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Abstract
In Constraint Programming, constraints are usu-
ally represented as predicates allowing or forbid-
ding combinations of values. However, some al-
gorithms exploit a finer representation: error func-
tions. Their usage comes with a price though:
it makes problem modeling significantly harder.
Here, we propose a method to automatically learn
an error function corresponding to a constraint,
given a function deciding if assignments are valid
or not. This is, to the best of our knowledge, the
first attempt to automatically learn error functions
for hard constraints. Our method uses a variant of
neural networks we named Interpretable Composi-
tional Networks, allowing us to get interpretable re-
sults, unlike regular artificial neural networks. Ex-
periments on 5 different constraints show that our
system can learn functions that scale to high dimen-
sions, and can learn fairly good functions over in-
complete spaces.

1 Introduction
Twenty years separate Freuder’s papers [1997] and [2018],
both about the grand challenges Constraint Programming
(CP) must tackle “to be pioneer of a new usability sci-
ence and to go on to engineering usability” [Freuder,
2007]. To respond to the lack of a “Model and Run” ap-
proach in CP [Puget, 2004; Wallace, 2003], several lan-
guages have been developed since the late 2000’s, such as
ESSENCE [Frisch et al., 2008], XCSP [Boussemart et al.,
2016] or MiniZinc [Nethercote et al., 2007]. However, they
require users to have deep expertise on global constraints
and to know how well these constraints, and their associated
mechanisms such as propagators, are suiting the solver. We
are still far from the original Holy Grail of CP: “the user
states the problem, the computer solves it” [Freuder, 1997].

This paper makes a contribution in automatic CP problem
modeling. We focus on Error Function Satisfaction and Op-
timization Problems we defined in the next section. Com-
pare to classical Constraint Satisfaction and Constrained Op-
timization Problems, they rely on a finer structure about the
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problem: the cost functions network, which is, for this work,
an ordered structure over invalid assignments that constraint
solver can exploit efficiently to improve the search.

In this paper, we propose a method to learn error functions
automatically; a direction that, to the best of our knowledge,
had not been explored in Constraint Programming. We focus
here on “easy-to-use” aspects of Constraint Programming.

To sum up, the main contributions of this paper are: 1.
to give the first formal definition of Error Function Satisfac-
tion Problems and Error Function Optimization Problems, 2.
to introduce Interpretable Compositional Networks, a vari-
ant of neural networks to get interpretable results, 3. to pro-
pose an architecture of Interpretable Compositional Network
to learn error functions, and 4. to provide a proof of concept
by learning Interpretable Compositional Network models of
error functions, using a genetic algorithm, and to show that
most of models give scalable functions, and remain fairly ef-
fective using incomplete training sets.

2 Error Function and Optimization Problems
Constraint Satisfaction Problem (CSP) and Constrained Opti-
mization Problem (COP) are hard constraint-based problems
defined upon a classical constraint network, where constraints
can be seen as predicates allowing or forbidding some com-
binations of variable assignments.

Likewise, Error Function Satisfaction Problem (EFSP)
and Error Function Optimization Problem (EFOP) are hard
constraint-based problems defined upon a specific constraint
network named cost function network [Cooper et al., 2020].
Constraints are then represented by cost functions f : D1 ×
D2× . . .×Dn → E, where Di is the domain of i-th variable
in the constraint scope, n the number of variables (i.e., the
size of this scope) and E the set of possible costs.

A cost function network is a quadruplet 〈V,D, F, S〉where
V is a set of variables, D the set of domains for each variable,
i.e., the sets of values each variable can take, F the set of cost
functions and S a cost structure. A cost structure is also a
quadruplet S = 〈E,⊕,⊥,>〉with E the totally ordered set of
possible costs, ⊕ a commutative, associative, and monotone
aggregation operator and ⊥ and > the neutral and absorbing
elements of ⊕, respectively.

In Constraint Programming, cost functions are often asso-
ciated to soft constraints: they can be interpreted as prefer-
ences over valid or acceptable assignments. However, this is



not necessarily the case: it depends on the cost structure. For
instance, the classical cost structure

St/f = 〈{true, false},∧, true, false〉

makes the cost function network equivalent to a classical con-
straint network, so dealing with hard constraints.

Here, we consider particular cost functions that represent
hard constraints only, by considering the additive cost struc-
ture S+ = 〈R,+, 0,∞〉. The additive cost structure pro-
duces useful cost function networks capturing problems such
as Maximum Probability Explanation (MPE) in Bayesian
networks and Maximum A Posteriori (MAP) problems in
Markov random fields [Hurley et al., 2016].

In this paper, an error function is a cost function defined
in a cost function network with the additive cost structure S+.
Intuitively, error functions are preferences over invalid as-
signments. Let fc be an error function representing a con-
straint c and ~xc be an assignment of variables in the scope of
c. Then fc(~xc) = 0 iff ~xc satisfies the constraint c. For all
invalid assignments~ic, fc(~ic) > 0 such that the closer fc(~ic)
is to 0, the closer~ic is to satisfy c.

The goal of this paper is not to study the advantages of
such cost function networks over regular constraint networks.
Without formally defining EFSP and EFOP problems, some
studies illustrate that solvers (in particular, metaheuristics)
can exploit this structure efficiently leading to state-of-the-art
experimental results, both in sequential [Codognet and Diaz,
2001] and parallel solving [Caniou et al., 2015]. In addition,
our Experiment 3 shows that error functions representing the
classic AllDifferent constraint gives models that clearly out-
performed a model based on a regular constraint networks
in terms of runtimes, for models with either hand-crafted or
learned error functions.

Let ~x be a variable assignment, and denote by ~xc the pro-
jection of ~x over variables in the scope of a constraint c. We
can now define the EFSP and EFOP problems.

Problem: ERROR FUNCTION SATISFACTION PROBLEM
Input: A cost function network 〈V,D, F, S+〉.
Question: Does a variable assignment ~x exist such that
∀fc ∈ F, fc(~xc) = 0 holds?

Problem: ERROR FUNCTION OPTIMIZATION PROBLEM
Input: A cost function network 〈V,D, F, S+〉 and an objec-
tive function o.
Question: Find a variable assignment ~x maximizing or min-
imizing the value of o(~x) such that ∀fc ∈ F, fc(~xc) = 0
holds.

With the system we propose in this paper, users provide
the usual constraint network 〈V,D,C〉, and it computes the
equivalent cost function networks 〈V,D, F, S+〉. Learned er-
ror functions composing the set F are independent of the
number of variables in constraints scope, and are expressed
in an interpretable way: users can understand these functions
and easily modify them at will. This way, users can have the
power of EFSP and EFOP with the same modeling effort as
for CSP and COP.

3 Related works
This work belongs to one of the three directions identified by
Freuder [2007]: Automation, i.e., “automating efficient and
effective modeling and solving”. To the best of our knowl-
edge, few efforts have been done on the modeling side.

Another of these three directions which is slightly related is
Acquisition described by Freuder to be “acquiring a complete
and correct representation of real problems”. Remarkable
efforts on this topic have been done by Bessiere’s research
team, for instance with constraints learning by induction from
positive and negative examples [Bessiere et al., 2005] and
with interactive queries asked to users [Bessiere et al., 2007],
and with constraint network learning also through with inter-
active queries [Bessiere et al., 2013].

Model Seeker [Beldiceanu and Simonis, 2012] is a passive
learning system taking positive examples only, which are cer-
tainly easier for users to provide. It transforms examples into
data adapted to the Global Constraint Catalog [Beldiceanu et
al., 2007], then generate and simplify candidates by eliminat-
ing dominated ones. Model Seeker is particularly efficient to
find a good inner structure of the target constraint network.

Teso [2019] gives a good survey on Constraint Learn-
ing with this interesting remark: “A major bottleneck of
[constraint-based problem modeling] is that obtaining a for-
mal constraint theory is non-obvious: designing an appropri-
ate, working constraint satisfaction or optimization problem
requires both domain and modeling expertise. For this reason,
in many cases a modeling expert is hired and has to interact
with domain expert to acquire informal requirements and turn
them into a valid constraint theory. This process can be ex-
pensive and time-consuming.”

We can consider that Constraint Acquisition, or Constraint
Learning, focuses on modeling expertise and puts domain ex-
pertise on background: users would not be able to understand
and modify a learned model without the help of a modeling
expert. The goal of these systems is mainly to simplify the
interaction between the domain and the modeling experts.

Our work is taking the opposite direction: we focus on do-
main expertise and put modeling expertise on background.
With our system, users always have the control over con-
straints’ representation, which can be modified at will to fit
needs related to their domain expertise. Constraint Imple-
mentation Learning is what best describes this research topic.

4 Method design
The main result of this paper is to propose a method to auto-
matically learn an error function representing a constraint, to
make easier the modeling of EFSP/EFOP. We are tackling
a regression problem since the goal is to find a function that
outputs a target value. Before diving into the description of
our method, we need to introduce some essential notions.

4.1 Definitions
We propose a method to automatically learn an error function
from the concept of a constraint. As described in Bessiere
et al. [2017], the concept of a constraint is a Boolean func-
tion that, given an assignment ~x, outputs true if ~x satisfies



the constraint, and false otherwise. Concepts are the predi-
cate representation of constraints referred at the beginning of
Section 2.

Our method learns error functions in a supervised fashion,
searching for a function computing the Hamming cost of each
assignment. The Hamming cost of an assignment ~x is the
minimum number of variables in ~x to reassign to get a so-
lution, i.e., a variable assignment satisfying the considered
constraint. If ~x is a solution, then its Hamming cost is 0.

Given the number of variables of a constraint and their do-
main, the constraint assignment space is the set of couples
(~x, b) where ~x is an assignment and b the Boolean output of
the concept applied on ~x. Such constraint assignment spaces
can be generated from concepts. These spaces are said to
be complete if and only if they contain all possible assign-
ments, i.e., all combinations of possible values of variables in
the scope of the constraint. Otherwise, spaces are said to be
incomplete.

In this work, we consider an error function to be a (non-
linear) combination of elementary operations. Complete
spaces are intuitively good training sets since it is easy to
compute the exact Hamming cost of their elements. We also
consider assignments from incomplete spaces where their
Hamming cost has been approximated regarding a subset of
solutions in the constraint assignment space, in case the exact
Hamming cost function is unknown.

4.2 Main result
To learn an error function as a non-linear combination
of elementary operations, we propose a network inspired
by Compositional Pattern-Producing Networks (CPPN).
CPPNs [Stanley, 2007] are themselves a variant of artificial
neural networks. While neurons in regular neural networks
usually contain sigmoid-like functions only (such as ReLU,
i.e. Rectified Linear Unit), CPPN’s neurons can contain
many other kinds of function: sigmoids, Gaussians, trigono-
metric functions, and linear functions among others. CPPNs
are often used to generate 2D or 3D images by applying the
function modeled by a CPPN giving each pixel individually
as input, instead of considering all pixels at once. This sim-
ple trick allows the learned CPPN model to produce images
of any resolution.

We propose our variant by taking these two princi-
ples from CPPN: having neurons containing one operation
among many possible ones, and handling inputs in a size-
independent fashion. Due to their interpretable nature, we
named our variant Interpretable Compositional Networks
(ICN). In this paper, our ICNs are composed of four layers,
each of them having a specific purpose and themselves com-
posed of neurons applying a unique operation each. All neu-
rons from a layer are linked to all neurons from the next layer.
The weight on each link is purely binary: its value is either
0 or 1. This restriction is crucial to obtain interpretable func-
tions. A weight between neurons n1 and n2 with the value 1
means that the neuron n2 from layer l + 1 takes as input the
output of the neuron n1 from layer l. Weight with the value 0
means that n2 discards the output of n1.

Here is our method workflow in 4 points:

Figure 1: Our 4-layer network. Layers with blue neurons have mu-
tually exclusive operations.

1. Users provide a regular constraint network 〈V,D,C〉
where C is a set of concepts representing constraints.

2. For each constraint concept c, we generate its ICN input
space X , which is either a complete or incomplete constraint
assignment space. Those input spaces are our training sets. If
the space is complete, then the Hamming cost of each assign-
ment can be pre-computed before learning our ICN model.
Otherwise, the incomplete space is composed of randomly
drawn assignments and only an approximation of their Ham-
ming cost can be pre-computed.

3. We learn the weights of our ICN model in a supervised
fashion, with the following loss function:

loss =
∑
~x∈X

(|ICN(~x)−Hamming(~x)|) +R(ICN) (1)

where X is the constraint assignment space, ICN (~x)
the output of the ICN model giving ~x ∈ X as an input,
Hamming(~x) the pre-computed Hamming cost of ~x (only ap-
proximated if X is incomplete), and R(ICN) is a regular-
ization between 0 and 0.9 to favor short ICNs, i.e., with as
few elementary operations as possible, such that R(ICN) =

0.9× Number of selected elementary operations
Maximal number of elementary operations .

4. We have hold-out test sets of assignments from larger
dimensions to evaluate the quality of our learned error func-
tions.

Notice we also have a hold-out validation set to fix the val-
ues of our hyperparameters, as described in Section 4.3.

Figure 1 is a schematic representation of our network. It
takes as input an assignment of n variables, i.e., a vector of
n integers. The first layer, called transformation layer, is
composed of 18 transformation operations, each of them ap-
plied element-wise on each element of the input vector. Such
operations are for instance the maximum between the i-th and
i + 1-th elements of the input vector, or the number of j-th
elements of the vector smaller than the i-th element such that
j > i holds. This layer is composed of both linear and non-
linear operations. If an operation is selected (i.e., it has an
outgoing weight equals to 1), it outputs a vector of n integers.

If k transformation operations are selected, then the next
layer gets k vectors of n integers as input. This layer is the
arithmetic layer. Its goal is to apply a simple arithmetic op-
eration in a component-wise fashion on all i-th element of our



k vectors to get one vector of n integers at the end, combin-
ing previous transformations into a unique vector. We have
considered only 2 arithmetic operations so far: the addition
and the multiplication.

The output of the arithmetic layer is given to the aggrega-
tion layer. This layer crunches the whole vector into a unique
integer. At the moment, the aggregation layer is composed of
2 operations: Sum computing the sum of input values and
Count>0 counting the number of input values strictly greater
than 0.

Finally, the computed scalar is transmitted to the compari-
son layer with 9 operations. Examples of these operations are
the identity, or the absolute value of the input minus a given
parameter. This layer compares its input with an external pa-
rameter value, or the number of variables of the problem, or
the domain size, among others.

All elementary operations in our model are generic: we do
not choose them to fit one or several particular constraints.
Due to the page limit, we cannot give a comprehensive list of
the 18 transformation and 9 comparison operations here. Al-
though an in-depth study of the elementary operations proper-
ties would be interesting, this is out of the scope of this paper:
its goal is to show that learning interpretable error functions
via a generic ICN is possible, and in the same way results
with neural networks do not always use ReLU as an activa-
tion function, there is no reason to reduce ICN to its current
31 elementary operations or even a 4-layer architecture. Such
elements can be changed by users to best fit their needs.

To have simple models of error functions, operations of
the arithmetic, the aggregation, and the comparison layers
are mutually exclusive, meaning that precisely one operation
is selected for each of these layers. However, many opera-
tions from the transformation layer can be selected to com-
pose the error function. Combined with the choice of hav-
ing binary weights, it allows us to have a very comprehensi-
ble combination of elementary operations to model an error
function, making it readable and intelligible by a human be-
ing. For instance, the most frequenly learned error function
is Count>0

(
|{j | x[j] = x[i] and j > i}|

)
for AllDifferent,

and Euclidianp

(∑n
i=1 x[i]

)
for LinearSum, i.e., the Euclid-

ian division of
(∑n

i=1 x[i]− p
)

by the maximal domain size,
with a parameter p equals to the right hand side constant of
the linear equation. Thus, once the model of an error func-
tion is learned, users have the choice to run the network in a
feed-forward fashion to compute the error function, or to re-
implement it directly in a programming language. Users can
use our system to find error functions automatically, but they
can also use it as a decision support system to find promising
error functions that they may modify and adapt by hand.

4.3 Learning with Genetic Algorithms
Like any neural network, learning an error function through
an ICN boils down to learning the value of its weights. Many
of our elementary operations are discrete, therefore are not
differentiable. Then, we cannot use a back-propagation al-
gorithm to learn the ICN’s weights. This is why we use a
genetic algorithm for this task.

Since our weights are binary, we represent individuals of
our genetic algorithm by a binary vector, each bit correspond-

ing to one operation in the four layers indicating if the opera-
tion is selected to be part of the error function.

We randomly generate an initial population of 160 indi-
viduals, check and fix them if they do not satisfy the mutu-
ally exclusive constraint of the comparison layer. Then, we
run the genetic algorithm to produce at most 800 generations
before outputting its best individual according to our fitness
function.

Our genetic algorithm is rather simple: The fitness func-
tion is the loss function of our supervised learning depicted
by Equation 1. Selection is made by a tournament selec-
tion between 2 individuals. Variation is done by a one-
point crossover operation and a one-flip mutation operation,
both crafted to always produce new individuals verifying the
mutually exclusive constraint of the comparison layer. The
crossover rate is fixed at 0.4, and exactly one bit is mutated for
each selected individual with a mutation rate of 1. Replace-
ment is done by an elitist merge, keeping 17% of the best
individuals from the old generation into the new one, and a
deterministic tournament truncates the new population to 160
individuals. The algorithm stops before reaching 800 genera-
tions if no improvements have been done in the last 50 gener-
ations. We use the framework EVOLVING OBJECTS [Keijzer
et al., 2002] to code our genetic algorithm.

Our hyperparameters, i.e., the population size, the maxi-
mal number of generations, the number of steady generations
before early stop, the crossover, mutation and replacement
rates, and the size of tournaments have been chosen using
ParamILS [Hutter et al., 2009], trained one week on one CPU
over a large range of values for each hyperparameter. We use
the same training instance used for Experiment 1, and new,
larger instances as a hold-out validation set. These instances
have been chosen because they are larger than our training in-
stances and each of them contains about 4∼5% of solutions,
which is significantly less than the 10∼20% of solutions in
training instances.

5 Experiments
To show the versatility of our method, we tested it on five
very different constraints: AllDifferent, Ordered, LinearSum,
NoOverlap1D, and Minimum. According to XCSP specifi-
cations [Boussemart et al., 2016]1, those global constraints
belong to four different families: Comparison (AllDiffer-
ent and Ordered), Counting/Summing (LinearSum), Pack-
ing/Scheduling (NoOverlap1D) and Connection (Minimum).
Again according to XCSP specifications, these five con-
straints are among the twenty most popular and common con-
straints. We give a brief description of those five constraints
below:

• AllDifferent ensures that variables must all be assigned
to different values.

• LinearSum ensures that the equation x1 + x2 + . . . +
xn = p holds, with the parameter p a given integer.

• Minimum ensures that the minimum value of an assign-
ment verifies a given numerical condition. In this paper,

1see also http://xcsp.org/specifications

http://xcsp.org/specifications


we choose to consider that the minimum value must be
greater than or equals to a given parameter p.

• NoOverlap1D is considering variables as tasks, starting
from a certain time (their value) and each with a given
length p (their parameter). The constraint ensures that no
tasks are overlapping, i.e., for all indexes i, j ∈ {1, n}
with n the number of variables, we have xi + pi ≤ xj

or xj + pj ≤ xi. To have a simpler code, we have con-
sidered in our system that all tasks have the same length
p.

• Ordered ensures that an assignment of n variables (x1 ,
. . . , xn) must be ordered, given a total order. In this
paper, we choose the total order ≤. Thus, for all indexes
i, j ∈ {1, n}, i < j implies xi ≤ xj .

5.1 Experimental protocols
We conducted three experiments, with two of them requir-
ing samplings. These samplings have been done using Latin
hypercube sampling to have a good diversity among drawn
assignments. When we need to sample the same number k
solutions and non-solutions, we draw assignments until we
get k of solutions and k non-solutions.

Due to stochastic learning, all learning and testing have
been done 100 times. We did not re-run batches of experi-
ments to keep the ones with the best results, as it should al-
ways be the case with such experimental protocols.

All experiments have been done on a computer with a Core
i9 9900 CPU and 32 GB of RAM, running on Ubuntu 20.04.
Programs have been compiled with GCC with the 03 opti-
mization option. Our entire system, its C++ source code,
experimental setups, and the results files are accessible on
GitHub2.

Experiment 1: scaling
The goal of this experiment is to show that learned error func-
tions scale to high-dimensional constraints, indicating that
learned error functions are independent of the size of the con-
straint scope.

For this experiment, error functions are learned upon a
small, complete constraint assignment space, composed of
about 500∼600 assignments and containing about 10∼20%
of solutions. For each constraint, we run 100 error function
learning over pre-computed complete constraint assignment
space. Then, we compute the test error of these learned error
functions over a sampled test set. Sampled test sets contain
10,000 solutions and 10,000 non-solutions, with 100 vari-
ables on domains of size 100, belonging to a constraint as-
signment space of size 100100 = 10200, thus greatly larger
than training spaces containing 500∼600 assignments.

We show normalized mean training and test errors: first,
we compute the mean error among all assignments compos-
ing the training or the test set. Then, we divide it by the num-
ber of variables composing the assignments. Indeed, having
a mean error of 5 on assignments with 100 variables and 10
variables is significantly different: the first one indicates a
mean error every 20 variables, the second a mean error one in
two variables.

2https://github.com/richoux/LearningErrorFunctions/tree/1.1

Experiment 2: learning over incomplete spaces
If, for any reasons, it is not possible to build a complete con-
straint assignment space, a robust system must be able to
learn effective error functions upon large, incomplete spaces
where the exact Hamming cost of their assignments is un-
known.

In this experiment, we built pre-sampled training spaces
by sampling 10,000 solutions and 10,000 non-solutions on
large constraint assignment spaces of size between 1012 and
1013, and with solution rates from 0.15% to 2.10−7%. Then,
we approximate the Hamming cost of each non-solution by
computing their Hamming distance with the closest solution
among the 10,000 ones, and learn error functions on these
20,000 assignments and their estimated Hamming cost. Like
for Experiment 1, we run 100 error functions learning of these
pre-sampled incomplete spaces, so that each learning relies
on the same training set. Finally, we evaluate the learned error
functions over the same test sets than Experiment 1.

Experiment 3: learned error functions to solve problems
The goal of this experiment is to assess that learned error
function can effectively be used to solve toy problems. Here,
we use a local search solver to solve Sudoku.

Sudoku is a puzzle game where all numbers in the same
row, the same column and the same sub-square must be differ-
ent. There, it can be modeled as a satisfaction problem using
the AllDifferent constraint only. We run 100 resolutions of
random 9× 9 and 16× 16 Sudoku grids, with a timeout of 10
seconds. If no solutions have been found within 10 seconds,
we consider the run to be unsolved.

We consider the mean and median run-time to compare dif-
ferent representations of the AllDifferent constraint. We have
two baselines: 1., a pure CSP model where constraints are
predicates, and 2., an EFSP model with an efficient hand-
crafted error function representing AllDifferent. We compare
those with two models using error functions learned with our
system to represent AllDifferent: a., our EFSP model using
the most frequently learned error function from the previous
experiments and run through our neural network in a fast-
forward fashion, and b., our EFSP model with the same error
function but directly hard-coded in C++. The solver and its
parameters remain the same: the only thing that is modified
in these four different models is the expression of the AllDif-
ferent constraint.

5.2 Results
Experiments 1 & 2
Table 1 shows the training errors of Experiment 1, where error
functions have been learned 100 times for each constraint.
The first column contains the normalized mean training error
of the most frequently learned error function among the 100
runs, with its frequency in parenthesis. Next columns concern
the median, the mean and the standard deviation.

Table 2 contains the normalized mean test errors of error
functions learned with Experiments 1 and 2, with their me-
dian, mean and standard deviation. The normalized mean test
error of the most frequently learned error function for each
constraint in each experiment has been isolated in the first
column of number, for comparison.

https://github.com/richoux/LearningErrorFunctions/tree/1.1


Constraints most (freq.) median mean std dev.
AllDifferent 0 (98) 0 5.001 35.185
LinearSum 0.004 (48) 0.059 0.032 0.027
Minimum 0 (71) 0 0.026 0.044
NoOverlap 0.039 (32) 0.074 0.074 0.030

Ordered 0.020 (100) 0.020 0.020 0

Table 1: Training errors (100 runs) of Experiment 1, over small and
complete constraint assignment spaces.

Exp. Constraints most freq median mean std dev

1

AllDifferent 0 0 0.017 0.119
LinearSum 3×10−4 0.019 0.179 0.341
Minimum 0 0 1.435 4.866
NoOverlap 0.268 0.316 0.486 0.682

Ordered 0.106 0.106 0.106 0

2

AllDifferent 0.052 0.052 0.052 0
LinearSum 3×10−4 3×10−4 0.200 0.629
Minimum 0 0 0.193 0.978
NoOverlap 0.202 0.202 0.215 0.020

Ordered 0.050 0.050 0.054 0.008

Table 2: Test errors in high dimensions of error functions learned
with Experiments 1 and 2.

Comparing Table 1 and the first half of Table 2 lead us
to conclude that our system is able to learn error functions
that scale for most constraint, namely AllDifferent, Linear-
Sum and Minimum. Their median training errors in Table 1
are perfect of almost perfect, so as their median test errors on
greatly larger constraint assignment spaces.

Results are not as good for NoOverlap1D and Ordered,
which are clearly the most intrinsically combinatorial con-
straints among our five ones. One could think that our system
is overfitting on its training set, but results from Experiment 2
lead us to another conclusion.

To see this, let’s observe these Experiment 2’s results by
comparing the first and the second half of Table 2. Error func-
tions learned over incomplete training spaces are as good as
the ones learned over small complete spaces for LinearSum
and Minimum. We observe significant improvements of the
median and the mean for NoOverlap1D (36.07% and 55.76%)
and Ordered (52.83% and 49.05%). This is due not because
error functions from Experiment 1 were overfitting, but be-
cause spaces from Experiment 1 were too small for these
highly combinatorial constraints, containing too few differ-
ent combinations and Hamming cost patterns.

Experiment 3
The goal of this experiment is not to be state-of-the-art in
terms of run-times for solving Sudoku, but to compare the
average run-times of the same solver on four nearly identi-
cal Sudoku models presented in Section 5.1. For the model
with a hand-crafted error function, we implemented the pri-
mal graph based violation error of AllDifferent from Petit et
al. [2001]. This function simply outputs the number of cou-
ples with identical values within a given assignment. To run
this experiment, we used the framework GHOST from Ri-
choux et al. [2016], which includes a local search algorithm
able to handle both CSP and EFSP models.

Sudoku Error Function mean median std dev

9× 9

nothing (CSP) 624.41 217.21 1,1196.80
hand-crafted 33.86 32.00 10.34
fast-forward 55.57 49.27 41.17
hard-coded 33.48 31.76 9.48

16× 16

nothing (CSP) - - -
hand-crafted 432.34 393.95 164.06
fast-forward 825.61 774.36 271.09
hard-coded 537.48 539.86 162.03

Table 3: Mean run-times in milliseconds over 100 runs to solve Su-
doku with 4 different representations of the AllDifferent constraint.
Rows in gray means that some runs hit the 10-second timeout.

Table 3 shows that models with error functions clearly
outperformed the model with the constraint represented as
a predicate. Over 100 runs, no error function-based models
hit the 10s timeout, but 4 runs of the regular constraint net-
work model timed out on the 9 × 9 grid, and all of them on
the 16 × 16 grid. Moreover, the learned error function hard-
coded in C++ is nearly as efficient as the hand-crafted one
(also coded in C++). The difference of runtimes between the
learned error function hard-coded and computed through the
ICN gives us an idea of the overhead of computing such a
function through the ICN.

6 Discussions
Like Freuder [2007] wrote: “This research program is not
easy because ’ease of use’ is not a science.” However, we be-
lieve our result is a step toward the ’ease of use’ of Constraint
Programming, and in particular about EFSP and EFOP. Our
system is excellent for learning error functions of simple con-
straints over complete spaces. For intrinsically combinatorial
constraints, learning over large, incomplete spaces should be
favored. One of the most significant results in this paper is
that our system outputs interpretable results, unlike regular
artificial neural networks. Error functions output by our sys-
tem are intelligible. This allows our system to have two op-
erating modes: 1. a fully automatic system, where error func-
tions are learned and called within our system, being com-
pletely transparent to users who only need to furnish a con-
cept function for each constraint, in addition to the regular
sets of variables V and domains D, and 2. a decision sup-
port system, where users can look at a set of proposed error
functions, pick up and modify the one they prefer.

The current limitation of our system is that it struggles to
learn high-quality error function for very combinatorial con-
straints, such as Ordered and, in particular, NoOverlap1D.
By combining results from Experiments 1 and 2, we can con-
clude that: 1. our system is not overfitting but need more
diverse and expressive operations to learn a high-quality er-
ror function for such constraints, and 2. the Hamming cost
is certainly not the better choice to represent their assignment
error.

An extension of our work would be to do reinforcement
learning rather than supervision learning based on the Ham-
ming cost. Learning via reinforcement learning would allow
finding error functions that are more adapted to the chosen
solver.
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