Adrien Saumard 
  
Fabien Navarro 
  
Finite Sample Improvement of Akaike's Information Criterion

Keywords: model selection, bin size, AIC corrected, overpenalization, small sample size

Considering the selection of frequency histograms, we propose a modification of Akaike's Information Criterion that avoids overfitting, even when the sample size is small. We call this correction an over-penalization procedure. We emphasize that the principle of unbiased risk estimation for model selection can indeed be improved by addressing excess risk deviations in the design of the penalization procedure. On the theoretical side, we prove sharp oracle inequalities for the Kullback-Leibler divergence. These inequalities are valid with positive probability for any sample size and include the estimation of unbounded log-densities. Along the proofs, we derive several analytical lemmas related to the Kullback-Leibler divergence, as well as concentration inequalities, that are of independent interest. In a simulation study, we also demonstrate state-of-theart performance of our over-penalization criterion for bin size selection, in particular outperforming AICc procedure.

I. INTRODUCTION

S INCE its introduction by Akaike in the early seventies [1], the celebrated Akaike's Information Criterion (AIC) has been an essential tool for the statistician and its use is almost systematic in problems of model selection and estimator selection for prediction. By choosing among estimators or models constructed from finite degrees of freedom, AIC recommends maximizing the log-likelihood of the estimators penalized by their corresponding degrees of freedom. This procedure has found pathbreaking applications in density estimation, regression, time series or neural network analysis, to name a few ( [START_REF] Claeskens | Model selection and model averaging[END_REF]). Because of its simplicity and negligible computation cost-whenever the estimators are given-, it is also far from outdated and continues to serve as one of the most useful devices for model selection in high-dimensional statistics. For instance, it can be used to efficiently tune the Lasso ( [START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF]).

Any substantial and principled improvement of AIC is likely to have a significant impact on the practice of model choices and we bring in this paper an efficient and theoretically grounded solution to the problem of overfitting that can occur when using AIC on small to medium sample sizes.

The fact that AIC tends to be unstable and therefore perfectible in the case of small sample sizes is well known to practitioners and has long been noted. Suguira [START_REF] Sugiura | Further analysts of the data by Akaike's information criterion and the finite corrections[END_REF] and Hurvich and Tsai [START_REF] Hurvich | Model selection for least absolute deviations regression in small samples[END_REF] have proposed the so-called AICc (for AIC corrected), which tends to penalize more than AIC. However, the derivation of AICc comes from an asymptotic Adrien Saumard is with Univ. Rennes, Ensai, CNRS, CREST -UMR 9194, F-35000 Rennes, France (e-mail: adrien.saumard@ensai.fr).
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analysis where the dimension of the models are considered fixed relative to the sample size. In fact, such an assumption does not fit the usual practice of model selection, where the largest models are of dimensions close to the sample size.

Building on considerations from the general nonasymptotic theory of model selection developed during the nineties (see for instance [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and [START_REF] Massart | Concentration inequalities and model selection[END_REF]) and in particular on Castellan's analysis [START_REF] Castellan | Density estimation via exponential model selection[END_REF], Birgé and Rozenholc [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF] have considered an AIC modification specifically designed for the selection of the bin size in histogram selection for density estimation. Indeed, results of [START_REF] Castellan | Density estimation via exponential model selection[END_REF]-and more generally results of [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]-advocate to take into account in the design of penalty the number of models to be selected. The importance of the cardinality of the collection of models for model selection is in fact a very general phenomenon and one of the main outcomes of the nonasymptotic model selection theory. In the bin size selection problem, this corresponds to adding a small amount to AIC. Unfortunately, the theory does not specify uniquely the term to be added to AIC. In order to choose a good one, intensive experiments were conducted in [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF].

We propose an approach of optimal model selection that naturally leads to consider a quantile risk estimation rather than the well-known unbiased risk estimation principle. The latter principle is at the core of Akaike's model selection procedure and is more generally the main model selection principle, which underlies procedures such as Stein's Unbiased Risk Estimator ( [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]) or cross-validation ( [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]). We note that it is more efficient to estimate a quantile of the risk of the estimators -the level of the quantile depending on the size of the collection of models -rather than its mean. We call it an over-penalization procedure, because it systematically involves adding small terms to traditional penalties such as AIC. The term of over-penalization is indeed rather commonly used in the literature to describe the need to inflate criteria designed from the unbiased risk principle (see for instance [START_REF] Arlot | Minimal penalties and the slope heuristics: a survey[END_REF]Section 8.4] and references therein).

We are interested in the present article by producing a sharp oracle inequality from a procedure of penalization of the empirical risk. But it should be mentioned that other kinds of procedures exist, also allowing to derive oracle inequalities for the model selection problem. Indeed, in the density estimation context for the Kullback-Leibler loss, [START_REF] Butucea | Optimal exponential bounds for aggregation of estimators for the Kullback-Leibler loss[END_REF], [START_REF] Yang | Mixing strategies for density estimation[END_REF] propose to use an aggregation scheme to ensure an optimal oracle inequality. But there are two essential differences with our framework. Firstly, the above mentioned articles consider the estimators as fixed, a classical assumption in aggregation literature. Secondly, they work with a bounded setting, whereas our results are valid with only finite moment assumptions.

Another possible procedure allowing to obtain oracle in-equalities would be Lepskii-type procedures ( [START_REF] Lepskii | Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates[END_REF], [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF]). While the rationale behind this kind of procedure is very general, obtaining sharp results in terms of constants in the oracle inequalities and performing a sharp calibration of the quantities involved in the procedure seem to be rather difficult problems, substantially different from empirical risk penalization, that have only been considered in a few, recent articles ( [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF], [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF]).

Lets us now detail our contributions.

• Considering the problem of density estimation by selecting a histogram, we prove a sharp, nonasymptotic oracle inequality for our procedure. Indeed, we describe a control of Kullback-Leibler (KL) divergence -also called excess risk -of the selected histogram that is valid with positive probability for any sample size. We emphasize that this strong feature may not be possible when considering AIC. We also stress that up to our knowledge, our oracle inequality is the first nonasymptotic result comparing the KL divergence of the selected model to the KL divergence of the oracle in an unbounded setting. Indeed, oracle inequalities in density estimation are generally expressed in terms of Hellinger distancewhich is easier to handle than the KL divergence, because it is bounded -for the selected model. • In order to prove our oracle inequality, we improve upon the previously best known concentration inequality for the chi-square statistics ( [START_REF] Castellan | Density estimation via exponential model selection[END_REF], [START_REF] Massart | Concentration inequalities and model selection[END_REF]) and this allows us to gain an order of magnitude in the control of the deviations of the excess risks of the estimators. Our result on the chisquare statistics is general and of independent interest. • We also prove new Bernstein-type concentration inequalities for log-densities that are unbounded. Again, these probabilistic results, which are naturally linked to information theory, are general and of independent interest. • We generalize previous results of Barron and Sheu [14] regarding the existence of margin relations in maximum likelihood estimation (MLE). Indeed, related results of [START_REF] Barron | Approximation of density functions by sequences of exponential families[END_REF] where established under boundedness of the logdensities and we extend them to unbounded log-densities with moment conditions. • Finally, from a practical point of view, we bring a nonasymptotic improvement of AIC that has, in its simplest form, the same computational cost as AIC. Our most efficient correction proceeds with a data-driven calibration of the over-penalization term. It appears in our experiments that the latter correction outperforms AIC on small and medium sample sizes, but also most often surpasses existing AIC corrections such as AICc or Birgé-Rozenholc's procedure.

Let us end this introduction by detailing the organization of the paper.

We present our over-penalization procedure in Section II. More precisely, we detail in Sections II-A and II-B our model selection framework related to MLE via histograms. Then in Section II-C we define formally over-penalization procedures. Section III is devoted to statistical guarantees related to over-penalization. In particular, as concentration properties of the excess risks are at the heart of the design of an over-penalization, we detail them in Section III-A. We then deduce a sharp oracle inequality in Section III-B and highlight the theoretical advantages compared to an AIC analysis. New mathematical tools of a probabilistic and analytical nature and of independent interest are presented in Section IV. Section V contains the experiments, with detailed practical procedures. We consider two different practical variations of over-penalization and compare them with existing penalization procedures. The proofs are gathered in a supplementary material [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF], which also provides further theoretical developments that complement the description of our over-penalization procedure.

II. STATISTICAL FRAMEWORK AND NOTATIONS

A. Maximum Likelihood Density Estimation

We are given n independent observations (ξ 1 , . . . , ξ n ) with unknown common distribution P on a measurable space (Z, T ). We assume that there exists a known probability measure µ on (Z, T ) such that P admits a density f * with respect to µ: f * = dP/dµ. Our goal is to estimate the density f * .

For an integrable function f on Z, we set

P f = P (f ) = Z f (z) dP (z) and µf = µ (f ) = Z f (z) dµ (z). If P n = 1/n n i=1
δ ξi denotes the empirical distribution associated to the sample (ξ 1 , . . . , ξ n ), then we set

P n f = P n (f ) = 1/n n i=1 f (ξ i ).
Moreover, taking the conventions ln 0 = -∞, 0 ln 0 = 0 and defining (x) + = x∨0 and (x) -= -x∨0, we set

S = f : Z -→ R + ; Z f dµ = 1 and P (ln f ) + < ∞ .
We assume that the unknown density f * belongs to S.

Note that since

P (ln f * ) -= -f * ln f * 1 f * ≤1 dµ < ∞,
the fact that f * belongs to S is equivalent to ln(f * ) ∈ L 1 (P ), the space of integrable functions on Z with respect to P .

We consider the MLE of the density f * . To do so, we define the so-called risk P (-ln f ) of a function f ∈ S through the following formula,

P (-ln f ) = P (ln f ) --P (ln f ) + ∈ R ∪ {+∞} .
Also, the excess risk of a function f with respect to the density f * , that is the difference between the risk of f and the risk of f * , is classically given in this context by the KL divergence of f with respect to f * . Recall that for two probability distributions P f and P g on (Z, T ) of respective densities f and g with respect to µ, the KL divergence of P g with respect to P f is defined to be

K (P f , P g ) = Z ln dP f dPg dP f = Z f ln f g dµ if P f P g ∞ otherwise.
By a slight abuse of notation we denote K (f, g) rather than K (P f , P g ) and by the Jensen inequality we notice that K (f, g) is a nonnegative quantity, equal to zero if and only if f = g µa.s. Hence, for any f ∈ S, the excess risk of a function f with respect to the density f * satisfies

P (-ln f ) -P (-ln f * ) = Z ln f * f f * dµ = K (f * , f ) ≥ 0
and this nonnegative quantity is equal to zero if and only if f * = f µa.s. Consequently, the unknown density f * is uniquely defined by

f * = arg min f ∈S {P (-ln f )} .
For a model m, that is a subset m ⊂ S, we define the maximum likelihood estimator on m, whenever it exists, by fm ∈ arg min

f ∈m {P n (-ln f )} = arg min f ∈m 1 n n i=1 -ln f (ξ i ) . (1) 

B. Histogram Models

The models m that we consider here to define the maximum likelihood estimators as in [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] are made of histograms defined on a fixed partition of Z. More precisely, for a finite partition

Λ m of Z of cardinality |Λ m | = D m + 1, D m ∈ N, we set m = f = I∈Λm β I 1 I ; (β I ) I∈Λm ∈ R Dm+1 + , f ≥ 0 and I∈Λm β I µ (I) = 1 .
Note that the smallest affine space containing m is of dimension D m . The quantity D m can thus be interpreted as the number of degrees of freedom in the (parametric) model m. We assume that any element I of the partition Λ m is of positive measure with respect to µ: for all I ∈ Λ m , µ (I) > 0. As the partition Λ m is finite, we have P (ln f ) + < ∞ for all f ∈ m and so m ⊂ S. We state in the next proposition some well-known properties that are satisfied by histogram models submitted to the procedure of MLE ([39, Section 7.3]).

Proposition II.1 Let

f m = I∈Λm P (I) µ (I) 1 I .
Then f m ∈ m and f m is called the KL projection of f * onto m. Moreover, it holds

f m = arg min f ∈m P (-ln f ) .
The following Pythagorean-like identity for the KL divergence holds, for every f ∈ m,

K (f * , f ) = K (f * , f m ) + K (f m , f ) . (2) 
The maximum likelihood estimator on m is well-defined and corresponds to the so-called frequency histogram associated to the partition Λ m . We have the following formulas,

fm = I∈Λm P n (I) µ (I)
1 I and P n ln fm

f m = K( fm , f m ) .
Remark II.1 Histogram models are special cases of general exponential families exposed for example in Barron and Sheu [START_REF] Barron | Approximation of density functions by sequences of exponential families[END_REF] (see also Castellan [27] for the case of exponential models of piecewise polynomials). The projection property (2) can be generalized to exponential models (see [START_REF] Barron | Approximation of density functions by sequences of exponential families[END_REF]Lemma 3] and Csiszár [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF]).

C. Over-Penalization

We define in Section II-C1 below our model selection procedure. Then we provide in Section II-C2 a graphical insight on the benefits of over-penalization. 

We aim at selecting an estimator f m with a KL divergence, pointed on the true density f * , as small as possible. Hence, we want our selected model to have a performance as close as possible to the excess risk achieved by an oracle model (not necessarily unique), defined to be,

m * ∈ arg min m∈Mn K(f * , fm ) (4) 
= arg min m∈Mn P (-ln fm ) .

(

) 5 
Recall that the celebrated AIC procedure corresponds to using a penalty pen AIC (m) = D m /n in criterion (3). To understand further this choice and the possibility of an improvement, let us discuss the notion of an ideal penalty. From (5), it is seen that an ideal penalty in the optimization task (3) is given by pen id (m) = P (-ln fm ) -P n (-ln fm ) , since in this case, the criterion crit id (m) = P n (-ln fm ) + pen id (m) is equal to the true risk P (-ln fm ). However pen id is unknown and, at some point, we need to give some estimate of it. In addition, pen id is random, but we may not be able to provide a penalty, even random, whose fluctuations at a fixed model m would be positively correlated to the fluctuations of pen id (m). This means that we are rather searching for an estimate of a deterministic functional of pen id . But which functional would be convenient? The answer to this question is essentially contained in the solution of the following problem. Problem 1. For any fixed β ∈ (0, 1) find the deterministic penalty pen id,β : M n → R + , that minimizes the value of C, among constants C > 0 which satisfy the following oracle inequality,

P K(f * , f m ) ≤ C inf m∈Mn K(f * , fm ) ≥ 1 -β . ( 6 
)
The solution -or even the existence of a solution -to the problem given in ( 6) is not easily accessible and depends on assumptions on the law P of data and on approximation properties of the models. In the following, we give a reasonable candidate for pen id,β . Indeed, let us set β M = β/Card(M n ) and define

pen opt,β (m) = q 1-β M K(f m , fm ) + K( fm , f m ) , ( 7 
)
where q λ {Z} = inf {q ∈ R; P (Z ≤ q) ≥ λ} is the quantile of level λ for the real random variable Z. Note that that the penalty pen opt,β is unknown to the statistician. Our claim is that pen opt,β has a theoretical interest since it gives in (6) a constant C which is close to one, under some general assumptions (see Section III for precise results). Let us explain now why pen opt,β should lead to a nearly optimal model selection.

We set

Ω 0 = m∈Mn K(f m , fm ) + K( fm , f m ) ≤ pen opt,β (m) .
We see, by definition of pen opt,β and by a simple union bound over the models m ∈ M n , that the event Ω 0 is of probability at least 1β. By definition of m we have, for any m ∈ M n ,

P n (-ln f m ) + pen opt,β ( m) ≤ P n (-ln fm ) + pen opt,β (m) . (8) 
Now, by centering by P (-ln f * ), using simple algebra and using the fact that on Ω 0 , we have

pen opt,β ( m) -(K(f m , f m ) + K( f m , f m )) ≥ 0, Inequality (8) gives on Ω 0 , K(f * , f m ) ≤K(f * , fm ) + pen opt,β (m) -(K(f m , fm ) + K( fm , f m )) (a) + (P n -P ) (ln(f m /f m )) (b)
.

In order to get an oracle inequality as in [START_REF] Arlot | Margin-adaptive model selection in statistical learning[END_REF], it remains to control (a) and (b) in terms of the excess risks K(f * , fm ) and K(f * , f m ). Quantity (a) is related to deviations bounds for the true and empirical excess risks of the M-estimators fm and quantity (b) is related to fluctuations of empirical bias around the bias of the models. Suitable controls of these quantities will give sharp oracle inequalities.

We define an over-penalization procedure as follows.

Definition II.1 A penalization procedure as defined in ( 3) is said to be an over-penalization procedure if the penalty pen that is used satisfies pen (m) ≥ pen opt,β (m) for all m ∈ M n and for some β ∈ (0, 1/2).

Based on concentration inequalities for the excess risks (see Section III-A) we propose the following over-penalization penalty for histogram selection,

pen + (m) = 1 + Cε + n (m) D m n , ( 9 
) m E[P (-ln fm )] E[P n (-ln fm )] + pen(m) q 1-α [P n (-ln fm )] + pen(m) q α [P n (-ln fm )] + pen(m) m * m
Models that can be selected where C is a constant that must depend on the distribution of data and is thus unknown in general and ε + n (m) = max D m ln(n + 1)/n; ln(n + 1)/D m ; ln(n + 1)/D m . Hence, C should be either fixed a priori (C = 1 or 2 are typical choices) or estimated using data (see Section V for further details about the choice of C). The logarithmic terms appearing in ( 9) are linked to our choice of β and to the cardinal of the collection of models, since in our proofs we take β = (n + 1) -2 and we consider a constant α such that ln Card(M n ) + ln(β) ≤ α ln(n + 1). The constant α then enters in the constant C of ( 9). We show below nonasymptotic accuracy of such procedure, both theoretically (assuming a good choice of C) and practically.

P n (-ln fm ) + pen(m)
2) Graphical insights on over-penalization: Let us provide a graphical perspective on our over-penalization procedure.

If the penalty pen is chosen according to the unbiased risk estimation principle, then it should satisfy, for any model m ∈ M n , E P n (-ln fm ) + pen (m) ∼ E P (-ln fm ) .

In other words, the curve C n : m → P n (-ln fm ) + pen (m) fluctuates around its mean, which is essentially the curve C P : m → E[P (-ln fm ))], see Figure 1. Asymptotically, the empirical risk P n (-ln fm ) behaves as a deterministic value (for a fixed model m), which consists to the theoretical bias of the model m, plus half of Akaike's penalty. Thus, asymptotically, the fluctuations of the empirical risk are indeed smaller than the penalty for models of reasonably small bias. But our point is that for small to moderate sample sizes, the fluctuations of the empirical risk may be non-negligible and should be compensated.

More precisely, the largest is the model m, the largest are the fluctuations of P n (-ln fm ) = K( fm , f m ) + P n (-ln f m ). This is seen for instance through the concentration inequality [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] for the empirical excess risk K( fm , f m ), that is stated in Theorem III.1 below. Consequently, it can happen that the curve C n is quite flat for the largest models and that the selected model is among the largest of the collection, see Figure 1.

m m * E[P (-ln fm )] q 1-α [P n (-ln fm )] + pen(m) q α [P n (-ln fm )] + pen(m)
Correction (over-penalization) P n (-ln fm ) + pen(m) Fig. 2. The correction that should be applied to an unbiased risk estimation procedure would ideally be of the size of the deviations of the risk for each model of the collection.

m q 1-α [P n (-ln fm )] + pen(m) +corr(m) E[P (-ln fm )] + corr(m) q α [P n (-ln fm )] + pen(m) +corr(m) m * m P n (-ln fm ) + pen(m) + corr(m)
Models that can be selected Fig. 3. After a suitable correction, the minimum of the red curve has a better shape. In addition, the region of models that can be possibly selected is substantially smaller and in particular avoids the largest models of the collection.

By using an over-penalization procedure instead of the unbiased risk estimation principle, we compensate the deviations for the largest models and thus obtain a thinner region of potential selected models, see Figures 2 and3. In other words, we tend to avoid overfitting and by doing so, we ensure a reasonable performance of our over-penalization procedure in situations where unbiased risk estimation fails. As already discussed, this is particularly the case when the amount of data is small to moderate.

III. THEORETICAL GUARANTEES

We state here our theoretical results pertaining to the behavior of our over-penalization procedure. As explained in Section II-C, concentration inequalities for true and empirical excess risks are essential tools for understanding our model selection problem and we state them in Section III-A. In Section III-B, we give a sharp oracle inequality.

A. True and empirical excess risks' concentration

In this section, we fix the linear model m made of histograms and we are interested by concentration inequalities for the true excess risk K(f m , fm ) on m and for its empirical counterpart K( fm , f m ).

Theorem III.1 Let n ≥ 1 be a positive integer and let α, A + , A -and A Λ be positive constants. Take m a model of histograms defined on a fixed partition Λ m of Z.We set

D m = |Λ m | -1. Assume that 1 < D m ≤ A + n/(ln(n + 1)) ≤ n and 0 < A Λ ≤ D m inf I∈Λm {P (I)} . ( 10 
)
If (α + 1) A + /A Λ ≤ τ = √ 6 -3/ √ 2 < 0.
58, then a positive constant A 0 exists, only depending on α, A + and A Λ , such that by setting

ε + n (m) = max    D m ln(n + 1) n ; ln(n + 1) D m ; ln(n + 1) D m    (11) and ε - n (m) = max    D m ln(n + 1) n ; ln(n + 1) D m    ,
we have, on an event of probability at least 1 -4(n + 1) -α ,

1 -A 0 ε - n (m) D m 2n ≤ K f m , fm ≤ 1 + A 0 ε + n (m) D m 2n , (12) 1 -A 0 ε - n (m) D m 2n ≤ K fm , f m ≤ 1 + A 0 ε + n (m) D m 2n . ( 13 
)
The proof of Theorem III.1, that can be found in the supplementary material [47, Section 2], is based on an improvement of independent interest of the previously best known concentration inequality for the chi-square statistics. See Section IV-A below for the precise result.

We obtain in Theorem III.1 sharp upper and lower bounds for the true and empirical excess risks on m. They are optimal at the first order since the leading constants are equal in the upper and lower bounds. They show the concentration of the true and empirical excess risks around the value D m /(2n). One should also notice that if D m > 1, one always has E[K(f m , fm )] = +∞ since there is a positive (very small) probability that fm vanishes on at least one element of the partition Λ m .

Moreover, Theorem III.1 establishes equivalence with high probability of the true and empirical excess risks for models of reasonable dimension. This is in accordance with the celebrated Wilks's phenomenon, that ensures here that both 2nK(f m , f m ) and 2nK(f m , f m ) converge in distribution towards a chi-square distribution χ 2

Dm with D m degrees of freedom, while their difference converges in probability to 0.

Concerning the control of the deviations in displays ( 12) and ( 13), we see more precisely that if D m √ n, then the deviations are indeed of the order of a chi-square distribution with D m degrees of freedom ([36, Lemma 1]). Indeed, the deviations at the right of 2nK(f m , f m ) and 2nK(f m , f m ) are smaller than the maximum between a sub-Gaussian term of order √ D m and a sub-exponential term of order 1. The deviations at the left are of the order of a sub-Gaussian term proportional to √ D m . On the contrary, if D m √ n, then the term reflecting the approximation of the scaled KL divergences to the chi-square statistics dominates over the previous sub-Gaussian term and is of order

D 3/2 m / √ n.
Another direction to get nonasymptotic bounds on the (rescaled) excess risks could be to look at the (Kolmogorov) distance to the χ 2 Dm distribution. The likelihood ratio is investigated in [START_REF] Anastasiou | Bounds for the asymptotic distribution of the likelihood ratio[END_REF] in this perspective, using Stein's method for probability approximation. An open question would be in our case to determine precisely when the Kolgomorov distance between the rescaled excess risk χ 2

Dm distribution is competitive with the deviations of the latter. Does a transition occur around D m ≈ √ n as in our bounds?

Concentration inequalities for the excess risks as in Theorem III.1 is a new and exciting direction of research related to the theory of statistical learning and to high-dimensional statistics. Boucheron and Massart [START_REF] Boucheron | A high-dimensional Wilks phenomenon[END_REF] obtained a pioneering result describing the concentration of the empirical excess risk around its mean, a property that they call a high-dimensional Wilks phenomenon. Then a few authors obtained results describing the concentration of the true excess risk around its mean [START_REF] Chatterjee | A new perspective on least squares under convex constraint[END_REF], [START_REF] Muro | Concentration behavior of the penalized least squares estimator[END_REF], [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] or around its median [START_REF] Bellec | Towards the study of least squares estimators with convex penalty[END_REF], [START_REF] Bellec | Bounds on the prediction error of penalized least squares estimators with convex penalty[END_REF] for (penalized) least square regression and in an abstract Mestimation framework [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]. In particular, recent results of [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF] include the case of MLE on exponential models and as a matter of fact, on histograms. Nevertheless, we believe that Theorem III.1 is a valuable addition to the literature on this line of research since we obtain here not only concentration around a fixed point, but an explicit value D m /2n for this point. On the contrary, the concentration point is available in [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF] only through an implicit formula involving local suprema of the underlying empirical process.

The principal assumption in Theorem III.1 is Inequality (10) of lower regularity of the partition with respect to P . It is ensured as soon as the density f * is uniformly bounded from below and the partition is lower regular with respect to the reference measure µ (which will be the Lebesgue measure in our experiments). No restriction on the largest values of f * are needed. In particular, we do not restrict to the bounded density estimation setting.

Castellan [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] proved inequalities that are related but weaker than those stated in Theorem III.1 above. She also asked for a lower regularity property of the partition, as in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]Proposition 2.5], where she derived a sharp control of the KL divergence of the histogram estimator on a fixed model. More precisely, Castellan assumes that there exists a positive constant B such that

inf I∈Λm µ (I) ≥ B (ln(n + 1)) 2 n . ( 14 
)
This latter assumption is thus weaker than (10) -in the case where the target is uniformly bounded from below, as assumed by Castellan -for models of dimensions D m that are smaller than the order n (ln(n + 1)) -2 . We could assume (14) instead of [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] and restrict the dimensions D m to be smaller than A + n/(ln(n + 1)) 2 in order to derive Theorem III.1. This would lead to less precise results for second order terms in the deviations of the excess risks but the first order bounds would be preserved. More precisely, if we replace assumption [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] in Theorem III.1 by Castellan's assumption ( 14), a careful look at the proofs shows that the conclusions of Theorem III.1 are still valid for ε + n (m) = max (ln(n + 1)) -1/2 ; ln(n + 1)/D m ; ln(n + 1)/D m and ε - n (m) = max (ln(n + 1)) -1/2 ; ln(n + 1)/D m . Thus assumption [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] is not a fundamental restriction in comparison to [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF].

B. An Oracle Inequality

Let us state first the set of assumptions required to establish the nonasymptotic optimality of the over-penalization procedure. These assumptions will be discussed in more detail at the end of this section.

Set of assumptions (SA) (P1) Polynomial complexity of

M n : Card (M n ) ≤ n α M .
(P2) Upper bound on dimensions of models in M n : there exists a positive constant A M,+ such that for every

m ∈ M n , D m ≤ A M,+ n (ln(n + 1)) 2 ≤ n .
(P3) Richness of M n : there exist c - rich , c + rich > 0 such that for any λ ∈ (0, 1), there exists a model m ∈ M n such that D m ∈ c - rich n λ , c + rich n λ . (Asm) The unknown density f * satisfies some moment condition and is uniformly bounded from below: there exist some constants A min > 0 and p ∈ (1, +∞] such that,

Z f p * (ln f * ) 2 ∨ 1 dµ < +∞ and inf z∈Z f * (z) ≥ A min > 0 . (15) 
(Alr) Lower regularity of the partition with respect to µ: there exists a positive finite constant A Λ such that, for all m ∈ M n ,

D m inf I∈Λm µ (I) ≥ A Λ ≥ A M,+ (α M + 6)/τ , where τ = √ 6 -3/ √ 2 > 0. (Ap)
The bias decreases like a power of D m : there exist

β -≥ β + > 0 and C + , C -> 0 such that C -D -β- m ≤ K (f * , f m ) ≤ C + D -β+ m .
We are now ready to state our main theorem related to the performance of over-penalization.

Theorem III.2 Take an integer n ≥ 1 and two real constants p ∈ (1, +∞] and r ∈ (0, p -1). For some ∆ > 0, consider the following penalty,

pen (m) = 1 + ∆ε + n (m) D m n , for all m ∈ M n . (16 
) Assume that the set of assumptions (SA) holds and that

β -< p (1 + β + ) /(1+p+r) or p/(1+r) > β -+β -/β + -1 .
(17) Then there exists an event Ω n of probability at least 1 -(n + 1) -2 and some positive constant A 1 depending only on the constants defined in (SA) such that, if

∆ ≥ A 1 > 0 then we have on Ω n , K f * , f m ≤ (1 + δ n ) inf m∈Mn K f * , fm , (18) 
where δ n = L (SA),∆,r (ln(n + 1)) -1/2 works.

The proof of Theorem III.2 and further descriptions of the behavior of the procedure can be found in the supplementary material [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF]Section 2.2].

We derive in Theorem III.2 a pathwise oracle inequality for the KL excess risk of the selected estimator, with constant almost one. Our result thus establishes the nonasymptotic quasi-optimality of over-penalization with respect to the KL divergence. More precisely, the convergence rate δ n ∝ 1/ ln(n + 1) in Inequality ( 18) is sufficient to ensure the asymptotic efficiency of the procedure and the question of the optimality of this rate under the assumptions of Theorem III.2 remains open.

The convergence rate is better in the leading constant of Inequality (33) of Theorem 2.3 of the supplementary material [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF], but at the price of adding a remainder term to the oracle inequality [START_REF] Hurvich | Model selection for least absolute deviations regression in small samples[END_REF]. The rate δ n then comes from comparing the bounds on the excess risk of an oracle model with the remainder term of Inequality [START_REF] Hurvich | Model selection for least absolute deviations regression in small samples[END_REF] and under Assumption [START_REF] Bellec | Bounds on the prediction error of penalized least squares estimators with convex penalty[END_REF] of Theorem 3.2, this is the best rate that we can get from our computations. However, if we have more precise relations between β -, β + and p than in Assumption [START_REF] Bellec | Bounds on the prediction error of penalized least squares estimators with convex penalty[END_REF], then the rate δ n may be better, typically polynomially decreasing in n. For instance, taking the special case where p = +∞, Assumption ( 17) is automatically satisfied and if we assume further that β -= β + =: β, then it is easy to check from the proof of Inequality [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF] in the supplementary material that δ n ∝ (ln(n + 1)) 3/2 /n 1/(1+β) works.

Note that the lower bound A 1 on the constant ∆ that is required for our over-penalization to ensure oracle inequality [START_REF] Berlinet | A comparison of kernel density estimates[END_REF] is unknown in general, since it depends on the constants involved in the set of assumptions (SA). In section V-A below, we propose either to set an ad hoc value for ∆, such as ∆ = 1, or to provide a data-driven calibration of it, that is based on the estimation of the variability of the empirical risk. The latter procedure achieves the best performances in our simulations. However, obtaining theoretical statistical guarantees for the data-driven calibration of ∆ seems unreachable at this point, as it is rather delicate and involves several steps of computations (see Section V-A for further details).

Note also that our choice of the lower bound 1 -(n + 1) -2 for the probability on which the oracle inequality ( 18) is achieved, is rather arbitrary but it is quite a classical choice in model selection (as for instance in [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF], [START_REF] Navarro | Slope heuristics and V -fold model selection in heteroscedastic regression using strongly localized bases[END_REF], [START_REF] Saumard | Optimal model selection in heteroscedastic regression using piecewise polynomial functions[END_REF]), because it allows to integrate -at least for bounded losses -the trajectorial oracle inequality, to obtain an oracle inequality in expectation. In our case, the Kullback-Leibler divergence taken on the estimators has an infinite expectation -as already discussed in Section III-A -but our choice is still sensible. Indeed, having a more general polynomial bound in n would not change the essence of our result.

We could work with more irregular partitions and grant Assumption ( 14) corresponding to [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]. This would give an-other form of over-penalization. But we have two remarks on this point. Firstly, despite working with Assumption (14), we would still need the assumption that the density f * is uniformly bounded from below -as in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] -, but in this case Assumption (Alr) of lower-regularity of the partitions is arguably the most natural, since one would typically consider regular partitions to estimate such density. Secondly, the form of the overpenalization ( 16) would be different using Assumption [START_REF] Barron | Approximation of density functions by sequences of exponential families[END_REF] but the algorithm that allows to calibrate empirically the overpenalization term -procedure AIC a in our experimentswould give actually essentially the same penalty as the one deduced from Assumption (Alr), since it is only based on an estimation of the deviations of the empirical risk for large models and on the fact that the excess risks concentrate at an exponential rate (see Section V-A).

It is worth noting that three features related to oracle inequality [START_REF] Berlinet | A comparison of kernel density estimates[END_REF] significantly improve upon the literature. Firstly, inequality [START_REF] Berlinet | A comparison of kernel density estimates[END_REF] expresses the performance of the selected estimator through its KL divergence and compare it to the KL divergence of the oracle. Nonasymptotic results pertaining to (robust) maximum likelihood based density estimation usually control the Hellinger risk of the estimator [START_REF] Castellan | Density estimation via exponential model selection[END_REF], [START_REF] Massart | Concentration inequalities and model selection[END_REF], [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF], [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF], [START_REF] Baraud | A new method for estimation and model selection: ρ-estimation[END_REF]. The main reason is that the Hellinger risk is easier to handle than the KL divergence from a mathematical point of view. For instance, the Hellinger distance is bounded by one while the KL divergence can be infinite. However, from an Mestimation perspective, the natural excess risk associated with likelihood optimization is indeed the KL divergence and not the Hellinger distance. These two risks are provably close to each other in the bounded setting [START_REF] Massart | Concentration inequalities and model selection[END_REF], but may behave very differently in general.

Second, nonasymptotic results describing the performance of procedures based on penalized likelihood, by comparing more precisely the (Hellinger) risk of the estimator to the KL divergence of the oracle, all deal with the case where the log-density to be estimated is bounded ( [START_REF] Castellan | Density estimation via exponential model selection[END_REF], [START_REF] Massart | Concentration inequalities and model selection[END_REF]). Here, we substantially extend the setting by considering only the existence of a finite polynomial moment for the large values of the density to be estimated.

Finally, the oracle inequality ( 18) is always valid with positive probability, larger than 3/4. To our knowledge, any other oracle inequality describing penalization performance for maximum likelihood density estimation is valid with positive probability only when the sample size n is greater than an integer n 0 which depends on the constants defining the problem and that is thus unknown. For instance, the quantities are controlled in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] only on an event Ω m (see (2.8) in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]), that is of probability bounded below by 1 -C/n (see (2.10) in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]), for C an unknown constant that depends on the parameters of the problem. So it can happen for n < C that P(Ω m ) = 0. In such case, Castellan's results, even for the Hellinger distance, are empty (it would give an upper-bound for the Hellinger distance that would be greater than one, which is trivial, see the reminder term in the oracle inequality of Theorem 3.2 in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]).

We emphasize that we control the risk of the selected estimator for any sample size and that this property is highly valuable in practice when dealing with small to medium sample sizes. Based on the arguments developed in Section II-C, we believe that such a feature of Theorem III.2 is accessible only through the use of over-penalization and we conjecture in particular that it is impossible using AIC to achieve such a control of the KL divergence of the selected estimator for any sample size.

Let us mention that we give in [47, Theorem 2.3] of the supplementary material a more general result than Theorem III.2 above, considering penalties of the form,

pen(m) = pen θ (m) = (θ + ∆ε + n (m)) D m n ,
for θ > 1/2. Taking θ = 1 is actually the best theoretical choice since it allows to optimize the bound given in [47, Theorem 2.3], in such a way that an oracle inequality is achieved, with leading constant converging to one. This choice, that is made in Theorem III.2 above, also corresponds to penalizing more than AIC, since the penalty is then greater than Akaike's penalty. Our more general penalty of [47, Theorem 2.3], that depends on θ > 1/2, can, however, be smaller than Akaike's penalty if ∆ε + n (m) < 1θ, which is asymptotically true for θ < 1. But taking θ = 1 is asymptotically a bad choice, since AIC is asymptotically efficient (at least in good cases). On the contrary, if ∆ε + n (m) > 1θ, which can happen for small values of n, then pen θ (m) is greater than Akaike's penalty and this is, to our understanding, precisely the reason why we obtain a non-trivial inequality for any sample size n in [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF]Theorem 2.3].

The oracle inequality ( 18) is valid under conditions ( 17) relating the values of the bias decaying rates β -and β + to the order p of finite moment of the density f * and the parameter r. In order to understand these latter conditions, let us assume for simplicity that β -= β + =: β. Then the conditions (17) both reduce to β < p/(1 + r). As r can be taken as close to zero as we want, the latter inequality reduces to β < p. In particular, if the density to be estimated is bounded (p = +∞), then conditions [START_REF] Bellec | Bounds on the prediction error of penalized least squares estimators with convex penalty[END_REF] are automatically satisfied. If on the contrary the density f * only has finite polynomial moment p, then the bias should not decrease too fast. In light of the following comments, if f * is assumed to be α-Hölderian, α ∈ (0, 1], then β ≤ 2α ≤ 2 and the conditions ( 17) are satisfied, in the case where β -= β + , as soon as p ≥ 2.

To conclude this section, let us comment on the set of assumptions (SA). Assumption (P1) indicates that the collection of models has increasing polynomial complexity. This is well suited to bin size selection because in this case we usually select among a number of models which is strictly bounded from above by the sample size. In the same manner, Assumption (P2) is legitimate and corresponds to practice, where we aim at considering bin sizes for which each element of the partition contains a few sample points. Assumption (P3) ensures that there are enough models, that are well spread over possible dimensions. It is satisfied, of course, if one takes one model per dimension. From a technical viewpoint, assumption (P3) allows to obtain an oracle inequality [START_REF] Berlinet | A comparison of kernel density estimates[END_REF] without a remainder term. See [47, Section 2.2] for technical details about this latter point. Assumption (Asm) imposes conditions on the moments density to be estimated. Assumption [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF] stating that the unknown density is uniformly bounded from below is also granted in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]. It is, moreover, assumed in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF]Theorem 3.4], when deriving an oracle inequality for the (weighted) KL excess risk of the histogram estimator, that the target is of finite sup-norm. This corresponds to the case where p = +∞ in (Asm), but the condition where p ∈ (1, +∞) is, of course, more general. Furthermore, from a statistical perspective, the lower bound ( 15) is coherent since, by Assumption (Alr), we use models of lower-regular partitions with respect to the Lebesgue measure. In the case where Inequality [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF] would not hold, one would typically have to consider exponentially many irregular histograms to take into account the possibly vanishing mass of some elements of the partitions (for more details on this aspect that goes beyond the scope of the present paper, see for instance [START_REF] Massart | Concentration inequalities and model selection[END_REF]).

We require in (Ap) that the quality of the approximation of the collection of models is good enough in terms of bias. More precisely, we require a polynomially decreasing of excess risk of KL projections of the unknown density onto the models. For a density f * uniformly bounded away from zero, the upper bound on the bias is satisfied when for example, Z is the unit interval, µ = Leb is the Lebesgue measure on the unit interval, the partitions Λ m are regular and the density f * belongs to the set H (H, α) of α-hölderian functions for some α ∈ (0, 1]:

if f ∈ H (H, α), then for all (x, y) ∈ Z 2 |f (x) -f (y)| ≤ H |x -y| α .
In that case, β + = 2α is convenient and AIC-type procedures are adaptive to the parameters H and α, see [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF].

In assumption (Ap) of Theorem III.2 we also assume that the bias K (f * , f m ) is bounded from below by a power of the dimension D m of the model m. This hypothesis is in fact quite classical as it has been used in [START_REF] Stone | An asymptotically optimal histogram selection rule[END_REF], [START_REF] Burman | Estimation of equifrequency histogram[END_REF] for the estimation of density on histograms and also in [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], [START_REF] Arlot | Model selection by resampling penalization[END_REF], [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] in the regression framework. Combining Lemmas 1 and 2 of Barron and Sheu [START_REF] Barron | Approximation of density functions by sequences of exponential families[END_REF] -see also Inequality [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF] of Proposition IV.6 below -we can show that

1 2 e -3 ln( f * fm ) ∞ Z (f m -f * ) 2 f * dµ ≤ K (f * , f m ) .
Assuming for instance that the target is uniformly bounded, f * ∞ ≤ A * , we get

A 3 min 2A 4 * Z (f m -f * ) 2 dµ ≤ K (f * , f m ) .
Now, since in the case of histograms the KL projection f m is also the L 2 (µ) projection of f * onto m, we can apply Lemma 8.19 in Section 8.10 of Arlot [START_REF] Arlot | Resampling and Model Selection[END_REF] to show that assumption (Ap) is indeed satisfied for β -= 1 + α -1 , in the case where Z is the unit interval, µ = Leb is the Lebesgue measure on the unit interval, the partitions Λ m are regular and the density f * is a non-constant α-hölderian function.

IV. PROBABILISTIC AND ANALYTICAL TOOLS

In this section we set out some general results that are of independent interest and serve as tools for the mathematical description of our statistical procedure. The first two sections contain new or improved concentration inequalities, for the chi-square statistics (Section IV-A) and for general logdensities (Section IV-B). We establish in Section IV-C some results that are related to the so-called margin relation in statistical learning and that are analytical in nature.

A. Chi-square Statistics' Concentration

The chi-square statistic plays an essential role in the proofs related to Section III-A. Let us recall its definition.

Definition IV.1 Given some histogram model m, the chisquare statistics χ 2 n (m) is defined by

χ 2 n (m) = Z fm -f m 2 f m dµ = I∈m (P n (I) -P (I)) 2 P (I) .
The following proposition provides an improvement upon the previously best known concentration inequality for the right tail of the chi-square statistics ( [START_REF] Castellan | Density estimation via exponential model selection[END_REF], see also [START_REF] Massart | Concentration inequalities and model selection[END_REF]Proposition 7.8] and [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]Theorem 12.13]).

Proposition IV.1 For any x, θ > 0, it holds

P χ n (m) 1 Ωm(θ) ≥ D m n + 1 + √ 2θ + θ 6 2x n ≤ exp (-x) , (19) 
where we set

Ω m (θ) = I∈m {|P n (I) -P (I)| ≤ θP (I)}.
More precisely, for any x, θ > 0, it holds with probability at least 1e -x ,

χ n (m) 1 Ωm(θ) < D m n + 2x n + 2 θ n √ x ∧ xD m 2 1/4 (20) 
+ θ 3 x n x D m ∧ 1 √ 2 .
The proof of Theorem IV.1 can be found in Section 1.1 of the supplementary material [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF]. Essentially, we follow the same kind of arguments as those given in the proof of Castellan's inequality ([26, Inequality (4.27)]). In particular, the main tool is Bousquet's concentration inequality for the supremum of the empirical process at the right of its mean ( [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]). However, we perform a slightly refined optimization of the quantities appearing in Bousquet's inequality.

Let us details the relationship of Proposition IV.1 with Castellan's inequality (in the form presented in [39, Proposition 7.8]), which is: for any x, ε > 0,

P χ n (m) 1 Ωm(ε 2 /(1+ε/3)) ≥ (1 + ε) D m n + 2x n ≤ exp (-x) . (21) 
By

taking θ = ε 2 / (1 + ε/3) > 0, we get ε = θ/6 + θ 2 /36 + θ > θ/6 + √ θ > 0. Assume that D m ≥ 2x.
It is easy to check that Inequality [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] gives in this case a bound that is smaller than the one provided by Inequality [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]. The essential improvement is that the constant in front of the term D m /n is equal to one for our inequality instead of 1 + for Castellan's.

To illustrate this improvement, let us mention that in our proofs we apply [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] with x proportional to ln(n + 1) ([47, Section 2.1]). Hence, for most of the models of the collection, we have x D m and as a result, the bounds that we obtain in Theorem III.1 by the use of Inequality [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] are substantially better than the bounds we would obtain by using Inequality (21) of [START_REF] Massart | Concentration inequalities and model selection[END_REF]. More precisely, the deviation term D m ln(n + 1)/n in (11) would be replaced by its square root (D m ln(n + 1)/n) 1/4 , thus degrading the order of magnitude for the deviations of the excess risks and changing the form of our over-penalization itself. Proposition IV.1 has thus a direct statistical impact in our study. Finally, if D m ≤ 2x then it is also easy to check that Inequality [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF] improves upon Castellan's inequality [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF].

The following result describes the concentration from the left of the chi-square statistics and is proved in the supplementary material [47, Section 1.1].

Proposition IV.2 Let α, A Λ > 0. Assume 0 < A Λ ≤ D m inf I∈m {P (I)}.
Then there exists a positive constant A g depending only on A Λ and α such that

P   χ n (m) ≤   1 -A g   ln(n + 1) D m ∨ ln(n + 1) n 1/4     D m n   ≤ (n + 1) -α .

B. Bernstein type concentration inequalities for log-densities

The following propositions give concentration inequalities for the bias of log-densities. No structure is assumed for the densities, so these inequalities are general and may be of independent interest. These results are used in the proofs related to Theorem III.2 above by specifying the value of a density f to be equal to a projection f m ([47, Section 2.1]).

Proposition IV.3 Consider a density f ∈ S. We have, for all z ≥ 0,

P P n (ln ( f / f * )) ≥ z n ≤ exp (-z) . (22) 
Moreover, if we can take a finite quantity v which satisfies

v ≥ (f ∨ f * ) ln f f * 2 dµ,
we have for all z ≥ 0,

P (P n -P ) (ln ( f / f * )) ≥ 2vz n + 2z n ≤ exp (-z) . (23) 
One can notice, with Inequality [START_REF] Boucheron | A high-dimensional Wilks phenomenon[END_REF], that the empirical bias always satisfies some exponential deviations at the right of zero. In the Information Theory community, this inequality is also known as the "No Hyper-compression Inequality" ( [START_REF] Grünwald | The minimum description length principle[END_REF]).

Inequality [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF] seems to be new and takes the form of a Bernstein-like inequality, even if the usual assumptions of Bernstein's inequality are not satisfied. In fact, we are able to recover such a behavior by inflating the usual variance to the quantity v.

We now turn to concentration inequalities for the empirical bias at the left of its mean, where we also inflate the sub-Gaussian term to obtain a Bernstein-like inequality.

Proposition IV.4 Let r > 0. For any density f ∈ S and for all z ≥ 0, we have

P (P n (ln ( f / f * )) ≤ -z/nr -(1/r) ln (P [( f * / f ) r ])) ≤ exp (-z) . (24) 
Moreover, if we can set a quantity w r which satisfies w r ≥

f r+1 * f r ∨ f * ln f f * 2 
dµ , then we get, for all z ≥ 0,

P (P n -P ) (ln ( f / f * )) ≤ - 2w r z n - 2z nr ≤ exp (-z) . (25) 

C. Margin-Like Relations

Our objective in this section is to control the variance terms v and w r , appearing respectively in Propositions IV.3 and IV.4 above, in terms of the KL divergence pointed on the target f * . This is done in Proposition IV.5 below under moment assumptions for f * . Our inequalities generalize previous results of Barron and Sheu [14] obtained in the bounded setting (see also [START_REF] Massart | Concentration inequalities and model selection[END_REF]Lemma 7.24]).

Proposition IV.5 Let p > 1 and c + , c -> 0. Assume that the density f * satisfies

J := Z f p * (ln (f * )) 2 ∨ 1 dµ < +∞ Q := Z (ln (f * )) 2 ∨ 1 f p-1 * dµ < +∞ (26) 
Take a density f such that 0 < c - ≤ inf z∈Z {f (z)} ≤ sup z∈Z {f (z)} ≤ c + < +∞. Then, for some A M R,d > 0 only depending on J, Q, p, c + and c -, it holds

P f f * ∨ 1 ln f f * 2 ≤ A M R,d K (f * , f ) 1-1 p . ( 27 
)
More precisely,

A M R,d = 4c 1-p - (ln c -) 2 ∨ 1 J + 4c p + ln 2 c + ∨ 1 Q 1/p
holds. For any 0 < r ≤ p-1, we have the following inequality,

P f * f ∨ 1 r ln f f * 2 ≤ A M R,g K (f * , f ) 1-r+1 p , (28) available with 
A M R,g = 4c 1-p - ln 2 c -∨ 1 J + 2 ln 2 c + + J + Q r+1 p .
Proposition IV.5 states that the variance terms, appearing in the concentration inequalities of Section IV-B, are bounded from above, under moment restrictions on the density f * , by a power less than one of the KL divergence pointed on f * . The stronger are the moment assumptions, given in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF], the closer is the power to one. One can notice that J is a restriction on large values of f * , whereas Q is related to values of f * around zero.

We call these inequalities "margin-like relations" because of their similarity with the margin relations known first in binary classification ( [START_REF] Mammen | Smooth discrimination analysis[END_REF], [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF]) and then extended to empirical risk minimization (see [START_REF] Arlot | Margin-adaptive model selection in statistical learning[END_REF], [START_REF] Massart | Risks bounds for statistical learning[END_REF] for instance). Indeed, from a general point of view, margin relations relate the variance of contrasted functions (logarithm of densities here) pointed on the contrasted target to a function (in most cases, a power) of their excess risk.

Now we reinforce the restrictions on the values of f * around zero. Indeed, we ask in the following proposition that the target is uniformly bounded away from zero.

Proposition IV.6 Let p > 1 and A min , c + , c -> 0. Assume that the density f * satisfies

J := Z f p * (ln (f * )) 2 ∨ 1 dµ < +∞ and 0 < A min ≤ inf z∈Z f * (z) .
Then there exists a positive constant A M R,-only depending on A min , J, r and p such that, for any m ∈ M n ,

P f m f * ∨ 1 ln f m f * 2 ≤ A M R,-K (f * , f m ) 1-1/p
(29) and for any 0 < r ≤ p -1,

P f * f m ∨ 1 r ln f m f * 2 ≤ A M R,-K (f * , f m ) 1-r+1 p . ( 30 
) If moreover ln (f * ) ∈ L ∞ (µ), i.e. 0 < A min ≤ inf z∈Z f * (z) ≤ f * ∞ < +∞,
then there exists à > 0 only depending on r, A min and f * ∞ such that, for

any m ∈ M n , P f m f * ∨ 1 ln 2 f m f * ∨ P f * f m ∨ 1 r ln 2 f m f * ≤ ÃK (f * , f m ) . (31) 
Proposition IV.6 is stated only for projections f m because we actually take advantage of their special form (as local means of the target) in the proof of the proposition. The benefit, compared to results of Proposition IV.5, is that Inequalities (29), [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF] and [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF] do not involve assumptions on the values of f m .

V. EXPERIMENTS

A simulation study is conducted to compare the numerical performance of the model selection procedures we discussed. We demonstrate the usefulness of our procedure on simulated data examples. The numerical experiments were performed using R. 

A. Experimental Setup

We have compared the numerical performance of our procedure with the classic methods of penalization of the literature on several densities. In particular, we consider the estimator of [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF] and AICc ( [START_REF] Hurvich | Model selection for least absolute deviations regression in small samples[END_REF], [START_REF] Sugiura | Further analysts of the data by Akaike's information criterion and the finite corrections[END_REF]). We also report on AIC's behavior. In the following, we name the procedure of [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF] by BR, and our criterion AIC 1 when the constant C = 1 in (9) and AIC a for a fully adaptive, data-driven procedure which will be detailed below. More specifically, the performance of the following four model selection methods were compared: 1. AIC: The models that we used along the experiments are made of histogram densities defined on regular partitions of the interval [0, 1] (with the exception of the density Isosceles triangle which is supported on [-1, 1]), from a cardinal equal to 1 to n/ ln(n + 1) . Thus the cardinal of our collection of models is Card(M n ) = n/ ln(n + 1) .

We show the performance of the proposed method for a set of four test distributions (see Figure 5) and described in the benchden1 R-package [START_REF] Mildenberger | The benchden package: Benchmark densities for nonparametric density estimation[END_REF] which provides an implementation of the distributions introduced in [START_REF] Berlinet | A comparison of kernel density estimates[END_REF].

Let us explain the ideas underlying the design of the procedure AIC a given above. According to the definition of penalty pen opt,β given in [START_REF] Arlot | Minimal penalties and the slope heuristics: a survey[END_REF], the constant Ĉ in the penalty pen AICa should be computed so that the penalty provides an estimate of the quantile of order 1β M , where β M = β/Card(M n ), of the sum of excess risk and empirical excess risk on the models of the collection.

Based on Theorem III.1, we can also assume that the deviations of excess risk and excess empirical risk are of the same order. By choosing β of the order of (n + 1) -2 as in Theorem III.2 above, and considering that Card(M n ) n n + 1, we arrive to a choice of β M = (n+1) -3 . The latter value impacts the over-penalization through a factor 3 ln(n + 1) because the concentration of the excess risks is exponential. Putting things together, the over-penalization Ĉ should be given by 3×2 = 6 times the normalized deviations of the empirical excess risk. Moreover, considering the largest models in the collection neglects questions of bias and, therefore, the median of the normalized deviations of the empirical risk around its mean for the largest models should be a reasonable estimator of the constant C.

Finally, the remaining problem is to give a tractable definition to the "largest models" in the collection. To do this, we choose a proportion α of the largest dimensions of the models at hand and calculate using these models an estimator Ĉα of the constant C in [START_REF] Arlot | Choice of V for V -Fold Cross-Validation in Least-Squares Density Estimation[END_REF]. We then proceed for each α in a grid of values between 0 and 1 to a model selection step by over-penalization using the constant C = Ĉα . This gives us a graph of the selected dimensions with respect to the proportions (Figure 4 at the right). Finally, we define our over-penalization constant Ĉ as the median of the values of the constants Ĉα , α ∈ P where P is the largest plateau in the graph of the selected dimensions with respect to proportions α.

Note that we make use of the plot of the empirical risk as a function of the dimension D m . This is a common point with the slope estimation procedure in the so-called slope heuristics [START_REF] Arlot | Minimal penalties and the slope heuristics: a survey[END_REF], [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF], but our use of the plot of the empirical risk substantially differs from the slope estimation, in that we consider that the slope is known and is given by Akaike's penalty and we estimate the order of deviations of the empirical risk around this slope, for large enough models.

B. Results

We compared procedures on N = 1000 independent data sets of size n ranging from 50 to 1000. We estimate the quality of the model selection strategies using the median KL divergence, on the one hand, and the median squared Hellinger distance, on the other hand. Boxplots were made of the KL risk -resp. the Hellinger distance -over the N trials. The horizontal lines of the boxplots indicate the 5%, 25%, 50%, 75%, and 95% quantiles of the error distribution. The median value of AIC (horizontal black line) is also superimposed for visualization purposes. It can be seen from Figure 6 (resp. Figure 7) that, as expected, for each method and in all cases, the KL divergence (resp. the squared Hellinger distance) decreases as the sample size increases. We also see clearly that there is generally a substantial advantage in modifying AIC for sample sizes smaller than 1000.

We see from Figure 6 pertaining to KL divergence, that AIC a is quite clearly the most advisable procedure in practice for small to moderate sample sizes, since it is the most stable while being one of the most efficient procedures. It indeed outperforms all the other procedures for a very small sample size (50 or 100) and is as good as AIC 1 (and comparable or better than the other procedures) for a moderate sample size. The picture is quite the same when looking at the Hellinger risk (Figure 7), except that now AIC a and AIC 1 have comparable performances in all settings.

But AIC a comes at a price of more computations that the other considered procedures. If a computational simplicity equivalent to AIC is required, then we recommend using AIC 1 rather than AICc or BR. Indeed, compared to AIC 1 , it seems that AICc is not penalizing enough, which translates into a worse performance for samples equal to 50 and 100. On the contrary, it seems that the BR criterion penalizes too much. As a result, its performance deteriorates relative to other methods as the sample size increases.

VI. CONCLUSION

In this work, we tackled the delicate, but well-known question of the lack of efficiency of AIC for small to moderate sample sizes. Several modifications of AIC have been already proposed, such as AICc ( [START_REF] Hurvich | Model selection for least absolute deviations regression in small samples[END_REF]) or the correction due to Birgé and Rozhenholc ([20]). We introduced a new correction of AIC that is based on estimating the quantiles -at the right order -of the true and empirical excess risks of the estimators at hand. By focusing on histograms, we were able to give sharp concentration bounds for the excess risks and to discuss the quality of our model selection procedure in an unbounded setting. We provided more precisely an oracle inequality that holds with positive probability without any remainder term and for any sample size. We also provided an algorithm of data-driven calibration of our correction term, that seems to be most often in our experiments the most accurate procedure. Many directions of research for extending this work are open. Indeed, one can notice that the rationale behind our overpenalization procedure is not based on the particular value of the MLE contrast or the specific choice of the models and that other M-estimation context could be tackled. The crucial point to understand is indeed the excess risk's concentration and so, available results constitute a good basis for future work [START_REF] Navarro | Slope heuristics and V -fold model selection in heteroscedastic regression using strongly localized bases[END_REF], [START_REF] Saumard | A concentration inequality for the excess risk in leastsquares regression with random design and heteroscedastic noise[END_REF], [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]. Our over-penalization strategy could thus be investigated for more general exponential models in MLE estimation ( [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]), or for other contrasts, such as the least-squares density contrast ([9], [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]) or the least-squares regression contrast (with projection estimators [START_REF] Saumard | A concentration inequality for the excess risk in leastsquares regression with random design and heteroscedastic noise[END_REF]) and even for regularized estimators ( [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]). We could also tackle the correction of other model selection criteria than the theoretically designed penalties and in our opinion, the correction of V -fold penalties ( [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], [START_REF] Arlot | Choice of V for V -Fold Cross-Validation in Least-Squares Density Estimation[END_REF], [START_REF] Navarro | Slope heuristics and V -fold model selection in heteroscedastic regression using strongly localized bases[END_REF]) and its comparison to the classical Vfold cross-validation is a particularly attractive direction of research.

VII. SUPPLEMENTARY MATERIAL

The supplement [START_REF] Saumard | Supplement to "Finite sample improvement of Akaike's Information Criterion[END_REF] to "Finite sample improvement of Akaike's Information Criterion" contains in Sections 1 and 2 the proofs of the results described in this article as well as some theoretical extensions that complement the description of the over-penalization procedure.
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 1 Fig. 1. A schematic view of the situation corresponding to a selection procedure based on the unbiased risk principle. The penalized empirical risk (in red) fluctuates around the expectation of the true risk. The size of the deviations typically increases with the model size, making the shape of the curves possibly flat for the largest models of the collection. Consequently, the chosen model can potentially be very large and lead to overfitting.
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 4 Fig. 4. Estimation of the over-penalization constant.
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 46 AIC ∈ arg min m∈Mn P n (-ln fm ) + D m n , 2. AICc: m AICc ∈ arg min m∈Mn P n (-ln fm ) + D m n -D m -1 , 3. BR: m BR ∈ arg min m∈Mn P n (-ln fm ) + D m n + log 2.5 (D m + 1) n , AIC 1 : m AIC1 ∈ arg min m∈Mn P n (-ln fm ) + pen AIC1 (m) , with pen AIC1 (m) = 1 + 1 × ε + n (m) D m n , 5. AIC a : m AICa ∈ arg min m∈Mn P n (-ln fm ) + pen AICa (m) , pen AICa (m) = 1 + Ĉε + n (m) median α∈P Ĉα , with Ĉα = median m∈Mα | Ĉm |, where m is the least-squares distance between the opposite of the empirical risk -P n (γ( f m )) and a fitted line of equation y = xD m /(2n) + â (Figure4at the left), P is the set of proportions α corresponding to the longest plateau of equal selected models when using penalty[START_REF] Arlot | Choice of V for V -Fold Cross-Validation in Least-Squares Density Estimation[END_REF] with constant C = Ĉα (Figure4at the right) and M α is the set of models in the collection associated to the proportion α of the largest dimensions.
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 5 Fig. 5. Test densities f .
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 6 Fig.6. KL divergence results. Box plots of the KL divergence to the true distribution for the estimated distribution. The solid black line corresponds to the AIC KL divergence median. The term inside the box is the number of times the KL divergence equals ∞ out of 1000.
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 7 Fig. 7. Hellinger distance results. Box plots of the Hellinger distance to the true distribution for the estimated distribution. The solid black line corresponds to the AIC Hellinger distance median.
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