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Abstract

In this paper, we investigate the low Mach and low Froude numbers limit for the compressible
Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong strat-
ification regime. We consider the case of a general pressure law with singular component close to
vacuum, and general ill-prepared initial data. We perform our study in the three-dimensional periodic
domain. We rigorously justify the convergence to the generalised anelastic approximation, which is
used extensively to model atmospheric flows.

Keywords: compressible Navier-Stokes equations; density-dependent viscosity; low Mach and Froude
numbers; strong stratification; cold pressure.
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1 Introduction

Flows in the atmosphere are typically characterised by two main features (see [27]): first of all, they are
weakly compressible, moreover they undergo the combined effect of a strong stratification (due to the
action of gravity) and of a strong Coriolis force (due to the rotation of the Earth, which is very fast if
compared to the space-time scales of the flows).

Neglecting the effects of the Earth rotation, the importance of the other two factors, i.e. weak
compressibility and strong stratification, may be assessed by introducing two physical a-dimensional
parameters, the Mach number and the Froude number, respectively. The smaller these parameters are,
the more predominant weak compressibility and strong stratification become. Thus, as usual in Physics,
∗The work of F.F. has been partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon,

within the program “Investissement d’Avenir” (ANR-11-IDEX-0007), and by the projects BORDS (ANR-16-CE40-0027-01),
SingFlows (ANR-18-CE40-0027) and CRISIS (ANR-20-CE40-0020-01), all operated by the French National Research Agency
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it is natural to look at the regime where both parameters vanish, to find reduced models for atmospheric
flows. They are simpler to deal with than the corresponding primitive system, both from the analytical
and numerical point of view.

When the Mach number and the Froude number go to zero with the same speed, the flow becomes
incompressible and stratified at the same rate. Formally, this asymptotic regime was considered already
by Ogura and Phillips in [26]. The limiting system takes the name of anelastic approximation. The
physical importance of the anelastic approximation is discussed, for example in [20] in the context of
various atmospheric flows, and in [1] in the context of astrophysics models.

1.1 The primitive system and the limit dynamics

In this paper we will give a rigorous derivation of what we call the generalised anelastic approximation,
namely an anelastic approximation with variable viscosity. The starting system (referred to as the prim-
itive system) is the barotropic Navier-Stokes equations, with bulk viscosity coefficient equal to 0 and
the shear viscosity coefficient proportional to the density of the fluid. In particular, the system strongly
degenerates close to vacuum. This choice of the viscosity coefficients is physically relevant, as viscosity
is, in general, hardly expected to be uniform for flows on large scales. Their specific form allows one to
exploit a certain mathematical structure of the system, called the BD-entropy (see more details in the
discussion below).

Assuming that both the Mach and Froude numbers are equal to a small parameter ε > 0, the system
of equations reads as follows:

∂t%+ div(%u) = 0,

∂t(%u) + div(%u⊗ u) +
1

ε2
∇p(%)− ν div(%Du) =

1

ε2
%∇G.

(1)

The unknowns are the mass density % = %(t, x) ≥ 0, and the velocity vector field u = u(t, x) ∈ R3.
The function p = p(%) denotes the internal pressure, the constant ν > 0 is the viscosity coefficient,
and D = 1

2

(
∇+∇t

)
is the symmetric part of the gradient. Finally, G = G(x) is a smooth function (say

G ∈ C3(Ω)) describing a scalar external force acting on the flow. G typically encodes the action of gravity,
in which case G = −gx3, where g is the gravitational acceleration constant.

Due to the present state-of-the-art of the mathematical theory for system (1), we assume that the
fluid occupies the periodic box in R3, i.e. we consider the equations (1) on the space domain

Ω := T3 . (2)

The pressure function p is assumed of the following form:

p(%) = pe(%) + pc(%) =
1

γ
%γ − 1

κ
%−κ , γ > 1, κ ≥ γ − 2, κ > 3. (3)

The first part is the standard barotropic pressure, while the second part is the so-called “cold pressure”,
because it is most significant in the region of temperatures close to zero. The constants 1/γ and 1/κ
are just normalisation factors; their presence is useful in some computations. The restriction on the
adiabatic exponent γ > 1 is somehow classical in the theory of compressible Navier-Stokes equations. The
conditions on the exponent κ, instead, are of technical nature.

When ε→ 0+ in equations (1), we observe a competition between the large size of the pressure term
(low Mach number effect), which tends to drive the flow to incompressibility, and the large size of the
forcing term (low Froude number effect), which increases the stratification of the flow. Due to the choice
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of scaling, those two terms are in balance in the limit process. Therefore, it is easy to see that, when
ε→ 0+, % will tend, at least formally, to the profile b = b(x) satisfying

∇p(b) = b∇G . (4)

Smoothness of G(x) and strict monotonicity of p imply that there exists a smooth function b ∈ C3(Ω)
satisfying (4). Monotonicity of p implies convexity of the pressure potential H (defined in (9) below)
which provides existence of constants b∗, b∗ ∈ R such that

∀x ∈ Ω , 0 < b∗ ≤ b(x) ≤ b∗ . (5)

Note that, for p(%) = %2

2 , one gets G = b up to the choice of an irrelevant additive constant, which is the
case considered in [5]. On the other hand, if G(x) = −gx3 is the gravitational potential, it is easy to see
that b = b(x3) verifies (5).

Since % ≈ b for ε → 0+, assuming that we can identify the limits of the non-linear terms appearing
in (1), it is not difficult to check that (formally) the limiting system is an anelastic approximation with
variable viscosity coefficient, namely

div(bU) = 0

∂tU + (U · ∇)U + ∇π − b−1 ν div
(
bDU

)
= 0 .

(6)

We refer to system (6) as the generalised anelastic approximation. In the above system, π = π(t, x)
denotes an unknown scalar function, and the term ∇π plays the role of a Lagrangian multiplier associated
with the anelastic constraint div (bU) = 0. The limiting system can be also regarded as the viscous
counterpart of the so-called lake equation, whose study was initiated in [21].

The goal of this paper is to rigorously justify the above formal derivation in the framework of global
in time finite energy weak solutions to the primitive system (1)-(3) for general ill-prepared initial data.

1.2 An overview of related results

Due to the physical importance of the anelastic approximation, its rigorous derivation has been the object
of intensive studies in the past years.

In [24], Masmoudi proved the rigorous derivation of the anelastic approximation, starting from the
classical barotropic Navier-Stokes system. He considered a bounded domain in R3, supplemented with
Dirichlet boundary conditions, and the limit was performed for ill-prepared initial data via a compensated
compactness argument. Soon after that, Feireisl, Málek, Novotný and Straškraba proved an analogous
result on a periodic box, and for pressure laws which are small variations of the ideal gas law, see [14].
Finally, we refer to the book by Feireisl and Novotný [15] for a complete account of the mathematical
literature on the low Mach number limit, in the presence of both low and high stratification effects. They
presented the theory for the full Navier-Stokes-Fourier system and in the framework of global in time finite
energy weak solutions. The literature related to the incompressible limit of compressible fluid equations
is of course much more extensive (see e.g. the pioneering works [8] by Ebin and [18]- [19] by Klainerman
and Majda) and recalling all relevant results goes far beyond the scope of this introduction. We thus limit
ourselves to quote a couple of recent works.

In [13], a variant of the anelastic approximation was derived, starting from a version of the Navier-
Stokes-Fourier system with neglected thermal diffusion: the potential temperature is assumed to be
just transported by the velocity field. The limit system that is identified in [13] reads as a coupling
of the anelastic approximation system (6) with a transport equation for the limiting temperature. The
convergence is proven in the infinite slab R2× ]0, 1[ through a spectral analysis of the singular perturbation
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operator and an application of the celebrated RAGE theorem from scattering theory. The advantage of
that technique, in comparison to the one used in [24], is that it allows to get the compactness of the
sequence of velocity fields.

On the side of the incompressible limit (with no stratification effects, though), another interesting
result is [7], where the the authors deal with weakly compressible viscous fluids in a critical regularity
functional framework. In that paper, weak compressibility is obtained by taking a large bulk viscosity
coefficient limit, instead of the classical low Mach number limit. More recently, in [11], a similar idea was
implemented for fast rotating fluids.

For the degenerate Navier-Stokes system (1), as considered in our paper, the relevant results are
much more sparse. The first one to mention is the incompressible limit in a strong stratification regime
considered in [5] by Bresch, Gisclon and Lin. Their system includes two artificial drag terms in the
momentum equation, in order to improve the available information for the velocity field close to vacuum.
The convergence to the anelastic approximation is proven using the relative energy method, for a special
choice of pressure law p(%) = %2/2 and for well-prepared initial data.

A similar method was used in [3] by Bresch and Desjardins and in [17] by Jüngel, Lin and Wu, for
the low Mach number and low Rossby number limit in a two-dimensional geometry. The external force
in these papers is replaced by the Coriolis force (whence the low Rossby number regime) and a capillarity
term. The resulting limiting system is a quasi-geostrophic type equation for the stream function of the
limit velocity field. We also refer to [9]- [10] for a generalisation of these results to the 3-D setting and to
the case of general ill-prepared initial data.

1.3 The content of the paper

In the context depicted above, our work can be seen as a generalisation of the result from [5], to the case
of ill-prepared initial data and of more general pressure laws (and hence, more general external forces
G). We work in the framework of global in time finite energy weak solutions to the primitive system.
Their existence, in presence of a cold part of the pressure (3), has been established in [30], [25]. The case
without this assumption has been completed much more recently in [29] by Vasseur and Yu. In all these
results, the finite energy condition plays, of course, a major role. However, the degenerate Navier-Stokes
system (1) possesses also a second energy inequality, usually named BD entropy inequality after Bresch
and Desjardins, who investigated this second energy conservation law in [3].

The BD entropy estimate provides a control on the gradient of a certain function of the density, whose
exact form depends on the form of the viscosity coefficient. For system (1), this function is ∇√%. The BD
entropy also allows to control the skew-symmetric part A = 1

2

(
∇−∇t

)
of the gradient of the velocity.

This, when combined with the classical energy, provides the corresponding bound for the full gradient of
the velocity.

The classical energy inequality, the BD entropy inequality, and all the bounds that follow, are essential
also in the present paper. As a matter of fact, for any value of parameter ε ∈ ]0, 1], we consider a finite
energy weak solution

(
%ε,uε

)
to system (1), which satisfy both those energy inequalities. However, proving

that the BD entropy estimate is satisfied uniformly with respect to ε requires some effort, especially when
a general pressure law is considered: this is one of the first problems solved in our paper.

Having all these estimates satisfied uniformly for a sequence of finite energy weak solutions
(
%ε,uε

)
ε
,

the rest of the proof of the derivation of the generalised anelastic approximation (6) boils down to showing
that the weak limit (b,U) is indeed a solution to (6). It is well known that passing to the limit in the
weak formulation of equations (1), especially in its nonlinear parts, is problematic. This is because the
singular terms, along with the ill-prepared initial data, are responsible for fast time oscillations of the
solutions (the so-called acoustic waves), which may prevent, in the end, the convergence of the nonlinear
terms to the expected limit. Showing that this does not happen is the core of the whole proof.
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The main concern is the convergence of the convective term in the momentum equation. To that
purpose, we use a different technique than the one from [5]. Our approach is inspired by the previous
works [23] and [24] on the incompressible limit for the classical barotropic Navier-Stokes system, and is
based on a compensated compactness argument. More precisely, we first regularise the primitive equations,
which we recast in the form of a wave system. After that, we exploit two pieces of information coming from
the wave system. First of all, we may deduce the compactness of the rotational part of the velocity fields.
On the other hand, by direct but elaborated algebraic manipulations, we may infer that the interaction
of the potential part of the velocity fields in the convective term gives rise to small quantities, which tend
to vanish when ε → 0+. It is worth to point that this argument is robust enough to deal with other
variants of the system (1). For instance, we could trade the cold component of the pressure function,
which basically provides us with some integrability properties for ∇u, for a turbulent drag term %|u|u,
which would give a better integrability of the momentum V := %u. In that case, most of the steps are
the same, although the derivation of essential estimates becomes significantly more laborious. The only
problem, and the breaking point, arises when one wants to pass to the limit in this artificial drag term.
This term turns out to be even more non-linear than the convective term, because of the presence of
the norm |u| of the vector u. It is not clear how to bypass this difficulty in our framework, and so, the
problem remains open.

We conclude with a short outline of the paper. In the next section, we collect our main hypotheses
on the initial data, we give the definition of finite energy weak solutions, and we state our main result.
In Section 3, we deduce, from the energy inequality and the BD entropy inequality, a long list of uniform
bounds for the family of solutions

(
%ε,uε

)
ε
we consider. That part of the study is rather delicate, due

to the degeneracy of the system close to vacuum. In Section 4, we use the previous uniform bounds to
extract a weakly convergent subsequence, and to derive first basic properties on its weak limit point. At
this stage we reformulate the primitive equations into the wave system, which describes the propagation
of the acoustic waves. In Section 5 we rigorously perform the convergence in the weak formulation of
equations (1), and conclude the derivation of the anelastic approximation (6). For the convenience of the
reader, we collect some tools from Fourier analysis which we need in our study in the Appendix at the
end of the paper.

2 Statement of the main result

In this section, we first introduce our assumptions on the initial data, then we define the notion of finite
energy weak solutions to system (1)-(3), and finally we formulate our main theorem.

Initial data. Problem (1)- (3) is supplemented by general ill-prepared initial data. Namely, for any
small parameter ε ∈ ]0, 1] fixed, we pick initial data

(%,u)|t=0 =
(
%0,ε,u0,ε

)
(7)

satisfying the following conditions:

(i) the initial densities %0,ε ≥ 0 are assumed to be small perturbations of the static state b, defined by
(4): more precisely, we assume1 that

%0,ε = b + ε φ0,ε , with
(
φ0,ε

)
ε
⊂ L∞(Ω) and

(
∇ ln

%0,ε

b

)
ε
⊂ L∞(Ω) ;

1Here and throughout this paper, we make use of the following notation: given a normed space X and a sequence of
functions

(
fε
)
ε
all belonging to X, we write

(
fε
)
ε
⊂ X implicitly meaning that the sequence is also bounded in X.
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(ii) the initial velocity fields u0,ε are such that
(
u0,ε

)
ε
⊂ L∞(Ω).

Thus, up to extraction of a subsequence, not relabeled here, we may suppose that

φ0,ε → φ0 and u0,ε → u0 weakly-∗ in L∞(Ω) . (8)

Energy functionals. Next, we need to introduce various energy functionals. The internal energy
function (sometimes called pressure potential) is defined by the ODE

%H ′(%) − H(%) = p(%) ,

which implies in particular that

H ′′(%) =
p′(%)

%
.

Notice that H is defined up to the sum of an affine function. Here, we fix the classical choice

H(%) = %

∫ %

1

p(z)

z2
dz =

1

γ (γ − 1)
%
(
%γ−1 − 1

)
+

1

κ (κ+ 1)
%
(
%−κ−1 − 1

)
. (9)

We now denote

E
(
%,u

∣∣∣ b) :=
1

2

∫
Ω
% |u|2 dx +

1

ε2

∫
Ω

(
H(%) − H(b) − H ′(b) (%− b)

)
dx (10)

F
(
%,u

∣∣∣ b) :=

∫
Ω
%
∣∣∣u + ν∇ ln

%

b

∣∣∣2 dx (11)

to be the classical energy and the BD entropy functions. We also set E
(
%,u

∣∣∣ b)(T ) := E
(
%(T ),u(T )

∣∣∣ b)
and E

(
%,u

∣∣∣ b)(0) := E
(
%0,u0

∣∣∣ b), and similarly for the function F .

Weak solutions to the primitive system. After this preparation, we are ready to give the definition
of weak solutions to system (1)-(3) which are relevant for us.

Definition 2.1 Let
(
%0,u0

)
be such that E

(
%0,u0

∣∣∣ b)+ F
(
%0,u0

∣∣∣ b) < +∞.
We say that the couple (%,u) is a finite energy weak solution of (1)-(3) in [0, T [×Ω, with the initial datum(
%0,u0

)
, provided the following conditions are satisfied:

(1) % ≥ 0 almost everywhere, with % ∈ L∞
(
[0, T [ ;Lγ(Ω)

)
and %−1 ∈ L∞

(
[0, T [ ;Lκ(Ω)

)
, ∇√% ∈

L∞
(
[0, T [ ;L2(Ω)

)
and

√
p′(%)
% ∇% ∈ L

2
(
[0, T [ ;L2(Ω)

)
;

(2) √%u ∈ L∞
(
[0, T [ ;L2(Ω)

)
and √%∇u ∈ L2

(
[0, T [ ;L2(Ω)

)
;

(3) the equations of system (1) are satisfied in the sense of distributions: more precisely, we have∫
Ω
%0ξ(0) dx+

∫ T

0

∫
Ω

(
%∂tξ + %u · ∇ξ

)
dx dt = 0 (12)

for any test function ξ ∈ D
(
[0, T [×Ω

)
, and∫

Ω
%0u0 · ψ(0) dx+

∫ T

0

∫
Ω

(
%u · ∂tψ + %u⊗ u : ∇ψ

)
dx dt

+
1

ε2

∫ T

0

∫
Ω
p(%) divψ dx dt+

1

ε2

∫ T

0

∫
Ω
%∇G · ψ dx dt− ν

∫ T

0

∫
Ω
%Du : ∇ψ dx dt = 0

(13)

for any test function ψ ∈ D
(
[0, T [×Ω;R3

)
;
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(4) for almost every t ∈ [0, T [ , the following energy inequalities hold true:

E
(
%,u

∣∣∣ b)(t) + ν

∫ t

0

∫
Ω
%|Du|2 dx ds ≤ E

(
%0,u0

∣∣∣ b) ,
F
(
%,u

∣∣∣ b)(t) +
ν

ε2

∫ t

0

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx ds+ ν

∫ t

0

∫
Ω
%|Au|2 dx ds ≤ C0 e

C0(1+T ) ,

(14)

where the constant C0 > 0 may depend on E
(
%0,u0

∣∣∣ b) and F
(
%0,u0

∣∣∣ b) but is independent of ε.

The solution (%,u) is said global in time if the previous properties hold true for any T > 0.

For any ε ∈ ]0, 1] fixed, the existence of global in time finite energy weak solutions to system (1) in the
sense of previous definition was proven in [30] and [25], in the case G = 0 (corresponding to b = const.).
The argument of those papers apply in a fairly direct way also to the case considered in this paper, where
G 6= 0 and b is non-constant: we explain in the next section how to modify the estimates of [30]- [25] in
order to include the force.

Main result. Before stating the main result of this paper, we need some additional tools and notation.
Following [24]- [14] (see also [22]), we introduce the twisted Leray-Helmholtz projector Pb, related to the
smooth function b satisfying (5), as follows: for any smooth vector field v on Ω, we write

v = Pb[v] + b∇Ψ ,

where Ψ is the unique solution to the Neumann problem

div
(
b∇Ψ

)
= divv in Ω ,

∫
Ω

Ψ dx = 0 .

Remark that Pb[v] and Qb[v] := b∇Ψ are orthogonal in the weighted Hilbert space L2
b(Ω;R3), which is

defined as the space of functions f : Ω −→ R3 which are L2-summable with respect to the measure 1
b dx.

Similarly to the case of the classical Leray-Helmholtz projector P = P1 and its L2-orthognal projector
Q = Q1, it is possible to prove that both Pb and Qb are bounded continuous functionals on Lp(Ω;R3),
for any 1 < p < +∞.

We can now state the main result of this paper, which is contained in the following theorem.

Theorem 2.2 Let γ > 1 and κ ≥ γ − 2, κ > 3 in (3).
Let

(
%0,ε,u0,ε

)
ε
be a family of initial data satisfying hypotheses (i)-(ii) fixed above, so in particular the

condition
sup
ε∈ ]0,1]

E
(
%0,ε,u0,ε

∣∣∣ b) + sup
ε∈ ]0,1]

F
(
%0,ε,u0,ε

∣∣∣ b) < +∞ (15)

holds. Define the couple (φ0,u0) as in (8).
Let

(
%ε,uε

)
ε
be a family of global in time weak solutions to system (1)-(3), in the sense of Definition 2.1,

corresponding to the previous initial data. Define the scalar quantity φε := %ε−b
ε .

Then, there exists a couple of functions
(
φ,U

)
such that, passing to a suitable subsequence as the case

may be, in the limit ε→ 0 one has

%ε → b strongly in L∞loc

(
R+;Lp(Ω)

)
, for any p ∈ [1, 3[ ,

φε → φ weakly in L2
loc

(
R+;W 1,min{γ,2}(Ω)

)
,
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uε → U weakly-∗ in L∞
(
R+;Lp1(Ω)

)
∩ L2

loc

(
R+;W 1,p1(Ω)

)
, where p1 :=

2κ

κ+ 1
.

In addition, φ = φ(b) is a function of the static profile b, while U is a solution of the target system (6) in
the weak sense, related to the initial datum U|t=0 = U0 := 1

b Pb[bu0], i.e. one has div(bU) = 0 almost
everywhere in R+ × Ω and∫

Ω
bu0 · ψ(0) dx+

∫ T

0

∫
Ω

(
bU · ∂tψ + bU⊗U : ∇ψ

)
dx dt− ν

∫ T

0

∫
Ω
b∇U : ∇ψ dx dt = 0 (16)

for any T > 0 and any test function ψ ∈ D
(
[0, T [×Ω;R3

)
such that div(bψ) = 0.

Remark 2.3 Note that the initial condition equals∫
Ω
bu0 · ζ dx =

∫
Ω
Pb[bu0] · ζ dx =

∫
Ω
bU0 · ζ dx

for any test function ζ ∈ D
(
Ω;R3

)
such that div(bζ) = 0.

3 A priori estimates

In this section, we derive uniform bounds for the family of weak solutions
(
%ε,uε

)
ε
to the original Navier-

Stokes system (1). The main tools for this are the classical energy inequality and the so-called BD entropy
estimate.

Here and everywhere in the text, we adopt the following notation: given a Banach space X and any
p ∈ [1,+∞], we set LpT (X) := Lp([0, T ];X); in the case T = +∞, instead, we explicitly write Lp(R+;X).
When convenient, we will use also the notation Lploc(R+;X) :=

⋂
T>0 L

p
T (X).

3.1 Bounds coming from the energy inequality

The energy inequality for
(
%ε,uε

)
, which is satisfied by assumption, reads as follows: for almost any time

T > 0, we have

E
(
%ε,uε

∣∣∣ b)(T ) + ν

∫ T

0

∫
Ω
%ε |Duε|2 dx dt ≤ E

(
%0,ε,m0,ε

∣∣∣ b) , (17)

where the function E
(
%,u

∣∣∣ b) has been defined in (10) and we recall that we have set E
(
%ε,uε

∣∣∣ b)(T ) :=

E
(
%ε(T ),uε(T )

∣∣∣ b). Notice that, due to the cold pressure, at any value of ε ∈ ]0, 1] fixed, the velocity
field uε is well-defined , thus the previous notation makes sense.

From the energy inequality (17), we now derive first uniform bounds for the family
(
%ε,uε

)
ε
. In fact,

owing to our assumptions on the initial data, and in particular to (15), the right-hand side of (17) is
uniformly bounded : specifically, we have

sup
ε∈ ]0,1]

E
(
%0,ε,u0,ε

∣∣∣ b) < +∞ .

Then, it is easy to deduce the following uniform bounds:(√
%ε uε

)
ε
⊂ L∞

(
R+;L2(Ω)

)
, (18)(√

%εDuε
)
ε
⊂ L2

(
R+;L2(Ω)

)
. (19)
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Let us now focus on the density functions. To begin with, following the approach of [15], it is convenient
to decompose any function h into its essential and residual parts. Thus, for almost every time t > 0 and
all ε ∈ ]0, 1], we introduce the sets

Ωε
ess(t) :=

{
x ∈ Ω

∣∣∣ b∗
2
≤ %ε(t, x) ≤ 2 b∗

}
, Ωε

res(t) := Ω \ Ωε
ess(t) ,

where the constants b∗ and b∗ have been defined in (5) Then, given a function h, we can write

h = [h]ess + [h]res , where [h]ess := h1Ωεess(t)
.

Here above, 1A denotes the characteristic function of a set A ⊂ Ω.
For later use, it is convenient to divide the residual set Ωε

res(t) further: we define

Ωε
res,B(t) :=

{
x ∈ Ωε

res(t)
∣∣∣ 0 ≤ %ε(t, x) <

b∗
2

}
, Ωε

res,UB(t) :=
{
x ∈ Ωε

res(t)
∣∣∣ %ε(t, x) > 2 b∗

}
as the regions where %ε, respectively, stays bounded and may become unbounded.

After this preparation, let us come back to (17) and derive uniform bounds for the family
(
%ε
)
ε
. In

the essential set, we can perform Taylor’s expansion of the function H; we thus get[
H(%) − H(b) − H ′(b) (%− b)

]
ess
≥ c

∣∣%ε − b
∣∣2 1Ωεess(t)

,

which implies that

sup
t∈R+

∥∥∥∥1

ε
[%ε − b]ess

∥∥∥∥
L2(Ω)

≤ C . (20)

On the other hand, using the convexity of the function H, the fact that
∣∣[%ε − b]res

∣∣ ≥ b∗/2 and equation
(9), we discover (see e.g. [16] for details) the following bounds on the residual set:

sup
t∈R+

‖[%ε]res‖
γ
Lγ(Ω) + sup

t∈R+

∥∥[%−1
ε

]
res

∥∥κ
Lκ(Ω)

+ sup
t∈R+

‖[1]res‖L1(Ω) ≤ C ε2 . (21)

The previous estimate immediately implies that

sup
t∈R+

L
(
Ωε

res(t)
)
≤ C ε2 , (22)

where we have denoted by L(A) the Lebesgue measure of a set A ⊂ Ω.
At this point, let us define the quantity

φε =
1

ε

(
%ε − b

)
.

From the uniform bound (20), we may deduce that∥∥[φε]ess

∥∥
L∞(R+;L2)

≤ C . (23)

On the other hand, using (21) we can compute that for any p ≤ γ, we have∫
Ω

∣∣[φε]res

∣∣p dx ≤ C

εp

(∫
Ω

∣∣[%ε]res

∣∣p dx +

∫
Ω

[1]res dx

)
≤ C ε2−p .

Thus, we finally infer that

∀ 1 ≤ p ≤ γ ,
∥∥[φε]res

∥∥
L∞(R+;Lp)

≤ C ε(2−p)/p . (24)

Of course, this estimate will be useful only in the case when p satisfies the additional restriction p ≤ 2.
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3.2 The Bresch-Desjardins estimate

As it is apparent from the bounds of the previous subsection, the difficulty with system (1) is that we lose
any control on the velocity fields uε and their gradient ∇uε close to vacuum, specifically in the region
Ωε

res,B. The cold pressure term pc is of great help in order to bypass that difficulty.
However, the cold pressure term alone is not strong enough to give us all the pieces of information

we need to pass to the limit. On the other hand, system (1) possesses a nice underlying structure, as
evidenced for the first time by Bresch and Desjardins (see e.g. [4], [3]). By taking advantage of that
structure, it is possible to derive, via the so-called BD entropy estimates, some uniform estimates on the
gradient of the density functions %ε. This is the goal of the next lemma.

A bound coming from BD entropy estimates has been required in the definition of weak solutions, see
point (4) in Definition 2.1. Here we show that such a bound holds uniformly with respect to the small
parameter ε ∈ ]0, 1]. Note that the result in Lemma 3.1 is stated for smooth solutions to the Navier-
Stokes system (1). This is solely to justify the manipulations required to derive the inequality. Once the
inequality is proven for the smooth solutions, it is possible to deduce that it is inherited also by the finite
energy weak solutions considered in this paper (see [30] and [25] for details).

In the next statement, we resort to the notation introduced in (11), and we recall that we denote by
Au =

(
∇u − ∇tu

)
/2 the skew-symmetric part of the Jacobian matrix of the vector field u.

Lemma 3.1 Let (%ε,uε) be the smooth solution to (1)-(3). Then we have the inequality

sup
t∈ ]0,T [

(
F
(
%ε,uε

∣∣∣ b)(t) +
1

ε2

∫
Ω

(
H(%ε) − H(b) − H ′(b)(%ε − b)

)
dx

)
+

ν

ε2

∫ T

0

∫
Ω
b2
p′(%ε)

%ε

∣∣∣∇(%ε
b

)∣∣∣2 dx dt + ν

∫ T

0

∫
Ω
%ε |Auε|2 dx dt ≤ C ,

(25)

where the constant C > 0 depends only on the initial data and on T . In particular, the previous bound is
uniform with respect to ε ∈ ]0, 1].

Proof. The proof of this estimate follows closely [5], with the only modifications associated with more
general forms of the pressure and of the force. We proceed in several steps, assuming that %ε,uε are
smooth enough to justify all the computations. For notational simplicity, in what follows we write (%,u)
instead of

(
%ε,uε

)
.

Step 1. From Lemma 5.1 in [5] it follows that for sufficiently smooth solutions of the continuity
equation in (1), the following equality holds true

1

2

d

dt

∫
Ω
%
∣∣∣∇ ln

%

b

∣∣∣2 dx+

∫
Ω
%∇u · ∇ ln

%

b
∇ ln

%

b
dx

+

∫
Ω
%∇u · ∇ ln b∇ ln

%

b
dx+

∫
Ω
%u · ∇∇ ln b∇ ln

%

b
dx+

∫
Ω
%∇ divu∇ ln

%

b
dx = 0.

Step 2. In this step, one multiplies the momentum equation by ν∇ ln %
b , we get

ν

∫
Ω
% (∂tu + u · ∇u) · ∇ ln

%

b
dx+ ν2

∫
Ω
%Du : ∇2 ln

%

b
dx+

ν

ε2

∫
Ω

(∇p(%)− %∇G) · ∇ ln
%

b
dx = 0.

Let us now rewrite each term from the above expression. First, note that the transport term gives

ν

∫
Ω
% (∂tu + u · ∇u) · ∇ ln

%

b
dx = ν

d

dt

∫
Ω
bu · ∇%

b
dx− ν

∫
Ω
%∇u : ∇tu dx+ ν

∫
Ω
%u · ∇(∇ ln b)u dx.
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For the diffusion term, after noticing that ∇2 is always symmetric, we have

ν2

∫
Ω
%Du : ∇2 ln

%

b
dx = ν2

∫
Ω
%∇u : ∇2 ln

%

b
dx

= ν2

∫
Ω
b∇u : ∇2 %

b
dx− ν2

∫
Ω
%∇u · ∇ ln

%

b
∇ ln

%

b
dx

= −ν2

∫
Ω
%∇u · ∇ ln b∇ ln

%

b
dx− ν2

∫
Ω
%∇ divu∇ ln

%

b
dx

− ν2

∫
Ω
%∇u · ∇ ln

%

b
∇ ln

%

b
dx.

Finally, for the pressure and force term, using (4), we obtain

ν

∫
Ω

∇p(%)− %∇G
ε2

· ∇ ln
%

b
dx =

ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇%
b

∣∣∣2 dx+
ν

ε2

∫
Ω

(
p′(%)− p′(b)

)
∇b · ∇%

b
dx.

Step 3. Now, we sum up the equalities from the previous steps along with the energy estimate. In our
case, after setting H(%; b) := H(%)−H ′(b)(%− b)−H(b), the statement of Lemma 5.2 from [5] gives

d

dt

∫
Ω

(
F
(
%,u

∣∣∣ b)+
1

ε2
H(%; b)

)
dx+

ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx+ ν

∫
Ω
%|Du|2 dx

= ν

∫
Ω
%∇u : ∇tu dx− ν

∫
Ω
%u · (∇∇ ln b)u dx− ν2

∫
Ω
%u∇∇ ln b∇ ln

%

b
dx

− ν

ε2

∫
Ω

(
p′(%)− p′(b)

)
∇b · ∇%

b
dx .

(26)

Now notice that
ν

∫
Ω
%|Du|2 dx− ν

∫
Ω
%∇u : ∇tu dx = ν

∫
Ω
%|Au|2 dx,

and so, we finally get

d

dt

∫
Ω

(
F
(
%,u

∣∣∣ b)+
1

ε2
H(%; b)

)
dx+

ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx+ ν

∫
Ω
%|Au|2 dx

= −ν
∫

Ω
%u · (∇∇ ln b)u dx− ν2

∫
Ω
%u∇∇ ln b∇ ln

%

b
dx− ν

ε2

∫
Ω

(
p′(%)− p′(b)

)
∇b · ∇%

b
dx

=
3∑
i=1

Ji.

(27)

Step 4. We have to control the terms J1, J2, J3 appearing in the right-hand side of (27). To begin
with, we can easily estimate∫ T

0
J1 dt = −ν

∫ T

0

∫
Ω
%u · (∇∇ ln b)u dx dt ≤ ‖∇2 ln b‖L∞T (L∞)

∫ T

0

∫
Ω
%|u|2 dx dt ≤ C .

For J2, instead, we get∫ T

0
J2 dt = −ν2

∫ T

0

∫
Ω
%u∇∇ ln b∇ ln

h

b
dx dt ≤ ν2‖∇2 ln b‖L∞T (L∞)

∫ T

0
F
(
%,u

∣∣∣ b)dt ,

hence J2 can be controlled by means of a Grönwall argument.
Finally, we have to deal with J3. This estimate is a bit more involved than the previous ones, as this term
depends on the pressure. We have to distinguish some different cases.
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Case 1: integral over Ωε
ess. We start by bounding the part of J3 which is restricted to the essential

set. For this, we use the Taylor expansion p′(%) = p′(b) + p′′(z)(%− b), for some z between % and b, and
the fact that % is bounded in Ωess to write∣∣∣∣∣ νε2

∫
Ωεess

(
p′(%)− p′(b)

)
∇b · ∇%

b
dx

∣∣∣∣∣ . ν

ε2

∫
Ωεess

|%− b| |∇b|

∣∣∣∣∣
√
p′(%)

%
b∇

(%
b

)∣∣∣∣∣ dx

. Cδ
∥∥[φ]

ess

∥∥2

L2 + δ
ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx ,

where we have also applied the Young inequality in the last step. Here, δ > 0 can be taken arbitrarily
small, to the price of increasing the value of Cδ. Thus, taking δ small enough, after integration in time,
we can absorbe the last term of the previous estimate in the left-hand side of (27), while the other term
is bounded by a uniform constant C times T , in view of (23).

Case 2: integral over Ωε
res. In the residual set, it is convenient to split J3 into two pieces, as follows:

ν

ε2

∫
Ωεres

(
p′(%)− p′(b)

)
∇b · ∇%

b
dx =

ν

ε2

∫
Ωεres

p′(%)∇b · ∇%
b

dx − ν

ε2

∫
Ωεres

p′(b)∇b · ∇%
b

dx (28)

The bound of the first term in the last equality is easy. We start by writing

ν

ε2

∫
Ωεres

p′(%)∇b · ∇%
b

dx =
ν

ε2

∫
Ωεres

√
p′(%) % ∇ ln b ·

(√
p′(%)

%
b∇%

b

)
dx.

Then, we observe that

p′(%) % = %γ + %−κ =⇒
[√

p′(%) %
]

res
∈ L∞

(
R+;L2

)
uniformly in ε > 0, owing to (21). Indeed, one has

∥∥∥[√p′(%) %
]

res

∥∥∥
L2
≤ ‖%‖γ/2Lγ +

∥∥%−1
∥∥κ/2
Lκ

. Thus, using

(21) quantitatively and arguing as in Case 1, we deduce that∣∣∣∣∣ νε2

∫
Ωεres

√
p′(%) % ∇ ln b ·

(√
p′(%)

%
b∇%

b

)
dx

∣∣∣∣∣ . Cδ
ε2

∥∥∥[√p′(%) %
]

res

∥∥∥2

L2
+ δ

ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx

. Cδ + δ
ν

ε2

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx .

Once again, after integration in time, the last term on the right can be absorbed in the left-hand side of
(27), for δ > 0 small enough.

It remains to deal with the last term appearing in (28). We start by writing

ν

ε2

∫
Ωεres

p′(b)∇b · ∇%
b

dx =
ν

ε2

∫
Ωεres

√
%

p′(%)

p′(b)

b
∇b ·

(√
p′(%)

%
b∇%

b

)
dx .

First note that
%

p′(%)
=

%

p′E(%) + p′c(%)
=

%κ+2

%γ+κ + 1
.

Thus, on the one hand we get∣∣∣∣∣ νε2

∫
Ωεres,B

√
%

p′(%)

p′(b)

b
∇b ·

(√
p′(%)

%
b∇%

b

)
dx

∣∣∣∣∣ . ν

ε2

(
L(Ωε

res)
)1/2

∥∥∥∥∥
√
p′(%)

%
b∇%

b

∥∥∥∥∥
L2

.
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On the other hand, we also have

1Ωεres,UB

√
%

p′(%)
. 1Ωεres,UB

%(2−γ)/2
ε .

Now, in view of (21), for 2− γ ≥ 0 we have that

[%](2−γ)/2
res ∈ L∞(R+;Lq) , q :=

2γ

2− γ
> 2 , with

∥∥∥[%](2−γ)/2
res

∥∥∥
Lq

= ‖[%]res‖
γ/q
Lγ . ε2/q .

If, on the other hand 2− γ < 0, then we have

[%](2−γ)/2
res ∈ L∞(R+;Lq) , q :=

2κ

γ − 2
, with

∥∥∥[%](2−γ)/2
res

∥∥∥
Lq

=
∥∥[%−1

]
res

∥∥κ/q
Lκ

. ε2/q .

In the latter case, in order to have q ≥ 2, we need the condition

κ ≥ γ − 2 .

In any case, and under the assumption that the previous requirement is satisfied in the case γ > 2, we
can thus bound∣∣∣∣∣ νε2

∫
Ωεres,UB

√
%

p′(%)

p′(b)

b
∇b ·

(√
p′(%)

%
b∇%

b

)
dx

∣∣∣∣∣ . 1

ε2

∥∥∥[%](2−γ)/2
res

∥∥∥
Lq

∥∥∥∥∥
√
p′(%)

%
b∇%

b

∥∥∥∥∥
L2

(
L(Ωε

res)
)1/m

,

where 1/q + 1/m = 1/2. In the end, using (21), (22) and the definition of m, after an application of
Young’s inequality we arrive at∣∣∣∣∣ νε2

∫
Ωεres

√
%

p′(%)

p′(b)

b
∇b ·

(√
p′(%)

%
b∇%

b

)
dx

∣∣∣∣∣ . Cδ + δ
ν

ε2

∥∥∥∥∥
√
p′(%)

%
b∇%

b

∥∥∥∥∥
2

L2

.

Finally, putting all those inequalities together, we see that∫ T

0

∣∣J3

∣∣ dt . Cδ + 3 δ
ν

ε2

∫ T

0

∫
Ω
b2
p′(%)

%

∣∣∣∇(%
b

)∣∣∣2 dx dt .

Hence, for δ > 0 small enough, we can absorbe the last term of the previous inequality into the left-hand
side of (27). The proof of the lemma is thus completed. 2

Before moving on, let us observe that the constant in Lemma 3.1 depends on time. Therefore, all the
bounds which we are going to derive from the BD entropy estimate will be only local in time, on any
arbitrarily large but compact interval [0, T ]. This contrasts with the bounds coming from the classical
energy inequality, which instead are global in time.

3.3 Consequences of the BD entropy estimate

Lemma 3.1 provides us with at least three additional pieces of information with respect to the classical
energy inequality (17). Those additional bounds will be fundamental in order to prove convergence in our
setting.

First of all, estimate (25) can be used to improve (19): indeed, as ∇u = Du + Au, we have(√
%ε∇uε

)
ε
⊂ L2

loc

(
R+;L2(Ω)

)
. (29)
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Next, combining (25) with (17), we gather that

√
%ε∇ ln

(%ε
b

)
=

b
√
%ε
∇
(%ε
b

)
∈ L∞loc

(
R+;L2(Ω)

)
, (30)

with uniform inclusion (of course, uniform with respect to ε ∈ ]0, 1]). At this point, an easy computation
shows that

b
√
%ε
∇
(%ε
b

)
= 2∇√%ε −

√
%ε∇ ln b = 2∇√%ε −

(√
[%ε]ess +

√
[%ε]res

)
∇ ln b .

Observe that
(
[%ε]ess

)
ε
is uniformly bounded in L∞(R+ × Ω), whereas

(√
[%ε]res

)
ε
is uniformly bounded

in L∞(R+;L2γ) ↪→ L∞(R+;L2), in view of (21). Putting this information together with (30), by Sobolev
embeddings we finally deduce that

(∇√%ε)ε ⊂ L∞loc

(
R+;L2(Ω)

)
=⇒

(
%ε
)
ε
⊂ L∞loc

(
R+;L3(Ω)

)
. (31)

The previous property provides higher integrability for %ε, globally (i.e. in the whole Ω, without having
to distinguish between essential and residual parts) and uniformly with respect to ε ∈ ]0, 1].

Next, we consider the quantity(
1

ε2

p′(%ε)

%ε
b2
∣∣∣∇(%ε

b

)∣∣∣2)
ε

⊂ L1
loc

(
R+;L1(Ω)

)
. (32)

The term inside the parentheses can be written as

p′(%ε)

%ε
b2
∣∣∣∇(%ε

b

)∣∣∣2 =
(
%γ−2
ε + %−κ−2

ε

)
b2
∣∣∣∇(%ε

b

)∣∣∣2
=

∣∣∣∣bγ/2 (%εb )(γ−2)/2
∇
(%ε
b

)∣∣∣∣2 +

∣∣∣∣b−κ/2 (%εb )(−κ−2)/2
∇
(%ε
b

)∣∣∣∣2
=

∣∣∣∣2γ bγ/2∇(%εb )γ/2
∣∣∣∣2 +

∣∣∣∣−2

κ
b−κ/2∇

(%ε
b

)−κ/2∣∣∣∣2 .
Thus, we get the following uniform embeddings:(

1

ε
∇
(%ε
b

)γ/2)
ε

⊂ L2
loc

(
R+;L2(Ω)

)
,

(
1

ε
∇
(%ε
b

)−κ/2)
ε

⊂ L2
loc

(
R+;L2(Ω)

)
. (33)

This is another fundamental piece of information, since it gives, roughly speaking, a uniform control on
the gradient of %ε/b, with a quantitative bound O(ε) in a suitable norm. However, in order to be able to
fully exploit this information, some preparatory work is needed.

To begin with, we write
1

ε
∇
(%ε
b

)γ/2
=

1

ε
∇

(
%
γ/2
ε − bγ/2

bγ/2

)
.

Therefore, the uniform bound (33) implies that(
1

ε

(
%γ/2ε − bγ/2

))
ε

⊂ L2
loc

(
R+;L6(Ω)

)
. (34)

Let us derive a couple of properties from (34). We notice that we can write

%γ/2ε − bγ/2 =
%γε − bγ

%
γ/2
ε + bγ/2

.
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On the one hand, from the previous relation we immediately deduce that(
1

ε
1Ωεres,B∪Ωεess (%γε − bγ)

)
ε

⊂ L2
loc

(
R+;L6(Ω)

)
.

We use a Taylor expansion of the function f(s) = sγ to get, for a suitable point zε = zε(t, x) between
%ε(t, x) and b(x), the following fact:

%γε − bγ = γ bγ−1
(
%ε − b

)
+ γ (γ − 1) zγ−2

ε

(
%ε − b

)2 ≥ γ bγ−1
(
%ε − b

)
.

This inequality, together with (34) above, implies that(
1Ωεres,B∪Ωεess φε

)
ε
⊂ L2

loc

(
R+;L6(Ω)

)
. (35)

On the other hand, on the set Ωε
res,UB we have that %ε ≥ 2 b∗. Hence, on that set we can write

%γε − bγ

%
γ/2
ε + bγ/2

≥
(%ε

2

)γ 2γ − 1

2 %
γ/2
ε

≥ C %γ/2ε .

Using (34) again, we gather that(
1

ε
1Ωεres,UB

%γ/2ε

)
ε

⊂ L2
loc

(
R+;L6(Ω)

)
=⇒

(
1

ε
1Ωεres,UB

%ε

)
ε

⊂ Lγloc

(
R+;L3γ(Ω)

)
. (36)

The main point of the last computations is that (33) does not really provide a uniform control on the
gradient of the functions φε in L2

T (L2), whenever γ 6= 2. Such a control, which is true when γ = 2, would
give higher integrability of the φε’s in L2

T (L6). Estimate (35) shows that we are not too far from getting
that property, but this fact is true only when %ε stays bounded. Since we do not have L∞ bounds on %ε,
the density functions may grow in some part of the domain Ω (which has to be small, recall (21) above).
Anyway, inequality (36) provides us with a useful control in that region.

Actually, in Ωε
res,B we can derive an even better control on the %ε’s than (35). Indeed, arguing in a

similar way as for getting (36), from the second piece of information in (33) we deduce(
1

ε
1Ωεres,B

%−κ/2ε

)
ε

⊂ L2
loc

(
R+;L6(Ω)

)
=⇒

(
1

ε
1Ωεres,B

%−1
ε

)
ε

⊂ Lκloc

(
R+;L3κ(Ω)

)
. (37)

We conclude this part by showing a third consequence of the BD entropy estimate (25), that is a
control on the gradient functions ∇φε in suitable Lebesgue norms. Since this is a key property, we put it
in the form of a proposition.

Proposition 3.2 Let γ > 1 and κ > 0 such that κ ≥ γ − 2. Let
(
%ε,uε

)
ε
be a family of global in time

finite energy weak solutions to system (1), in the sense of Definition 2.1, related to initial data
(
%0,ε,u0,ε

)
ε

such that (15) holds.
Then:

• if γ ≥ 2, one has the uniform embedding
(
φε
)
ε
⊂ L2

loc

(
R+;H1(Ω)

)
;

• when γ < 2, one deduces instead
(
φε
)
ε
⊂ L2

loc

(
R+;W 1,γ(Ω)

)
.
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Proof. We start by observing that, as a consequence of (32), we get in particular(
%ε
−(1−γ/2) b∇

(
φε
b

))
ε

⊂ L2
loc

(
R+;L2(Ω)

)
,

(
%ε
−(1+κ/2) b∇

(
φε
b

))
ε

⊂ L2
loc

(
R+;L2(Ω)

)
. (38)

Since on the set Ωε
ess ∪ Ωε

res,B we have 0 ≤ %ε ≤ 2b∗, we easily get∣∣∣∣1Ωεess ∪Ωεres,B
b∇

(
φε
b

)∣∣∣∣ . ∣∣∣∣1Ωεess ∪Ωεres,B
%ε
−(1+κ/2) b∇

(
φε
b

)∣∣∣∣ ,
which implies that, for all T > 0 fixed, one has(

1Ωεess ∪Ωεres,B
b∇

(
φε
b

))
ε

⊂ L2
T (L2) . (39)

On the subset Ωε
res,UB, we need to consider two cases.

Case 1. For 1 − γ/2 < 0 we can employ the first part of (38) and an argument similar to the one used
above to deduce that

∀ T > 0 ,

(
1Ωεres,UB

b∇
(
φε
b

))
ε

⊂ L2
T (L2) .

Case 2. For 1− γ/2 ≥ 0 instead, we can write∣∣∣∣1Ωεres,UB
b∇

(
φε
b

)∣∣∣∣ =

∣∣∣∣1Ωεres,UB
%ε
−(1−γ/2) b∇

(
φε
b

)∣∣∣∣ [%ε]1−γ/2res,UB
.

Since, for any T > 0 fixed,
([
%ε
]
res

)
ε
is uniformly bounded in L∞T (Lγ), we have that

([
%ε
]1−γ/2
res,UB

)
ε
is

uniformly bounded in L∞T (L2γ/(2−γ)). In turn, combining this information with (38) implies that

∀ T > 0 ,

(
1Ωεres,UB

b∇
(
φε
b

))
ε

⊂ L2
T (Lγ) .

We have thus discovered that the family of ∇
(
φε/b

)
’s is uniformly bounded in the space L2

T (Lγ), for any
time T > 0.

In order to conclude, we simply write

∇
(
φε
b

)
=

1

b
∇φε −

1

b2
φε∇b ,

and, when γ ≤ 2, we bound
(
φε
)
ε
uniformly in L∞T (Lγ), thanks to (23) and (24). When γ > 2, instead,

we use (23) again, together with the fact that, by definition of φε, we have∫
Ωres,B

|φε|2 dx =
1

ε2

∫
Ωres,B

|%ε − b|2 dx .
1

ε2
L
(
Ωres

)
. 1∫

Ωres,UB

|φε|2 dx =
1

ε2

∫
Ωres,UB

|%ε − b|2 dx .
1

ε2

∫
Ωres,UB

%2
ε dx

.
1

ε2

∥∥[%ε]res

∥∥2

Lγ

(
L
(
Ωres

))(γ−2)/γ
. 1 ,

where we have used also the bounds provided by (21). We thus conclude that, when γ > 2, we have(
φε
)
ε
⊂ L∞T (L2) for any T > 0 fixed.

In the end, the proposition is proved. 2

We also notice that, as a consequence of Proposition 3.2 and Sobolev embedding, we get that

if 1 < γ < 2 ,
(
φε
)
ε
⊂ L2

loc

(
R+;L3γ/(3−γ)(Ω)

)
, and if γ ≥ 2 ,

(
φε
)
ε
⊂ L2

loc

(
R+;L6(Ω)

)
. (40)
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4 The singular perturbation operator and the wave system

In this section, we study in detail the singular part of the primitive equations (1). To begin with, in
Subsection 4.1 we establish first convergence properties for the sequence of solutions

(
%ε,uε

)
ε
towards

some targe profile
(
%,u

)
. Then, in Subsection 4.2 we derive some constraints that the limit point

(
%,u

)
has to satisfy. Finally, in Subsection 4.3 we introduce the system of waves, which encodes the propagation
of fast time oscillations.

4.1 Preliminary convergence properties

From the uniform bounds exhibited in Subsections 3.1, 3.2 and 3.3, we can derive first convergence
properties for the family of solutions

(
%ε,uε

)
ε
of our primitive system (1). Of course, the convergence

we are going to establish is only in weak topologies, therefore it will not be enough for deriving the limit
system (6).

Here below, it is convenient to work on time intervals [0, T ], for arbitrary large but fixed T > 0. Also,
in the notation we imply that all the convergences are taken in the limit ε→ 0+.

The density functions. We start by considering the sequence of the density functions %ε. First of all,
from (20) and (21), we see that we can decompose

%ε = b + %(1)
ε + %(2)

ε , with %(1)
ε −→ 0 in L∞T (L2) , %(2)

ε −→ 0 in L∞T (Lγ) . (41)

Since Ω is of finite measure, we can interpolate those convergence properties with (31) to deduce that

%ε − b = rε , with rε −→ 0 in L∞T (Lp) ∀ p < 3 .

The uniform bounds of Section 3 allow us to find more quantitative convergence properties. Indeed,
from (23) and (35) it follows that there exists a function φ ∈ L∞

(
R+;L2(Ω)

)
∩L2

loc

(
R+;L6(Ω)

)
such that,

up to the extraction of a suitable subsequence, one has[
φε
]
ess

∗
⇀ φ in L∞T (L2) ∩ L2

T (L6) , (42)

where the symbol ∗⇀ stands for the weak-∗ convergence in the respective functional space. On the other
hand, owing to (24), we know that[

φε
]
res
−→ 0 in L∞T (Lp) , ∀ p ∈ [1,min{γ, 2}[ . (43)

Of course, if γ ≥ 2, we have the previous strong convergence only for all 1 ≤ p < 2; however, interpolating
with the bounds of (40), in that case we get[

φε
]
res
−→ 0 in L2

T (Lp) , ∀ p ∈ [1, 6[ .

The velocity fields. As it is apparent from equations (1), any information on the velocity fields uε
and their gradients is lost in regions close to vacuum. This is one of the main difficulties arising in the
analysis of system (1). On the other hand, at least at a first sight, it is not so clear which is the right
quantity to look at; for instance, keep in mind inequalities (18), (29). Here, we decide to work with the
momentum

Vε := %ε uε .

However, the first step is to get some uniform bounds on the velocity fields uε. This is the goal of the
next proposition.
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Proposition 4.1 Let
(
%ε,uε

)
ε
be a family of global in time finite energy weak solutions to system (1), in

the sense of Definition 2.1, related to initial data
(
%0,ε,u0,ε

)
ε
such that (15) holds.

Then we have the uniform estimates(
uε
)
ε
⊂ L∞

(
R+;Lp1(Ω)

)
and

(
∇uε

)
ε
⊂ L2

loc

(
R+;Lp1(Ω)

)
, p1 :=

2κ

κ+ 1
.

In particular, we also have that(
uε
)
ε
⊂ L2

loc

(
R+;Lp2(Ω)

)
, where p2 :=

6κ

κ+ 3
.

Remark 4.2 Note that, due to our assumption κ > 3, one has p1 > 3/2 and p2 > 3 in the above
proposition.

Proof. We start by writing uε = %
−1/2
ε
√
%ε uε, from which, by use of (18) and (21), we immediately

deduce that
(
uε
)
ε
is bounded in L∞T (Lp1).

For the gradient terms, the argument is analogous, since we can write ∇uε = %
−1/2
ε
√
%ε∇uε and use,

this time, (29) and (21). This implies the claimed bound on the sequence
(
∇uε

)
ε
.

Finally, the last uniform bound for the family of uε’s follows from the previous property and Sobolev
embeddings. 2

We are now ready to derive some important estimates for the velocity fields Vε.

Proposition 4.3 Let
(
%ε,uε

)
ε
be a family of global in time finite energy weak solutions to system (1),

in the sense of Definition 2.1, related to initial data
(
%0,ε,m0,ε

)
ε
such that (15) holds. For all ε ∈ ]0, 1],

define Vε := %ε uε.
Then, the following facts hold:

(i) the sequence
(
Vε

)
ε
is uniformly bounded in the space L∞loc

(
R+;L3/2(Ω)

)
∩ L2

loc

(
R+;W 1,p3(Ω)

)
, where

p3 := 6κ/(5κ+ 3);

(ii) there exist sequences
(
Vε
)
ε
and

(
Wε

)
ε
of vector fields such that

∀ ε ∈ ]0, 1] , Vε = Vε + εWε,M ,

with the uniform embedding properties(
Vε
)
ε
⊂ L∞loc

(
R+;L2(Ω)

)
and

(
Wε

)
ε
⊂ L2

loc

(
R+;L3/2(Ω)

)
;

(iii) after setting Ṽε := buε, we can also write

Vε = Ṽε + εW̃ε ,

with the uniform embedding properties(
Ṽε
)
ε
⊂ L2

loc

(
R+;W 1,p1(Ω)

)
and

(
W̃ε

)
ε
⊂ L2

loc

(
R+;L1(Ω)

)
.

Proof. Let T > 0 be arbitrary, but fixed throughout the following computations.
The proof of the L∞T (L3/2) bound of item (i) is easy to get: it is enough to write Vε =

√
%ε
√
%ε uε

and use the uniform bounds given in (18) and (31). Next, let us focus on the bounds for the gradient.
For any 1 ≤ j ≤ 3, we compute

∂jVε =
√
%ε
√
%ε ∂juε + uε ∂j%ε =

√
%ε
√
%ε ∂juε + 2

√
%ε uε ∂j

√
%ε := Aε + Bε .
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Repeating the previous argument, using this time (29) and (31), it is easy to see that
(
Aε
)
ε
⊂ L2

T (L3/2).
As for Bε, we start by observing that, owing to Proposition 4.1, we have

(
uε
)
ε
⊂ L2

T (Lp) for p ≤
p2 := 6κ

κ+3 . On the other hand, we have
(
∇√%ε

)
ε
⊂ L∞T (L2) and

(√
%ε
)
ε
⊂ L∞T (L6). Hence, we get(

Bε
)
ε
⊂ L2

T (Lp3) where p3 = 6κ
5κ+3 . Notice that p3 > 1 if and only if κ > 3: this is precisely the place

where the strongest assumption on κ appears. Item (i) is thus proven.
For showing the decomposition in item (ii), we notice that

Vε =
√
b
√
%ε uε + ε

√
%ε −

√
b

ε

√
%ε uε .

Thus, if we define Vε :=
√
b
√
%ε uε, from (18) we immediately infer that

(
Vε
)
ε
⊂ L∞T (L2). Next, we

define

Wε :=

√
%ε −

√
b

ε

√
%ε uε .

At this point, we use that
∣∣∣√%ε −√b∣∣∣ ≤ b

−1/2
∗ |%ε − b|. Hence, on the one hand, by using (35), we see

that (
1Ωεres,B∪Ωεess

√
%ε −

√
b

ε

)
ε

⊂ L2
T (L6) ;

on the other hand, since

0 ≤ 1Ωεres,UB

(√
%ε −

√
b
)
≤ 1Ωεres,UB

√
%ε . 1Ωεres,UB

%γ/2ε ,

in view of (36) we gather that also
(
1Ωεres,UB

√
%ε−

√
b

ε

)
ε
is uniformly bounded in L2

T (L6). Therefore, we
get that (√

%ε −
√
b

ε

)
ε

⊂ L2
T (L6) =⇒

(
Wε

)
ε
⊂ L2

T (L3/2) .

The proof of item (iii) is similar. This time, we write %ε − b =
(√
%
ε
−
√
b
)(√

%
ε

+
√
b
)
and get

Vε = buε +
(√
%ε −

√
b
)√

%ε uε +
(√
%ε −

√
b
)√

buε .

If we set Ṽε := buε, Proposition 4.1 ensures us that the claimed bounds for this quantity are satisfied.
Next, we claim that the sequence of

W̃ε :=

√
%
ε
−
√
b

ε

√
%ε uε +

√
%
ε
−
√
b

ε

√
buε

is uniformly bounded in L2
T (L1), for all T > 0 fixed. For this, owing to (18), the last part of Proposition

4.1 and Remark 4.2, it is enough to show that
√
%ε −

√
b is of order O(ε) in L∞T (L2) . (44)

As a matter of fact, since
∣∣∣√%ε −√b∣∣∣ ≤ b

−1/2
∗ |%ε − b|, from (20) and (21) we immediately get that((

1Ωεess + 1Ωεres,B

) √
%ε−
√
b

ε

)
ε
is uniformly bounded in L∞T (L2). Finally, as done above, we have

0 ≤ 1Ωεres,UB

(√
%ε −

√
b
)
≤ 1Ωεres,UB

√
%ε ,
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which, in view of (21) again, implies that∥∥∥1Ωεres,UB

(√
%ε −

√
b
)∥∥∥

L2
.
∥∥∥1Ωεres,UB

√
%ε

∥∥∥
L2γ

(
L(Ωε

res)
)1/2−1/2γ

. ε .

In the end, we have shown (44), which in turn implies the sought bound for the vector fields W̃ε. 2

From the previous proposition, we immediately deduce the following corollary. The proof is rather
straightforward, hence omitted.

Corollary 4.4 Under the assumptions of Proposition 4.3, there exists a vector field V, belonging to
L∞loc

(
R+;L3/2(Ω)

)
∩ L2

loc

(
R+;W 1,p3(Ω)

)
such that, up to the extraction of a suitable subsequence, one has

Vε
∗
⇀ V in that space.
In addition, V also belongs to L∞loc

(
R+;L2(Ω)

)
∩ L2

loc

(
R+;W 1,p1(Ω)

)
, and, up to further extractions,

for all T > 0 one has that Vε
∗
⇀ V in L∞T (L2) and Ṽε ⇀ V in L2

T (W 1,p1).

To conclude this part, we define the target velocity field U as

U :=
1

b
V , (45)

where V is the vector field identified in Corollary 4.4.
We notice that U is (up to a further extraction) the weak-limit point of the sequence

(
uε
)
ε
in the

functional spaces identified in Proposition 4.1. We point out also that U belongs to the same functional
spaces to which V belongs.

4.2 Constraints on the limit

In the previous subsection, we have identified the limit points b, φ and V of the families
(
%ε
)
ε
,
(
φε
)
ε
and(

Vε

)
ε
, respectively. Our next goal is to find some properties those limit points have to satisfy. We point

out that these conditions do not fully characterise the limit dynamics, which will be deduced by passing
to the limit in the momentum equation.

Proposition 4.5 Let
(
%ε,uε

)
ε
be a family of global in time finite energy weak solutions to system (1), in

the sense of Definition 2.1, related to initial data
(
%0,ε,u0,ε

)
ε
such that (15) holds. For all ε ∈ ]0, 1], define

Vε := %ε uε. Let φ be the scalar function identified in (42), V the vector field identified in Corollary 4.4
and U the vector field defined in (45).

Then U has to satisfy the anelastic constraint

div
(
bU
)

= 0 in D′
(
R+ × Ω

)
.

On the other hand, φ = φ(b) is determined as a function of b only.

Before proving the previous proposition, let us state a simple lemma. It will be useful to understand
how to deal with the singularity of the pressure and gravitational terms, and to put in evidence the right
singularity in the momentum equation.

Lemma 4.6 Let the assumptions of Proposition 4.5 be in force. Then, after defining

Π(%ε; b) := p(%ε) − p(b) − p′(b)
(
%ε − b

)
,

we have the equality
1

ε2

(
∇p(%ε) − %ε∇G

)
=

1

ε
b∇
(
H ′′(b)φε

)
+

1

ε2
∇Π(%ε; b) .

In addition, one has that
(

1
ε2

Π(%ε; b)
)
ε
is uniformly bounded in L∞

(
R+;L1(Ω)

)
.
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Proof. The claimed identity follows from a simple algebraic computation:

1

ε2

(
∇p(%ε) − %ε∇G

)
=

1

ε2

(
∇
(
p(%ε) − p(b)

)
−
(
%ε − b

)
∇G

)
=

1

ε2
∇Π(%ε; b) +

1

ε2

(
∇
(
p′(b)

(
%ε − b

))
−
(
%ε − b

)
∇G

)
=

1

ε
b∇
(
H ′′(b)φε

)
+

1

ε2
∇Π(%ε; b) ,

where, in the last step, we have used the equality ∇G = H ′′(b)∇b, which holds owing to (4).
It remains us to show the uniform bounds for the family

(
1
ε2

Π(%ε; b)
)
ε
. The argument is similar to

the proof of Lemma 4.1 in [11]; however, since that paper did not deal with non-constant limit density
profiles b nor with the presence of a cold component pc of the pressure, we report here most of the details.

First of all, using Taylor formula at the second order for the pressure function p together with (23),
we easily see that

1

ε2
[Π(%ε; b)]ess ≈ φ2

ε =⇒
(

1

ε2
[Π(%ε; b)]ess

)
ε

⊂ L∞(R+;L1) .

Next, let us denote by ΠE(%ε; b) and Πc(%ε; b) the functions defined as Π(%ε; b), but using respectively pE
and pc instead of the full pressure function p. Then, a Taylor expansion again and (22) imply that

1

ε2

([
ΠE(%ε; b)

]
res,B

+
[
Πc(%ε; b)

]
res,UB

)
⊂ L∞(R+;L1) .

Finally, we notice that∣∣∣[ΠE(%ε; b)
]
res,UB

∣∣∣ . [
%ε
]γ
res

and
∣∣∣[Πc(%ε; b)

]
res,B

∣∣∣ . [
%ε
]−κ
res
,

for which one can deduce the sought bounds by using the controls in (21).
In the end, the lemma is completely proved. 2

We can now turn our attention to the proof of Proposition 4.5.

Proof of Proposition 4.5. We start by considering the weak form of the momentum equation: given a test
function ϕ ∈ D

(
R+ × Ω

)
, with Suppϕ ⊂ [0, T [×Ω for some positive time T > 0, we have

−
∫ T

0

∫
Ω
%ε ∂tϕ dx dt −

∫ T

0

∫
Ω
%ε uε · ∇ϕ dx dt =

∫
Ω
%0,ε ϕ(0) dx .

By assumption on the initial data, we know that %0,ε − b −→ 0 in L2 ∩ L∞, so it is easy to pass to
the limit in the right-hand side of the previous relation. Moreover, in view of (41) and Corollary 4.4, we
know that %ε −→ b and %ε uε = Vε −→ V in D′([0, T [×Ω). Thus, passing to the limit in the previous
equality yields the constraint∫ T

0

∫
Ω
V · ∇ϕ dx dt = 0 ∀ϕ ∈ D =⇒ divV = 0 in D′ .

Now, using the definition of U given in (45) immediately gives the anelastic constraint.
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Let us turn our attention to the momentum equation. As appears in the statement, the momentum
equation does not give any relevant information on the limit points: we will discover that φ is a quantity
which play no role in the limit dynamics.

Indeed, we can test the momentum equation by εψ, where ψ ∈ D(R+×Ω;R3) is a test function with
support (say) included in [0, T [×Ω, for some T > 0. By the uniform bounds established in Section 3, and
using the identity in Lemma 4.6 above, it is possible to see that all the terms in the momentum equation
tend to 0, except for the term b∇

(
H ′′(b)φε

)
. Thus, passing to the limit for ε→ 0+, we find that∫ T

0

∫
Ω
H ′′(b)φ div

(
b ψ
)

dx dt = 0 ∀ψ ∈ D .

Since b never vanishes, this implies that ∇
(
H ′′(b)φ

)
= 0, and then H ′′

(
b(x)

)
φ(t, x) = c(t) a.e. on

R+×Ω, for a suitable function c(t) only depending on the time variable. We claim that c(t) ≡ c(0) is in
fact constant, and does not depend on time neither. Indeed, let us denote by 〈f〉 the space average over
Ω of a function f = f(t, x), namely

〈f〉 = 〈f〉(t) :=
1

L(Ω)

∫
Ω
f(t, x) dx .

Using the definition of φε, we can recast the continuity equation as

∂tφε +
1

ε
divVε = 0 . (46)

Taking the mean value with respect to the space variable, we discover that ∂t〈φ〉 = 0, thus the mean value
of φ is preserved in time: 〈φ〉(t) = 〈φ0〉 for almost all times t ≥ 0, where φ0 is the weak limit point of the
initial data

(
φ0,ε

)
ε
specified in (8). On the other hand, coming back to the equality H ′′(b)φ = c(t) and

computing the space average, we have that 〈φ〉(t) = 〈1/H ′′(b)〉 c(t), which in turn implies that c(t) ≡ c0

has to be a constant function.
The proposition is now proved. 2

As already pointed out, the previous proposition does not allow us to identify the limit dynamics yet.
The main problem consists in passing to the limit in the momentum equation, which reveals a not so easy
task, owing to the non-linear terms appearing in it. In order to succeed, we first need to understand the
propagation of fast oscillations in time: this is the goal of the next subsection.

4.3 Acoustic equation

Lemma 4.6 and Proposition 4.5 allow us to identify the singular part of the equations of motion. Because
of the ill-preparation of the initial data, this singular part is responsible for fast oscillations in time of the
solution, the so called acoustic waves, which may eventually prevent the convergence of the non-linear
terms. In order to study those oscillations and be able to pass to the limit in the equations, we reformulate
our system (1) as a wave system.

Let us recall that we have denoted

φε =
%ε − b

ε
and Vε = %ε uε .

As already remarked in the proof of Proposition 4.5, in terms of those quantities the continuity equation
can be rewritten as in (46). Concerning the momentum equation, instead, we can take advantage of the
identity of Lemma 4.6 to combine the pressure and gravitation terms together.
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In the end, we discover that system (1) can be recasted in the following form:{
ε ∂tφε + divVε = 0

ε ∂tVε + b∇
(
H ′′(b)φε

)
= ε fε ,

(47)

where we have defined

fε = ν div(%εDuε) − div(%εuε ⊗ uε) −
1

ε2
∇Π(%ε; b) . (48)

By the uniform bounds (18), we get that the sequence
(
%εuε⊗uε

)
ε
is uniformly bounded in L∞T (L1),

for all times T > 0. On the other hand, by arguing as in the proof of Proposition 4.3, it is easy to see that(
%εDuε

)
ε
is uniformly bounded in L2

T (L3/2). Finally, the term Π(%ε; b) has been dealt with in Lemma
4.6. Therefore, owing to the Sobolev embedding Hs(Ω) ⊂ L∞(Ω) for any s > 3/2, we get that

∀T > 0 , ∀ s > 5/2 ,
(
fε
)
ε
⊂ L2

T (H−s) . (49)

For later use, it is convenient to introduce a regularised version of the wave system (47). For this, we
employ the low frequency cut-off operator SM , with M ∈ N, introduced in relation (67) in the Appendix.

Since SM commutes with all partial derivatives, applying operator SM to (47) yields{
ε ∂tφε,M + divVε,M = 0

ε ∂tVε,M + b∇
(
H ′′(b)φε,M

)
= ε fε,M + hε,M ,

(50)

where we have denoted φε,M = SM (φε), Vε,M = SM (Vε) and fε,M = SM (fε), and we have set

hε,M :=
[
b, SM

]
∇
(
H ′′(b)φε

)
+ b∇

([
H ′′(b), SM

]
φε
)
.

Thanks to the uniform bounds for the sequence
(
φε
)
ε
in L2

loc

(
R+;W 1,γ(Ω)

)
if γ < 2, in L2

loc

(
R+;H1(Ω)

)
when γ ≥ 2 (keep in mind Proposition 3.2 above), standard commutator estimates (see e.g. Lemma 2.97
of [2]) imply that

∀ T > 0 , ‖hε,M‖L2
T (Lγ) + ‖curlhε,M‖L2

T (Lγ) . 2−M , (51)

where we agree that the Lebesgue exponent γ is changed into 2 whenever γ ≥ 2.
We explicitly point out that, in the above estimate (51), the multiplicative constant is uniform with

respect to both M ∈ N and ε ∈ ]0, 1], but it may depend on the fixed time T > 0. Notice that, for the
uniform bound on curlhε,M , the gradient structure of the commutator terms play a key role. We remark
also that the commutator term hε,M is much better controlled than the corresponding term in [24], thanks
to the uniform bounds provided by the BD entropy estimates.

In addition, as an immediate consequence of (49), we get that

∀ T > 0 , ∀ s ≥ 0 , ‖fε,M‖L2
T (Hs) ≤ C(s,M) , (52)

where the constants C(s,M) > 0 depend only on the quantities inside the parentheses. Notice that these
constants blow up when M → +∞, but they have finite value for any M ∈ N fixed.

We conclude this part by showing uniform bounds on the two sequences
(
φε,M

)
ε,M

and
(
Vε,M

)
ε,M

.
As a matter of fact, in view of our computations in Section 5 below, it is important to introduce a fine
decomposition of those terms.

Lemma 4.7 Let T > 0 be arbitrarily large, but fixed. For any M ∈ N, define the quantities φε,M =
SM (φε) and Vε,M = SM (Vε) as above.
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(i) Both sequences
(
φε,M

)
ε
and

(
Vε,M

)
ε
are sequences of smooth functions in space, which are uniformly

bounded (with respect to ε, but not with respect to M) in the space L2
T (Hs), for any s ≥ 0 arbitrarily

large.

(ii) For any M ∈ N and any ε ∈ ]0, 1], we can write

φε,M = ϕε,M + ε(2−γ)/γ πε,M , (53)

where we have the uniform estimates

sup
M∈N

sup
ε∈ ]0,1]

‖ϕε,M‖L∞T (L2)∩L2
T (L6) ≤ C and ∀ s ≥ 0 , sup

ε∈ ]0,1]
‖πε,M‖L∞T (Hs) ≤ C(s,M) ,

for suitable positive constants C and C(s,M), which depend only on T > 0 and on the quantities in
the brackets. In the case γ ≥ 2, one can simply take πε,M ≡ 0.

(iii) For any M ∈ N and ε ∈ ]0, 1], one has

Vε,M = Vε.M + εWε,M , (54)

with the uniform bounds

sup
M∈N

sup
ε∈ ]0,1]

‖Vε,M‖L∞T (L2) ≤ C and ∀ s ≥ 0 , sup
ε∈ ]0,1]

‖Wε,M‖L2
T (Hs) ≤ C(s,M) .

(iv) We can also write
Vε,M = Ṽε.M + εW̃ε,M , (55)

with the uniform estimates

sup
M∈N

sup
ε∈ ]0,1]

∥∥∥Ṽε,M∥∥∥
L2
T (W 1,p1 )

≤ C and ∀ s ≥ 0 , sup
ε∈ ]0,1]

∥∥∥W̃ε,M

∥∥∥
L2
T (Hs)

≤ C(s,M) .

Proof. The properties claimed in item (i) are an immediate consequence of the bounds for the families(
φε
)
ε
and

(
Vε

)
ε
, combined with the smoothing effect of the low frequency cut-off operators SM . Keep in

mind (23), (24) and Propositions 3.2 and 4.3.
The decompositions of items (iii) and (iv), together with the corresponding uniform estimates, also

follow from Proposition 4.3, simply setting Vε,M := SM (Vε) and Wε,M = SM (Wε), and similarly for
Ṽε,M and W̃ε,M .

Finally, let us prove item (ii). We start by considering the case 1 < γ < 2. In this case, we decompose

φε =
[
φε
]
ess

+
[
φε
]
res
.

Thus, if we set ϕε,M := SM
([
φε
]
ess

)
, estimates (23) and (35) easily imply the uniform boundedness (both

with respect to M ∈ N and ε ∈ ]0, 1]) of the sequence
(
ϕε,M

)
ε,M

. Next, we define

πε :=
1

ε(2−γ)/γ

[
φε
]
res

and πε,M := SM (πε) ,

and we conclude with the help of (24). When γ ≥ 2, instead, one has that
(
φε
)
ε
is uniformly bounded in

L∞T (L2) ∩ L2
T (H1), thanks to Proposition 3.2. Hence, in this case one can simply define ϕε,M = SM (φε)

and πε,M = 0. This completes the proof of the lemma. 2
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5 Passage to the limit

In this section, we finish the proof of our main theorem, showing the convergence (up to an extraction)
of weak solutions to (1) to weak solutions to the target system (6).

The main problem is to pass to the limit in the most non-linear term, namely the convective term in
the momentum equation. This convergence will be proved in the following two subsections, by use of a
compensated compactness argument. Finally, in Subsection 5.3 we will take care of the other terms, and
complete the proof of the convergence.

Before going into the details, let us recall that convergence will be proved for any test function lying in
the kernel of the singular perturbation operator, namely (in view of Proposition 4.5) for any test function

ψ ∈ D
(
R+ × Ω;R3

)
, such that div

(
b ψ
)

= 0 . (56)

Also, it is useful to introduce the following notation: we denote by Rε,M any remainder term, that is
any term such that

lim
M→+∞

lim sup
ε→0+

∣∣∣∣∫ T

0
〈Rε,M , ψ〉D′×D dt

∣∣∣∣ = 0 , (57)

for some given time T > 0 and test function ψ ∈ D
(
[0, T [×Ω;R3

)
taken as above. Similarly, we will use

the notation Rε,M for any scalar term such that

lim
M→+∞

lim sup
ε→0+

Rε,M = 0 . (58)

Typically, we will have

Rε,M =

∫ T

0
〈Rε,M , ψ〉D′×D dt .

In the next computations, the precise values of Rε,M and Rε,M may change from one line to another.

5.1 Approximation of the convective term

Passing to the limit in the convective term is based on a compensated compactness argument, following
work [24] of Masmoudi. This argument relies on using algebraically the structure of the wave system (47)
and performing direct computations on it. Of course, for that, we need first of all to smooth out all the
quantities with respect to the space variables: this is the scope of the next lemma.

Notice that the approximation argument here is delicate, due to the degeneracy of the system close
to vacuum. The cold pressure term pc will be of great help.

Lemma 5.1 For any T > 0 fixed and any smooth test function ψ as in (56), such that Suppψ ⊂ [0, T [×Ω,
we have

lim
M→+∞

lim sup
ε→0+

∣∣∣∣∫ T

0

∫
Ω
%εuε ⊗ uε : ∇ψ dx dt −

∫ T

0

∫
Ω

1

b
Vε,M ⊗Vε,M : ∇ψ dx dt

∣∣∣∣ = 0 .

Proof. We start by observing that, in view of Propositions 4.1 and 4.3, we have
(
Vε

)
ε
⊂ L2

T (L3/2) and(
uε
)
ε
⊂ L2

T (Lp) for all p ∈ [1, p2], where p2 = 6κ/(κ + 3). We also notice that, under our assumption
κ > 3, we have 2/3 + 1/p2 < 1, i.e. p2 > 3. Thus, given any M ∈ N, we can write

I :=

∫ T

0

∫
Ω
%εuε ⊗ uε : ∇ψ dx dt

=

∫ T

0

∫
Ω

1

b
Vε ⊗ SM (buε) : ∇ψ dx dt +

∫ T

0

∫
Ω

1

b
Vε ⊗ (Id − SM )(buε) : ∇ψ dx dt ,
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where all terms are well-defined, and the last term on the right can be bounded as follows:∣∣∣∣∫ T

0

∫
Ω

1

b
Vε ⊗ (Id − SM )(buε) : ∇ψ dx dt

∣∣∣∣ . ‖Vε‖L2
T (L3/2) ‖(Id − SM )(buε)‖L2

T (L3) .

At this point, taking advantage of Bernstein’s inequalities of Lemma A.1 in the Appendix, we can bound

‖(Id − SM )(buε)‖L3 ≤
∑
j≥M
‖∆j(buε)‖L3 .

∑
j≥M

2−j ‖∆j∇(buε)‖L3 (59)

.
∑
j≥M

2
j
[
−1 + 3

(
1
p1
− 1

3

)]
‖∆j(buε)‖Lp1 ≤ 2−αM ‖∇(buε)‖B0

p1,∞

∑
j≥0

2−αj ,

where p1 = 2κ/(κ+ 1) has been defined in Proposition 4.1 and we have set α = (κ− 3)/2κ > 0. Owing
to the embedding Lp ↪→ B0

p,∞ for any p ∈ [1,+∞], we finally get

‖(Id − SM )(buε)‖L3 . 2−αM ‖∇(buε)‖Lp1 . 2−αM .

As a result, the previous computations show that, in the sense of (58), one has

I =

∫ T

0

∫
Ω

1

b
Vε ⊗ SM (buε) : ∇ψ dx dt + Rε,M .

Next, we use again the uniform bound
(
uε
)
ε
⊂ L2

T (Lp2), together with the fact that
(
SM (buε)

)
ε
is

uniformly bounded (with respect to ε, but not to M) in the space L2
T (L∞), to get∫ T

0

∫
Ω

1

b
Vε ⊗ SM (buε) : ∇ψ dx dt (60)

=

∫ T

0

∫
Ω
uε ⊗ SM (buε) : ∇ψ dx dt + ε

∫ T

0

∫
Ω

1

b
φε uε ⊗ SM (buε) : ∇ψ dx dt

=

∫ T

0

∫
Ω

1

b
SM
(
buε

)
⊗ SM (buε) : ∇ψ dx dt + Rε,M .

Indeed, first note that, due to (40), we can write, for γ < 2, the following estimate:∣∣∣∣∫ T

0

∫
Ω

1

b
φε uε ⊗ SM (buε) : ∇ψ dx dtdt

∣∣∣∣ . ‖φε‖L∞T (L3γ/(3−γ)) ‖uε‖L2
T (Lp2 ) ‖SM (buε)‖L2

T (L∞) . 1 .

We observe that this makes sense whenever (3 − γ)/3γ + (κ + 3)/6κ ≤ 1, hence for κ ≥ 3γ/(7γ − 6).
But, for γ > 1, one always has 3γ/(7γ − 6) < 3, therefore the previous estimate is satisfied for all κ > 3.
Notice that, since p2 > 3, we can repeat the exact same computations also when γ ≥ 2, up to use the
right bound from (40).

On the other hand, after noticing that 1/p1 + 1/p2 < 1 for κ > 3 and arguing in a similar way as
above, we can estimate∣∣∣∣∫ T

0

∫
Ω

1

b
(Id − SM )(buε)⊗ SM (buε) : ∇ψ dx dt

∣∣∣∣ . ‖(Id − SM )(buε)‖L2
T (Lp1 ) ‖SM (buε)‖L2

T (Lp2 )

. 2−M ‖∇(buε)‖2Lp1 . 2−M .

Thus, we have proven that the last equality in (60) holds true.
At this point, to conclude the argument we may use the decomposition of Lemma 4.7. Indeed,

keeping in mind the definition of the vector fields Ṽε given in Proposition 4.3 above, we notice that
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SM (buε) = Ṽε,M = Vε,M − εW̃ε,M . Thus, using the bounds collected in item (iv) of Lemma 4.7 we
easily see that∫ T

0

∫
Ω

1

b
SM
(
buε

)
⊗ SM (buε) : ∇ψ dx dt =

∫ T

0

∫
Ω

1

b
Vε,M ⊗Vε,M : ∇ψ dx dt + Rε,M .

This last equality finally ends the proof of the lemma. 2

5.2 Compensated compactness

Owing to Lemma 5.1, it is enough to compute the limit of the approximate convective term

−
∫ T

0

∫
Ω

1

b
Vε,M ⊗Vε,M : ∇ψ dx dt =

∫ T

0

∫
Ω

div

(
1

b
Vε,M ⊗Vε,M

)
· ψ dx dt ,

for any test function ψ ∈ D
(
[0, T [×Ω;R3

)
belonging to the kernel of the singular perturbation operator,

namely such that div (bψ) = 0. Here above, we have performed an integration by parts, because the
vector fields Vε,M are smooth in the space variable.

5.2.1 Preliminary reductions

Now, we compute

div

(
1

b
Vε,M ⊗Vε,M

)
=

1

b
div(Vε,M )Vε,M + Vε,M · ∇

(
1

b
Vε,M

)
(61)

=
1

b
div(Vε,M )Vε,M +

b

2
∇
∣∣∣∣1b Vε,M

∣∣∣∣2 − curl

(
1

b
Vε,M

)
×Vε,M ,

where the symbol × denotes the ususal external product of vectors in R3 and, for a 3-D vector field U, we
have curlU := ∇×U. Notice that the second term in the last line identically vanishes, whenever tested
against a test function ψ as in (56). Thus, this term contributes as a remainder Rε,M to the limit, in the
sense of relation (57).

Therefore, resorting to the first equation in (50) for dealing with the first term, we can write

div

(
1

b
Vε,M ⊗Vε,M

)
= − ε

b
∂tφε,M Vε,M − curl

(
1

b
Vε,M

)
×Vε,M + Rε,M

=
ε

b
φε,M ∂tVε,M − curl

(
1

b
Vε,M

)
×Vε,M + Rε,M ,

where, in the second step, we have included the total time derivative ε ∂t
(
φε,M Vε,M

)
into the remainder

Rε,M . Indeed, the time derivative can be put on the test function and the family
(
φε,M Vε,M

)
ε
is uniformly

bounded in e.g. L2
T (L2), owing to item (i) of Lemma 4.7.

At this point, we use the second equation in (50) to deal with the term presenting the time derivative,
and we get

div

(
1

b
Vε,M ⊗Vε,M

)
= −φε,M ∇

(
H ′′(b)φε,M

)
+
ε

b
φε,M fε,M +

1

b
φε,M hε,M − curl

(
1

b
Vε,M

)
×Vε,M + Rε,M .
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Owing to (52) and item (i) of Lemma 4.7, it is clear that the second term in the right-hand side is a
remainder, in the sense of (57). Next, we claim that also the third term, i.e.

(
φε,M hε,M/b

)
ε,M

, is a
remainder. For proving this claim, in the case γ ≥ 2 it is enough to employ Proposition 3.2 and recall
that estimate (51) holds true with the Lebesgue exponent γ replaced by 2. When γ ∈ ]1, 2[ , instead, we
notice that the piece of information coming from (40) is not good enough to cover all possible values of
γ in that interval. Our approach is instead based on the use of item (ii) of Lemma 4.7, which allows us
to write

1

b
φε,M hε,M =

1

b
ϕε,M hε,M + ε(2−γ)/γ 1

b
πε,M hε,M .

Thanks to (51) and item (ii) of Lemma 4.7, we can estimate∥∥∥∥1

b
ϕε,M hε,M

∥∥∥∥
L1
T (L6γ/(6−γ))

. ‖ϕε,M‖L2
T (L6) ‖hε,M‖L2

T (Lγ) . 2−M ,

which implies that this term satisfies (57). In addition, it is easy to see that also
(
ε(2−γ)/γ πε,M hε,M/b

)
ε

verifies (57). Indeed, recall that in the case γ ≥ 2, one can simply take πε,M ≡ 0. For 1 < γ < 2 one has
only to notice that∥∥∥∥ε(2−γ)/γ 1

b
πε,M hε,M

∥∥∥∥
L2
T (Lγ)

. ε(2−γ)/γ ‖πε,M‖L∞T (L∞) ‖hε,M‖L∞T (Lγ) . C(M) ε(2−γ)/γ .

As a result of the previous computations, we infer that

div

(
1

b
Vε,M ⊗Vε,M

)
= −φε,M ∇

(
H ′′(b)φε,M

)
− curl

(
1

b
Vε,M

)
×Vε,M + Rε,M . (62)

5.2.2 Compactness of the rotational part

The next lemma takes care of the convergence of the curl term in (62).

Lemma 5.2 Denote by V the weak-limit of
(
Vε

)
ε
identified in Corollary 4.4, so that VM = SMV is

the weak-limit of
(
Vε,M

)
ε
when ε→ 0+. Then, for any ψ ∈ D

(
R+ × Ω;R3

)
, one has

lim
M→+∞

lim sup
ε→0+

(∫ T

0

∫
Ω

curl

(
1

b
Vε,M

)
×Vε,M · ψ dx, dt −

∫ T

0

∫
Ω
SMcurl

(
1

b
V

)
×VM · ψ dx dt

)
= 0 .

Proof. We start the proof by recalling that, owing to Proposition 4.3, we have
(
Vε

)
ε
⊂ L2

T (W 1,p3), hence(
curlVε

)
ε
⊂ L2

T (Lp3). Observe that, by dual Sobolev embeddings (see e.g. Theorem 0.5 of [15]), we
have that, for any compact K ⊂ Ω, the space Lp3(K) is compactly embedded into H−2(K), for instance.

Next, consider the (not regularised) wave system (47). Dividing the momentum equation by b and then
taking the curl (which simply consists in an adequate choice of the test function in the weak formulation),
we deduce

∂tcurl

(
1

b
Vε

)
= curl

(
fε
b

)
.

In turn, this relation, together with (49) and the fact that b ∈ C3(Ω), implies that
(
∂tcurl

(
1
bVε

) )
ε
is

uniformly bounded in the space L2
T (H−s), for any s > 7/2.

Putting together these pieces of information and applying the Aubin-Lions lemma (see e.g. Lemma
3.7 of [28]), we gather that(

curl

(
1

b
Vε

))
ε

is compact in L2
T

(
H−2(K)

)
,
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for any compact set K ⊂ Ω. This implies that, for any M ∈ N and any compact K ⊂ Ω fixed, the
sequence (

SMcurl

(
1

b
Vε

))
ε

is compact (with respect to ε) in L2
T

(
L2(K)

)
. (63)

Next, we write∫ T

0

∫
Ω

curl

(
1

b
Vε,M

)
×Vε,M · ψ dx dt

=

∫ T

0

∫
Ω
SMcurl

(
1

b
Vε

)
×Vε,M · ψ dx dt +

∫ T

0

∫
Ω

curl

([
1

b
, SM

]
Vε

)
×Vε,M · ψ dx dt .

By what we have just said, we have that

lim
ε→0+

∫ T

0

∫
Ω
SMcurl

(
1

b
Vε

)
×Vε,M · ψ dx dt =

∫ T

0

∫
Ω
SMcurl

(
1

b
V

)
×VM · ψ dx dt .

On the other hand, using the embedding
(
Vε

)
ε
⊂ L2

T (W 1,p3) again, we have∥∥∥∥curl

([
1

b
, SM

]
Vε

)∥∥∥∥
L2
T (Lp3 )

. 2−M ,

whereas item (iv) of Lemma 4.7 and Bernstein’s inequalities (see Lemma A.1 in the Appendix) imply

‖Vε,M‖L2
T (Lp

′
3 )

. 2
3M( 1

p2
− 1
p′3

)
+ εCM ,

for a constant CM which blows up when M → +∞, but which is uniform in ε > 0. Observe that

3

(
1

p2
− 1

p′3

)
= 3

(
κ+ 3

6κ
− 1 +

5κ+ 3

6κ

)
=

3

κ
, with

3

κ
< 1 .

Thus, we deduce that

lim
M→+∞

lim sup
ε→0+

∫ T

0

∫
Ω

curl

([
1

b
, SM

]
Vε

)
×Vε,M · ψ dx dt = 0 .

The proof of the lemma is now completed. 2

5.2.3 Handling the pressure term

Before computing the limit with respect to M → +∞ in the previous lemma, let us treat the first term
in the right-hand side of (62). As a matter of fact, we need to couple it with a term coming from the
pressure function, namely

− 1

ε2

∫
Ω

Π(%ε; b) divψ dx ,

where Π(%ε; b) has been defined in Lemma 4.6. We will use a fundamental cancellation (appearing after
regularisation), which is already present in [24]. For this, we need the following preparatory lemma.

29



Lemma 5.3 For any T > 0 fixed and any test function ψ as in (56), such that Suppψ ⊂ [0, T [×Ω, the
following relation holds true, in the sense of (58):

− 1

ε2

∫ T

0

∫
Ω

Π(%ε; b) divψ dx dt = − 1

2

∫ T

0

∫
Ωεess

p′′(b)φ2
ε divψ dx dt + Rε,M .

Proof. Let us start by decomposing the term on the left-hand side of the claimed equality into two integrals,
one on the essential set and the other on the residual set:

1

ε2

∫ T

0

∫
Ω

Π(%ε; b) divψ dx dt =
1

ε2

∫ T

0

∫
Ωεess

Π(%ε; b) divψ dx dt +
1

ε2

∫ T

0

∫
Ωεres

Π(%ε; b) divψ dx dt .

Notice that, in order to treat the integral over Ωε
res, the bounds of Lemma 4.6 are not enough. Instead,

in order to take advantage of the smallness bounds in (21), we need to introduce a finer decomposition
and split that term further into two pieces.

To begin with, let us consider ΠE(%ε; b) = pE(%ε)−pE(b)−p′E(b)(%ε−b) only. On the one hand, thanks
the uniform bounds of (35), we have, for some zε = zε(t, x) belonging to the interval ]%ε(t, x), b(x)[ , the
estimate∣∣∣∣∣ 1

ε2

∫
Ωεres,B

ΠE(%ε; b) divψ dx

∣∣∣∣∣ . 1

ε

∫
Ωεres,B

(
p′E(zε) + p′E(b)

) ∣∣φε∣∣ ∣∣ divψ
∣∣dx

.
1

ε

∥∥∥1Ωεres,B
φε

∥∥∥
L2
T (L6)

(
L(Ωε

res)
)5/6

. ε−1+5/3 = ε2/3 ,

which tells us that the contribution coming from this term is a remainder, in the sense of (57). On the
other hand, proceeding similarly and employing the assumption p′E(z) ≈ zγ−1, we get∣∣∣∣∣ 1

ε2

∫
Ωεres,UB

ΠE(%ε; b) divψ dx

∣∣∣∣∣ . 1

ε

∫
Ωεres,UB

%γ−1
ε

∣∣φε∣∣ ∣∣divψ
∣∣dx .

Now, owing to (36), we gather the uniform bound(
1

ε
1Ωεres,UB

%γ−1
ε

)
ε

⊂ LrT (Lp) , r :=
γ

γ − 1
and p :=

3 γ

γ − 1
, (64)

whereas we can use (40) to control the φε term. After checking that

∀ 1 < γ ≤ 2 ,
γ − 1

γ
+

1

2
≤ 1 and

1

q
:=

3− γ
3 γ

+
γ − 1

3 γ
< 1 ,

we can thus bound∣∣∣∣∣ 1

ε2

∫ T

0

∫
Ωεres,UB

ΠE(%ε; b) divψ dx dt

∣∣∣∣∣ .
(

1

ε

∥∥∥1Ωεres,UB
%γ−1
ε

∥∥∥
LrT (Lp)

)
‖φε‖L2

T (L3γ/(3−γ))

(
L(Ωres)

)1−1/q

. ε2(1−1/q) .

A direct computation shows that 1 − 1/q > 0. Therefore, for 1 < γ ≤ 2, we have proved that the
contribution coming from the integral over the residual set is indeed a remainder, in the sense of (57).

In the case γ > 2, instead, we interpolate between the L∞T (Lγ/(γ−1)) bound on
(
1Ωεres,UB

%γ−1
ε

)
ε
, which

comes from (21), and the bounds provided by (64). We find that(
1Ωεres,UB

%γ−1
ε

)
ε
⊂ L2

T (Lm) , m :=
3γ

2γ − 3
≥ 6

5
.
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Hence, owing to (40) again, when γ > 2 we can set θ := γ−2
2(γ−1) and estimate∣∣∣∣∣ 1

ε2

∫ T

0

∫
Ωεres,UB

ΠE(%ε; b) divψ dx dt

∣∣∣∣∣ . 1

ε

∥∥∥1Ωεres,UB
%γ−1
ε

∥∥∥
L2
T (Lm)

‖φε‖L2
T (L6)

(
L(Ωε

res)
)5/6−1/m

.
1

ε

∥∥∥1Ωεres,UB
%γ−1
ε

∥∥∥θ
L∞T (Lγ/(γ−1))

∥∥∥1Ωεres,UB
%γ−1
ε

∥∥∥1−θ

LrT (Lp)
ε2(5/6−1/m)

. ε2/3 ε−2/m ε2θ(γ−1)/γ ε1−θ = ε4/3 ε−(γ−2)/2(γ−1) .

A simple computation shows that

∀ γ >
2

5
,

4

3
− γ − 2

2(γ − 1)
> 0 ,

which finally implies that, also in the case γ > 2, the integral over the residual set is a remainder, in the
sense of (57).

In the end, we have proved that, for any value of γ > 1, the contribution coming from the integral of
ΠE over the residual set is a remainder, in the sense of relation (57).

Next, let us consider the integral involving Πc(%ε; b) := pc(%ε)− pc(b)− p′c(b)(%ε− b) over the residual
set. For this term, the roles of Ωε

res,B and Ωε
res,UB are inverted. For instance, by Taylor formula at the

first order we can write, for suitable zε(t, x) ∈ ]b, %ε(t, x)[ , the following estimate:∣∣∣∣∣ 1

ε2

∫
Ωεres,UB

Πc(%ε; b) divψ dx

∣∣∣∣∣ . 1

ε2

∫
Ωεres,UB

(
p′c(zε) + p′c(b)

)
%ε
∣∣divψ

∣∣dx
.

1

ε2

∥∥∥1Ωεres,UB
%ε

∥∥∥
LγT (L3γ)

(
L(Ωε

res)
)1−1/(3γ)

. ε1−2/(3γ) ,

which obviously converges to 0 when ε → 0+. In the previous computation, we have used (36) and (21)
to absorb the negative powers of ε.

In Ωres,B, instead, Taylor formula and the fact that zε(t, x) ∈ ]%ε(t, x), b[ yield∣∣∣∣∣ 1

ε2

∫ T

0

∫
Ωεres,B

Πc(%ε; b) divψ dx dt

∣∣∣∣∣
.

1

ε2

∫ T

0

∫
Ωεres,B

(
p′c(zε) + p′c(b)

)
(b− %ε)

∣∣divψ
∣∣dx dt .

1

ε2

∫ T

0

∫
Ωεres,B

%−κ−1
ε dx dt

.
1

ε2

∥∥∥1Ωεres,B
%−κ/2ε

∥∥∥2

L2
T (L6)

∥∥[%−1
ε

]
res

∥∥
L∞T (Lκ)

(
L(Ωε

res)
)2/3−1/κ

,

which, in view of (37) and (21), is of order O(ε4/3).
To sum up, we have shown that also the contribution from Πc over the residual set is a remainder, in

the sense of (57).

In light of what we have shown above, in order to complete the proof of the lemma it remains us to
deal with the integral on the essential set. For this, we remark that, by Taylor formula, we can write

1

ε2

∫ T

0

∫
Ωεess

Π(%ε; b) divψ dx dt =
1

2

∫ T

0

∫
Ωεess

p′′(b)φ2
ε divψ dx dt +

ε

6

∫ T

0

∫
Ωεess

p′′′(zε)φ
3
ε divψ dx dt ,
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for some zε = zε(t, x) belonging to the interval joining b(x) and %ε(t, x). At this point, we notice that the
second integral on the right-hand side of the previous equality can be bounded, with the help of (23) and
(35), in the following way:∣∣∣∣∫ T

0

∫
Ωess

p′′′(zε)φ
3
ε divψ dx dt

∣∣∣∣ . ∥∥∥[φ]2ess

∥∥∥
L1
T (L3)

∥∥[φε]ess

∥∥
L∞T (L2)

. 1 .

Putting everything together, we finally get the claimed relation. 2

Of course, in the equality of Lemma 5.3 there is no dependence of the remainder on the approximation
parameterM . However, in order for this information to be useful, we need to introduce the regularisation
in the first term of the right-hand side. This is easy, thanks to Proposition 3.2 and the fact that, on the
essential set, the function φε possesses higher integrability in space (keep in mind property (35)).

Indeed, for any M ∈ N, we can write[
φε
]2
ess

=
[
φε
]
ess
φε,M +

[
φε
]
ess

(
Id − SM

)
φε .

Concerning the last term on the right, for any T > 0 fixed, we proceed as follows: we use the uniform
bounds

([
φε
]
ess

)
ε
⊂ L2

T (L6) and, for 6/5 ≤ γ < 2, the fact that∥∥(Id − SM)φε∥∥L2
T (Lγ)

. 2−M
∥∥(Id − SM)∇φε∥∥L2

T (Lγ)
. 2−M . (65)

This control follows from Bernstein’s inequality (see Lemma A.1 in the Appendix) and the uniform bounds
of Proposition 3.2, by arguing in a similar way as done in (59). When 1 < γ < 6/5, instead, we can use
an interpolation argument between Lebesgue norms (because the inequality 3γ/(3 − γ) > 6/5 holds for
any γ > 6/7) to get, for a suitable θ ∈ ]0, 1[ , the following series of inequalities:∥∥(Id − SM)φε∥∥L2

T (L6/5)
.
∥∥(Id − SM)φε∥∥θL2

T (Lγ)

∥∥(Id − SM)φε∥∥1−θ
L2
T (L3γ/(3−γ))

. 2−θM ‖∇φε‖θL2
T (Lγ) ‖∇φε‖

1−θ
L2
T (Lγ)

. 2−θM .

Finally, when γ ≥ 2, we can simply use Proposition 3.2 and relation (68) of the Appendix to find that∥∥(Id − SM)φε∥∥L2
T (L2)

. 2−M .
Next, we further decompose[

φε
]
ess
φε,M =

[
φε,M

]2
ess

+ 1Ωεess

(
Id − SM

)
φε φε,M .

At this point, we notice that all the uniform bounds satisfied by
(
φε
)
ε
are also satisfied by

(
φε,M

)
ε
,

uniformly with respect to both M ∈ N and ε ∈ ]0, 1]. Thus, the same argument as above yields∥∥1Ωεess

(
Id − SM

)
φε φε,M

∥∥
L1
T (L1)

. 2−θM ,

where θ = 1 if γ ≥ 6/5, whereas θ ∈ ]0, 1[ is as above in the case 1 < γ < 6/5.
In the end, putting everything together, we have discovered that

− 1

ε2

∫ T

0

∫
Ω

Π(%ε; b) divψ dx dt = − 1

2

∫ T

0

∫
Ωεess

p′′(b)φ2
ε,M divψ dx dt + Rε,M . (66)
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5.2.4 Coupling the pressure with the convective term

We are now ready to deal with the first term appearing in the right-hand side of (62). We have to pay
attention, because here the signs are important. We start by writing, for ψ as in (56),

−
∫

Ω
φε,M∇

(
H ′′(b)φε,M

)
· ψ dx = − 1

2

∫
Ω
H ′′(b)∇φ2

ε,M · ψ dx−
∫

Ω
φ2
ε,M H ′′′(b)ψ · ∇b dx

= − 1

2

∫
Ω
H ′′(b)∇φ2

ε,M · ψ dx+

∫
Ω
φ2
ε,M H ′′′(b) b divψ dx ,

where we have also used the fact that div(b ψ) = 0. An integration by parts shows that

− 1

2

∫
Ω
H ′′(b)∇φ2

ε,M · ψ dx =
1

2

∫
Ω
φ2
ε,M H ′′(b) divψ dx +

1

2

∫
Ω
φ2
ε,M H ′′′(b)∇b · ψ dx

=
1

2

∫
Ω
φ2
ε,M H ′′(b) divψ dx − 1

2

∫
Ω
φ2
ε,M H ′′′(b) bdivψ dx .

At this point, we insert this expression into the previous one; after exploiting the definition H ′′(z) =
p′(z)/z for all z > 0, we finally gather

−
∫

Ω
φε,M∇

(
H ′′(b)φε,M

)
· ψ dx =

1

2

∫
Ω
φ2
ε,M divψ p′′(b) dx .

Owing to item (i) of Lemma 4.7 and estimate (22), we easily see that the integral over the residual set is
small. Therefore, after integrating also in time, in the end we get

−
∫ T

0

∫
Ω
φε,M∇

(
H ′′(b)φε,M

)
· ψ dx dt =

1

2

∫ T

0

∫
Ωεess

φ2
ε,M divψ p′′(b) dx dt + Rε,M .

The fundamental point, here, is that the first term on the right-hand side exactly cancels out with the
term coming from (66).

5.2.5 Limit of the convective term: conclusion

Putting together Lemma 5.1 and the computations of Subsection 5.2, we finally discover that, for any
test function ψ belonging to the kernel of the singular perturbation operator, namely such that (56) holds
true, one has

lim
ε→0+

(∫ T

0

∫
Ω
%εuε ⊗ uε : ∇ψ dx dt − 1

ε2

∫ T

0

∫
Ω

Π(%ε; b) divψ dx dtdt

)
= lim

M→+∞

∫ T

0

∫
Ω
SMcurl

(
1

b
V

)
×VM · ψ dx dt .

At this point, remark that, since V is a weak-limit point of the sequence
(
Vε

)
ε
, in view of Corollary

4.4 and Lemma 4.7, it enjoys the following property:

V ∈ L∞loc

(
R+;L2(Ω)

)
∩ L2

loc

(
R+;W 1,p1(Ω)

)
, p1 :=

2κ

κ+ 1
.

In particular, we also have V ∈ L2
loc

(
R+;Lp2(Ω)

)
, where p2 := 6κ/(κ+ 3).

Hence, repeating the computations used in the final part of the proof to Lemma 5.2, we get that

lim
M→+∞

∫ T

0

∫
Ω
SMcurl

(
1

b
V

)
×VM · ψ dx dt = lim

M→+∞

∫ T

0

∫
Ω

curl

(
1

b
VM

)
×VM · ψ dx dt ,
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and performing computations in (61) backwards, we deduce that, for any test function ψ such that
div (b ψ) = 0, we have

lim
M→+∞

∫ T

0

∫
Ω
SMcurl

(
1

b
V

)
×VM · ψ dx dt = lim

M→+∞
−
∫ T

0

∫
Ω

1

b
VM ⊗VM : ∇ψ dx dt ,

where we have also used the fact that divV = 0 (as it follows from taking the limit in the mass equation,
recall Proposition 4.5 above).

Now, using that V ∈ L2
T (W 1,p1) and arguing as in (59), it is easy to see that, for almost any t ∈ [0, T ],

one has ∥∥SM(V(t)
)
− V(t)

∥∥
Lp1

. 2−M ‖∇V(t)‖Lp1 ,
which immediately implies that

SMV −→ V strongly in L2
T (Lp1) .

In fact, this convergence holds true even in L2
T (B1

p1,2
) (notice that, by (69) below, we haveW 1,p1 ↪→ B1

p1,2
),

owing to Lemma A.4 and the Lebesgue dominated convergence Theorem; however, the previous weaker
convergence result is enough for our scopes.

Therefore, SMV converges strongly to V in any intermediate space between L2
T (Lp1) and L2

T (Lp2),
thus also in L2

T (L2) for instance. Thanks to this latter property, we can compute

lim
M→+∞

−
∫ T

0

∫
Ω

1

b
VM ⊗VM : ∇ψ dx dtdt = −

∫ T

0

∫
Ω

1

b
V ⊗V : ∇ψ dx dt dt .

5.3 Deriving the asymptotic system: final computations

In Subsections 5.1 and 5.2, we have seen how passing to the limit in the convective term and the pressure
term. About the latter, we recall that we have to make use of Lemma 4.6, and more precisely of the
relation

1

ε2

(
∇p(%ε) − %ε∇G

)
=

1

ε
b∇
(
H ′′(b)φε

)
+

1

ε2
∇Π(%ε; b) ,

where the first term on the right disappears whenever tested again a test function satisfying (56), whereas
the second term is combined with the convective term to give rise to small remainders, in the sense of
relations (57) and (58).

On the other hand, the same computations performed in Proposition 4.5 show how dealing with the
continuity equation for the densities %ε and with the time derivative term

(
∂t(%ε uε)

)
ε
in the momentum

equation. Therefore, in order to complete the proof of Theorem 2.2, we must show convergence of the
viscosity term

ν

∫ T

0

∫
Ω
%εDuε : ∇ψ dx dt ,

where ψ is as in (56) and is such that Suppψ ⊂ [0, T [×Ω. We start by observing that only the integral
over Ωε

ess matters, owing to the uniform bounds
(√
%ε∇uε

)
ε
⊂ L2

T (L2) and
([√

%ε
]
res

)
ε
⊂ L∞T (L2γ),

with 1/2 + 1/(2γ) < 1.
Next, on Ωε

ess we use the strong convergence %ε → b in L∞T (L2) ∩ L2
T (L6) and the weak convergence

Duε ⇀ DU in L2
T (Lp1). We observe that 1/6 + 1/p1 ≤ 1. Therefore, we deduce that, for any test

function ψ as above, we have

ν

∫ T

0

∫
Ω
%εDuε : ∇ψ dx dt −→

∫ T

0

∫
Ω
bDU : ∇ψ dx dt when ε → 0+ .

Theorem2.2 is now proven. 2
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A Appendix: elements of Fourier analysis

We recall here the main ideas of Littlewood-Paley theory, which we will exploit in our analysis. The
classical construction is usually given in the Rd setting: we refer e.g. to Chapter 2 of [2] for details.
However, everything can be adapted (see e.g. reference [6]) to cover also the case of a d-dimensional
periodic box Tda, where a ∈ Rd (this means that the domain is periodic in space with, for any 1 ≤ j ≤ d,
period equal to 2πaj with respect to the j-th component).

For simplicity of presentation, we focus here on the case where aj = 1 for all j, and we simply write
the spacial domain as Td. We also denote by |Td| = L(Td) the Lebesgue measure of the box Td.

First of all, let us recall that, for a tempered distribution u ∈ S ′(Td), we denote by Fu =
(
ûk
)
k∈Zd

its Fourier series, so that we have

u(x) =
1

|Td|1/2
∑
k∈Zd

ûk e
ik·x .

Next, we introduce the so called Littlewood-Paley decomposition, based on a non-homogeneous dyadic
partition of unity with respect to the Fourier variable. We fix a smooth scalar function ϕ such that
0 ≤ ϕ ≤ 1, ϕ is even and supported in the ring

{
r ∈ R

∣∣ 5/6 ≤ |r| ≤ 12/5
}
, and such that

∀ r ∈ R \ {0} ,
∑
j∈Z

ϕ
(
2−j r

)
= 1 .

Let us define |D| := (−∆)1/2 as the Fourier multiplier2 of symbol |k|, for k ∈ Zd. The dyadic blocks
(∆j)j∈Z are then defined by

∀ j ∈ Z , ∆ju := ϕ(2−j |D|)u =
∑
k∈Zd

ϕ(2−j |k|) ûk eik·x .

Notice that, for j < 0 negative enough (in general, depending on the box Tda), one has ∆j ≡ 0. In addition,
one has the following Littlewood-Paley decomposition in S ′(Td):

∀ u ∈ S ′(Td) , u = û0 +
∑
j∈Z

∆ju in S ′(Td) .

Finally, we introduce the following low frequency cut-off operators: for any j ∈ Z, we define

Sju := û0 +
∑

m≤j−1

∆mu . (67)

We explicitly remark that, for any j ∈ Z, the operators ∆j and Sj are linear operators which are
bounded on Lp for any p ∈ [1,+∞], with norm independent of j and p.

At this point, we present a simplified version of the classical Bernstein inequalities, which turns out
to be enough for our scopes. We refer to Chapter 2 of [2] for the statement in its full generality.

Lemma A.1 There exists a constant C > 0, only depending on the space dimension d, on the size of the
torus Tda and on the support of the function ϕ fixed above, such that the following properties hold true: for
any j ∈ Z, for any α ∈ Nd, for any couple (p, q) ∈ [1,+∞]2 such that p ≤ q, and for any smooth enough
u ∈ S ′(Td), we have

‖∇αSju‖Lq ≤ C |α|+1 2
j|α|+jd

(
1
p
− 1
q

)
‖Sju‖Lp

2Throughout we agree that f(D) stands for the pseudo-differential operator u 7→ F−1(f Fu).
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and C−|α|−1 2−j|α| ‖∆ju‖Lp ≤ ‖∇α∆ju‖Lp ≤ C |α|+1 2j|α| ‖∆ju‖Lp ,

where we have denoted |α| :=
∑

j αj.

By use of Littlewood-Paley decomposition, we can now define the class of Besov spaces.

Definition A.2 Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space Bs
p,r = Bs

p,r(Td) is
the set of tempered distributions u ∈ S ′(Td) for which

‖u‖Bsp,r :=

|û0|r +
∑
j∈Z

2jsr ‖∆ju‖rLp

1/r

< +∞ ,

with the standard modification in the definition of the norm in the case when r = +∞.

It is well known that, for all s ∈ R, the space Bs
2,2 coincides with Hs, with equivalent norms:

‖f‖2Hs ∼ |û0|2 +
∑
j∈Z

22sj ‖∆ju‖2L2 . (68)

When p 6= 2, non-homogeneous Besov spaces are interpolation spaces between Sobolev spaces W k,p: for
all p ∈ ]1,+∞[ , one has the chain of following continuous embeddings:

B0
p,min(p,2) ↪→ Lp ↪→ B0

p,max(p,2) . (69)

As an immediate consequence of the Bernstein inequalities, one gets the following Sobolev-type em-
bedding result.

Proposition A.3 Let 1 ≤ p1 ≤ p2 ≤ +∞. The, the space Bs1
p1,r1 is continuously embedded in the space

Bs2
p2,r2 whenever

s2 < s1 − d
(

1

p1
− 1

p2

)
or s2 = s1 − d

(
1

p1
− 1

p2

)
and r1 ≤ r2 .

We conclude this appendix by recalling Lemma 2.73 of [2].

Lemma A.4 If 1 ≤ r < +∞, for any f ∈ Bs
p,r one has

lim
j→+∞

‖f − Sjf‖Bsp,r = 0 .
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