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Abstract: The present paper proposes the numerical solution of an inverse problem in groundwater
flow (Darcy’s equation). This solution was achieved by combining a high-resolution new code
HYSFLO-LBM (Hydrodynamic of Subsurface Flow by Lattice Boltzmann Method), based on LBM,
to solve the direct problem, and the metaheuristic optimization algorithm CMA-ES ES (Covariance
Matrix Adaptation-Evolution Strategy) to solve the optimization step. The integrated optimization
algorithm which resulted from this combination, HYSFLO-LBM/CMA-ES, was applied to the hy-
drogeological experimental site of Beauvais (Northern France), instrumented by a set of sensors
distributed over 20 hydrogeological wells. Hydrogeological parameters measured by the sensors
are necessary to understand the aquifer functioning and to serve as input data for the identification
of the transmissivity field by the HYSFLO-LBM/CMA-ES code. Results demonstrated an excellent
concordance between the integrated optimization algorithm and hydrogeological applied methods
(pumping test and magnetic resonance sounding). The spatial distribution of the transmissivity
and hydraulic conductivity are related to the heterogeneous distribution of aquifer formations. The
LBM and CMA-ES were chosen for their proven excellent performance and lesser cost, in terms of
both money and time, unlike the geophysical survey and pumping test. The model can be used and
developed as a decision support tool for integrated water resources management in the region.

Keywords: groundwater; modeling; Lattice Boltzmann method; chalk aquifer; transmissivity; hetero-
geneity

1. Introduction

Chalk formations form the most important and considerable aquifer in the northern
part of France as groundwater represents 97% of the water supply in the “Hauts-de-France”
region—especially for drinking water, public consumption, agricultural and industrial activi-
ties, and supporting river flows. Hydraulic relations between groundwater chalk and rivers
allow a favorable exploitation for industrial sectors by pumping the water surface resources.

Groundwater flow is governed by the estimation of hydrodynamic properties, namely
the transmissivity, hydraulic conductivity, and water content values. The mapping of these
parameters is very complex because: (i) the cost of experimental tests in hydrogeological
wells is very high in terms of time and budget, especially in the hydrogeological context
related to deeper wells; and (ii) the application of geophysical surveys, especially magnetic
resonance soundings (MRS), is not obvious as the quality of results are influenced and
perturbed by noise measurements in the field, which depend on urban areas and can
makes measurements very difficult to acquire. On the other hand, identified transmissivity
values (the important parameter in the pumping test interpretation) are rare in the North
of Paris basin (Hauts-de-France region) and, if they exist, are in private scientific reports
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and not available in the public domain. Indeed, methods and techniques to estimate this
hydrogeological parameter, such as geotechnical approaches which are based on the grain
size, the intrinsic permeability, or on the analyses or pumping tests, show several limitations
in terms of economics, spatial scale, time, and the heterogeneity of the hydrogeological
formations. On the other hand, the pumping test, which generally requires a longer
duration of two, three, or more days to produce good-quality results, presents several
practical and technical problems, especially in urban sectors (e.g., disturbances to the local
population, flooding of the water supply networks, and drawdown in the wells of the
city). Therefore, the numerical approach is considered to be the better solution of the
transmissivity estimation. Hence, it is necessary to identify other approaches to deriving
suitable values in order to understand and to define the principal parameters which govern
the heterogeneity of the groundwater flow and, especially, to identify the transmissivity by
adopting indirect processes.

Numerous works have focused their theses on inverse modeling, which is an im-
portant tool in the management and planning of water resources as it simulates and
characterizes hydraulic parameters to erratic properties in hydrogeological models [1–5].
In hydrogeology, inverse modeling is widely used for prospective pumping tests [6,7], to
identify the permeability coefficient of rock mass [8], to manage irrigation networks [9], to
manage water in the urban context [10], and to analyze the groundwater quality monitoring
network [11]. In addition, several numerical models in hydrogeology have used genetic
algorithms in order to find the optimal solution of inverse problems in many fields of
hydrogeology and in particular to identify the field of transmissivity of aquifers [12].

Solutions of inverse problems are determined in two stages. The first is the resolution
of the direct model to estimate the calculated simulated values of state variables neces-
sary for the construction of the objective function (the error between the calculated and
observed state values). The second step is the minimization of the objective function whose
minimum is the desired identified value. The resolution of the direct problem is generally
accomplished by classical discretization methods such as the finite difference method, the
finite element method, and the finite volume method. Moreover, for the minimization
phase, most of the classical optimization algorithms can be implemented to solve the inv
erse problem, but have the disadvantage to convergence towards the local minimum. To
avoid this drawback, several works have focused on the use of metaheuristic optimization
algorithms such as genetic algorithms (GA) [13–15] or evolutionary strategy algorithms
(ESA) [16–18].

For two decades, the Lattice Boltzmann method (LBM) has been considered a serious
alternative to classical computational fluid dynamic (CFD) methods for solving Navier–
Stokes equations in complex flow configurations. Since its introduction, LBM has been
successfully used in all disciplines related to flows in general, including porous medium,
multiphase flows, wave propagation, multiphysics flows, and many others. The founda-
tions of LBM are rooted in statistical physics and, in particular, kinetic theory. Indeed, LBM
reproduces the movement of particles virtually placed on a predefined grid (called a lattice)
which collide with each other and then propagate on this grid. In addition, the bases of the
kinetic theory, on which LMB is based, consist of solving the Boltzmann equation, which
describes the spatio-temporal evolution of the distribution function with a source term
which represents the collision operation. By its design, LBM is naturally parallelizable and
particularly suited to implementations on GPU (Graphics Processing Unit) architecture.
It is this advantage which results in a considerable saving of computing time, which con-
tinues to make LBM more and more attractive. There is an abundance of literature on all
aspects (theoretical and practical) of LBM, but we will only cite a few books that present it
in detail [19–22].

In this work, we present the solution of an inverse problem allowing the identifi-
cation of the heterogeneous transmissivity field of an experimental site instrumented
in 20 wells. To do this, we developed a new integrated optimization algorithm called
HYSFLO-LBM/CMA-ES, in which the direct model is solved by the code HYSFLO-LBM
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and the metaheuristic optimization algorithm CMA-ES due to [23]. Both the LBM and
CMA-ES are presented in Sections 2.2 and 2.3 of this paper. Finally, we underline that
the main novelty of the integrated optimization algorithm (HYSFLO-LBM/CMA-ES) lies
in the fact that this digital tool allows identification of the transmissivity (or diffusivity)
tensor and its spatial heterogeneity. With this numerical tool, we do not use the concept of
zonation 6(the computational domain is represented by a limited number of areas with
constant transmissivity), which is not desirable for study areas with high spatial variability.

This paper is organized as follows. Section 1 presents the introduction and the
motivation behind the choices of LBM and the CMAE-ES algorithm as the basis of the
HYSFLO-LBM/CMA-ES code. The second section is devoted to the mathematical descrip-
tion of the different phases implemented to solve the inverse problem. Application of
the new integrated optimization algorithm HYSFLO-LBM/CMA-ES to a realistic case is
described in Section 3. Finally, Section 4 is dedicated to the discussion.

2. Mathematical Formulation of the Model
2.1. Governing Equations

The flow of a fluid in a porous medium is formulated by Darcy’s law. For a porous
medium of negligible deformations crossed by a slow flow fluid, this law expresses that the
infiltration velocity

→
q is proportional to the gradient of the hydraulic head ∇ϕ. It should

be noted that Darcy [24] established this law for a flow of water in a vertical cylindrical
column homogeneously filled with sand. Moreover, Darcy’s law was also found to be
applicable to heterogeneous porous media and non-uniform flow. If we denote by ϕ the

hydraulic head and by
=
T the transmissivity tensor, Darcy’s law is then expressed by:

→
q = −

=
T∇ϕ (1)

In d-dimension space, the transmissivity tensor is represented by a matrix
(
tij
)

1 ≤ i ≤ d
1 ≤ j ≤ d

.

Note that the system of Equation (1) is not closed (2 unknowns (
→
q and ϕ) and

1 equation). To complete this system, we will use the continuity equation which assumes
that the fluid is incompressible, or in other words, the divergence of the velocity is zero
(∇.
→
q = 0). Finally, the association of the continuity equation and Darcy’s law will give an

elliptical partial differential equation (PDE) with unknown ϕ. For a given transmissivity
field

(
tij
)

1 ≤ i ≤ d
1 ≤ j ≤ d

, this PDE makes it possible to calculate the hydraulic head ϕ and the

velocity of the flow to be deduced in post-processing using Darcy’s law. Moreover, if the
flow occupies the domain Ω

(
Ω ⊂ Rd

)
of the boundary ∂Ω such as ∂Ω = ΓD ∪ ΓN and

ΓD ∩ ΓN = ∅, the mathematical model describing the stationary flow in a porous medium
is given by:

(DP)


−∇.

(
=
T∇ϕ

)
= f in Ω

ϕ = ϕD on ΓD

−→n .
(
=
T∇ϕ

)
= ϕN on ΓN

(2)

where ϕD is a known function for imposing the Dirichlet condition ΓD. ϕN is also a
known function for imposing the Neuman condition on the domain boundary ΓN . f is the
source/sink term in the domain Ω. The vector

→
n denotes the vector normal to ΓN oriented

towards the outside of the domain.
For a given transmissivity field, the mathematical model (2) describing the stationary

flow in a porous medium is also called the direct problem, which we denote hereafter
as (DP). Alternatively, if the hydraulic head ϕ is known at a few points in the Ω (of the
measured values for example), the model (2) allows us, in this case, to determine the tensor
of transmissivity T. In this case, the solution of the inverse problem is denoted by (IP).
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Under certain regularity conditions, Ciarlet [25] theoretically showed that the mathe-
matical model (2) admits a unique solution. For more details on the mathematical analysis
of the problem (DP), the reader may also consult the book of Dautray and Lions [26].

To solve the direct problem (DP), we developed a numerical model based on the Lattice
Boltzmann method. The foundations of this method are presented in the following subsection.

2.2. Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) is a relatively new numerical method when
compared with the classical approaches used in numerical simulation. It appeared in the
1990’s and was initially deduced from the methods of gases on the network and cellular
automata [27]. Unlike classical approaches based on the discretization of the Navier–Stokes
equations (NSE), the Lattice Boltzmann method is based on the formalism of statistical
physics, which consists of the numerical resolution of the Boltzmann equation. This
equation is concerned not only with macroscopic quantities (speed, pressure, density), but
directly with the distribution of the various particles constituting a fluid. This is called
a mesoscopic representation. The simplicity and locality of the LBM method algorithm
allows its easy and efficient parallelization. Thus, very quickly, this method was used for
unsteady and incompressible CFD calculations [28]. Therefore, as long as the Mach number
of the flow remains sufficiently low, LBM allows us, by its nature, to simulate the behavior
of a fluid governed by unsteady, weakly compressible Navier–Stokes equations.

The Boltzmann equation (BE) plays a main role in the kinetic theory of gases. In the
absence of external force, it expresses the convective transport equation of the velocity
distribution f

(→
x ,
→
c , t
)

. This distribution is none other than the probability of a particle to

be found at the position
→
x , at the instant t, and with the speed

→
c . The Boltzmann equation

is written as:
∂ f
∂t

+
→
c .∇ f = Ω (3)

where Ω denotes the rate of change of f due to the collision of particles (also called the
collision operator). Ω can be approached by several simple models [29], but the most
popular in LBM is the Bhatnagar–Gross–Krook (BGK) model (1954). BGK assumes that
Ω is a function of the f distribution, the equilibrium distribution f (eq), and the relaxation
time τ (the time necessary to bring the system back to the state of equilibrium), as:

Ω =

(
f (eq) − f

)
τ

(4)

The Equations (3), (4), and (6) constitute BE which must be solved numerically.
From the second principle of thermodynamics (or the application of the H-theorem),

we can deduce that f (eq) is of Maxwellian type of the form:

f (eq)
(→

x ,
→
c , t
)
=

ρ

(2πRT)d/2 exp

−
(→

c −→v
)2

2RT

 (5)

where d is the space dimension (d = 1,2,3), ρ and
→
v are, respectively, the macroscopic fluid

density and velocity, R = kB/m with kB is the Boltzmann constant, m is the molecular
mass, and T is the temperature of the system. Note that the artificial sound speed cs is
defined as c2

s = RT.
Numerical evaluation on a computer is very costly in terms of CPU computing time.

We therefore often look for an approximate expression, based on polynomials for example.
If we assume that ‖→v‖ � cs then the Taylor expansion of the exponential function allows
us to approximate (5) by:

f (eq)
(→

x ,
→
c , t
)
' ρ

(2πc2
s )

d/2 exp

−‖→c ‖2

2c2
s

1 +
→
c .
→
v

c2
s

+
1
2

(→
c .
→
v

c2
s

)2

− 1
2
‖→v‖

2

c2
s

 (6)
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To solve the BE, we start by defining a computational grid (called a lattice) which will
be used for both spatial discretization

→
x and speed discretization

→
c . To recover the NSE by

the numerical resolution of BE, it is imperative that the discrete speeds must be chosen so
that the following quadratic equation of the momentM(k) of order (k) is exact:

M(k) =
∫
→
c

k
f (eq)

(→
x ,
→
c
)
= ∑

i
ωi
→
c i

k f (eq)
(→

x ,
→
c i

)
0 ≤ k ≤ 3 (7)

where ωi and
→
c i are the coefficients and points of the quadrature Equation (7). In 2D

computations, LBM uses the Gauss–Hermite quadrature equation with at least five points
for the numerical integration. The quadrature equation being chosen allows us to determine
the coefficient ωi and the direction

→
c i. With these two parameters, we can then discretize

BE by setting fi

(→
x , t
)
= ωi f

(→
x ,
→
c i, t

)
, which must verify the BE in turn as:

∂ fi
∂t

+
→
c i.∇ fi =

1
τ

(
f (eq)
i − fi

)
(8)

In 2D, there are two types of lattice: square and hexagonal. The most commonly used
lattice, which leads to more accurate results, is the square lattice D2Q9 (calculation in 2D
with a discretization of the velocity variable

→
c in 9 directions, see Figure 1).
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Figure 1. Discretization of the velocity space in 9-speed square lattice (D2Q9 lattice).

If the D2Q9 lattice is adopted ωi,
→
c i, and f (eq)

i are given as:

ω0 =
4
9

ω1,2,3,4 =
1
9

ω5,6,7,8 =
1
36

(9)

→
c i


(0, 0) i = 0

c
(

cos (i−1)π
2 , sin (i−1)π

2

)
i = 1, 2, 3, 4

√
2c
(

cos (2i−9)π
4 , sin (2i−9)π

4

)
i = 5, 6, 7, 8

(10)

where c is lattice velocity c = ∆x/∆t, with ∆x being the lattice size and ∆t being the time step.

f (eq)
i = ωiρ

1 +
→
c i.
→
v

c2
s

+
1
2

(→
c i.
→
v

c2
s

)2

− 1
2
‖→v‖

2

c2
s

 f or i = 0, . . . , 8 (11)

where cs = c/
√

3. Note that, at this stage, we only give the discretization according to the
velocity space. For the spatio-temporal discretization, LBM uses the characteristic method
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but without interpolation, since the lattice should be chosen in such a way that ∆
→
x =

→
c ∆t.

Thus, the final discretization of the BE is given by:

fi

(→
x +

→
c i∆t, t + ∆t

)
− fi

(→
x , t
)
= −∆t

τ

(
fi

(→
x , t
)
− f (eq)

i

(→
x , t
))

f or i = 0, . . . , 8 (12)

Once this equation is solved, the macroscopic density and the velocity of the fluid can
be recovered by:

ρ =
8

∑
i=0

fi and ρ
→
v =

8

∑
i=0

fi
→
c i (13)

In this paragraph, we wanted to give a general description of LBM, and it is for this
reason that we treated it as a fluid flow governed by the macroscopic model of NSE. As
the aim of this paper is to solve the Darcy equation by LBM, we have to give only the new
expression of f (eq) (as mentioned above) which allows us to cover Darcy’s macroscopic
equation. The Darcy equation is a special case of the NSE for slow flows (low Reynolds
number) in which the inertia term is considered negligible. Therefore, the stationary
Darcy’s equation is elliptical (flow dominated by diffusion processes) and resembles a
diffusion equation. In a D2Q9 lattice, the equilibrium distribution function for a diffusion
equation is given by:

f (eq)
i (x, y) = ωi ϕ(x, y) f or i = 0, . . . .8 (14)

2.3. Solution of Darcy Equation by LBM

The solution of Darcy’s equation by LBM is done in two steps: collision and streaming.

If we consider that the transmissivity tensor
=
T is of the form

=
T = T(x, y)

=
I . in the D2Q9

lattice, we have:
collision:

fi(x, y, t + ∆t) = (1− λ) fi(x, y, t) + λ f (eq)
i (x, y, t) i = 0, . . . , 8 (15)

streaming:
fi(x + ∆x, y + ∆y, t + ∆t) = fi(x, y, t + ∆t) i = 1, . . . , 8 (16)

where λ is the dimensionless relaxation time (λ = ∆t/τ). Developments in LBM show that
the viscous effects of the Navier–Stokes equations are related to the relaxation time. It is the
same for the transmissivity for the Darcy equation. Thus, the macroscopic transmissivity
coefficient T(x, y) can be related to the relaxation factor λ as:

T =
∆x2

3∆t

(
1
λ
− 1

2

)
(17)

Finally, the expression (15) is used to compute the equilibrium distribution function
f (eq)
i with the values of the weighting coefficients ωi given by expression (14). The hydraulic

head ϕ can be calculated as:

ϕ(x, y) =
8

∑
k=0

fk(x, y) (18)

For the boundary conditions, LBM requires conditions on the different directions
of the distribution function fi while the boundary values are given on the primitive
variable of the macroscopic model. It is, then, necessary to transform the boundary values
from the macroscopic model to the mesoscopic model. To answer this question, several
transformations have been proposed in the literature [30,31]. These transformations allow
to impose various types of boundary conditions (Dirichlet, Neuman, Robin, etc.) on the
pressure as well as on the velocity of the flow. In this paper, we use the Dirichlet-type
boundary conditions on the four boundaries of the studied domain by applying the flux
conservation principle which is expressed by:

f (eq)
i − fi = fopp(i) − f (eq)

opp(i) (19)
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where opp(i) denotes the direction opposite to the direction i. For instance, suppose we
know f7 and ϕ on the boundary denoted ϕwall , then expression (19) allows us to transform
the value of ϕwall into f5 by:

f (eq)
5 − f5 = fopp(5) − f (eq)

opp(5) = f7 − f (eq)
7 = f7 −ω7 ϕwall

or
f5 = ω7 ϕwall + ω5 ϕwall − f7 (20)

Finally, we give the Algorithm 1 implemented in the computer code HYSFLO-LBM to
solve the Darcy equation, which was used for the direct problem.

Algorithm 1: LMB Steps

set numerical parameters (ωi, cs,
=
T, . . . )

initialization
initialize ϕ0 by the measured values
compute fk associated to ϕ0 from (Equation (14))
loop: t + ∆t
compute λij from (Equation (17))

compute f (eq)
k from (Equation (14))

collision from (Equation (15))
streaming from (Equation (16))
set boundary condition from (Equation (19))
compute ϕ from (Equation (18))
test ‖ϕ− ϕ0‖ < tol exit
set ϕ0 = ϕ

go to the next time step

2.4. CMAES Algorithm

CMAES belongs to the category of evolution strategy algorithms. It has become the
primary algorithm for free-gradient optimization. It is well suited to solving continuous opti-
mization problems where the objective function is not known explicitly and is not necessarily
convex. Although it is stochastic in nature, the mutation stage of the CMA-ES algorithm is
considered to be correlated and deterministic. This property makes this algorithm easy to
implement and less computationally intensive. Moreover, like metaheuristic optimization
algorithms, CMA-ES has the advantage of converging towards a global optimum. CMA-ES is
gaining popularity and is becoming the benchmark algorithm in metaheuristic optimization.
It has been successfully applied to several engineering disciplines including: environmental
engineering [32], acoustics [33], electronics [34], hydrogeology [35], medicine [36], thermal
and fluid flow [37], structural mechanics and failure [38], and many others. CMA-ES is
particularly efficient for non-convex, poorly conditioned, multimodal optimization problems
and with noisy evaluations of the objective function.

The CMA-ES algorithm is from the family of strategy evolution algorithms and, like
genetic algorithms, is inspired by the Darwinian theory of evolution. CMA-ES is performed
in four steps: initialization, selection, recombination, and mutation. These steps operate on
a set of µ parents to produce λ children, which we now denote by CMA-ES (λ, µ). In order
to explore the search space, CMA-ES uses candidate populations according to a multivariate
random distribution. The mutation step is considered to be the main operation in the CMA-
ES algorithm. It allows us to produce a new population by adding a multivariate random
vector to the parent population. The mutation also acts as the guide of CMA-ES for the
different transformations (rotation and homothetic) of the adapted covariance matrix from
the generated population. It should be noted that the mutation process is based on a set
of parameters (called strategy parameters) which are updated automatically without user
calibration, but by exploiting the various information from previous generations [16].
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Like any iterative algorithm, CMA-ES begins with an initialization step for all of
the algorithm’s control parameters. This step also consists to initialize a population of
λ individuals randomly according to the multivariate normal distribution. Hansen [39]
suggests considering a population of size λ = 4 + 3ln(d), where d is the size of the
optimization variable. It also indicates that this value is reasonable for large optimization
problems. In the rest of this paper, we denote by (X(g)

i=1,λ ∈ Rd) the individual’s population
of generation g, and by F the objective function.

After the initialization stage, CMA-ES enters the loop of generations until convergence
towards the optimal solution. This loop begins by evaluating all of the individuals in the pop-
ulation by the objective function to obtain the fitness value F

(
X(g)

1

)
, F
(

X(g)
2

)
, . . . , F

(
X(g)

λ

)
,

CMA-ES then selects the “best” µ (µ ≤ λ) individual among the λ individuals based on
their fitness value (“best” here designates the rank of the X(g)

i according to its fitness value:
“smaller” if this is a minimization problem or “bigger” if it is a maximization problem). Then,
we evaluate the weighted average vector on these µ individuals noted m(g) and given by:

m(g) =
∑

µ
k=1 wkX(g)

k

∑
µ
k=1 wk

(21)

where wk are the weighting coefficients given by Hanssen [39]. It is the expression (21)
which will then contribute to the construction of the next generation of parents X(g+1)

i=1,λ .
The CMA-ES algorithm mutation step consists of adding to the population mean vector

of the generation (g), a noisy component according to a multivariate normal distribution as:

X(g+1) = m(g) + σ(g)N
(

0, C(g)
)

(22)

where σ is a positive parameter and N (0, C) denotes a vector of independent normal ran-
dom numbers with zero mean and covariance matrix C (symmetric and positive definite).

One can observe that for a good mutation which leads to a rapid convergence towards
the optimum, it is necessary to choose judiciously the parameters σ and the matrix C.
However, in practice this choice turns out to be difficult. It is exactly at this point where the
power of the CMA-ES algorithm appears, which automatically adapts these two parameters
during successive generations and without user intervention. Thus, the CMA-ES algorithm
can be summarized in the following steps named Algorithm 2:

Algorithm 2: CMA-ES Steps

set numerical parameters (d: size of the optimization variable)
initialization σ, m, C
generation: g + 1
selection → X, m, µ

mutation → X = m + σN (0, C)
evaluation → F(X)
test ‖F(X)‖ < tol exit
adaptation → σ, C
go to the next generation

2.5. The Integrated Optimization Algorithm (HYSFLO-LBM/CMA-ES)

In hydrogeology, the transmissivity tensor
=
T is one of the key parameters in the

modeling of groundwater flows. Its estimation with precision is capital to deduce (by
the Darcy equation) an accurate velocity field. A transmissivity field identified with
good precision also guarantees precision of the diffusion coefficient of the studied porous
medium, since the diffusion is deduced from the velocity field (and therefore from the

transmissivity). Therefore, the identification with high accuracy of the tensor
=
T is also

necessary for the prediction of pollutant propagation in a porous medium. It is therefore
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important to deploy the most sophisticated numerical tools to identify the transmissivity

tensor
=
T. This is explained in the following paragraphs.

If we have a series of observed values of the hydraulic potential (ϕobs), we can

formulate the identification of
=
T by a mathematical optimization problem with constraints.

In other words, the problem is equivalent to the search for the tensor
=
T which minimizes

the error between the observed values (ϕobs) and those computed by the direct problem(
ϕcomp

)
. Recently, this problem was solved by a few researchers using manual regional

adjustment of
=
T until an error was obtained which they considered reasonable! With

the spectacular advances in the field of mathematical optimization, and especially in

metaheuristic algorithms, the identification of the tensor
=
T can be treated as the resolution

of an inverse problem (IP). In other words, identification of
=
T becomes automatic without

any manual adjustment. In this case, this problem can be formulated as the minimization
of an objective function F (which is the error between ϕobs and ϕcomp) with direct model
(Equation (2)) itself as a constraint. Thus, the inverse problem to solve is:

(IP)



Minimize F
(
=
T
)

,
=
T ∈ AT

subject to

(DP)


−∇.

(
=
T∇ϕ

)
= f in Ω

ϕ = ϕD on ΓD

−→n .
(
=
T∇ϕ

)
= ϕN on ΓN

(23)

where F is the objective function defined by F
(
=
T
)

= ‖ϕobs − ϕcomp

(
=
T
)
‖ and AT is the

admissible set values of
=
T.

The integrated optimization algorithm that we propose to the IP (23) is an iterative

algorithm that converges to the desired solution
=
Topt such that:

=
Topt = min︸︷︷︸

=
T∈AT

‖ϕobs − ϕcomp

(
=
T
)
‖ (24)

Note that the problem (23) can be confronted with the problem of computational
stability (sensitivity to measurement noise), but also with the problem of the uniqueness

of the solution
=
Topt. This problem is called, the “ill-posed problem”. In fact, in the

groundwater flow, different hydrogeological conditions can provide identical observations
of the hydraulic potential or solute concentration. It is then impossible to determine
uniquely the transmissivity (or diffusivity) tensor only from observations. Consequently,
problem (IP) most often requires a well-chosen regularization strategy to guarantee a
certain stability of the result.

Several solutions have been proposed in the literature to remedy the ill-posed problem
in groundwater flow modeling. We cite for instance: (i) minimization of non-linearity and
non-convexity during the execution of the optimization algorithm by transforming the

optimization variable
=
T (for example by considering Ln(

=
T) instead of

=
T); (ii) reduction of

the number of unknowns of the transmissivity tensor
=
T by adopting a zonation strategy;

(iii) making realistic assumptions in order to restrict the range of variation of
=
T; and (iv)

application of regularization procedures to reduce the fluctuations induced by the iterations
during optimization.
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Because it was formulated within a rigorous mathematical framework, the strategy
of regularization made it possible to prove both the existence, the uniqueness, and the
stability of the solutions of the inverse problems under certain regulatory assumptions.
Several regularization strategies have been proposed in the literature. In his book, ref. [40]
analyzes all of these strategies by indicating their conditions of applicability. In this paper,
we use the Tikhonov regularization method which consists of modifying the objective
function by introducing a regularization term based on the a priori information. In this
case, the new objective function which will be considered in problem (IP) is:

F
(
=
T
)
= ‖ϕobs − ϕcomp

(
=
T
)
‖+ α‖

=
T−

=
T∗‖ (25)

where
=
T∗ are some known values of transmissivity in the study domain (in absence of

=
T∗,

this value must be zero) and alpha is the regularization parameter. The choice of α should be
consistent with the inaccuracy of the input data. Ref. [41] proposed various practical choices
which also prove to be useful for the efficiency (in the sense of convergence) of the algorithm
implemented for solving the inverse problem (23).

Finally, the numerical solution of the problem (IP) by the integrated optimization al-
gorithm HYSFLO-LBM/CMA-ES implemented for this study begins with an initial field

of transmissivity
=
T
(0)

. CMA-ES uses this field as the solution at generation g = 0, then

applies the selection and the mutation steps to obtain the new generation of
=
T. With this new

generation we can then solve the problem (DP) to obtain the hydraulic head field ϕcomp

(
=
T
)

necessary for the construction of the objective function (25). Finally, CMA-ES ends the iteration
with the evaluation and convergence test steps before moving on to the adaptation step to
perform a new iteration (g + 1), if necessary, until the convergence of HYSFLO-LBM/CMA-

ES towards
=
Topt, the optimal solution of the problem (IP). The CMA-ES code offers several

convergence criteria. For all of the simulations presented in this paper, we adopted the conver-
gence criterion relating to the evaluation of the objective function with a tolerance tol = 10−0.3

(see Algorithm 3). Algorithm 3 below summarizes the pseudocode of the proposed integrated
optimization algorithm HYSFLO-LBM/CMA-ES.

Algorithm 3: HYSFLO-LBM/CMA-ES

set the observations values vector ϕobs
generation: g

initialization
=
T
(g)

generation: g + 1

selection from
=
T
(g)

+ mutation →
=
T
(g+1)

solve the (DP) by HYSFLO-LBM → ϕcomp(
=
T
(g+1)

)
construct the objective function according (25)

evaluation → F(
=
T
(g+1)

)

test if ‖F(
=
T
(g+1)

)‖ < tol then convergence to the
=
Topt and exit

adaptation → σ(g+1), C(g+1)

go to the next generation

3. Realistic Case: Application to the Experimental Hydrogeological Site of Beauvais
(Unconfined Aquifer)

This case is presented to demonstrate the successful application of the integrated LBM
and CMAE-ES algorithm as the basis of the HYSFLO-LBM/CMA-ES code to solve the inverse
problem in handling transport through fractured media, especially the chalk aquifer in the
north of the Paris basin (Figure 2a).



Water 2021, 13, 1574 11 of 23
Water 2021, 13, x FOR PEER REVIEW 12 of 27 
 

 

 

Figure 2. (a) Location of the study area, (b) geological characteristics of the Beauvais [42], [1: Allu-

vium (Quaternary); 2: Anthropic embankments (Quaternary); 3: Upper and Lower Rupelian (Ter-

tiary); 4: Upper and Lower Bartonian (Tertiary); 5: Lutetian = chalk, marl, and gravel (Tertiary); 6: 

Ypresian = ball clay and lignite of Soissons, sand of Cuise, and clay of Laon (Tertiary); 7: Thanetian 

= sand of Bracheux (Tertiary); 8: Lower Cretaceous from the Albian to the Neocomian (Secondary); 

9: Upper Cretaceous from the Campanian to the Cenomanian (Secondary); 10: Portlandian Jurassic 

(Secondary); 11: Kimmeridgian-Sequanian Jurassic (Secondary); and 12: Limits of principal cities 

in Oise department], and (c) topography of the Oise department. 

 

Figure 2. (a) Location of the study area, (b) geological characteristics of the Beauvais [42], [1: Alluvium
(Quaternary); 2: Anthropic embankments (Quaternary); 3: Upper and Lower Rupelian (Tertiary);
4: Upper and Lower Bartonian (Tertiary); 5: Lutetian = chalk, marl, and gravel (Tertiary); 6: Ypresian
= ball clay and lignite of Soissons, sand of Cuise, and clay of Laon (Tertiary); 7: Thanetian = sand of
Bracheux (Tertiary); 8: Lower Cretaceous from the Albian to the Neocomian (Secondary); 9: Upper
Cretaceous from the Campanian to the Cenomanian (Secondary); 10: Portlandian Jurassic (Secondary);
11: Kimmeridgian-Sequanian Jurassic (Secondary); and 12: Limits of principal cities in Oise department],
and (c) topography of the Oise department.

The experimental hydrogeological site of the Institut Polytechnique UniLaSalle Beau-
vais (SEHB) is located in the northern part of the Paris basin (in the Hauts-de-France region)
and is characterized by a predominantly oceanic climate. The SEHB is equipped by the
local meteorological station near the principal national meteorological monitoring system
in the Beauvais-Tillé (Oise department). Precipitation, between 1985 and 2020, recorded an
average value of 669.4 mm, with higher values toward the south and the west.
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The geological information which was deduced from the field investigation (Figure 2b)
in Oise [42] and from the analysis of wells revealed the following formations:

- the Jurassic formations which are composed of: (i) beige-grey lithographic limestone
(the lower Portlandian, approximately 10 m thick); (ii) grey marls with limestone
intercalations and dolomitic calcareous sandstone (the middle Portlandian, 150 m);
and (iii) green-grey sand, sandy clay, or marls (the upper Portlandian, 15 m).

- principal formations of the Cretaceous Period which are, in this region: (i) the Ceno-
manian, which is comprised of “Gaise”(20 to 25 m): white-green siliceous limestone,
from the base to a bluish gray sandy clay; white-green blood chalk, with or without
chert, becoming glauconitic and clayish at the top; (ii) Turonian (110 m): marly chalk
or grey chalk with chert; and (iii) Senonian (70 m): white chalk, yellow or gray with
chert. The altitude of the Beauvais region varies between 57 m and 170 m (Figure 2c).

In order to follow the groundwater circulation and to improve knowledge of the chalk
aquifer in the Oise department, the Hydrogeological Experimental Site of Beauvais (HESB)
was built on 2 April, 2015. It is equipped with 20 hydrogeological drillings with a new
hydrogeological platform (Figure 3a). The drilling diameter is approximately 125 mm
for all the piezometers referenced by Pz (Figure 3b). But for all the wells referenced
by F (Figure 3b) these diameters reach 160 mm. The depth of each well is about 110 m.
Hydrogeological wells (Pz1 to Pz14 and F1 to F4) are georeferenced using a Differential
Global Positioning System (DGPS) tool. This DGPS constitutes an improvement of GPS
accuracy about 1 cm. It uses a network of fixed reference stations that transmit the difference
between the positions indicated by the satellites and their known actual positions. On the
other hand, water levels have been recorded by the piezometric manual probe SOLINST
and by automatic datalogger (CTD DIVER, developed by Schlumberger water Service [43]
and designed to measure, especially, water pressure), which contains electrical conductivity
and temperature sensors, memory for storing measurements, and a battery. Recorded
data are afterwards stored in the DIVER’s internal memory. Indeed, the DIVER consists
of a pressure sensor, designed to measure water pressure, and a temperature sensor. The
DIVER contains an autonomous datalogger and the duration of the measurements can be
chosen by the user, ranging from seconds to hours. The various recorded measurements
can be recovered either in the laboratory or at the measurement site using an optical
communication system linking DIVER to a laptop computer.

Modeling of the Hydrogeological Experimental Site of Beauvais system requires exper-
tise in terms of hydrodynamic characteristics, water table levels, the computed hydrological
balance, transmissivity, and hydraulic conductivity. Generally, these parameters result
from geostatistical concepts, laboratory experiments, pumping tests [44,45], and magnetic
resonance sounding (MRS) for their hydrogeologic estimation [46]. Indeed, MRS investiga-
tions summarize the definition of the hydrodynamic parameters, especially in Beauvais
city (in the North Paris Basin) and near the Hydrogeological Experimental Site, and will
serve to ameliorate the database which should be used in the numerical processes of this
paper and contribute to the knowledge of the heterogeneous permeable bodies [47] in the
chalk aquifers.
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Figure 3. (a) Location of the experimental hydrogeological site of Beauvais (UniLaSalle) and of the
hydrogeological wells; (b) 3D conceptual model showing the hydrogeological wells and the chalk
aquifer system.

4. Modeling Results

The integrated optimization algorithm HYSFLO-LBM/CMA-ES was applied to the
instrumented zone described in the previous paragraph. It is a rectangular area of 123 m
wide and 133 m long. For high computational resolution, the size of the square lattice ∆x
was chosen to be 1 m. The study area has 20 measuring points of the hydraulic head ϕ.
An interpolation procedure based on the Kriging techniques was performed to estimate
the value of the hydraulic head on the entire computational grid (123× 133 nodes) from
the 20 measured points. These Kriged values were subsequently considered to be the field
of observed values and denoted by ϕobs. The integrated optimization algorithm aimed
to identify the field of the aquifer transmissivity during the year 2016. Table 1 presents
the precipitation values of this year from which we have deduced the values of the source
term f (see Equation (2)) necessary for the direct model HYSFLO-LBM. Finally, the direct
model also required the boundary conditions for its forcing. The values of the Dirichlet
boundary condition ϕD (see Equation (2)) at the four edges limiting the domain were
calculated by evaluating ϕobs on these four limits as ϕD = ϕobs(ΓD). Moreover, the values

of
=
T∗ necessary for the regularization of the inverse problem (see Equation (25)) were
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determined by using some values found in the literature from previous studies carried out
on neighboring areas with the same hydrogeological characteristics.

The aquifer profits from principal refill, which is materialized by flow collected
by the HESB. The lithological nature of the aquifer system is composed, especially, by
the chalk deposits. It is very important to note that this formation is marked by dual
porosity, with both interstices and cracks. The primary type of hydraulic conductivity
linked to the interstitial porosity of the aquifer remains very low and generally does not
exceed 10−0.5 m/s [48]. The chalk fracturation at the surface permits higher hydraulic
conductivities, between 10−3 and 10−2 m/s, which influence the runoff of the groundwater
and create turbulent flows [49]. The comprehension of the infiltration and the identification
of recharge and discharge periods is determined by the analysis and the interpretation of
hydraulic head and rainfall evolution (Table 1). The hydraulic gradient is about 0.0047
between the wells F1 and F4 and 0.0066 between F2 and F4.

Table 1. Recharge periods in the Hydrogeological Experimental Site of Beauvais.

Recharge
Period Start Date (St) End Date (Ed)

Rainfall: 1
Week before
Recharge (mm)

Temperature
(◦C) before
Recharge

Water Level
(at the St) (m)

Water Level
(at the Ed) (m)

Duration
(Day)

2009/2010 2 November 2009 23 April 2010 39.5 7.9 73.872 75.262 171

2011 6 January 2011 19 April 2011 47 −4 73.335 73.715 95

2011/2012 30 November
2011 4 April 2012 33.5 10.0 73.33 74.54 102

2012/2013 4 October 2012 11 April 2013 46.6 13.0 71.53 73.51 186

2013/2014 11 October 2013 28 March 2014 29.5 9.8 69.84 71.29 173

2014/2015 5 January 2015 5 April 2015 31.3 2.5 70.42 71.43 89

2015/2016 3 February 2016 2 September
2016 55.4 8.7 70.92 72.47 210

2016/2017 8 February 2017 4 April 2017 40.2 6.9 71.78 72.21 54

Average 73.604 74.489 135

Based on hydro-geological knowledge, physical arguments, and piezometric analysis
and interpretation, the hydrodynamic model is built in order to simulate the groundwater
flow and to determine the distribution of the transmissivity values of the chalk aquifer in the
HESB. The numerical process of achieving the objectives in this modeling expertise involves a
series of procedures. They can be classified according to three principal steps: data collection;
computer simulations, calibration, and analysis; and numerical results (Figure 4a–c). At the
domain boundary and after hydrodynamic conditions, the piezometric values are imposed.
Simulations are conducted in steady state with the reference values from 2016. The process
of georeferenced nodes allows us to accelerate the modeling calibration (Figure 4b). This
numerical method highlights an overlay between measured and computed hydraulic head,
where the maximum recorded was 72.6 m and 71.92 m, respectively.
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In order to stimulate the quality of the calibration, the absolute and the relative
hydraulic head errors Ea and Er are estimated using the following expression:

Ea = ‖ϕobs − ϕcomp‖ and Er =
‖ϕobs − ϕcomp‖
‖ϕobs‖

(26)

Prior to interpreting the results, we would like to point out that we distinguish two
areas: a diagonal band around the 20 measurement points and an area on either side of
this diagonal. We recall that in the second zone it was necessary to complete the hydraulic
head values by interpolation in order to have a reference values field ϕobs to formulate
the objective function. It is quite obvious then that the results obtained in this zone will
be more precise than that of the measurement zone, and occasionally with errors much
lower than the model precision. Consequently, the interpretation and the discussion of
the obtained results that we will present in the rest of the paper should concern only the
diagonal band around the points of measurements.

The result, in the form of an errors map, displays map results displays relative and
absolute errors in order to locate the points where there is a very large difference between
measurement and simulates hydraulic heads. Generally, we note three principal zones
which showed the existence of relatively small margins of absolute and relative error
(Figure 5a,b):

- the first margin of absolute error from: 8.0× 10−3 m to 2.0× 10−2 m which corresponds
to margin of the relative error between 1.0× 10−2% and 2.5× 10−2%;

- the second margin of absolute error from: 2.0× 10−2 m to 2.8× 10−2 m which corre-
sponds to margin of the relative error between 2.5× 10−2% and 3.5× 10−2%;



Water 2021, 13, 1574 17 of 23

- the third margin of absolute error from: 2.8× 10−2 m to 3.8× 10−2 m which corre-
sponds to margin of the relative error between 3.5× 10−2% and 5.0× 10−2%.

From these two figures we should retain that the absolute and relative errors do
not exceed 4 cm and 5.0× 10−2%, respectively. These two errors are located exactly at
the hydrogeological well “F3” where the hydraulic mechanism is characterized by the
groundwater dividing axis and a probable network of fractures, allowing control of the
groundwater flow. Finally, in view of the relative errors (Figure 5a), and of the calibration
figure (Figure 4b), the integrated optimization algorithm HYSFLO-LBM/CMA-ES allows
us to obtain very good results both for the identification of the transmissivity and the
simulation of the flow in the experimental site of Beauvais.

In the same way and for the same reasons cited above for the error fields (Figure 5a,b),
we subsequently interpret the transmissivity and hydraulic conductivity fields only for the
diagonal band, including the 20 measurement points.

The HYSFLO-LBM/CMA-ES code identifies the distribution of the hydraulic con-
ductivity (or transmissivity) and its possible heterogeneity (Figure 6a,b). It is for this
reason that the proposed integrated optimization algorithm punctually identifies (point

by point) the tensor
=
T. This step was carried out by solving an optimization problem of

the variable
=
T as a real vector of 123× 133 components which corresponds to the total

number of the computation grid nodes. It should be noted that the CMA-ES algorithm
is a stochastic search algorithm affected by certain errors induced by the generation of
individuals randomly. In order to reduce these errors, we carried out about ten simulations

to consider, as the final value
=
Topt, only the average of these simulations. Consequently,

Figure 6a,b shows, outside the diagonal band of the measurements, the heterogeneity of

the hydraulic conductivity and of the tensor
=
T, but not of the random noises that could

probably be interpreted by the reader.
Figure 6b shows lower, middle, and higher transmissivity values are about 0.0025,

0.0045, and 0.007 m2/s, respectively, but globally, the magnitude order is about 10−3

m2/s. This variation is very heterogeneous in the hydrogeological experimental site and is
represented by the spatial distribution of transmissivity values (Figure 6a).

The same spatial distribution concerns the hydraulic conductivity. These values were
obtained using simulated transmissivity values and the potential hydraulic head of the
experimental site, and by considering the hydraulic character of the unconfined chalk
aquifer. The hydraulic conductivity heterogeneity ranged from 5.0× 10−4 to 10−4 m/s.
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5. Discussion

The use of the Lattice Boltzmann method (LBM) in the numerical modeling of the
groundwater allows to identify hydraulic characteristics of the chalk aquifer of the Hydro-
geological Experimental Site of Beauvais, which revealed numerous transmissivity values
ranging from 0.0025 to 0.007 m2/s. The spatial repartition of hydrogeological characteristics is
accompanied by the anisotropic character of the chalk, which is characterized by the horizon-
tal conductivity (10−14 to 10−12 m/s) and the vertical conductivity (10−15 to 10−13 m/s) [50].
The transmissivity and the hydraulic conductivity constitute principal characteristics allowing
us to understand the groundwater flow. The variation of the transmissivity (0.0045 and
0.007 m2/s) and the hydraulic conductivity (5.0× 10−5 to 10−4 m/s) is accompanied by the
spatial distribution of the water content in the chalk aquifer, with maximum values of about
30–35% [46], and by the heterogeneity of lithological formations which are deduced from the
analysis and the interpretation of drilling cuttings (dating from 2014 and with GPS coordi-
nates: 49◦27′36.88” N 2◦04′17.38” E) belonging to the experimental hydrogeological site of
Beauvais. It is mainly lithological deposits which are composed of clay with flint (Figure 7a),
chalk with or without clay, and flint. This variation could be explained by primary and sec-
ondary hydraulic conductivities as defined by [50] and which are from 10−8 to 10−5 m/s and
10−3 to 10−1 m/s, respectively. The analysis and the interpretation of transmissivity values
in different media were deduced from: the resonance magnetic sounding (Figure 7b,c); and
the pumping test, especially in the 47 wells (chalk aquifer) and concerned plateau, dry valley,
and humid valley with orders of magnitude about 10−3 m2/s in plateau and an average
transmissivity of about 6.7× 10−3 m2/s [51]. From the geological structures point of view,
value ranges which are deduced from the HYSFLO-LBM/CMA-ES code could be explained
by the presence of fracture networks. Indeed in 2011, we realized near the hydrogeological
experimental site 424 of fractures measurements. Three orientations have been identified:
N-S, WNW-ESE, and NNE-SSW. In fact, numerous works highlighted a positive correlation
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between fracture size and transmissivity [52] on the one hand and, on the other hand, the
influence of the fracture network and the faulting mechanism on the spatial distribution
of hydrogeological characteristics (transmissivity and hydraulic conductivity) and on the
groundwater flow [45].

It is difficult to highlight in the field the relationship between fractures and the reparti-
tion of transmissivity values. Note the concordance transmissivity values resulting from
hydrogeological experimentation (pumping tests and MRS) and the numerical modeling
simulation by using the LBM. Hence, the accuracy of the results indicates that the use of the
HYSFLO-LBM/CMA-ES code is recommended to simulate the flows governed by partial
differential equations (PDEs) given by the model presented in this paper.

The integrated optimization algorithm HYSFLO-LBM/CMA-ES could be used in
the industrial field (agricultural and food activities) as well as in the sector related to
the supply of drinking water. The HYSFLO-LBM/CMA-ES code, as a numerical tool,
constitutes a scientific opportunity to guide decision-makers towards favorable sectors for
hydrogeological investigations and more transmissive areas in terms of water resources.

Water 2021, 13, x FOR PEER REVIEW 24 of 27 
 

 

 

Figure 7. Cont.



Water 2021, 13, 1574 21 of 23Water 2021, 13, x FOR PEER REVIEW 25 of 27 
 

 

 

Figure 7. (a) Lithological levels in the unsaturated/saturated zones of the chalk aquifer (Hydrogeo-

logical Experimental Site of Beauvais). (b) Synthesis of the repartition and evolution of the trans-

missivity and (c) the hydraulic conductivity obtained by resonance sounding techniques [47]. 

Author Contributions: Conceptualization, L.Z. and H.S.; methodology, L.Z. and H.S.; software, S.K. 

and H.S.; validation, S.K. and H.S.; formal analysis, L.Z.; investigation, L.Z., S.K., and H.S.; re-

sources, S.K. and H.S.; data curation, L.Z.; writing—original draft preparation, L.Z., S.K., and H.S.; 

writing—review and editing, L.Z. and H.S.; visualization, L.Z. and H.S.; supervision, L.Z. and S.K.; 

project administration, L.Z.; funding acquisition, L.Z. All authors have read and agreed to the pub-

lished version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable.  

Data Availability Statement: The data used to support the conclusions of this study are available 

on request and by agreement from the corresponding author. 

Acknowledgments: The identification of transmissivity values will help us to know the hydrody-

namic function of the chalk aquifer in the Oise region, especially in the Hydrogeological Experi-

mental Site of Beauvais (HESB, northern part of the Paris basin). The construction of this site has 

benefited from the support of the European Regional Development Fund (FEDER), the Picardy re-

gion (Haut-de-France), and the Ministry of Higher Education and Research. This site and its hydro-

geological platform are attached to the AGYLE Research team “Agroecology, Hydrogeochemistry, 

Environments, and Resources” of the Institut Polytechnique UniLasalle. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

Figure 7. (a) Lithological levels in the unsaturated/saturated zones of the chalk aquifer (Hydrogeological Experimental Site
of Beauvais). (b) Synthesis of the repartition and evolution of the transmissivity and (c) the hydraulic conductivity obtained
by resonance sounding techniques [47].

Author Contributions: Conceptualization, L.Z. and H.S.; methodology, L.Z. and H.S.; software,
S.K. and H.S.; validation, S.K. and H.S.; formal analysis, L.Z.; investigation, L.Z., S.K., and H.S.;
resources, S.K. and H.S.; data curation, L.Z.; writing—original draft preparation, L.Z., S.K., and
H.S.; writing—review and editing, L.Z. and H.S.; visualization, L.Z. and H.S.; supervision, L.Z. and
S.K.; project administration, L.Z.; funding acquisition, L.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the conclusions of this study are available on
request and by agreement from the corresponding author.

Acknowledgments: The identification of transmissivity values will help us to know the hydrody-
namic function of the chalk aquifer in the Oise region, especially in the Hydrogeological Experimental
Site of Beauvais (HESB, northern part of the Paris basin). The construction of this site has benefited
from the support of the European Regional Development Fund (FEDER), the Picardy region (Haut-
de-France), and the Ministry of Higher Education and Research. This site and its hydrogeological
platform are attached to the AGYLE Research team “Agroecology, Hydrogeochemistry, Environments,
and Resources” of the Institut Polytechnique UniLasalle.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2021, 13, 1574 22 of 23

References
1. Srinivasa Raju, K.; Nagesh Kumar, D. Irrigation Planning Using Genetic Algorithms. Water Resour. Manag. 2004, 18, 163–176.

[CrossRef]
2. Yeh, T.-C.J.; Liu, S.; Glass, R.J.; Baker, K.; Brainard, J.R.; Alumbaugh, D.; LaBrecque, D. A Geostatistically Based Inverse Model for

Electrical Resistivity Surveys and Its Applications to Vadose Zone Hydrology. Water Resour. Res. 2002, 38, 1–13. [CrossRef]
3. Yang, Y.S.; Cronin, A.A.; Elliot, T.; Kalin, R.M. Characterizing a Heterogeneous Hydrogeological System Using Groundwater

Flow and Geochemical Modelling. J. Hydraul. Res. 2004, 42, 147–155. [CrossRef]
4. Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L.J. Inverse Problem in Hydrogeology. Hydrogeol. J. 2005, 13, 206–222.

[CrossRef]
5. Nilsson, B.; Højberg, A.L.; Refsgaard, J.C.; Troldborg, L. Uncertainty in Geological and Hydrogeological Data. Hydrol. Earth Syst.

Sci. Discuss. 2006, 3, 2675–2706.
6. Li, R.; Fang, L.; Liu, S. Hydrogeologic Parameters Inverse Analysis Based on Pumping Test by Comsol Multiphysics and Matlab.

In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June
2010; Volume 2, pp. V2-160–V2-163.

7. Huang, S.-Y.; Wen, J.-C.; Yeh, T.-C.J.; Lu, W.; Juan, H.-L.; Tseng, C.-M.; Lee, J.-H.; Chang, K.-C. Robustness of Joint Interpretation
of Sequential Pumping Tests: Numerical and Field Experiments. Water Resour. Res. 2011, 47. [CrossRef]

8. He, X.; Li, S.J.; Liu, Y.X.; Zhou, Y.P. Identification of Permeability Coefficient of Rock Massin Dam Foundation Based on Genetic
Neural Network. Chin. J. Rock Mech. Eng. 2004, 23, 751–757.

9. Babazadeh, R.; Jolai, F.; Razmi, J.; Pishvaee, M.S. Developing a Robust Programming Approach for the Responsive Logistics
Network Design under Uncertainty. Int. J. Ind. Eng. Theory Appl. Pract. 2014, 21, 1–17.

10. Friedman, K.; Heaney, J.P.; Morales, M. Using Process Models to Estimate Residential Water Use and Population Served. J. AWWA
2014, 106, E264–E277. [CrossRef]

11. Ayvaz, M.T.; Elçi, A. Identification of the Optimum Groundwater Quality Monitoring Network Using a Genetic Algorithm Based
Optimization Approach. J. Hydrol. 2018, 563, 1078–1091. [CrossRef]

12. Romero, C.E.; Carter, J.N. Using Genetic Algorithms for Reservoir Characterisation. J. Pet. Sci. Eng. 2001, 31, 113–123. [CrossRef]
13. Karpouzos, D.K.; Delay, F.; Katsifarakis, K.L.; de Marsily, G. A Multipopulation Genetic Algorithm to Solve the Inverse Problem

in Hydrogeology. Water Resour. Res. 2001, 37, 2291–2302. [CrossRef]
14. Erickson, M.; Mayer, A.; Horn, J. Multi-Objective Optimal Design of Groundwater Remediation Systems: Application of the

Niched Pareto Genetic Algorithm (NPGA). Adv. Water Resour. 2002, 25, 51–65. [CrossRef]
15. Zhang, Y.; Pinder, G.F.; Herrera, G.S. Least Cost Design of Groundwater Quality Monitoring Networks. Water Resour. Res. 2005,

41. [CrossRef]
16. Bayer, P.; Finkel, M. Evolutionary Algorithms for the Optimization of Advective Control of Contaminated Aquifer Zones. Water

Resour. Res. 2004, 40. [CrossRef]
17. Elshall, A.S.; Pham, H.V.; Tsai, F.T.-C.; Yan, L.; Ye, M. Parallel Inverse Modeling and Uncertainty Quantification for Compu-

tationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation. J. Hydrol. Eng. 2015, 20, 04014087.
[CrossRef]

18. Rengers, F.; Lunacek, M.; Tucker, G. Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion
Model. Environ. Model. Softw. 2016, 80, 297–305. [CrossRef]

19. Zhou, J.G. Lattice Boltzmann Methods for Shallow Water Flows; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-40746-1.
20. Sukop, M.C.; Thorne, D.T. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 1st ed.; Springer: Berlin,

Germany; New York, NY, USA, 2005; ISBN 978-3-540-27981-5.
21. Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering; Advances in computational fluid dynamics; World

Scientific: Singapore, 2013; ISBN 978-981-4508-29-2.
22. Chen, Z.; Shu, C. Simplified and Highly Stable Lattice Boltzmann Method: Theory and Applications: Theories and Applications; World

Scientific: Singapore, 2020.
23. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput. 2001, 9, 159–195.

[CrossRef]
24. Darcy, H. Les Fontaines Publiques de la Ville de Dijon. Exposition et Application des Principes à Suivre et des Formules à

Employer Dans Les Questions de Distribution D’eau: Ouvrage Terminé Par Un Appendice Relatif Aux Fournitures D’eau de
Plusieurs Villes au Filtrage des Eaux et à la Fabrication des Tuyaux de Fonte, de Plomb, de Tole et de Bitume; Dalmont. 1856.
Available online: https://lib.ugent.be/catalog/bkt01:000059712 (accessed on 19 March 2021).

25. Ciarlet, P.G. The Finite Element Method for Elliptic Problems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 4.
Available online: https://www.elsevier.com/books/the-finite-element-method-for-elliptic-problems/ciarlet/978-0-444-85028-7
(accessed on 26 April 2021).

26. Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology; Springer: Berlin/Heidelberg,
Germany, 1990.

27. Rothman, D.H.; Zaleski, S. Lattice-Gas Cellular Automata; Cambridge University Press: Cambridge, UK, 1997; ISBN 0521 55201 X.
28. Agrawal, K.; Loezos, P.N.; Syamlal, M.; Sundaresan, S. The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech.

2001, 445, 151–185. [CrossRef]

http://doi.org/10.1023/B:WARM.0000024738.72486.b2
http://doi.org/10.1029/2001WR001204
http://doi.org/10.1080/00221680409500058
http://doi.org/10.1007/s10040-004-0404-7
http://doi.org/10.1029/2011WR010698
http://doi.org/10.5942/jawwa.2014.106.0039
http://doi.org/10.1016/j.jhydrol.2018.06.006
http://doi.org/10.1016/S0920-4105(01)00124-3
http://doi.org/10.1029/2000WR900411
http://doi.org/10.1016/S0309-1708(01)00020-3
http://doi.org/10.1029/2005WR003936
http://doi.org/10.1029/2003WR002675
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001126
http://doi.org/10.1016/j.envsoft.2016.02.033
http://doi.org/10.1162/106365601750190398
https://lib.ugent.be/catalog/bkt01:000059712
https://www.elsevier.com/books/the-finite-element-method-for-elliptic-problems/ciarlet/978-0-444-85028-7
http://doi.org/10.1017/S0022112001005663


Water 2021, 13, 1574 23 of 23

29. Harris, S. An Introduction to the Theory of the Boltzmann Equation; Dover Publications Inc.: Mineola, NY, USA, 2004; ISBN
978-0-486-43831-3.

30. Zou, Q.; He, X. On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model. Phys. Fluids 1997, 9,
1591–1598. [CrossRef]

31. Bouzidi, M.; Firdaouss, M.; Lallemand, P. Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries. Phys. Fluids 2001,
13, 3452–3459. [CrossRef]

32. Miyagi, A.; Akimoto, Y.; Yamamoto, H. Well Placement Optimization for Carbon Dioxide Capture and Storage via CMA-ES
with Mixed Integer Support. In Proceedings of the Genetic and Evolutionary Computation Conference Companion; Association for
Computing Machinery: New York, NY, USA, 6 July 2018; pp. 1696–1703.

33. Li, C.; Heinemann, P.H. A Comparative Study of Three Evolutionary Algorithms for Surface Acoustic Wave Sensor Wavelength
Selection. Sens. Actuators B Chem. 2007, 125, 311–320. [CrossRef]

34. Li, C.; Heinemann, P.; Reed, P. Genetic Algorithms (GAs) and CMA Evolutionary Strategy to Optimize Electronic Nose Sensor
Selection. Trans. ASABE 2007, 51, 321–330. [CrossRef]

35. Bayer, P.; Finkel, M. Optimization of Concentration Control by Evolution Strategies: Formulation, Application, and Assessment
of Remedial Solutions. Water Resour. Res. 2007, 43. [CrossRef]

36. Mersch, B.; Glasmachers, T.; Meinicke, P.; Igel, C. Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene
Starts. Int. J. Neural Syst. 2007, 17, 369–381. [CrossRef]

37. Sbalzarini, I.F.; Müller, S.D.; Koumoutsakos, P.D.; Cottet, G.-H. Evolution Strategies for Computational and Experimental Fluid
Dynamic Applications. In Proceedings of the Genetic And Evolutionary Computation Conference, San Francisco, CA, USA, 6–9
July 2001; pp. 7–11.

38. Hamdani, H.; Radi, B.; Hami, A.E. Optimization of Solder Joints in Embedded Mechatronic Systems via Kriging-Assisted
CMA-ES Algorithm. Int. J. Simul. Multidisci. Des. Optim. 2019, 10, A3. [CrossRef]

39. Hansen, N. The CMA Evolution Strategy: A Tutorial. Available online: https://arxiv.org/abs/1604.00772 (accessed on 19 March
2021).

40. Vogel, C.R. Computational Methods for Inverse Problems. Frontiers in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2002; p. 200.
41. Samarskii, A.A. Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems of Mathematical Physics; Walter de Gruyt: Berlin,

Germany, 2007; p. 453.
42. Tirat, M.; Belkessa, R.; Clément, J.P. Données Géologiques et Hydrogéologiques Acquises à La Date Du 31-12-67 Sur Le Territoire de La

Feuille Topographique de Beauvais (N◦102); OISE: Toronto, ON, Canada, 1969; p. 92.
43. SLB. Diver. Manual; Schlumberger Water Service: Giesbeek, The Netherland, 2014; p. 33.
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