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Finite Sample Improvement
of Akaike’s Information Criterion

Adrien Saumard, and Fabien Navarro

Abstract—Considering the selection of frequency histograms,
we propose a modification of Akaike’s Information Criterion
that avoids overfitting, even when the sample size is small.
We call this correction an over-penalization procedure. We
emphasize that the principle of unbiased risk estimation for
model selection can indeed be improved by addressing excess
risk deviations in the design of the penalization procedure. On
the theoretical side, we prove sharp oracle inequalities for the
Kullback-Leibler divergence. These inequalities are valid with
positive probability for any sample size and include the estimation
of unbounded log-densities. Along the proofs, we derive several
analytical lemmas related to the Kullback-Leibler divergence,
as well as concentration inequalities, that are of independent
interest. In a simulation study, we also demonstrate state-of-the-
art performance of our over-penalization criterion for bin size
selection, in particular outperforming AICc procedure.

Index Terms—model selection, bin size, AIC corrected, over-
penalization, small sample size.

I. INTRODUCTION

S INCE its introduction by Akaike in the early seventies [1],
the celebrated Akaike’s Information Criterion (AIC) has

been an essential tool for the statistician and its use is almost
systematic in problems of model selection and estimator selec-
tion for prediction. By choosing among estimators or models
constructed from finite degrees of freedom, AIC recommends
maximizing the log-likelihood of the estimators penalized by
their corresponding degrees of freedom. This procedure has
found pathbreaking applications in density estimation, regres-
sion, time series or neural network analysis, to name a few
([29]). Because of its simplicity and negligible computation
cost—whenever the estimators are given—, it is also far from
outdated and continues to serve as one of the most useful
devices for model selection in high-dimensional statistics. For
instance, it can be used to efficiently tune the Lasso ([54]).

Any substantial and principled improvement of AIC is
likely to have a significant impact on the practice of model
choices and we bring in this paper an efficient and theoretically
grounded solution to the problem of overfitting that can occur
when using AIC on small to medium sample sizes.

The fact that AIC tends to be unstable and therefore
perfectible in the case of small sample sizes is well known
to practitioners and has long been noted. Suguira [50] and
Hurvich and Tsai [33] have proposed the so-called AICc
(for AIC corrected), which tends to penalize more than AIC.
However, the derivation of AICc comes from an asymptotic
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analysis where the dimension of the models are considered
fixed relative to the sample size. In fact, such an assumption
does not fit the usual practice of model selection, where the
largest models are of dimensions close to the sample size.

Building on considerations from the general nonasymptotic
theory of model selection developed during the nineties (see
for instance [13] and [39]) and in particular on Castellan’s
analysis [27], Birgé and Rozenholc [20] have considered an
AIC modification specifically designed for the selection of the
bin size in histogram selection for density estimation. Indeed,
results of [27]—and more generally results of [13]—advocate
to take into account in the design of penalty the number of
models to be selected. The importance of the cardinality of
the collection of models for model selection is in fact a very
general phenomenon and one of the main outcomes of the
nonasymptotic model selection theory. In the bin size selection
problem, this corresponds to adding a small amount to AIC.
Unfortunately, the theory does not specify uniquely the term
to be added to AIC. In order to choose a good one, intensive
experiments were conducted in [20].

We propose an approach of optimal model selection that
naturally leads to consider a quantile risk estimation rather
than the well-known unbiased risk estimation principle. The
latter principle is at the core of Akaike’s model selection
procedure and is more generally the main model selection
principle, which underlies procedures such as Stein’s Unbiased
Risk Estimator ([48]) or cross-validation ([8]). We note that
it is more efficient to estimate a quantile of the risk of the
estimators - the level of the quantile depending on the size of
the collection of models - rather than its mean. We call it an
over-penalization procedure, because it systematically involves
adding small terms to traditional penalties such as AIC. The
term of over-penalization is indeed rather commonly used in
the literature to describe the need to inflate criteria designed
from the unbiased risk principle (see for instance [11, Section
8.4] and references therein).

We are interested in the present article by producing a
sharp oracle inequality from a procedure of penalization of the
empirical risk. But it should be mentioned that other kinds of
procedures exist, also allowing to derive oracle inequalities for
the model selection problem. Indeed, in the density estimation
context for the Kullback-Leibler loss, [25], [53] propose to use
an aggregation scheme to ensure an optimal oracle inequality.
But there are two essential differences with our framework.
Firstly, the above mentioned articles consider the estimators
as fixed, a classical assumption in aggregation literature.
Secondly, they work with a bounded setting, whereas our
results are valid with only finite moment assumptions.

Another possible procedure allowing to obtain oracle in-
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equalities would be Lepskii-type procedures ([37], [31]).
While the rationale behind this kind of procedure is very
general, obtaining sharp results in terms of constants in the
oracle inequalities and performing a sharp calibration of the
quantities involved in the procedure seem to be rather difficult
problems, substantially different from empirical risk penaliza-
tion, that have only been considered in a few, recent articles
([34], [35]).

Lets us now detail our contributions.

• Considering the problem of density estimation by se-
lecting a histogram, we prove a sharp, nonasymptotic
oracle inequality for our procedure. Indeed, we describe
a control of Kullback-Leibler (KL) divergence - also
called excess risk - of the selected histogram that is
valid with positive probability for any sample size. We
emphasize that this strong feature may not be possible
when considering AIC. We also stress that up to our
knowledge, our oracle inequality is the first nonasymp-
totic result comparing the KL divergence of the selected
model to the KL divergence of the oracle in an unbounded
setting. Indeed, oracle inequalities in density estimation
are generally expressed in terms of Hellinger distance -
which is easier to handle than the KL divergence, because
it is bounded - for the selected model.

• In order to prove our oracle inequality, we improve upon
the previously best known concentration inequality for the
chi-square statistics ([27], [39]) and this allows us to gain
an order of magnitude in the control of the deviations of
the excess risks of the estimators. Our result on the chi-
square statistics is general and of independent interest.

• We also prove new Bernstein-type concentration inequal-
ities for log-densities that are unbounded. Again, these
probabilistic results, which are naturally linked to infor-
mation theory, are general and of independent interest.

• We generalize previous results of Barron and Sheu [14]
regarding the existence of margin relations in maximum
likelihood estimation (MLE). Indeed, related results of
[14] where established under boundedness of the log-
densities and we extend them to unbounded log-densities
with moment conditions.

• Finally, from a practical point of view, we bring a
nonasymptotic improvement of AIC that has, in its sim-
plest form, the same computational cost as AIC. Our
most efficient correction proceeds with a data-driven
calibration of the over-penalization term. It appears in our
experiments that the latter correction outperforms AIC
on small and medium sample sizes, but also most often
surpasses existing AIC corrections such as AICc or Birgé-
Rozenholc’s procedure.

Let us end this introduction by detailing the organization of
the paper.

We present our over-penalization procedure in Section II.
More precisely, we detail in Sections II-A and II-B our
model selection framework related to MLE via histograms.
Then in Section II-C we define formally over-penalization
procedures. Section III is devoted to statistical guarantees
related to over-penalization. In particular, as concentration

properties of the excess risks are at the heart of the design of
an over-penalization, we detail them in Section III-A. We then
deduce a sharp oracle inequality in Section III-B and highlight
the theoretical advantages compared to an AIC analysis. New
mathematical tools of a probabilistic and analytical nature
and of independent interest are presented in Section IV.
Section V contains the experiments, with detailed practical
procedures. We consider two different practical variations of
over-penalization and compare them with existing penalization
procedures. The proofs are gathered in a supplementary mate-
rial [47], which also provides further theoretical developments
that complement the description of our over-penalization pro-
cedure.

II. STATISTICAL FRAMEWORK AND NOTATIONS

A. Maximum Likelihood Density Estimation

We are given n independent observations (ξ1, . . . , ξn) with
unknown common distribution P on a measurable space
(Z, T ). We assume that there exists a known probability
measure µ on (Z, T ) such that P admits a density f∗ with
respect to µ: f∗ = dP/dµ. Our goal is to estimate the density
f∗.

For an integrable function f on Z , we set Pf = P (f) =∫
Z f (z) dP (z) and µf = µ (f) =

∫
Z f (z) dµ (z). If Pn =

1/n
∑n
i=1 δξi denotes the empirical distribution associated

to the sample (ξ1, . . . , ξn), then we set Pnf = Pn (f) =
1/n

∑n
i=1 f (ξi). Moreover, taking the conventions ln 0 =

−∞, 0 ln 0 = 0 and defining (x)+ = x∨0 and (x)− = −x∨0,
we set

S =

{
f : Z −→ R+;

∫

Z
fdµ = 1 and P (ln f)+ <∞

}
.

We assume that the unknown density f∗ belongs to S.
Note that since P (ln f∗)− = −

∫
f∗ ln f∗1f∗≤1dµ < ∞,

the fact that f∗ belongs to S is equivalent to ln(f∗) ∈ L1 (P ),
the space of integrable functions on Z with respect to P .

We consider the MLE of the density f∗. To do so, we define
the so-called risk P (− ln f) of a function f ∈ S through the
following formula,

P (− ln f) = P (ln f)− − P (ln f)+ ∈ R ∪ {+∞} .

Also, the excess risk of a function f with respect to the
density f∗, that is the difference between the risk of f and
the risk of f∗, is classically given in this context by the
KL divergence of f with respect to f∗. Recall that for two
probability distributions Pf and Pg on (Z, T ) of respective
densities f and g with respect to µ, the KL divergence of Pg
with respect to Pf is defined to be

K (Pf , Pg) =
{∫
Z ln

(
dPf
dPg

)
dPf =

∫
Z f ln

(
f
g

)
dµ if Pf � Pg

∞ otherwise.

By a slight abuse of notation we denote K (f, g) rather than
K (Pf , Pg) and by the Jensen inequality we notice that K (f, g)
is a nonnegative quantity, equal to zero if and only if f = g
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µ − a.s. Hence, for any f ∈ S, the excess risk of a function
f with respect to the density f∗ satisfies

P (− ln f)−P (− ln f∗) =

∫

Z
ln

(
f∗
f

)
f∗dµ = K (f∗, f) ≥ 0

and this nonnegative quantity is equal to zero if and only if
f∗ = f µ − a.s. Consequently, the unknown density f∗ is
uniquely defined by

f∗ = arg min
f∈S

{P (− ln f)} .

For a model m, that is a subset m ⊂ S, we define the
maximum likelihood estimator on m, whenever it exists, by

f̂m ∈ arg min
f∈m

{Pn(− ln f)} = arg min
f∈m

{
1

n

n∑

i=1

− ln f (ξi)

}
.

(1)

B. Histogram Models

The models m that we consider here to define the maximum
likelihood estimators as in (1) are made of histograms defined
on a fixed partition of Z . More precisely, for a finite partition
Λm of Z of cardinality |Λm| = Dm + 1, Dm ∈ N, we set

m =

{
f =

∑

I∈Λm

βI1I ; (βI)I∈Λm
∈ RDm+1

+ ,

f ≥ 0 and
∑

I∈Λm

βIµ (I) = 1

}
.

Note that the smallest affine space containing m is of dimen-
sion Dm. The quantity Dm can thus be interpreted as the
number of degrees of freedom in the (parametric) model m.
We assume that any element I of the partition Λm is of positive
measure with respect to µ: for all I ∈ Λm, µ (I) > 0. As
the partition Λm is finite, we have P (ln f)+ < ∞ for all
f ∈ m and so m ⊂ S. We state in the next proposition some
well-known properties that are satisfied by histogram models
submitted to the procedure of MLE ([39, Section 7.3]).

Proposition II.1 Let

fm =
∑

I∈Λm

P (I)

µ (I)
1I .

Then fm ∈ m and fm is called the KL projection of f∗ onto
m. Moreover, it holds

fm = arg min
f∈m

P (− ln f) .

The following Pythagorean-like identity for the KL divergence
holds, for every f ∈ m,

K (f∗, f) = K (f∗, fm) +K (fm, f) . (2)

The maximum likelihood estimator on m is well-defined and
corresponds to the so-called frequency histogram associated
to the partition Λm. We have the following formulas,

f̂m =
∑

I∈Λm

Pn (I)

µ (I)
1I and Pn

(
ln

(
f̂m
fm

))
= K(f̂m, fm) .

Remark II.1 Histogram models are special cases of general
exponential families exposed for example in Barron and Sheu
[14] (see also Castellan [27] for the case of exponential
models of piecewise polynomials). The projection property (2)
can be generalized to exponential models (see [14, Lemma 3]
and Csiszár [30]).

C. Over-Penalization

We define in Section II-C1 below our model selection
procedure. Then we provide in Section II-C2 a graphical
insight on the benefits of over-penalization.

1) Over-Penalization as Estimation of the Ideal Penalty:
We are given a collection of histogram models denoted Mn,
with finite cardinality depending on the sample size n, and
its associated collection of maximum likelihood estimators{
f̂m;m ∈Mn

}
. By taking a (nonnegative) penalty function

pen on Mn,

pen : m ∈Mn 7−→ pen (m) ∈ R+ ,

the output of the penalization procedure (also called the
selected model) is by definition any model satisfying,

m̂ ∈ arg min
m∈Mn

{
Pn(− ln f̂m) + pen (m)

}
. (3)

We aim at selecting an estimator f̂m̂ with a KL divergence,
pointed on the true density f∗, as small as possible. Hence,
we want our selected model to have a performance as close as
possible to the excess risk achieved by an oracle model (not
necessarily unique), defined to be,

m∗ ∈ arg min
m∈Mn

{
K(f∗, f̂m)

}
(4)

= arg min
m∈Mn

{
P (− ln f̂m)

}
. (5)

Recall that the celebrated AIC procedure corresponds to using
a penalty penAIC(m) = Dm/n in criterion (3). To understand
further this choice and the possibility of an improvement, let
us discuss the notion of an ideal penalty. From (5), it is seen
that an ideal penalty in the optimization task (3) is given by

penid (m) = P (− ln f̂m)− Pn(− ln f̂m) ,

since in this case, the criterion critid (m) = Pn(− ln f̂m) +
penid (m) is equal to the true risk P (− ln f̂m). However penid

is unknown and, at some point, we need to give some estimate
of it. In addition, penid is random, but we may not be able to
provide a penalty, even random, whose fluctuations at a fixed
model m would be positively correlated to the fluctuations
of penid (m). This means that we are rather searching for
an estimate of a deterministic functional of penid. But which
functional would be convenient? The answer to this question is
essentially contained in the solution of the following problem.
Problem 1. For any fixed β ∈ (0, 1) find the deterministic
penalty penid,β :Mn → R+, that minimizes the value of C,
among constants C > 0 which satisfy the following oracle
inequality,

P
(
K(f∗, f̂m̂) ≤ C inf

m∈Mn

{
K(f∗, f̂m)

})
≥ 1− β . (6)
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The solution - or even the existence of a solution - to the
problem given in (6) is not easily accessible and depends on
assumptions on the law P of data and on approximation prop-
erties of the models. In the following, we give a reasonable
candidate for penid,β . Indeed, let us set βM = β/Card(Mn)
and define

penopt,β (m) = q1−βM
{
K(fm, f̂m) +K(f̂m, fm)

}
, (7)

where qλ {Z} = inf {q ∈ R;P (Z ≤ q) ≥ λ} is the quantile
of level λ for the real random variable Z. Note that that
the penalty penopt,β is unknown to the statistician. Our claim
is that penopt,β has a theoretical interest since it gives in
(6) a constant C which is close to one, under some general
assumptions (see Section III for precise results). Let us explain
now why penopt,β should lead to a nearly optimal model
selection.

We set

Ω0 =
⋂

m∈Mn

{
K(fm, f̂m) +K(f̂m, fm) ≤ penopt,β (m)

}
.

We see, by definition of penopt,β and by a simple union bound
over the models m ∈Mn, that the event Ω0 is of probability
at least 1−β. By definition of m̂ we have, for any m ∈Mn,

Pn(− ln f̂m̂) + penopt,β(m̂) ≤ Pn(− ln f̂m) + penopt,β (m) .
(8)

Now, by centering by P (− ln f∗), using simple algebra and us-
ing the fact that on Ω0, we have penopt,β(m̂)−(K(fm̂, f̂m̂)+

K(f̂m̂, fm̂)) ≥ 0, Inequality (8) gives on Ω0,

K(f∗, f̂m̂) ≤K(f∗, f̂m)

+
[
penopt,β (m)− (K(fm, f̂m) +K(f̂m, fm))

]

︸ ︷︷ ︸
(a)

+ (Pn − P ) (ln(fm̂/fm))︸ ︷︷ ︸
(b)

.

In order to get an oracle inequality as in (6), it remains
to control (a) and (b) in terms of the excess risks K(f∗, f̂m)
and K(f∗, f̂m̂). Quantity (a) is related to deviations bounds for
the true and empirical excess risks of the M-estimators f̂m and
quantity (b) is related to fluctuations of empirical bias around
the bias of the models. Suitable controls of these quantities
will give sharp oracle inequalities.

We define an over-penalization procedure as follows.

Definition II.1 A penalization procedure as defined in (3) is
said to be an over-penalization procedure if the penalty pen
that is used satisfies pen (m) ≥ penopt,β (m) for all m ∈Mn

and for some β ∈ (0, 1/2).

Based on concentration inequalities for the excess risks
(see Section III-A) we propose the following over-penalization
penalty for histogram selection,

pen+ (m) =
(
1 + Cε+

n (m)
) Dm

n
, (9)

m

E[P (− ln f̂m)]
' E[Pn(− ln f̂m)] + pen(m)

q1−α[Pn(− ln f̂m)] + pen(m)

qα[Pn(− ln f̂m)] + pen(m)

m∗ m̂

Models that can be selected

Pn(− ln f̂m) + pen(m)

Fig. 1. A schematic view of the situation corresponding to a selection
procedure based on the unbiased risk principle. The penalized empirical risk
(in red) fluctuates around the expectation of the true risk. The size of the
deviations typically increases with the model size, making the shape of the
curves possibly flat for the largest models of the collection. Consequently, the
chosen model can potentially be very large and lead to overfitting.

where C is a constant that must depend on the distribution
of data and is thus unknown in general and ε+

n (m) =

max
{√

Dm ln(n+ 1)/n;
√

ln(n+ 1)/Dm; ln(n+ 1)/Dm

}
.

Hence, C should be either fixed a priori (C = 1 or 2 are
typical choices) or estimated using data (see Section V for
further details about the choice of C). The logarithmic terms
appearing in (9) are linked to our choice of β and to the
cardinal of the collection of models, since in our proofs we
take β = (n + 1)−2 and we consider a constant α such that
ln Card(Mn) + ln(β) ≤ α ln(n + 1). The constant α then
enters in the constant C of (9). We show below nonasymptotic
accuracy of such procedure, both theoretically (assuming a
good choice of C) and practically.

2) Graphical insights on over-penalization: Let us provide
a graphical perspective on our over-penalization procedure.

If the penalty pen is chosen according to the unbiased risk
estimation principle, then it should satisfy, for any model m ∈
Mn,

E
[
Pn(− ln f̂m) + pen (m)

]
∼ E

[
P (− ln f̂m)

]
.

In other words, the curve Cn : m 7→ Pn(− ln f̂m) + pen (m)
fluctuates around its mean, which is essentially the curve
CP : m 7→ E[P (− ln f̂m))], see Figure 1. Asymptotically,
the empirical risk Pn(− ln f̂m) behaves as a deterministic
value (for a fixed model m), which consists to the theoretical
bias of the model m, plus half of Akaike’s penalty. Thus,
asymptotically, the fluctuations of the empirical risk are indeed
smaller than the penalty for models of reasonably small bias.
But our point is that for small to moderate sample sizes, the
fluctuations of the empirical risk may be non-negligible and
should be compensated.

More precisely, the largest is the model m, the largest are
the fluctuations of Pn(− ln f̂m) = K(f̂m, fm) +Pn(− ln fm).
This is seen for instance through the concentration inequality
(13) for the empirical excess risk K(f̂m, fm), that is stated
in Theorem III.1 below. Consequently, it can happen that the
curve Cn is quite flat for the largest models and that the
selected model is among the largest of the collection, see
Figure 1.
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mm∗

E[P (− ln f̂m)]

q1−α[Pn(− ln f̂m)] + pen(m)

qα[Pn(− ln f̂m)] + pen(m)

Correction (over-penalization)

Pn(− ln f̂m) + pen(m)

Fig. 2. The correction that should be applied to an unbiased risk estimation
procedure would ideally be of the size of the deviations of the risk for each
model of the collection.

m

q1−α[Pn(− ln f̂m)] + pen(m)

+corr(m)

E[P (− ln f̂m)] + corr(m)

qα[Pn(− ln f̂m)] + pen(m)

+corr(m)

m∗m̂

Pn(− ln f̂m) + pen(m) + corr(m)

Models that can be selected

Fig. 3. After a suitable correction, the minimum of the red curve has a
better shape. In addition, the region of models that can be possibly selected
is substantially smaller and in particular avoids the largest models of the
collection.

By using an over-penalization procedure instead of the un-
biased risk estimation principle, we compensate the deviations
for the largest models and thus obtain a thinner region of
potential selected models, see Figures 2 and 3. In other words,
we tend to avoid overfitting and by doing so, we ensure a
reasonable performance of our over-penalization procedure in
situations where unbiased risk estimation fails. As already
discussed, this is particularly the case when the amount of
data is small to moderate.

III. THEORETICAL GUARANTEES

We state here our theoretical results pertaining to the
behavior of our over-penalization procedure. As explained in
Section II-C, concentration inequalities for true and empirical
excess risks are essential tools for understanding our model
selection problem and we state them in Section III-A. In
Section III-B, we give a sharp oracle inequality.

A. True and empirical excess risks’ concentration

In this section, we fix the linear model m made of his-
tograms and we are interested by concentration inequalities
for the true excess risk K(fm, f̂m) on m and for its empirical
counterpart K(f̂m, fm).

Theorem III.1 Let n ≥ 1 be a positive integer and let
α,A+, A− and AΛ be positive constants. Take m a model

of histograms defined on a fixed partition Λm of Z .We set
Dm = |Λm|− 1. Assume that 1 < Dm ≤ A+n/(ln(n+ 1)) ≤
n and

0 < AΛ ≤ Dm inf
I∈Λm

{P (I)} . (10)

If (α+ 1)A+/AΛ ≤ τ =
√√

6− 3/
√

2 < 0.58, then a
positive constant A0 exists, only depending on α,A+ and AΛ,
such that by setting

ε+
n (m) = max





√
Dm ln(n+ 1)

n
;

√
ln(n+ 1)

Dm
;

ln(n+ 1)

Dm





(11)
and

ε−n (m) = max





√
Dm ln(n+ 1)

n
;

√
ln(n+ 1)

Dm



 ,

we have, on an event of probability at least 1− 4(n+ 1)−α,

(
1−A0ε

−
n (m)

) Dm

2n
≤ K

(
fm, f̂m

)
≤
(
1 +A0ε

+
n (m)

) Dm

2n
,

(12)
(
1−A0ε

−
n (m)

) Dm

2n
≤ K

(
f̂m, fm

)
≤
(
1 +A0ε

+
n (m)

) Dm

2n
.

(13)

The proof of Theorem III.1, that can be found in the supple-
mentary material [47, Section 2], is based on an improvement
of independent interest of the previously best known concen-
tration inequality for the chi-square statistics. See Section IV-A
below for the precise result.

We obtain in Theorem III.1 sharp upper and lower bounds
for the true and empirical excess risks on m. They are optimal
at the first order since the leading constants are equal in the
upper and lower bounds. They show the concentration of the
true and empirical excess risks around the value Dm/(2n).
One should also notice that if Dm > 1, one always has
E[K(fm, f̂m)] = +∞ since there is a positive (very small)
probability that f̂m vanishes on at least one element of the
partition Λm.

Moreover, Theorem III.1 establishes equivalence with high
probability of the true and empirical excess risks for models
of reasonable dimension. This is in accordance with the
celebrated Wilks’s phenomenon, that ensures here that both
2nK(fm, f̂m) and 2nK(fm, f̂m) converge in distribution to-
wards a chi-square distribution χ2

Dm
with Dm degrees of

freedom, while their difference converges in probability to 0.
Concerning the control of the deviations in displays (12)

and (13), we see more precisely that if Dm �
√
n, then the

deviations are indeed of the order of a chi-square distribution
with Dm degrees of freedom ([36, Lemma 1]). Indeed, the
deviations at the right of 2nK(fm, f̂m) and 2nK(fm, f̂m)
are smaller than the maximum between a sub-Gaussian term
of order

√
Dm and a sub-exponential term of order 1. The

deviations at the left are of the order of a sub-Gaussian term
proportional to

√
Dm. On the contrary, if Dm �

√
n, then the

term reflecting the approximation of the scaled KL divergences
to the chi-square statistics dominates over the previous sub-
Gaussian term and is of order D3/2

m /
√
n.
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Another direction to get nonasymptotic bounds on the
(rescaled) excess risks could be to look at the (Kolmogorov)
distance to the χ2

Dm
distribution. The likelihood ratio is

investigated in [2] in this perspective, using Stein’s method
for probability approximation. An open question would be
in our case to determine precisely when the Kolgomorov
distance between the rescaled excess risk χ2

Dm
distribution is

competitive with the deviations of the latter. Does a transition
occur around Dm ≈

√
n as in our bounds?

Concentration inequalities for the excess risks as in Theo-
rem III.1 is a new and exciting direction of research related
to the theory of statistical learning and to high-dimensional
statistics. Boucheron and Massart [22] obtained a pioneering
result describing the concentration of the empirical excess risk
around its mean, a property that they call a high-dimensional
Wilks phenomenon. Then a few authors obtained results
describing the concentration of the true excess risk around
its mean [28], [42], [44] or around its median [16], [17]
for (penalized) least square regression and in an abstract M-
estimation framework [52]. In particular, recent results of [52]
include the case of MLE on exponential models and as a matter
of fact, on histograms. Nevertheless, we believe that Theorem
III.1 is a valuable addition to the literature on this line of
research since we obtain here not only concentration around
a fixed point, but an explicit value Dm/2n for this point. On
the contrary, the concentration point is available in [52] only
through an implicit formula involving local suprema of the
underlying empirical process.

The principal assumption in Theorem III.1 is Inequality (10)
of lower regularity of the partition with respect to P . It is
ensured as soon as the density f∗ is uniformly bounded from
below and the partition is lower regular with respect to the
reference measure µ (which will be the Lebesgue measure in
our experiments). No restriction on the largest values of f∗
are needed. In particular, we do not restrict to the bounded
density estimation setting.

Castellan [26] proved inequalities that are related but weaker
than those stated in Theorem III.1 above. She also asked for a
lower regularity property of the partition, as in [26, Proposition
2.5], where she derived a sharp control of the KL divergence
of the histogram estimator on a fixed model. More precisely,
Castellan assumes that there exists a positive constant B such
that

inf
I∈Λm

µ (I) ≥ B (ln(n+ 1))
2

n
. (14)

This latter assumption is thus weaker than (10) - in the
case where the target is uniformly bounded from below,
as assumed by Castellan - for models of dimensions Dm

that are smaller than the order n (ln(n+ 1))
−2. We could

assume (14) instead of (10) and restrict the dimensions Dm

to be smaller than A+n/(ln(n + 1))2 in order to derive
Theorem III.1. This would lead to less precise results for
second order terms in the deviations of the excess risks but
the first order bounds would be preserved. More precisely, if
we replace assumption (10) in Theorem III.1 by Castellan’s
assumption (14), a careful look at the proofs shows that the
conclusions of Theorem III.1 are still valid for ε+

n (m) =

max
{

(ln(n+ 1))−1/2;
√

ln(n+ 1)/Dm; ln(n+ 1)/Dm

}

and ε−n (m) = max
{

(ln(n+ 1))−1/2;
√

ln(n+ 1)/Dm

}
.

Thus assumption (10) is not a fundamental restriction in
comparison to [26].

B. An Oracle Inequality

Let us state first the set of assumptions required to establish
the nonasymptotic optimality of the over-penalization proce-
dure. These assumptions will be discussed in more detail at
the end of this section.

Set of assumptions (SA)
(P1) Polynomial complexity ofMn: Card (Mn) ≤ nαM .
(P2) Upper bound on dimensions of models inMn: there

exists a positive constant AM,+ such that for every
m ∈Mn,

Dm ≤ AM,+
n

(ln(n+ 1))
2 ≤ n .

(P3) Richness of Mn: there exist c−rich, c
+
rich > 0 such

that for any λ ∈ (0, 1), there exists a model m ∈Mn

such that Dm ∈
[⌈
c−richn

λ
⌉
,
⌈
c+richn

λ
⌉]

.
(Asm) The unknown density f∗ satisfies some moment con-

dition and is uniformly bounded from below: there
exist some constants Amin > 0 and p ∈ (1,+∞]
such that,

∫

Z
fp∗
[
(ln f∗)

2 ∨ 1
]
dµ < +∞

and
inf
z∈Z

f∗ (z) ≥ Amin > 0 . (15)

(Alr) Lower regularity of the partition with respect to µ:
there exists a positive finite constant AΛ such that,
for all m ∈Mn,

Dm inf
I∈Λm

µ (I) ≥ AΛ ≥ AM,+(αM + 6)/τ ,

where τ =
√√

6− 3/
√

2 > 0.
(Ap) The bias decreases like a power of Dm: there exist

β− ≥ β+ > 0 and C+, C− > 0 such that

C−D
−β−
m ≤ K (f∗, fm) ≤ C+D

−β+
m .

We are now ready to state our main theorem related to the
performance of over-penalization.

Theorem III.2 Take an integer n ≥ 1 and two real constants
p ∈ (1,+∞] and r ∈ (0, p− 1). For some ∆ > 0, consider
the following penalty,

pen (m) =
(
1 + ∆ε+

n (m)
) Dm

n
, for all m ∈Mn .

(16)
Assume that the set of assumptions (SA) holds and that

β− < p (1 + β+) /(1+p+r) or p/(1+r) > β−+β−/β+−1 .
(17)

Then there exists an event Ωn of probability at least 1− (n+
1)−2 and some positive constant A1 depending only on the
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constants defined in (SA) such that, if ∆ ≥ A1 > 0 then we
have on Ωn,

K
(
f∗, f̂m̂

)
≤ (1 + δn) inf

m∈Mn

{
K
(
f∗, f̂m

)}
, (18)

where δn = L(SA),∆,r (ln(n+ 1))
−1/2 works.

The proof of Theorem III.2 and further descriptions of the
behavior of the procedure can be found in the supplementary
material [47, Section 2.2].

We derive in Theorem III.2 a pathwise oracle inequality
for the KL excess risk of the selected estimator, with con-
stant almost one. Our result thus establishes the nonasymp-
totic quasi-optimality of over-penalization with respect to the
KL divergence. More precisely, the convergence rate δn ∝
1/
√

ln(n+ 1) in Inequality (18) is sufficient to ensure the
asymptotic efficiency of the procedure and the question of
the optimality of this rate under the assumptions of Theorem
III.2 remains open.

The convergence rate is better in the leading constant of
Inequality (33) of Theorem 2.3 of the supplementary material
[47], but at the price of adding a remainder term to the
oracle inequality (33). The rate δn then comes from comparing
the bounds on the excess risk of an oracle model with the
remainder term of Inequality (33) and under Assumption (17)
of Theorem 3.2, this is the best rate that we can get from
our computations. However, if we have more precise relations
between β−, β+ and p than in Assumption (17), then the
rate δn may be better, typically polynomially decreasing in
n. For instance, taking the special case where p = +∞,
Assumption (17) is automatically satisfied and if we assume
further that β− = β+ =: β, then it is easy to check from the
proof of Inequality (34) in the supplementary material that
δn ∝ (ln(n+ 1))3/2/n1/(1+β) works.

Note that the lower bound A1 on the constant ∆ that is
required for our over-penalization to ensure oracle inequality
(18) is unknown in general, since it depends on the constants
involved in the set of assumptions (SA). In section V-A below,
we propose either to set an ad hoc value for ∆, such as ∆ = 1,
or to provide a data-driven calibration of it, that is based on the
estimation of the variability of the empirical risk. The latter
procedure achieves the best performances in our simulations.
However, obtaining theoretical statistical guarantees for the
data-driven calibration of ∆ seems unreachable at this point, as
it is rather delicate and involves several steps of computations
(see Section V-A for further details).

Note also that our choice of the lower bound 1− (n+ 1)−2

for the probability on which the oracle inequality (18) is
achieved, is rather arbitrary but it is quite a classical choice in
model selection (as for instance in [10], [43], [45]), because it
allows to integrate - at least for bounded losses - the trajectorial
oracle inequality, to obtain an oracle inequality in expectation.
In our case, the Kullback-Leibler divergence taken on the
estimators has an infinite expectation - as already discussed in
Section III-A - but our choice is still sensible. Indeed, having
a more general polynomial bound in n would not change the
essence of our result.

We could work with more irregular partitions and grant
Assumption (14) corresponding to [26]. This would give an-

other form of over-penalization. But we have two remarks on
this point. Firstly, despite working with Assumption (14), we
would still need the assumption that the density f∗ is uniformly
bounded from below - as in [26] -, but in this case Assumption
(Alr) of lower-regularity of the partitions is arguably the most
natural, since one would typically consider regular partitions
to estimate such density. Secondly, the form of the over-
penalization (16) would be different using Assumption (14)
but the algorithm that allows to calibrate empirically the over-
penalization term - procedure AICa in our experiments -
would give actually essentially the same penalty as the one
deduced from Assumption (Alr), since it is only based on
an estimation of the deviations of the empirical risk for large
models and on the fact that the excess risks concentrate at an
exponential rate (see Section V-A).

It is worth noting that three features related to oracle in-
equality (18) significantly improve upon the literature. Firstly,
inequality (18) expresses the performance of the selected
estimator through its KL divergence and compare it to the KL
divergence of the oracle. Nonasymptotic results pertaining to
(robust) maximum likelihood based density estimation usually
control the Hellinger risk of the estimator [27], [39], [20], [19],
[12]. The main reason is that the Hellinger risk is easier to
handle than the KL divergence from a mathematical point of
view. For instance, the Hellinger distance is bounded by one
while the KL divergence can be infinite. However, from an M-
estimation perspective, the natural excess risk associated with
likelihood optimization is indeed the KL divergence and not
the Hellinger distance. These two risks are provably close to
each other in the bounded setting [39], but may behave very
differently in general.

Second, nonasymptotic results describing the performance
of procedures based on penalized likelihood, by comparing
more precisely the (Hellinger) risk of the estimator to the
KL divergence of the oracle, all deal with the case where
the log-density to be estimated is bounded ([27], [39]). Here,
we substantially extend the setting by considering only the
existence of a finite polynomial moment for the large values
of the density to be estimated.

Finally, the oracle inequality (18) is always valid with
positive probability, larger than 3/4. To our knowledge, any
other oracle inequality describing penalization performance for
maximum likelihood density estimation is valid with positive
probability only when the sample size n is greater than
an integer n0 which depends on the constants defining the
problem and that is thus unknown. For instance, the quantities
are controlled in [26] only on an event Ωm (see (2.8) in [26]),
that is of probability bounded below by 1 − C/n (see (2.10)
in [26]), for C an unknown constant that depends on the
parameters of the problem. So it can happen for n < C that
P(Ωm) = 0. In such case, Castellan’s results, even for the
Hellinger distance, are empty (it would give an upper-bound
for the Hellinger distance that would be greater than one,
which is trivial, see the reminder term in the oracle inequality
of Theorem 3.2 in [26]).

We emphasize that we control the risk of the selected
estimator for any sample size and that this property is highly
valuable in practice when dealing with small to medium
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sample sizes. Based on the arguments developed in Section
II-C, we believe that such a feature of Theorem III.2 is
accessible only through the use of over-penalization and we
conjecture in particular that it is impossible using AIC to
achieve such a control of the KL divergence of the selected
estimator for any sample size.

Let us mention that we give in [47, Theorem 2.3] of the
supplementary material a more general result than Theorem
III.2 above, considering penalties of the form,

pen(m) = penθ(m) = (θ + ∆ε+
n (m))

Dm

n
,

for θ > 1/2. Taking θ = 1 is actually the best theoretical
choice since it allows to optimize the bound given in [47, The-
orem 2.3], in such a way that an oracle inequality is achieved,
with leading constant converging to one. This choice, that is
made in Theorem III.2 above, also corresponds to penalizing
more than AIC, since the penalty is then greater than Akaike’s
penalty. Our more general penalty of [47, Theorem 2.3], that
depends on θ > 1/2, can, however, be smaller than Akaike’s
penalty if ∆ε+

n (m) < 1− θ, which is asymptotically true for
θ < 1. But taking θ 6= 1 is asymptotically a bad choice, since
AIC is asymptotically efficient (at least in good cases). On
the contrary, if ∆ε+

n (m) > 1− θ, which can happen for small
values of n, then penθ(m) is greater than Akaike’s penalty
and this is, to our understanding, precisely the reason why we
obtain a non-trivial inequality for any sample size n in [47,
Theorem 2.3].

The oracle inequality (18) is valid under conditions (17)
relating the values of the bias decaying rates β− and β+ to the
order p of finite moment of the density f∗ and the parameter r.
In order to understand these latter conditions, let us assume for
simplicity that β− = β+ =: β. Then the conditions (17) both
reduce to β < p/(1+r). As r can be taken as close to zero as
we want, the latter inequality reduces to β < p. In particular,
if the density to be estimated is bounded (p = +∞), then
conditions (17) are automatically satisfied. If on the contrary
the density f∗ only has finite polynomial moment p, then the
bias should not decrease too fast. In light of the following
comments, if f∗ is assumed to be α-Hölderian, α ∈ (0, 1],
then β ≤ 2α ≤ 2 and the conditions (17) are satisfied, in the
case where β− = β+, as soon as p ≥ 2.

To conclude this section, let us comment on the set of
assumptions (SA). Assumption (P1) indicates that the collec-
tion of models has increasing polynomial complexity. This
is well suited to bin size selection because in this case we
usually select among a number of models which is strictly
bounded from above by the sample size. In the same manner,
Assumption (P2) is legitimate and corresponds to practice,
where we aim at considering bin sizes for which each element
of the partition contains a few sample points. Assumption (P3)
ensures that there are enough models, that are well spread
over possible dimensions. It is satisfied, of course, if one
takes one model per dimension. From a technical viewpoint,
assumption (P3) allows to obtain an oracle inequality (18)
without a remainder term. See [47, Section 2.2] for technical
details about this latter point.

Assumption (Asm) imposes conditions on the moments
density to be estimated. Assumption (15) stating that the
unknown density is uniformly bounded from below is also
granted in [26]. It is, moreover, assumed in [26, Theorem
3.4], when deriving an oracle inequality for the (weighted)
KL excess risk of the histogram estimator, that the target is of
finite sup-norm. This corresponds to the case where p = +∞
in (Asm), but the condition where p ∈ (1,+∞) is, of course,
more general. Furthermore, from a statistical perspective, the
lower bound (15) is coherent since, by Assumption (Alr),
we use models of lower-regular partitions with respect to the
Lebesgue measure. In the case where Inequality (15) would
not hold, one would typically have to consider exponentially
many irregular histograms to take into account the possibly
vanishing mass of some elements of the partitions (for more
details on this aspect that goes beyond the scope of the present
paper, see for instance [39]).

We require in (Ap) that the quality of the approximation of
the collection of models is good enough in terms of bias. More
precisely, we require a polynomially decreasing of excess risk
of KL projections of the unknown density onto the models.
For a density f∗ uniformly bounded away from zero, the upper
bound on the bias is satisfied when for example, Z is the unit
interval, µ = Leb is the Lebesgue measure on the unit interval,
the partitions Λm are regular and the density f∗ belongs to the
set H (H,α) of α-hölderian functions for some α ∈ (0, 1]: if
f ∈ H (H,α), then for all (x, y) ∈ Z2

|f (x)− f (y)| ≤ H |x− y|α .

In that case, β+ = 2α is convenient and AIC-type procedures
are adaptive to the parameters H and α, see [26].

In assumption (Ap) of Theorem III.2 we also assume that
the bias K (f∗, fm) is bounded from below by a power of
the dimension Dm of the model m. This hypothesis is in
fact quite classical as it has been used in [49], [24] for the
estimation of density on histograms and also in [4], [5], [10]
in the regression framework. Combining Lemmas 1 and 2 of
Barron and Sheu [14] - see also Inequality (31) of Proposition
IV.6 below - we can show that

1

2
e−3‖ln( f∗fm )‖∞

∫

Z

(fm − f∗)2

f∗
dµ ≤ K (f∗, fm) .

Assuming for instance that the target is uniformly bounded,
‖f∗‖∞ ≤ A∗, we get

A3
min

2A4∗

∫

Z
(fm − f∗)2

dµ ≤ K (f∗, fm) .

Now, since in the case of histograms the KL projection fm is
also the L2 (µ) projection of f∗ onto m, we can apply Lemma
8.19 in Section 8.10 of Arlot [3] to show that assumption (Ap)
is indeed satisfied for β− = 1 + α−1, in the case where Z
is the unit interval, µ = Leb is the Lebesgue measure on the
unit interval, the partitions Λm are regular and the density f∗
is a non-constant α-hölderian function.

IV. PROBABILISTIC AND ANALYTICAL TOOLS

In this section we set out some general results that are of
independent interest and serve as tools for the mathematical
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description of our statistical procedure. The first two sec-
tions contain new or improved concentration inequalities, for
the chi-square statistics (Section IV-A) and for general log-
densities (Section IV-B). We establish in Section IV-C some
results that are related to the so-called margin relation in
statistical learning and that are analytical in nature.

A. Chi-square Statistics’ Concentration

The chi-square statistic plays an essential role in the proofs
related to Section III-A. Let us recall its definition.

Definition IV.1 Given some histogram model m, the chi-
square statistics χ2

n (m) is defined by

χ2
n (m) =

∫

Z

(
f̂m − fm

)2

fm
dµ =

∑

I∈m

(Pn (I)− P (I))
2

P (I)
.

The following proposition provides an improvement upon
the previously best known concentration inequality for the
right tail of the chi-square statistics ([27], see also [39,
Proposition 7.8] and [21, Theorem 12.13]).

Proposition IV.1 For any x, θ > 0, it holds

P

(
χn (m)1Ωm(θ) ≥

√
Dm

n
+

(
1 +
√

2θ +
θ

6

)√
2x

n

)

≤ exp (−x) , (19)

where we set Ωm (θ) =
⋂
I∈m {|Pn (I)− P (I)| ≤ θP (I)}.

More precisely, for any x, θ > 0, it holds with probability at
least 1− e−x,

χn (m)1Ωm(θ) <

√
Dm

n
+

√
2x

n

+ 2

√
θ

n

(
√
x ∧

(
xDm

2

)1/4
)

(20)

+
θ

3

√
x

n

(√
x

Dm
∧ 1√

2

)
.

The proof of Theorem IV.1 can be found in Section 1.1
of the supplementary material [47]. Essentially, we follow
the same kind of arguments as those given in the proof of
Castellan’s inequality ([26, Inequality (4.27)]). In particular,
the main tool is Bousquet’s concentration inequality for the
supremum of the empirical process at the right of its mean
([23]). However, we perform a slightly refined optimization
of the quantities appearing in Bousquet’s inequality.

Let us details the relationship of Proposition IV.1 with
Castellan’s inequality (in the form presented in [39, Propo-
sition 7.8]), which is: for any x, ε > 0,

P

(
χn (m)1Ωm(ε2/(1+ε/3)) ≥ (1 + ε)

(√
Dm

n
+

√
2x

n

))

≤ exp (−x) . (21)

By taking θ = ε2/ (1 + ε/3) > 0, we get ε = θ/6 +√
θ2/36 + θ > θ/6 +

√
θ > 0. Assume that Dm ≥ 2x. It is

easy to check that Inequality (19) gives in this case a bound

that is smaller than the one provided by Inequality (21). The
essential improvement is that the constant in front of the term√
Dm/n is equal to one for our inequality instead of 1 + ε

for Castellan’s.
To illustrate this improvement, let us mention that in our

proofs we apply (19) with x proportional to ln(n + 1) ([47,
Section 2.1]). Hence, for most of the models of the collection,
we have x � Dm and as a result, the bounds that we
obtain in Theorem III.1 by the use of Inequality (19) are
substantially better than the bounds we would obtain by
using Inequality (21) of [39]. More precisely, the deviation
term

√
Dm ln(n+ 1)/n in (11) would be replaced by its

square root (Dm ln(n+ 1)/n)
1/4, thus degrading the order of

magnitude for the deviations of the excess risks and changing
the form of our over-penalization itself. Proposition IV.1 has
thus a direct statistical impact in our study.

Finally, if Dm ≤ 2x then it is also easy to check that
Inequality (20) improves upon Castellan’s inequality (21).

The following result describes the concentration from the
left of the chi-square statistics and is proved in the supple-
mentary material [47, Section 1.1].

Proposition IV.2 Let α, AΛ > 0. Assume 0 < AΛ ≤
Dm infI∈m {P (I)}. Then there exists a positive constant Ag
depending only onAΛ and α such that

P


χn (m) ≤


1−Ag



√

ln(n+ 1)

Dm
∨
√

ln(n+ 1)

n1/4





√
Dm

n




≤ (n+ 1)
−α

.

B. Bernstein type concentration inequalities for log-densities

The following propositions give concentration inequalities
for the bias of log-densities. No structure is assumed for
the densities, so these inequalities are general and may be
of independent interest. These results are used in the proofs
related to Theorem III.2 above by specifying the value of a
density f to be equal to a projection fm ([47, Section 2.1]).

Proposition IV.3 Consider a density f ∈ S. We have, for all
z ≥ 0,

P
(
Pn (ln (f/ f∗)) ≥

z

n

)
≤ exp (−z) . (22)

Moreover, if we can take a finite quantity v which satisfies

v ≥
∫

(f ∨ f∗)
(

ln
(
f
f∗

))2

dµ, we have for all z ≥ 0,

P

(
(Pn − P ) (ln (f/ f∗)) ≥

√
2vz

n
+

2z

n

)
≤ exp (−z) .

(23)

One can notice, with Inequality (22), that the empirical bias
always satisfies some exponential deviations at the right of
zero. In the Information Theory community, this inequality is
also known as the “No Hyper-compression Inequality” ([32]).

Inequality (23) seems to be new and takes the form of
a Bernstein-like inequality, even if the usual assumptions of
Bernstein’s inequality are not satisfied. In fact, we are able to
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recover such a behavior by inflating the usual variance to the
quantity v.

We now turn to concentration inequalities for the empirical
bias at the left of its mean, where we also inflate the sub-
Gaussian term to obtain a Bernstein-like inequality.

Proposition IV.4 Let r > 0. For any density f ∈ S and for
all z ≥ 0, we have

P (Pn (ln (f/ f∗)) ≤ −z/nr − (1/r) ln (P [(f∗/ f)
r
]))

≤ exp (−z) . (24)

Moreover, if we can set a quantity wr which satisfies wr ≥∫ ( fr+1
∗
fr ∨ f∗

)(
ln
(
f
f∗

))2

dµ , then we get, for all z ≥ 0,

P

(
(Pn − P ) (ln (f/ f∗)) ≤ −

√
2wrz

n
− 2z

nr

)
≤ exp (−z) .

(25)

C. Margin-Like Relations

Our objective in this section is to control the variance terms
v and wr, appearing respectively in Propositions IV.3 and IV.4
above, in terms of the KL divergence pointed on the target
f∗. This is done in Proposition IV.5 below under moment as-
sumptions for f∗. Our inequalities generalize previous results
of Barron and Sheu [14] obtained in the bounded setting (see
also [39, Lemma 7.24]).

Proposition IV.5 Let p > 1 and c+, c− > 0. Assume that the
density f∗ satisfies

J :=

∫

Z
fp∗
(

(ln (f∗))
2 ∨ 1

)
dµ < +∞

Q :=

∫

Z

(ln (f∗))
2 ∨ 1

fp−1
∗

dµ < +∞
(26)

Take a density f such that 0 < c− ≤
infz∈Z {f (z)} ≤ supz∈Z {f (z)} ≤ c+ < +∞. Then,
for some AMR,d > 0 only depending on J,Q, p, c+ and c−,
it holds

P

[(
f

f∗
∨ 1

)(
ln

(
f

f∗

))2
]
≤ AMR,dK (f∗, f)

1− 1
p . (27)

More precisely,

AMR,d =
(

4c1−p−
(

(ln c−)
2 ∨ 1

)
J + 4cp+

(
ln2 c+ ∨ 1

)
Q
)1/p

holds. For any 0 < r ≤ p−1, we have the following inequality,

P

[(
f∗
f
∨ 1

)r (
ln

(
f

f∗

))2
]
≤ AMR,gK (f∗, f)

1− r+1
p ,

(28)
available with

AMR,g =
(

4c1−p−
(
ln2 c− ∨ 1

)
J + 2

(
ln2 c+ + J +Q

)) r+1
p

.

Proposition IV.5 states that the variance terms, appearing
in the concentration inequalities of Section IV-B, are bounded
from above, under moment restrictions on the density f∗, by a

power less than one of the KL divergence pointed on f∗. The
stronger are the moment assumptions, given in (26), the closer
is the power to one. One can notice that J is a restriction on
large values of f∗, whereas Q is related to values of f∗ around
zero.

We call these inequalities “margin-like relations” because
of their similarity with the margin relations known first in
binary classification ([38], [51]) and then extended to empirical
risk minimization (see [6], [40] for instance). Indeed, from a
general point of view, margin relations relate the variance of
contrasted functions (logarithm of densities here) pointed on
the contrasted target to a function (in most cases, a power) of
their excess risk.

Now we reinforce the restrictions on the values of f∗ around
zero. Indeed, we ask in the following proposition that the target
is uniformly bounded away from zero.

Proposition IV.6 Let p > 1 and Amin, c+, c− > 0. Assume
that the density f∗ satisfies

J :=

∫

Z
fp∗
(

(ln (f∗))
2 ∨ 1

)
dµ < +∞

and 0 < Amin ≤ inf
z∈Z

f∗ (z) .

Then there exists a positive constant AMR,− only depending
on Amin, J, r and p such that, for any m ∈Mn,

P

[(
fm
f∗
∨ 1

)(
ln

(
fm
f∗

))2
]
≤ AMR,−K (f∗, fm)

1−1/p

(29)
and for any 0 < r ≤ p− 1,

P

[(
f∗
fm
∨ 1

)r (
ln

(
fm
f∗

))2
]
≤ AMR,−K (f∗, fm)

1− r+1
p .

(30)
If moreover ln (f∗) ∈ L∞ (µ), i.e. 0 <
Amin ≤ infz∈Zf∗(z) ≤ ‖f∗‖∞ < +∞, then there exists
Ã > 0 only depending on r,Amin and ‖f∗‖∞ such that, for
any m ∈Mn,

P

[(
fm
f∗
∨ 1

)
ln2

(
fm
f∗

)]
∨ P

[(
f∗
fm
∨ 1

)r
ln2

(
fm
f∗

)]

≤ ÃK (f∗, fm) .
(31)

Proposition IV.6 is stated only for projections fm because
we actually take advantage of their special form (as local
means of the target) in the proof of the proposition. The bene-
fit, compared to results of Proposition IV.5, is that Inequalities
(29), (30) and (31) do not involve assumptions on the values
of fm.

V. EXPERIMENTS

A simulation study is conducted to compare the numerical
performance of the model selection procedures we discussed.
We demonstrate the usefulness of our procedure on simulated
data examples. The numerical experiments were performed
using R.
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Fig. 4. Estimation of the over-penalization constant.

A. Experimental Setup

We have compared the numerical performance of our proce-
dure with the classic methods of penalization of the literature
on several densities. In particular, we consider the estimator of
[20] and AICc ([33], [50]). We also report on AIC’s behavior.
In the following, we name the procedure of [20] by BR,
and our criterion AIC1 when the constant C = 1 in (9) and
AICa for a fully adaptive, data-driven procedure which will
be detailed below. More specifically, the performance of the
following four model selection methods were compared:
1. AIC:

m̂AIC ∈ arg min
m∈Mn

{
Pn(− ln f̂m) +

Dm

n

}
,

2. AICc:

m̂AICc ∈ arg min
m∈Mn

{
Pn(− ln f̂m) +

Dm

n−Dm − 1

}
,

3. BR:

m̂BR ∈ arg min
m∈Mn

{
Pn(− ln f̂m) +

Dm

n
+

log2.5 (Dm + 1)

n

}
,

4. AIC1:

m̂AIC1
∈ arg min

m∈Mn

{
Pn(− ln f̂m) + penAIC1

(m)
}
,

with

penAIC1
(m) =

(
1 + 1× ε+

n (m)
) Dm

n
,

5. AICa:

m̂AICa ∈ arg min
m∈Mn

{
Pn(− ln f̂m) + penAICa(m)

}
,

penAICa(m) =
(

1 + Ĉε+
n (m)

) Dm

n
,

where Ĉ = 6 × medianα∈P Ĉα, with Ĉα =
medianm∈Mα

|Ĉm|, where

Ĉm =
∆m

max

{√
Dm
n ;
√

1
Dm

}
Dm
2n

,

∆m is the least-squares distance between the opposite of
the empirical risk −Pn(γ(f̂m)) and a fitted line of equation
y = xDm/(2n) + â (Figure 4 at the left), P is the set of
proportions α corresponding to the longest plateau of equal
selected models when using penalty (9) with constant C = Ĉα
(Figure 4 at the right) and Mα is the set of models in
the collection associated to the proportion α of the largest
dimensions.

The models that we used along the experiments are made of
histogram densities defined on regular partitions of the interval
[0, 1] (with the exception of the density Isosceles triangle
which is supported on [−1, 1]), from a cardinal equal to 1 to
dn/ ln(n+ 1)e. Thus the cardinal of our collection of models
is Card(Mn) = dn/ ln(n+ 1)e.

We show the performance of the proposed method for a set
of four test distributions (see Figure 5) and described in the
benchden1 R-package [41] which provides an implementation
of the distributions introduced in [18].

Let us explain the ideas underlying the design of the proce-
dure AICa given above. According to the definition of penalty
penopt,β given in (7), the constant Ĉ in the penalty penAICa
should be computed so that the penalty provides an estimate
of the quantile of order 1−βM, where βM = β/Card(Mn),
of the sum of excess risk and empirical excess risk on the
models of the collection.

Based on Theorem III.1, we can also assume that the devi-
ations of excess risk and excess empirical risk are of the same

1Available on the CRAN http://cran.r-project.org.

http://cran.r-project.org
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order. By choosing β of the order of (n+1)−2 as in Theorem
III.2 above, and considering that Card(Mn) ' n ' n+1, we
arrive to a choice of βM = (n+1)−3. The latter value impacts
the over-penalization through a factor 3 ln(n+ 1) because the
concentration of the excess risks is exponential. Putting things
together, the over-penalization Ĉ should be given by 3×2 = 6
times the normalized deviations of the empirical excess risk.

Moreover, considering the largest models in the collection
neglects questions of bias and, therefore, the median of the
normalized deviations of the empirical risk around its mean
for the largest models should be a reasonable estimator of the
constant C.

Finally, the remaining problem is to give a tractable def-
inition to the ”largest models” in the collection. To do this,
we choose a proportion α of the largest dimensions of the
models at hand and calculate using these models an estimator
Ĉα of the constant C in (9). We then proceed for each α
in a grid of values between 0 and 1 to a model selection
step by over-penalization using the constant C = Ĉα. This
gives us a graph of the selected dimensions with respect to
the proportions (Figure 4 at the right). Finally, we define our
over-penalization constant Ĉ as the median of the values of
the constants Ĉα, α ∈ P where P is the largest plateau in the
graph of the selected dimensions with respect to proportions
α.

Note that we make use of the plot of the empirical risk
as a function of the dimension Dm. This is a common
point with the slope estimation procedure in the so-called
slope heuristics [7], [15], but our use of the plot of the
empirical risk substantially differs from the slope estimation,
in that we consider that the slope is known and is given by
Akaike’s penalty and we estimate the order of deviations of
the empirical risk around this slope, for large enough models.

B. Results

We compared procedures on N = 1000 independent data
sets of size n ranging from 50 to 1000. We estimate the
quality of the model selection strategies using the median KL
divergence, on the one hand, and the median squared Hellinger
distance, on the other hand. Boxplots were made of the KL risk
- resp. the Hellinger distance - over the N trials. The horizontal
lines of the boxplots indicate the 5%, 25%, 50%, 75%, and
95% quantiles of the error distribution. The median value of

AIC (horizontal black line) is also superimposed for visual-
ization purposes. It can be seen from Figure 6 (resp. Figure
7) that, as expected, for each method and in all cases, the KL
divergence (resp. the squared Hellinger distance) decreases as
the sample size increases. We also see clearly that there is
generally a substantial advantage in modifying AIC for sample
sizes smaller than 1000.

We see from Figure 6 pertaining to KL divergence, that
AICa is quite clearly the most advisable procedure in practice
for small to moderate sample sizes, since it is the most stable
while being one of the most efficient procedures. It indeed
outperforms all the other procedures for a very small sample
size (50 or 100) and is as good as AIC1 (and comparable
or better than the other procedures) for a moderate sample
size. The picture is quite the same when looking at the
Hellinger risk (Figure 7), except that now AICa and AIC1

have comparable performances in all settings.
But AICa comes at a price of more computations that the

other considered procedures. If a computational simplicity
equivalent to AIC is required, then we recommend using AIC1

rather than AICc or BR. Indeed, compared to AIC1, it seems
that AICc is not penalizing enough, which translates into a
worse performance for samples equal to 50 and 100. On the
contrary, it seems that the BR criterion penalizes too much. As
a result, its performance deteriorates relative to other methods
as the sample size increases.

VI. CONCLUSION

In this work, we tackled the delicate, but well-known
question of the lack of efficiency of AIC for small to moderate
sample sizes. Several modifications of AIC have been already
proposed, such as AICc ([33]) or the correction due to Birgé
and Rozhenholc ([20]). We introduced a new correction of
AIC that is based on estimating the quantiles - at the right
order - of the true and empirical excess risks of the estimators
at hand. By focusing on histograms, we were able to give
sharp concentration bounds for the excess risks and to discuss
the quality of our model selection procedure in an unbounded
setting. We provided more precisely an oracle inequality that
holds with positive probability without any remainder term
and for any sample size. We also provided an algorithm of
data-driven calibration of our correction term, that seems to
be most often in our experiments the most accurate procedure.
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Fig. 7. Hellinger distance results. Box plots of the Hellinger distance to the true distribution for the estimated distribution. The solid black line corresponds
to the AIC Hellinger distance median.
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Many directions of research for extending this work are
open. Indeed, one can notice that the rationale behind our over-
penalization procedure is not based on the particular value of
the MLE contrast or the specific choice of the models and
that other M-estimation context could be tackled. The crucial
point to understand is indeed the excess risk’s concentration
and so, available results constitute a good basis for future
work [43], [46], [52]. Our over-penalization strategy could
thus be investigated for more general exponential models in
MLE estimation ([52]), or for other contrasts, such as the
least-squares density contrast ([9], [52]) or the least-squares
regression contrast (with projection estimators [46]) and even
for regularized estimators ([52]). We could also tackle the cor-
rection of other model selection criteria than the theoretically
designed penalties and in our opinion, the correction of V -fold
penalties ([4], [9], [43]) and its comparison to the classical V -
fold cross-validation is a particularly attractive direction of
research.

VII. SUPPLEMENTARY MATERIAL

The supplement [47] to “Finite sample improvement of
Akaike’s Information Criterion” contains in Sections 1 and
2 the proofs of the results described in this article as well as
some theoretical extensions that complement the description
of the over-penalization procedure.
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[16] P. C. Bellec, G. Lecué, and A. B. Tsybakov. Towards the study of least
squares estimators with convex penalty. Actes du 1er Congrès National
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