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Let P + y (n) denote the largest prime factor p of n with p y. We prove that there exists a positive proportion of integers n such that P + y (n) < P + y (n + 1) for y = x α when α is small. Especially, the proportion is larger than 1/4 when α tends to 0, which improves our previous result.

Introduction

Ce travail est la continuation de notre article précédent [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF] sur la fonction P + y (n), qui est définie comme le plus grand facteur premier d'entier n inférieur à y : P + y (n) := max{p | n : p y} avec la convention que P + y (n) = 1 si le plus petit facteur premier de n est strictement supérieur à y. Cette fonction est étudiée initialement par Rivat [START_REF] Rivat | On pseudo-random properties of P (n) and P (n + 1)[END_REF] pour approcher la conjecture d'Erdős et Pomerance [START_REF] Erdős | On the largest prime factors of n and n+1[END_REF] sur les plus grands facteurs premiers de deux entiers consécutifs :

(1. [START_REF] Balog | On triplets with descending largest prime factors[END_REF] |{n x : P + (n) < P + (n + 1)}| ∼ 1 2 x, où P + (n) désigne le plus grand facteur premier d'entier n avec la convention que P + (1) = 1. Rivat [START_REF] Rivat | On pseudo-random properties of P (n) and P (n + 1)[END_REF] En particulier, on a, dans le même domaine en (x, y),

(1.3) n x : P + y (n) < P + y (n + 1) ∼ 1 2 x Pour y = x, la formule (1.
3) est équivalente à la conjecture d'Erdős et Pomerance (1.1). Ainsi, il est intéressant d'étendre la domaine de y. Dans [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], nous démontrons le résultat suivant.

Théorème (B). Soit α ∈]0, 1]. Il existe C(α) > 0 tel que n x : P + y (n) < P + y (n + 1) {C(α) + o(1)}x (1.4) pour x → ∞ et y = x α .
Le Théorème (B) fournit des expressions explicites de C(α) admissibles. Cependant, on a lim α→0+ C(α) = 0, ce qui est contraire à l'intuition. Cela est dû au système de poids que nous utilisons qui est perfectible pour des petites valeurs de α. Dans cette note, nous corrigeons ce défaut par une méthode différente.

Théorème 1. Soit α ∈ ]0, 1 6 ]. Il existe une constante C 0 (α) > 0, définie en (3. [2,[START_REF] Erdős | On the largest prime factors of n and n+1[END_REF][START_REF] Teräväinen | On binary correlations of multiplicative functions[END_REF][START_REF] Wang | On the largest prime factors of consecutive integers in short intervals[END_REF][START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF]. De plus, pour les plus grands facteurs premier de trois entiers consécutifs, on peut voir [START_REF] Balog | On triplets with descending largest prime factors[END_REF][START_REF] Erdős | On the largest prime factors of n and n+1[END_REF][START_REF] Teräväinen | On binary correlations of multiplicative functions[END_REF][START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF].
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Lemmes Fondamentaux

Nous rappelons tout d'abord un résultat d'Iwaniec sur le crible linéaire. Nous énonçons ici seulement la minoration car seule celle-ci sera utilisée dans cet article.

Soient A une suite finie d'entiers, P un ensemble de nombres premiers, z 2 un nombre réel, d un entier sans facteur carré dont les facteurs premiers appartiennent à P. Notons On a ainsi [START_REF] Iwaniec | Rosser's sieve[END_REF] Lemme 2.1. On suppose qu'il existe une constante L 2 telle que

u p<v 1 - w(p) p -1 log v log u 1 + L log u pour tout v > u 2. Alors pour D z 2, s = log D/ log z, on a S(A; P, z) > XV (z) f (s) + O 1 (log D) 1/3 - d<D, d|P (z)
|r(A, d)|, où f (s) est la fonction monotone croissante définie comme la solution continue du système de l'équation différentielle aux différences 

F (s) = 2e γ /s, f (s) = 0, 0 < s 2, (sF (s)) = f (s -1), (sf (s)) = F (s -1), s 2. Remarque. f (s) vérifie f (s) = 0 pour 0 < s 2 et f (s) > 0 pour s > 2. En particulier, on a f (s) = 1 + O(e -s ) s → ∞.
(2.3) ϑ 0 (λ, u) := ρ(u/λ) + u 0 ρ(t/λ)ω(u -t)dt
avec la convention ϑ 0 (0, u) = 0. La fonction de Dickman ρ(u) est définie comme l'unique solution continue de l'équation différentielle aux différences

(2.4) ρ(u) = 1 si 0 u 1, uρ (u) = -ρ(u -1) si u > 1.
La fonction de Buchstab ω(u) est définie comme la solution continue du système

uω(u) = 1 si 1 u 2, (uω(u)) = ω(u -1) si u > 2.
De plus, nous prolongeons ω(u) par 0 pour u < 1.

Le troisième lemme [9, Proposition 1] est le théorème de type Bombieri-Vinogradov pour S(x; y, z). Lemme 2.3. Soit ε > 0. Pour tout A > 0, il existe une constante B = B(A) > 0 telle que

q x 1/2 /(log x) B max t x max (a, q)=1 n∈S(t; y,z) n≡a(mod q) 1 - 1 ϕ(q) n∈S(t; y,z) (n, q)=1 1 A,ε x (log x) A a lieu uniformement pour (2.5) 2 z y x et exp{(log x) 2/5+ε } y x,
où ϕ(q) est la fonction d'Euler.

Démonstration du Théorème 1

Pour α ∈ ]0, 1 6 ], soient K ∈ N * et β, δ ∈ R + * trois paramètres vérifiant les conditions : (3.1)

K (2α) -1 -2, 0 < β < α, ( 2α 
) -1 -K δ (2α) -1 -α -1 βK. Posons y = x α , z = x β , ω(n; y, z) := p|n, z<p y 1.
Différente de [START_REF] Wang | On the largest prime factors of consecutive integers in short intervals[END_REF] et [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], notre point de départ est l'inégalité suivante :

(3.2)

n x P + y (n)<P + y (n+1)
1 k K n∈S(x; y,z), ω(n+1; y,z)=k

1 k K z<p 1 <•••<p k y n∈S(x; y,z) p 1 •••p k |(n+1) tel que (n+1)/(p 1 •••p k ) ∈S(x; y,z) 1 k K z<p 1 <•••<p k y S(A (b k ); P, y), où P := {p : p > z}, b k := p 1 • • • p k , A (b k ) := {(n + 1)/b k : n ∈ S(x; y, z) et n + 1 ≡ 0 (mod b k )}.
Remarque. Dans (3.2), on aurait pu utiliser la minoration

n x P + y (n)<P + y (n+1) 1 k K n∈S(x; y,z) ω(n+1; y,z)=k 1 + n∈S(x; y,z) ω(n+1; y,z) K+1
1 et minorer la deuxième somme du membre de droite de la même façon que dans [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF] à l'aide des Lemme 2.2 et Lemme 2.3. Nous avons choisi de ne pas tenir compte de ce deuxième terme car sa contribution est très petite par rapport au premier terme lorsque α est petit.

Pour d | P (y, z), on a |A d (b k )| = |{(n + 1)/b k : n ∈ S(x; y, z), n + 1 ≡ 0 (mod b k d)}| = 1 ϕ(b k d) n∈S(x;y,z) (n,b k d)=1 1 + E(S(x; y, z); -1, b k d), où (3.3) E(S(x; y, z); -1, b k d) := n∈S(x;y,z) n≡-1(mod b k d) 1 - 1 ϕ(b k d) n∈S(x;y,z) (n,b k d)=1 1.
En remarquant que pour n ∈ S(x; y, z) on a automatiquement (n, b k d) = 1, on a donc

(3.4) |A d (b k )| = w(d) d X + r(A (b k ), d) avec X = Ψ 0 (x; y, z) ϕ(b k ) , w(d) = ϕ(b k )d ϕ(b k d) • 1 d , r(A (b k ), d) = E(S(x; y, z); -1, b k d).
En appliquant le Lemme 2. 

n x P + y (n)<P + y (n+1) 1 S 1 -S 2 , où S 1 := {f (δ) + o(1)} k K z<p 1 <•••<p k y Ψ 0 (x; y, z) ϕ(b k ) p|P (y,z) 1 - w(p) p , S 2 := k K z<p 1 <•••<p k y d<D, d|P (y,z) |E(S(x; y, z); -1, b k d)|.
En appliquant le Lemme 2.3 et l'inégalité de Cauchy-Schwarz, on peut montrer

(3.6) S 2 K q x 1/2 (log x) -B τ K+1 (q)|E(S(x; y, z); -1, q)| K x (log x) 2 , où τ k (n) := n 1 •••n k =n 1.
Il reste à évaluer le terme principal S 1 . D'après la formule de Mertens, on a p|P (y,z)

1 - w(p) p = p|p 1 •••p k z<p y 1 - 1 p p p 1 •••p k z<p y 1 - 1 p -1 = 1 j k (p j -1) 2 p j (p j -2) z<p y 1 - 1 p 1 - 1 (p -1) 2 = ϕ(p 1 • • • p k ) p 1 • • • p k • log z log y 1 + O K 1 log z .
En reportant dans la définition de S 1 , le Lemme 2.2 et le théorème des nombres premiers nous permettent d'en déduire que (3.7) 

S 1 = {f (δ) + o K (1)} k K z<p 1 <•••<p k y Ψ 0 (x; y, z) p 1 • • • p k • log z log y = {1 + o(1)}xf (δ)ϑ 0 β α , 1 α β α k K 1 k! log α β
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  montre que Théorème (A). Soient (a, b(b + 1)) = 1 et f y (n) := 1 si P + y (n + 1) > P + y (n), -1 si P + y (n + 1) < P + y (n). Alors l'inégalité 1 an+b x f y (an + b) a,b x exp -

A

  d := a ∈ A : d | a , P P (z) := p<z, p∈P p. On souhaite évaluer S(A; P, z) := |{a ∈ A : (a, P P (z)) = 1}|. On suppose que |A d | vérifie une formule de la forme |A d | = w(d) d X + r(A, d) pour d | P P (z), où X est une approximation de |A| indépendante de d, w une fonction multiplicative vérifiant 0 < w(p) < p pour p ∈ P, w(d)d -1 X un terme principal et r(A, d) un terme d'erreur que l'on espère petit en moyenne sur d. De plus, on définit V (z) := p<z, p∈P 1 -w(p) p .

  Pour z < y x, on définit P (y, z) := z<p y p, S(x; y, z) := {n x : (n, P (y, z)) = 1} (2.1) l'ensemble des entiers sans facteur premier dans l'intervalle ]z, y] et n'excédant pas x. On note son cardinal (2.2) Ψ 0 (x; y, z) := |S(x; y, z)|. Alors Ψ 0 (x; y, z) est évaluée par le lemme suivant (voir [6, Exercice 299]). Lemme 2.2. On a Ψ 0 (x; y, z) = ϑ 0 (λ, u)x{1 + O(1/ log z)} uniformément pour y z 2 et x yz, où u := (log x)/ log y, λ := (log z)/ log y et

  1 avec D = (x 1/2 (log x) -B )/b k , on obtient S(A (b k ); P, y) X p|P (y,z) |r(A (b k ), d)|.En reportant dans (3.2), il suit(3.5) 

k.

  En reportant (3.6) et (3.7) dans (3.5), on obtient (1.5) avec C 0 (α) := max dv = e γ , et en prenant β = α/2, K = [1/(2α)] -2, δ = (2α) -1 -3 4 K, les formules (3.9), (3.10) et (3.8) nous permettent de déduire (1.6).
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