |𝐴|. From left to right, recall first

that by Lemma C.8, for 𝜌 : ∅ −→→ cc𝐴 𝛼 a valid run, we have

|play(𝜌) | = 𝑥 ⊢ 𝑦 , 𝑦 ⊇− 𝑥 ∩ 𝑦 ⊆+ 𝑥 , 𝛼 = (𝑦− \ 𝑥) ⊎ (𝑥+ \ 𝑦) .
By LemmaD.5, the history IT𝜌 is +-covered iff𝛼 = ∅, i.e.𝑦− ⊆ 𝑥 and𝑥+ ⊆ 𝑦. But as𝑦 ⊇− 𝑥∩𝑦 ⊆+ 𝑥

this entails 𝑥 = 𝑦. In that case, 𝜕 cc𝐴 (IT𝜌 ) = |play(𝜌) | = 𝑥 ⊢ 𝑥 as needed. Reciprocally, for any

𝑥 ∈ 𝒞(𝐴), it is straightforward to build a valid run 𝜌 : ∅ −→→ cc𝐴 ∅ s.t. IT𝜌 = 𝑥 ⊢ 𝑥 as required. □

From that, preservation of copycat follows:

Proposition D.7. Consider 𝐴 an arena. Then,𝒰( cc𝐴) � cc𝐴.

Proof. We compose label-preserving order-isomorphisms:

𝒞
+(𝒰( cc𝐴)) � 𝒯

+ ( cc𝐴)
� {𝑥 ⊢ 𝑥 | 𝑥 ∈ 𝒞(𝐴)}
� 𝒞

+( cc𝐴)
by Lemmas 5.13 and D.6. From this it follows that𝒰( cc𝐴) � cc𝐴 by Lemma 4.9. □

Corollary D.8. We have a functor of precategories𝒰 : PStrat → Strat.

D.3 The Unfolding Preserves Operations
Next, we prove that the unfolding preserves all operations of the IPA-structure.

D.3.1 Tensor. Preservation of the tensor operation is easy via the following observation:

Lemma D.9. Consider 𝝈 : 𝐴1 ⊢ 𝐵1, 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies. Then, we have an order-isomorphism

(− ⊗ −) : 𝒯+ (𝝈) ×𝒯+ (𝝉 ) � 𝒯+ (𝝈 ⊗ 𝝉 )
s.t. 𝜕𝝈 ⊗𝝉 (x𝝈 ⊗ x𝝉 ) = (𝑥𝐴1

⊗ 𝑥𝐴2
) ⊢ (𝑥𝐵1

⊗ 𝑥𝐵2
) where 𝜕𝝈 (x𝝈 ) = 𝑥𝐴1

⊢ 𝑥𝐵1
and 𝜕𝝉 (x𝝉 ) = 𝑥𝐴2

⊢ 𝑥𝐵2
.

Proof. Consider x𝝈 ∈ 𝒯+ (𝝈) and x𝝉 ∈ 𝒯+ (𝝉 ). By definition, there are valid runs

𝜌𝝈 : ∅ −→→𝝈 𝛼𝝈 , 𝜌𝝉 : ∅ −→→𝝉 𝛼𝝉

such that x𝝈 = IT𝜌𝝈 and x𝝉 = IT𝜌𝝉 . We define the history x𝝈 ⊗ x𝝉 as

x𝝈 ⊗ x𝝉 = {ℓ ⊗ (𝑡0,+)Lℓ ⊗ (𝜇)M | 𝑡0,+L𝜇M ∈ x𝝈 }
⊎ {ℓ ⊗ (𝑡−)L(s, d)M | 𝑡−L(s, d)M ∈ x𝝈 }
⊎ {𝓇⊗ (𝑡0,+)L𝓇⊗ (𝜇)M | 𝑡0,+L𝜇M ∈ x𝝉 }
⊎ {𝓇⊗ (𝑡−)L(s, d)M | 𝑡−L(s, d)M ∈ x𝝉 } .

This must be the history of a valid run – to show that, we build

ℓ ⊗ (𝜌𝝈 ) : ∅ −→→𝝈 ⊗𝝉 ℓ
⊗ (𝛼𝝈 ) , 𝓇

⊗ (𝜌𝝉 ) ⊎ ℓ ⊗ (𝛼𝝈 ) : ℓ ⊗ (𝛼𝝈 ) −→→𝝈 ⊗𝝉 ℓ
⊗ (𝛼𝝈 ) ⊎ 𝓇⊗ (𝛼𝝉 )

which by concatenation (and Lemma C.13) yields a valid run 𝜌𝝈 ⊗ 𝜌𝝉 : ∅ −→→𝝈 ⊗𝝉 𝛼𝝈 +⊗ 𝛼𝝉 ; and it

is immediate that x𝝉 ⊗ x𝝈 = IT𝜌𝝉 ⊗𝜌𝝈 . By definition of the causal ordering of instantiated transitions,

it is also immediate that x𝝉 ⊗ x𝝈 is +-covered; and that this preserves the labelling.
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Reciprocally, for any x ∈ 𝒯+ (𝝈 ⊗ 𝝉 ) we consider the projections
x𝝈 = 𝜋𝝈 (x) , x𝝉 = 𝜋𝝉 (x) ,

and it follows from Lemma C.14 that x𝝈 ∈ 𝒯(𝝈) and x𝝉 ∈ 𝒯(𝝉 ). From the definition of the causal

ordering of instantiated transitions, x𝝈 and x𝝉 are still +-covered.
Finally, these two transformations are inverses as required. □

Again, from this we can conclude that the unfolding preserves the tensor.

Corollary D.10. Consider 𝝈 : 𝐴1 ⊢ 𝐵1, 𝝉 : 𝐴2 ⊢ 𝐵2 Petri strategies.
Then, we have𝒰(𝝈 ⊗ 𝝉 ) � 𝒰(𝝈) ⊗𝒰(𝝉 ).

Proof. We compose label-preserving isomorphisms:

𝒞
+(𝒰(𝝈 ⊗ 𝝉 )) � 𝒯

+ (𝝈 ⊗ 𝝉 )
� 𝒯

+ (𝝈) ×𝒯+ (𝝉 )
� 𝒞

+(𝒰(𝝈)) ×𝒞+(𝒰(𝝉 ))
� 𝒞

+(𝒰(𝝈) ⊗𝒰(𝝉 ))
by Lemmas 5.13, D.9, Lemma 5.13 again, and Proposition B.5. □

D.3.2 Renaming. Before detailing the unfolding of currying and promotion, we show that it

preserves renaming. We have already established in Lemma C.19 that (global) renamings preserve

valid runs. In order for renamings to preserve the unfolding, we must ensure that the dependency

between instantiated transitions is preserved as well.

Lemma D.11. Consider 𝐴, 𝐵 games, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, 𝝈 : 𝐴, and 𝜌 : ∅ −→→𝝈 𝛼 valid.
For all t, t′ ∈ IT𝜌 , we have t ≤𝜌 t′ iff t[ℎ] ≤𝜌 [ℎ] t′[ℎ].

Proof. Consider t _𝜌 t′. W.l.o.g. we assume that this dependency cannot be deduced otherwise

by transitivity. By Lemma D.4, we can assume that t and t′ appear subsequently in 𝜌 .

Assume first t _𝐴 t′. By definition,

t : 𝛼
𝑎

↦−→𝝈 𝛽 , t′ : 𝛼 ′ 𝑎′↦−→𝝈 𝛽
′

with 𝑎 _𝐴 𝑎′, while by construction, t[ℎ] : 𝛼
ℎ𝑎↦−→𝝈 [ℎ] 𝛽 and t′[ℎ] : 𝛼 ′ ℎ𝑎′↦−→𝝈 [ℎ] 𝛽

′
. Now, we

distinguish cases depending on the polarity of 𝑎, 𝑎′. If pol𝐴 (𝑎) = + or pol𝐴 (𝑎′) = −, then by courtesy
we have ℎ𝑎 _𝐵 ℎ𝑎

′
, so that t[ℎ] _𝐵 t′[ℎ] by Definition 5.8. If pol𝐴 (𝑎) = − and pol𝐴 (𝑎′) = +, then

t = 𝑡−L(s, d)M : ∅
𝑎

↦−→𝝈 𝛽 , t′ = 𝑡+L𝛼 ′M : 𝛼 ′ 𝑎′↦−→𝝈 ∅ .
Assume, seeking a contradiction, that 𝛽 ∩ 𝛼 ′ = ∅, and consider the prefix of 𝜌 :

𝜌 ′(𝑡−L(s, d)M ⊎ 𝛾) (𝑡+L𝛼 ′M ⊎ 𝛾 ′) : ∅ −→→𝝈 𝜈 ,

but if indeed 𝛽 ∩ 𝛼 ′ = ∅, then t and t′ permute as in

𝜌 ′(𝑡+L𝛼 ′M ⊎ 𝜇) (𝑡−L(s, d)M ⊎ 𝜇 ′) : ∅ −→→𝝈 𝜈

and by valid, this entails play(𝜌 ′)𝑎′ ∈ Plays(𝐴), contradicting 𝑎 _𝐴 𝑎
′
. Assume now t _𝝈 t′. This

comes either from new(t) ∩ pre(t′) ≠ ∅, or post(t) ∩ eat(t′) ≠ ∅. But the renaming of instantiated

transtions does not change pre- and post-conditions, so t[ℎ] _𝜌 [ℎ] t′[ℎ] still.
Reciprocally, assume t[ℎ] ≤𝜌 [ℎ] t′[ℎ]. Seeking a contradiction, assume ¬(t ≤𝜌 t′). By Lemma

D.4, we can assume that t′ appears before t in 𝜌 . Hence, t′[ℎ] appears before t[ℎ] in 𝜌 [ℎ]. But by
Lemma C.19 𝜌 [ℎ] is valid, so by Lemma D.4 t[ℎ] must appear before t′[ℎ], contradiction. □

Next, we need to show that valid runs are also reflected by renamings:
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Lemma D.12. Consider 𝐴, 𝐵 games, 𝝈 : 𝐴, ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵, and 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 valid.
Then, there is a unique 𝜌 : ∅ −→→𝝈 𝛼 valid such that 𝜌 ′ = 𝜌 [ℎ].

Proof. By induction on 𝜌 ′. If it is empty, this is clear. Consider 𝜌 ′𝔱0 with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and

𝔱0 = 𝑡0L𝜇M ⊎ 𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with 𝑡
0L𝜇M : 𝜇 ↦−→𝝈 [ℎ] 𝜈 . By IH, there is 𝜌 : ∅ −→→𝝈 𝛼 . By definition,

we still have 𝑡0L𝜇M ⊎ 𝛾 : 𝛼 −→𝝈 𝛽 , so 𝜌𝔱
0
: ∅ −→→𝝈 𝛽 and as required, (𝜌𝔱0) [ℎ] = 𝜌 ′𝔱0.

Next, consider 𝜌 ′𝔱+ with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and 𝔱+ = 𝑡+L𝜇M⊎𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with 𝑡
+L𝜇M : 𝜇 𝑏′↦−→𝝈 [ℎ]

∅. Necessarily, 𝑏 ′ = (𝑓 (m), d′, s′) for m = 𝜕𝝈 (𝑡+), and (d′, s′) = 𝑔m (d, s) for (d, s) = 𝛿 ⟨𝑡+⟩(𝜇) – so

𝑏 = ℎ(𝑏) for 𝑏 = (m, d, s). But then, by definition, 𝑡+L𝜇M : 𝜇 𝑏↦−→𝝈 ∅ as well, so 𝔱+ : 𝛼 −→𝝈 𝛽 . By IH,

there is 𝜌 : ∅ −→→𝝈 𝛼 such that 𝜌 [ℎ] = 𝜌 ′. By valid, 𝜌𝔱+ is still valid, and (𝜌𝔱+) [ℎ] = 𝜌 ′𝔱+.
Finally, consider 𝜌 ′𝔱− with 𝜌 ′ : ∅ −→→𝝈 [ℎ] 𝛼 and 𝔱− = 𝑡−L(s′, d′)M ⊎ 𝛾 : 𝛼 −→𝝈 [ℎ] 𝛽 , with

𝑡−L(s′, d′)M : ∅ 𝑏′↦−→𝝈 [ℎ] 𝜈 . Here, necessarily, 𝑏
′ = (m′, s′, d′) where m′ = 𝑓 (m), m = 𝜕𝝈 (𝑡−),

(s′, d′) = 𝑔m (s, d). In other words, 𝑏 ′ = ℎ(𝑏) with 𝑏 = (m, s, d). Now, by IH we have 𝜌 : ∅ −→→𝝈 𝛼

with 𝜌 [ℎ] = 𝜌 ′. Besides, we have the transition 𝑡−L(s, d)M : ∅ 𝑏↦−→𝝈 𝜈 , so that (𝑡−L(s, d)M ⊎ 𝛾) :

𝛼 −→𝝈 𝛽 . Its validity follows immediately from receptivity of global renamings (and the fact that

they are injective). It is clear that (𝜌 (𝑡−L(s, d)M ⊎ 𝛾)) [ℎ] = 𝜌 ′𝔱− as required.

Finally, uniqueness is immediate by induction and injectivity of ℎ. □

Lemma D.13. Consider 𝐴, 𝐵 games, 𝝈 : 𝐴 a Petri strategy, and ℎ = [𝑓 , (𝑔m)] : 𝐴↷↷ 𝐵.
Then,𝒰(𝝈 [ℎ]) � 𝒰(𝝈) [ℎ].

Proof. We construct an order-isomorphism

−[ℎ] : 𝒯+ (𝝈) � 𝒯+ (𝝈 [ℎ]) (5)

such that 𝜕𝝈 [ℎ] (x) = ℎ(𝜕𝝈 (x)) for all x ∈ 𝒯+ (𝝈). Given x ∈ 𝒯+ (𝝈), there is some 𝜌 a valid

run in 𝝈 such that x = 𝒯(𝜌). By Lemma C.19, 𝜌 [ℎ] is a valid run of 𝝈 [ℎ], so we may consider

x[ℎ] = 𝒯(𝜌 [ℎ]). By Lemma D.11, −[ℎ] on instantiated transitions is an order-isomorphism −[ℎ] :
x � x[ℎ], so x[ℎ] ∈ 𝒯+ (𝝈 [ℎ]). Together with Lemma D.12, this easily entails that we get −[ℎ] :
𝒯(𝝈) � 𝒯(𝝈 [ℎ]) an order-isomorphism. By definition, for each x ∈ 𝒯(𝝈) we have an order-iso

x � x[ℎ] defined by applying −[ℎ] on each transition – thus, −[ℎ] preserves and reflects +-covered
histories. The requirement w.r.t. labels is obvious by construction.

By Lemma 5.13, we also obtain an order-isomorphism

−[ℎ] : 𝒞+(𝒰(𝝈)) � 𝒞+(𝒰(𝝈 [ℎ]))
such that 𝜕𝒰(𝝈 [ℎ]) (𝑥 [ℎ]) = ℎ(𝜕𝒰(𝝈 ) (𝑥)) for any 𝑥 ∈ 𝒞+(𝒰(𝝈)), so, from Definition 3.14, an order-

isomorphism −[ℎ] : 𝒞+(𝒰(𝝈) [ℎ]) � 𝒞+(𝒰(𝝈 [ℎ])) such that 𝜕𝒰(𝝈 [ℎ]) (𝑥 [ℎ]) = 𝜕𝒰(𝝈 ) [ℎ] (𝑥) for all
𝑥 ∈ 𝒞+(𝒰(𝝈) [ℎ]). By Lemma 5.13, it follows that𝒰(𝝈) [ℎ] and𝒰(𝝈 [ℎ]) are isomorphic. □

D.3.3 Currying. Follows from Lemma D.13, as currying is obtained with the same global renaming

both in PStrat and in Strat.

D.3.4 Promotion. Let us start with characterizing +-covered traces of the functorial promotion.

Lemma D.14. Consider 𝝈 : 𝐴 ⊢ 𝐵 a Petri strategy. Then, we have an order-iso

[−] : Fam(𝒯+,≠∅ (𝝈)) � 𝒯+ (!𝝈)
satisfying that for all (xe)e∈𝐸 ∈ Fam(𝒯+,≠∅ (𝝈)), we have

𝜕!𝝈 ( [(xe)e∈𝐸]) =
(⊎
e∈𝐸

e :: 𝑥𝑒𝐴

)
⊢

(⊎
e∈𝐸

e :: 𝑥𝑒𝐵

)
writing 𝜕𝝈 (x𝑒 ) = 𝑥e𝐴 ⊢ 𝑥e

𝐵
for all e ∈ 𝐸.
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Proof. This is a𝑛-ary adaptation of the proof of Lemma D.9. Consider (xe)e∈𝐸 ∈ Fam(𝒯+,≠∅ (𝝈)).
By definition, there is a valid run

𝜌e : ∅ −→→𝝈 𝛼
e

for all e ∈ 𝐸 such that xe = IT𝜌e . We define the history [(xe)e∈𝐸] as
[xe | e ∈ 𝐸] = {𝑡0Le :: 𝛼M | e ∈ 𝐸, 𝑡0L𝛼M ∈ xe}

⊎ {𝑡+Le :: 𝛼M | e ∈ 𝐸, 𝑡+L𝛼M ∈ xe}
⊎ {𝑡−L(e :: s, d)M | e ∈ 𝐸, 𝑡−L(s, d)M ∈ xe} .

We construct a run 𝜌 obtained by concatenating all 𝜌es in the obvious way as in Lemma D.9.

Exploiting Lemma C.27, it is a valid run and [xe | e ∈ 𝐸] = IT𝜌 by construction. By definition of the

causal ordering of instantiated transitions, it is also immediate that [xe | e ∈ 𝐸] is +-covered; and
that this preserves the labelling. Reciprocally, for any x ∈ 𝒯(!𝝈), we consider the projections

xe = 𝜋 !

e (x)
and it follows from Lemma C.28 that xe ∈ 𝒯(𝝈) for all e ∈ 𝐸. From the definition of the causal

ordering of instantiated transitions, each xe is still +-covered.
Finally, these two transformations are inverses as required. □

Corollary D.15. Consider 𝝈 : !𝐴 ⊢ 𝐵 a Petri strategy. Then, we have𝒰(𝝈†) � 𝒰(𝝈)†.

Proof. We exploit the following sequence of label-preserving order-isomorphisms:

𝒞
+(𝒰(𝝈†)) � 𝒯

+ (𝝈†)
= 𝒯

+ ((!𝝈) [dig ⊢ id])
� 𝒯

+ (!𝝈)
� Fam(𝒯+,≠∅ (𝝈))
� Fam(𝒞+,≠∅ (𝒰(𝝈)))

using first Lemma 5.13, then via a direct verification as in Proposition C.32, then applying (5),

followed by Lemma D.14, and then Lemma 5.13 – with the obvious verification that it specializes to

an iso between non-empty configurations and histories. It is a direct verification that this sequence

of isomorphisms preserves display maps.

Consequently, it follows that𝒰(𝝈†) � 𝒰(𝝈)† from Proposition B.9. □

D.4 The Unfolding Preserves Primitives
D.4.1 Variable and Evaluation. Follows from Lemma D.13.

D.4.2 Queries, Conditional, Constants. It is a simple calculation to compute the unfolding for these

linear Petri strategies and check we obtain the desired finite strategy.

D.4.3 Fixpoint. We prove the following proposition:

Proposition D.16. For any well-opened arena 𝑂 ,𝒰(Y𝑂 ) � Y𝑂 .

Proof. Using Lemmas 4.9 and 5.13, the required isomorphism boils down to an order-iso

𝒯
+ (Y𝑂 ) � 𝒞+(Y𝑂 )

preserving display maps. We build it using Lemmas C.35 and B.15. It is clearly injective so we

simply have to show it is surjective. Consider a +-covered configuration 𝑥 of Y𝑂 represented as a

tuple ⟨𝐽 , 𝑧, (𝑦s)s∈𝐽 ⟩. We can construct a set of itransitions realising 𝑥 as follows:

• For each (m, s, 𝑑)− ∈ 𝑧 we include the itransition 𝓇⊢mL(s, d)M, and ℓ⊢𝓇⊸L{(ℓ
!
♦ :: s, d)@m− }M
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• For each (m, s, d)+ ∈ 𝑧, we include the itransitions ℓ⊢𝓇⊸L(ℓ
!
♦ :: s, d)M and 𝓇⊢mL{(ℓ

!
♦ :: s, d)@m+ }M

• For each (m, s0, d)− ∈ 𝑦e·s, we include the itransitions 𝓇⊢𝓇⊸mL(e :: (s) :: s0, d)M and 𝓇⊢𝓇⊸mL{((e·
s) :: s0, d)@m− }M.

• For each (m, s0, d)+ ∈ 𝑦e·s, we include the itransitions 𝓇⊢ℓ⊸mL((e · s) :: s0, d)M and 𝓇⊢ℓ⊸mL{((e ·
s) :: s0, d)@m+ }M,

and it is easy to see that this set of transitions is reachable by a valid run of Y𝑂 . □

D.4.4 Contraction. The reasoning follows a similar and simpler route as for the fixpoint operator.

D.4.5 Let bindings. We first characterise the configurations of the strategy interpreting lets.

Lemma D.17. The +-covered configurations of let are order-isomorphic to tuples ⟨𝐼 ⊆ E, 𝑥 ∈
𝒞(X), 𝑦,𝑦 ′ ∈ 𝒞(Y)⟩ such that:
(1) 𝑦 ≠ ∅ iff 𝑥 ≠ ∅
(2) 𝑥 is maximal iff 𝑦 ′ ≠ ∅
(3) if 𝑦 ′ ≠ ∅, then 𝑦 = 𝑦 ′.
(4) if 𝑦 ′ = ∅, then 𝐼 = ∅.
The isomorphism sends such tuples to ((⊎e∈𝐼 (e :: 𝑥)) ⊸ 𝑦 ′) ⊗ 𝑥 ⊢ 𝑦.

Lemma D.18. We have𝒰(let) � let.

Proof. As before we rely on Lemmas 4.9 and 5.13 to build the isomorphism. Lemma C.37 together

with Lemma D.17 induce an injective map from𝒯
+ (let) into 𝒞+(let). We show it is surjective by

constructing a set of itransitions of let from 𝑥 ∈ 𝒞+(let) corresponding to a ⟨𝐼 , 𝑥,𝑦,𝑦 ′⟩.
• If 𝑦 ≠ ∅, then we have itransitions 𝓇⊢Q

−L( [], •)M and ℓ⊢𝓇⊗QL{([], •)@1M
• If 𝑥 has an event ( [], d) maximal in X, then we have the two itransitions ℓ⊢𝓇⊗A

−L( [], d)M, and
ℓ⊢ℓ⊗𝓇⊸Q

+L{([], •)@2}M
• For every e ∈ 𝐼 , we have three itransitions ℓ⊢ℓ⊗ℓ⊸Q−L( [e], •)M, sL{([], •)@4, ( [], d)@3}M, and
ℓ⊢ℓ⊗ℓ⊸A

+L{([e], d)@5}M where d is the value of the maximal event in 𝑥 .

• If 𝑦 ′ has a maximal ( [], d), we have itransitions ℓ⊢ℓ⊗𝓇⊸A−L( [], d)M and 𝓇⊢A+L{([], d]@6}M. □

D.4.6 Newref and newsem. We now show that the unfolding of the net for newref is indeed the

strategy newref. Our first step is to show that the consistent memory traces described in Section

C.3.6 correspond to +-covered configurations of newref :

Lemma D.19. There is an order-isomorphism between 𝒞+(precell) and the set of consistent memory
traces ordered by prefix.

Proof. Direct from the definition of precell. □

We now show the main result:

Proposition D.20. 𝒰(newref) � newref.

Proof. By Lemmas 4.9 and 5.13, this amounts to building an order-iso:

𝒯
+ (newref) � 𝒞+(newref).

From left-to-right. We focus on non-empty histories and configurations and use characterisation

of 𝒞
+(newref) from Proposition B.19.

Consider a non-empty history y ∈ 𝒯+ (newref). It is reached by a run 𝜌 : ∅ 𝑠−→→ 𝛼 . By Lemma

C.39, we know that there Tr(𝜌) is a consistent memory trace, and that |𝑠 | must have the shape

((⊎e∈𝐼 (e :: 𝑥e)) ⊸ 𝑤) ⊢ 𝑧. Since y is +-covered, we observe that 𝑤 = 𝑧. We can thus map y
to ⟨Tr(𝜌),𝑤⟩ ∈ 𝒞+(newref) using the isomorphism of Proposition B.19. Note that by the side
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conditions of Lemma C.39, the family (𝑥e)e∈𝐼 is entirely determined by Tr(𝜌): 𝐼 matches the length

of Tr(𝜌) and each 𝑥e is a two-event configuration corresponding to the memory operation Tr(𝜌)e.
The last check it to show that this does not depend on the particular run 𝜌 chosen. Clearly 𝑥 only

depends on |𝑠 |. For Tr(𝜌), we observe that it is actually directly recoverable from the set of transitions

y. First, we define the set of memory operations 𝑂y to contain (𝑤, e, d) if w{([e], d)@3, _} ∈ y and

(𝑟, e, d) if r{([e], _)@5, (_, d)@2} ∈ y. Then, the causal order on y induces a linear order on 𝑂y due

to the threading of exponential signatures. The resulting trace is exactly Tr(𝜌).
From right-to-left. Consider now a ⟨𝜌, 𝑥⟩ ∈ 𝒞+,≠∅ (newref) where 𝜌 is a consistent memory trace.

We can build a history y containing the following instantiated transitions:

• The initial negative itransition on 𝓇⊢QL( [], •)M.
• The positive itransition ℓ⊢ℓ⊸QL{([], •)@1}M.
• If 𝑥 contains a move (A, [], 𝑑), then the itransitions ℓ⊢𝓇⊸A

−L( [], d)M and 𝓇⊢A+L{([], d)@7}M.
• If 𝜌𝑖 = (𝑤, e, d) then the itransitions ℓ⊢ℓ⊸𝓌VQ

−L( [e], d)M, wL{([e], d)@3, {[e′], d′}@2}M where:
e′ is the exponential token of 𝜌𝑖−1 (or [] if 𝑖 = 0), and d′ the value observed by 𝜌𝑖−1 (or zero if
𝑖 = 0); and ℓ⊢ℓ⊸𝓌VA

+L{([e],✓)@4}M.
• And similarly if 𝜌𝑖 = (𝑟, e, d).

From this description, it is easy to build a valid run reaching y establishing that y ∈ 𝒯(newref).
An easy verification shows that all maximal itransitions in y are positive. □
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