Xavier Blanchot
email: xavier.blanchot@u-bordeaux.fr

François Clautiaux
email: francois.clautiaux@math.u-bordeaux.fr

Boris Detienne
email: boris.detienne@math.u-bordeaux.fr

Aurélien Froger
email: aurelien.froger@math.u-bordeaux.fr

Manuel Ruiz
email: manuel.ruiz@rte-france.com

The Benders by batch algorithm: design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs

Keywords: Large-scale optimization, Benders Decomposition, Stochastic programming, Cut aggregation

The Benders by batch algorithm: design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs 1 Introduction

Large-scale two-stage stochastic linear programs arise in many applications such as network design, telecommunication network planning, air freight scheduling, power generation planning. In such problems, first-stage decisions (also called here-and-know decisions) are to be made before knowing the value taken by random parameters, then second-stage decisions (also called wait-and-see decisions) are made after observing the value taken by each random parameter. In practice, many approaches introduced to solve such problems are based on decomposition techniques [START_REF] Ruszczyński | Decomposition methods in stochastic programming[END_REF].

In this paper, we study two-stage stochastic linear programs. We assume that the probability distribution is given by a finite set of scenarios and focus on problems with a large number of scenarios. We consider the following linear program with a scenario block structure:

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % min c J x
`ÿ sPS psg J s ys s.t. : Wsys " ds ´Tsx, @s P S ys P R n 2 `, @s P S x P X (1) where x P R n 1 , c P R n 1 , S is a finite set of scenarios, ps P R `is a positive weight associated with a scenario s P S (e.g., a probability), gs P R n 2 , Ws P R mˆn 2 , Ts P R mˆn 1 , ds P R m , and X Ă R n 1 is a polyhedral set. Variables x are called first-stage variables and variables ys are called second-stage variables or recourse variables. Problem (1) is called the extensive formulation of a two-stage stochastic problem. makes the use of decomposition methods attractive. If we fix the first-stage variables to x P X, then the resulting problem becomes separable according to the scenarios. We denote by pSP px, sqq the subproblem associated with a scenario s P S and by ϕpx, sq its value.

Let Πs " tπ P R m |W J s π ď gsu be the polyhedron associated with the dual of pSP px, sqq, which does not depend on first-stage variables x. We denote by Rays(Πs) the set of extreme rays of Πs, and by Vert(Πs) the set of extreme points of Πs. By Farkas' Lemma, we can write an expression of the domain of ϕp¨, sq as dom ´ϕp¨, sq ¯" tx P R n 1 |r J s pds ´Tsxq ď 0, @rs P RayspΠsqu. Then we can replace in formulation (2) the polyhedral mapping x Þ Ñ ϕpx, sq by its outer linearization on its domain. Using an epigraph variable θs for every s P S, we obtain the multicut Benders reformulation [START_REF] Birge | A multicut algorithm for two-stage stochastic linear programs[END_REF] of problem (1):

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % min x,θ c J x
`ÿ sPS psθs s.t. : θs ě π J s pds ´Tsxq, @s P S, @πs P VertpΠsq piq 0 ě r J s pds ´Tsxq, @s P S, @rs P RayspΠsq piiq x P X, θ P R cardpSq (4) Constraints piq are called optimality cuts, and constraints piiq, feasibility cuts. Without loss of generality, we assume that the problem has relatively complete recourse (i.e., X Ă dom pϕp¨, sqq for every scenario s P S), meaning that every subproblem is feasible for every x P X. As a result, only optimality cuts are required in the Benders decomposition algorithm, and every x P X defines an upper bound on the optimal value of the problem. Every two-stage linear stochastic program can be reformulated to a problem satisfying this hypothesis by introducing slack variables with large enough coefficients in the objective function (see e.g. [START_REF] Bodur | Two-stage linear decision rules for multi-stage stochastic programming[END_REF] or [START_REF] Shapiro | On Complexity of Stochastic Programming Problems[END_REF]).

The classic multicut Benders decomposition algorithm (see Algorithm 1 in the case of relatively complete recourse) consists of the relaxation of constraints piq and piiq and an iterative scheme to add them until convergence is proven. As the number of extreme rays and vertices of polyhedra Πs is finite, for every s P S, the total number of optimality and feasibility cuts is finite. Then, this algorithm converges in a finite number of iterations. The relaxation of (4) at iteration k of the algorithm is called the relaxed master program, denoted by pRM P q pkq and its solution is denoted by px pkq , p θpkq s qsPSq.

Algorithm 1: Classic multicut Benders decomposition algorithm

Parameters: ϵ ě 0 the selected optimality gap 1 Initialization: k Ð 0, U B p0q Ð `8, LB p0q Ð ´8 2 while U B pkq ą LB pkq `ϵ do

3 k Ð k `1 4
Solve pRM P q pkq and retrieve px pkq , p θpkq s qsPSq 5 LB pkq Ð c J xpkq `řsPS ps θpkq s 6

for s P S do 7

Solve pSP px pkq , sqq and retrieve πs P VertpΠsq 8

Add θs ě π J s pds ´Tsxq to pRM P q pkq 9 U B pkq Ð min ´U B pk´1q , c J xpkq `řsPS psπ J s pds ´Ts xpkq q 10 pRM P q pk`1q Ð pRM P q pkq 11 Return xpkq

When the total number of subproblems is large, solving all the subproblems at each iteration, like in Algorithm 1, can be time-consuming. To overcome this issue, we introduce a new exact algorithm to solve problem (1), referred to as the Benders by batch algorithm. The term batch refers to a given fixed partition of all subproblems into separate batches.

We propose a new stopping criterion that allows us to identify that a solution cannot be proven optimal at the current iteration without necessarily having to solve all the subproblems. As a result, only a few subproblems are generally solved at a first-stage candidate solution. To prevent introducing too many cuts in the relaxed master program, the algorithm can use partial cut aggregation, thus generating a single cut from all subproblems that belong to an identical batch. If the number of batches is equal to one, the Benders by batch algorithm is equivalent to the classic Benders decomposition algorithm (multicut or monocut, depending on the use of cut aggregation). Several existing methods based on similar ideas require fixed recourse (Ws " W, @s P S in problem (1)) [START_REF] Oliveira | Inexact Bundle Methods for Two-Stage Stochastic Programming[END_REF] and deterministic second-stage objective function (gs " g, @s P s in problem (1)) [START_REF] Wets | Stochastic Programming: Solution Techniques and Approximation Schemes[END_REF][START_REF] Dantzig | Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition[END_REF][START_REF] Higle | Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms with Recours[END_REF]. Moreover, some of them do not have finite convergence [START_REF] Higle | Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms with Recours[END_REF], or are not exact [START_REF] Dantzig | Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition[END_REF]. The method proposed in this work is exact, has finite convergence, and does not require any assumption on the value of the random parameters gs, Ws, ds, Ts in problem (1).

We also show how to stabilize the proposed algorithm. As the classical primal stabilization methods of the literature (Ben-Ameur and Neto, 2007; [START_REF] Lemaréchal | New variants of bundle methods[END_REF] are designed for algorithms which solve all the subproblems at each iteration, it is not possible to apply them directly. They require the actual value of the recourse function at each iteration, at least to evaluate their stopping criterion. We therefore propose a generic framework to stabilize the Benders by batch algorithm and prove the finite convergence and exact behavior of the stabilized algorithm. Our algorithm is also compatible with classical dual stabilization techniques [START_REF] Magnanti | Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria[END_REF][START_REF] Papadakos | Practical enhancements to the Magnanti-Wong method[END_REF][START_REF] Sherali | On generating maximal nondominated Benders cuts[END_REF].

The contributions of the paper can be summarized as follows:

We propose a new exact algorithm to solve the Benders reformulation of two-stage linear stochastic programs with finite probability distribution. This algorithm is based on a sequential stopping criterion relying on a partition of the subproblems. This stopping criterion allows the algorithm to solve only a few subproblems at most iterations by detecting that a first-stage candidate solution cannot be proven optimal early in the subproblems' solution process.

We develop a general framework to apply primal stabilization to the Benders by batch algorithm, as classical primal stabilization methods cannot be applied if all the subproblems are not solved at each iteration. We state sufficient conditions for the stabilized algorithm to be exact and have finite convergence and provide two effective primal stabilization schemes.

We perform an extensive numerical study showing the efficiency of the developed algorithm on some classical stochastic instances from the literature compared to implementations of the classic monocut and multicut Benders decomposition algorithm, with and without in-out stabilization, the static multicut aggregation approach of [START_REF] Trukhanov | Adaptive multicut aggregation for two-stage stochastic linear programs with recourse[END_REF], and a level bundle method.

The paper is organized as follows. Section 2 reviews the literature on acceleration techniques for Benders decomposition, with a focus on the stochastic case, and on closely related methods. In section 3, we present the Benders by batch algorithm. Section 4 presents a general framework to stabilize our algorithm and two stabilization schemes: the first one based on the classical in-out separation scheme, and the second one based on exponential moving averages. Section 5 presents extensive computational experiments. Then, section 6 concludes and outlines perspectives.

Related work

The classic Benders decomposition algorithm can be slow to converge. Researchers have proposed several techniques to accelerate its convergence. We first present classical primal and dual stabilization methods, which are the most widespread and general methods to accelerate the Benders decomposition algorithm. We then present different methods specific to stochastic programming, with a focus on methods that avoid systematically solving all the subproblems.

A well-known downside of cutting-plane methods, and therefore of the Benders decomposition algorithm, is the oscillation of the first-stage variables [START_REF] Nesterov | Nonsmooth Convex Optimization[END_REF][START_REF] Pessoa | In-Out Separation and Column Generation Stabilization by Dual Price Smoothing[END_REF]. Because of the relaxation of all the constraints related to the subproblems, the solutions of the relaxed master programs might be far from the optimal solution to the initial problem. This might lead to a large amount of time spent in evaluating poor quality solutions in the early iterations. To our knowledge, successful methods proposed so far to avoid the presented drawbacks of cutting-plane methods are either inspired by bundle methods [START_REF] Zverovich | A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition[END_REF][START_REF] Linderoth | Decomposition Algorithms for Stochastic Programming on a Computational Grid[END_REF][START_REF] Wolf | Applying oracles of on-demand accuracy in two-stage stochastic programming -A computational study[END_REF], or by in-out separation approaches [START_REF] Ben-Ameur | Acceleration of cutting-plane and column generation algorithms: Applications to network design[END_REF]. Those methods try to restrict the search of an optimal solution to points close to a given first-stage solution. This solution is called stability center in the case of bundle methods, or in-point in the case of in-out stabilization. On the one hand, many authors proposed quadratic stabilization techniques, such as [START_REF] Ruszczyński | A regularized decomposition method for minimizing a sum of polyhedral functions[END_REF], who added a quadratic proximal term in the objective function of the relaxed master program, or [START_REF] Zverovich | A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition[END_REF], [START_REF] Wolf | Applying oracles of on-demand accuracy in two-stage stochastic programming -A computational study[END_REF] and [START_REF] Van Ackooij | Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse[END_REF], who used quadratic level stabilizations. [START_REF] Linderoth | Decomposition Algorithms for Stochastic Programming on a Computational Grid[END_REF] used a trust-region bundle method and proposed to use the infinity norm with an effective asynchronous parallelized framework. On the other hand, the in-out separation scheme performs a linear search between the in-point and the solution to the relaxed master program, and it can rely on the practical efficiency of linear programming solvers. The in-out separation approach has been applied successfully in a cutting-plane algorithm to solve a survivable network design problem [START_REF] Ben-Ameur | Acceleration of cutting-plane and column generation algorithms: Applications to network design[END_REF], in column generation [START_REF] Pessoa | In-Out Separation and Column Generation Stabilization by Dual Price Smoothing[END_REF], in a branch-and-cut algorithm based on a Benders decomposition approach to solve facility location problems [START_REF] Fischetti | Redesigning Benders Decomposition for Large-Scale Facility Location[END_REF], and in a cutting-plane algorithm applied to disjunctive optimization [START_REF] Fischetti | An In-Out Approach to Disjunctive Optimization[END_REF].

Another family of acceleration techniques focuses on the quality of the optimality cuts. The polyhedral structure of the second-stage function implies a degeneracy of the dual subproblem. In the singular points of this function, many equivalent extreme dual solutions exist for the subproblem, each one defining a different optimality cut. The choice of a "good" dual solution can improve dramatically the convergence of the algorithm. [START_REF] Magnanti | Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria[END_REF] proposed to solve the dual of the subproblem twice in order to find the solution which maximizes the objective function at a fixed core point of the master problem. A different choice of the core point leads to a different cut. A cut derived in this framework is called a Pareto-optimal cut. [START_REF] Papadakos | Practical enhancements to the Magnanti-Wong method[END_REF] proposed a less restrictive way to choose the core point, and a practical framework to update it. [START_REF] Sherali | On generating maximal nondominated Benders cuts[END_REF] improved the method, bypassing the need to solve the subproblem twice.

In the case of stochastic programming, formulations rely either on one epigraph variable for every subproblem (see formulation (4)) or on a single epigraph variable for all the subproblems, also called L-shaped method (Van Slyke and [START_REF] Van Slyke | L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming[END_REF]. The former formulation is referred to as the multicut Benders reformulation, whereas the latter is known as the monocut Benders reformulation. The multicut Benders reformulation was introduced by [START_REF] Birge | A multicut algorithm for two-stage stochastic linear programs[END_REF]. [START_REF] You | Multicut Benders decomposition algorithm for process supply chain planning under uncertainty[END_REF] showed dramatic improvement both on computing time and number of iterations due to the multicut reformulation on two supply chain planning problems. The multicut version provides a tighter approximation of the second-stage function, and converges in less iterations than the monocut one. However the master problem might suffer from the large number of cuts added through the optimization process, and thus might become time-consuming to solve. The decision between using either the monocut or the multicut version of the algorithm is not straightforward. As far as we know, one of the major improvements proposed to improve pure multicut Benders decomposition was to use massive parallelization [START_REF] Linderoth | Decomposition Algorithms for Stochastic Programming on a Computational Grid[END_REF]. [START_REF] Trukhanov | Adaptive multicut aggregation for two-stage stochastic linear programs with recourse[END_REF] proposed a framework to aggregate some optimality cuts with the aim of finding a compromise between the monocut and pure multicut versions of the algorithm. [START_REF] Wolf | Applying oracles of on-demand accuracy in two-stage stochastic programming -A computational study[END_REF] proposed to maintain both a multicut model and a monocut model. When, for a given first-stage solution x, they observe that the monocut approximation of the recourse function is substantially lower than the multicut approximation, they aggregate the active cuts from the multicut model to generate a cut in the monocut one. As this cut has, at x, the value given by the multicut model, this cut improves the monocut approximation, without having to solve any subproblem. They embed their algorithm in the general concept of oracles with on-demand accuracy (de [START_REF] De Oliveira | Level bundle methods for oracles with on-demand accuracy[END_REF]. The concept of oracles with on-demand accuracy might embed the core idea of the Benders by batch algorithm presented in this work. However, it requires that the oracle gives a subgradient which belongs to an approximate subdifferential of the objective function at each iteration which is not required in the Benders by batch algorithm, and may not be satisfied in the general case.

One of the major bottlenecks faced to solve two-stage stochastic programs is the large number of subproblems to solve at each iteration to compute Benders cuts. Researchers proposed some methods to avoid solving all the subproblems at each iteration of the Benders decomposition algorithm. In the case of stochastic problems with fixed recourse (i.e., Ws " W for every s P S in problem (1)) where the second-stage objective function does not depend on the uncertainty (i.e., gs " g for every s P S in problem (1)), some authors, such as [START_REF] Wets | Stochastic Programming: Solution Techniques and Approximation Schemes[END_REF][START_REF] Higle | Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms with Recours[END_REF][START_REF] Dantzig | Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition[END_REF][START_REF] Infanger | Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs[END_REF], used the fact that the duals of all the subproblems share the same constraint polyhedron: Πs " Π , for every s P S. Given an optimal dual solution πs 0 to a subproblem s0 P S, bunching [START_REF] Wets | Stochastic Programming: Solution Techniques and Approximation Schemes[END_REF] consists in checking the primal feasibility of this solution for the other subproblems. This solution is optimal for all the subproblems for which this solution is primal feasible, and there is no need to solve them. [START_REF] Dantzig | Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition[END_REF] and [START_REF] Infanger | Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs[END_REF] proposed to use importance sampling to compute a good approximation of the expected cut in the monocut formulation with only a few scenarios. Although the resulting algorithm is not exact, they report results with small confidence intervals on the objective value. [START_REF] Higle | Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms with Recours[END_REF] introduced stochastic decomposition. The method only solves a few subproblems at each iteration and computes cuts with all the dual solutions obtained at previous iterations. Finally, [START_REF] Oliveira | Inexact Bundle Methods for Two-Stage Stochastic Programming[END_REF] proposed an algorithm which only requires the fixed recourse hypothesis (Ws " W , @s P S). It adapts the dual solutions of a subset of subproblems to generate inexact cuts to the remaining subproblems. The methods of [START_REF] Oliveira | Inexact Bundle Methods for Two-Stage Stochastic Programming[END_REF], [START_REF] Dantzig | Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition[END_REF] and [START_REF] Higle | Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms with Recours[END_REF] are designed for a monocut algorithm, but the method of [START_REF] Oliveira | Inexact Bundle Methods for Two-Stage Stochastic Programming[END_REF] can be adapted to a multicut algorithm.

Finally, among other techniques used to accelerate the solution time of two-stage stochastic programs, [START_REF] Crainic | Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design[END_REF] proposed the so-called Partial Benders decomposition. Under the hypothesis gs " g, @s P S, and fixed recourse, they add one of the scenarios, or an artificial scenario computed as the expectation of the others, to the master problem. They showed major improvements on some instances, both in computing time and number of iterations, even if the master problem becomes way larger than the original one, and might be harder to solve at each iteration. Under the same assumptions (gs " g, Ws " W, @s P S), [START_REF] Song | An Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse[END_REF] proposed an adaptative partition-based approach, which does not rely on Benders reformulation. Given a partition of the subproblems, they compute a relaxation of the initial deterministic reformulation by summing the matrices and right-hand-sides of the subproblems of each element of the partition. They showed the existence of a partition with the same optimal value as the initial problem and an iterative algorithm to find it. [START_REF] Van Ackooij | Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse[END_REF] proposed to use level stabilization with the adaptative partition-based approach and showed numerical experiments where the resulting algorithms largely outperform classic level bundle or Benders decomposition methods.

The Benders by batch algorithm

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve exactly the multicut Benders reformulation (4) of a two-stage stochastic linear program. The algorithm consists of solving the subproblems by batch and stopping solving subproblems at an iteration as soon as we identify that the current first-stage solution cannot be proven optimal. This is made possible by checking, after solving of a subset of subproblems, if the gap between their optimal values and their epigraph approximations in the relaxed master program already exceeds the optimality gap.

We first present some notations necessary to formally describe the algorithm. We consider an ordered set of scenarios S " ts1, s2, ..., s cardpSq u and a given batch size 1 ď η ď cardpSq. We define κ " rcardpSq{ηs as the number of batches of subproblems. For every i P 1, κ , the i th batch of subproblems Si is defined as Si " ts pi´1qη`1 , ..., s pi´1qη`η i u, where ηi is the size of batch i, η1 " ¨¨¨" ηκ´1 " η and ηκ " pcardpSq mod ηq. Family pSiq iP 1,κ defines a partition of S. We restrict ourselves to batches of the same size, but the method remains valid for any partition of S. We denote by px pkq , p θpkq s qsPSq the optimal solution to pRM P q pkq at iteration k of the algorithm, where xpkq denotes the optimal value to the first-stage variables and θpkq s the optimal value to the epigraph variable associated with scenario s P S. A lower bound on the optimal value of problem (1) is then computed as LB pkq " c J xpkq `řsPS ps θpkq s . For a first-stage solution x P X, we denote by U Bpxq " c J x `řsPS psϕpx, sq an upper bound on the optimal value of problem (1). Let ϵ ě 0 be the optimality gap of the algorithm. We first define the notion of provable optimality in cutting-planes methods.

Definition 1. Let ϵ ě 0 be the optimality gap of the algorithm and k an iteration of the algorithm. We say that a first-stage solution x P X cannot be proven optimal at an iteration k of the algorithm iff U Bpxq ´LB pkq ą ϵ.

Saying that a first-stage solution x cannot be proven optimal at an iteration k of the algorithm means that, either x is not an optimal solution to problem (1), or the current lower bound given by pRM P q pkq is too low to prove the optimality of an optimal solution. The classical stopping criterion U B ´LB ď ϵ of the Benders decomposition algorithm is based on such an optimality proof, but cannot be directly applied if not all the subproblems are solved. Specifically, an upper bound on the optimal value of the problem is only known after computing, for a first-stage solution x P X, the optimal value ϕpx, sq of every subproblem pSP px, sqq.

We propose hereafter a new stopping criterion, which detects, when it occurs, that the current first-stage solution xpkq to pRM P q pkq cannot be proven optimal without necessarily having to solve all the subproblems. If after having solved some batches of subproblems, the sum of the differences between their value and their epigraph approximation in pRM P q pkq already exceeds the optimality gap ϵ, the algorithm does not solve the remaining batches of subproblems, as we already know that xpkq cannot be proven optimal (see Proposition 1). In this way, the Benders by batch algorithm is likely to explore more first-stage solutions than classic Benders decomposition algorithms as it tends to solve only a few subproblems at most iterations. The proposed stopping criterion is based on the concept of ϵi-approximation that we define below.

Definition 2 (ϵi-approximation). Let ϵ ě 0 be the optimality gap of the algorithm, k P Z `an iteration and σ a permutation of 1, κ . For every i P 1, κ , we say that batch S σpiq is ϵi-approximated by pRM P q pkq if ÿ sPS σpiq ps ´ϕpx pkq , sq ´θ pkq s ¯ď ϵi (5)

with ϵi " ϵ ´i´1 ř t"1 ř sPS σptq ps ´ϕ ´x pkq , s ¯´θ pkq s ¯.
We refer to ϵi as the remaining gap of batch S σpiq according to the permutation σ and the optimality gap ϵ. For every index i P 2, κ , we have ϵi " ϵi´1 ´řsPS σpi´1q ps ´ϕ ´x pkq , s ¯´θ pkq s ¯, which means that computing the successive remaining gaps consists in filling the gap ϵ with the differences between the true values of the subproblems and their epigraph approximations in pRM P q pkq .

The following proposition shows that ϵi-approximation can be used to derive a stopping criterion for the Benders by batch algorithm.

Proposition 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z `an iteration of the algorithm, and σ a permutation of 1, κ . The first-stage solution xpkq is an optimal solution to problem (1) if and only if batch S σpiq is ϵi-approximated by pRM P q pkq for every index i P 1, κ .

Proof of proposition 1. See Appendix A.1 Corollary 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z `an iteration, and σ a permutation of 1, κ . If there exists an index i P 1, κ such that ř sPS σpiq ps ´ϕpx pkq , sq ´θ pkq s ¯ą ϵi, then xpkq cannot be proven optimal.

Remark 1. As stated in Proposition 1, the proposed stopping criterion is equivalent to the classical stopping criterion U B ´LB ď ϵ. This means that, given a relaxed master program with some Benders cuts, and a first-stage solution x, either x can be proven optimal by both stopping criteria, or both will reject it and let the algorithm continue.

We now present the Benders by batch algorithm (Algorithm 2). The while loop from lines 3 to 20 will be referred hereafter as the master loop. Each pass of this loop corresponds to an iteration of the algorithm. At iteration k, the relaxed master program pRM P q pkq is solved to obtain a new first-stage solution xpkq . A permutation σ of 1, κ is then chosen. This permutation defines the order in which the batches of subproblems pS1, S2, ..., Sκq will be solved at the current first-stage solution. The while loop from lines 8 to 19 will be referred as the optimality loop. In each pass in this loop: the subproblems of the current batch S σpiq are solved (lines 9 to 10). This part of the algorithm can be parallelized, as in the classic Benders decomposition algorithm, to accelerate the procedure. the cuts defined by the solutions of the subproblems are added to the relaxed master program (lines 11 to 15).

We add a parameter cutAggr to the algorithm. If this parameter is set to False, the cuts of each subproblem are added independently to the relaxed master program, as it is the case in the classic multicut Benders decomposition algorithm. If this parameter is set to True, we add only one cut, computed as the weighted sum of all the cuts of the batch according to the probability distribution. the gap between the value of the subproblems and the value of their outer linearization is checked (line 16 to 19). If the batch is ϵi-approximated by pRM P q pkq , then i is increased by one, and the boolean stay at x still equals True. The algorithm returns to line 8 and solves a new batch at the same first-stage solution, as i has been incremented. If it reaches i " κ `1, then all batches are ϵi-approximated by pRM P q pkq according to permutation σ, and xpkq is Algorithm 2: The Benders by batch algorithm Parameters: ϵ ě 0, η P 1, cardpSq the batch size, cutAggr P tTrue, Falseu 1 Initialization: i Ð 1, k Ð 0, stay at x Ð True 2 Define a partition `Si ˘iP 1,κ of the subproblems according to batch size η

3 while i ă κ `1 do 4 k Ð k `1 5
Solve pRM P q pkq and retrieve `x pkq , p θpkq s qsPS pRM P q pk`1q Ð pRM P q pkq 21 Return xpkq an optimal solution to problem (1). If one of the batches is not ϵi-approximated by pRM P q pkq , then xpkq cannot be proven optimal. Then there exists at least one of the cuts which excludes the solution `x pkq , p θpkq s qsPS ˘from the relaxed master program. The algorithm exits the optimality loop, and goes to line 3 to solve again the relaxed master program.

6 i Ð 1, ϵ1 Ð ϵ,
Remark 2 (Partial cut aggregation). One of the most important drawbacks of the multicut Benders decomposition algorithm is the large number of cuts added to the relaxed master program at each iteration. As this number of cuts increases, the time needed to solve the master program can increase dramatically. The Benders by batch algorithm might suffer from the same effect, even if this effect might be delayed by the method (it adds fewer cuts at each iteration). We propose to aggregate the cuts of a batch, and add only one cut computed as ř sPS σpiq psθs ě ř sPS σpiq ps `πJ s pds ´Tsxq ˘. As the subproblems are linearly independent, this cut is the Benders cut associated with the problem created by concatenation of the subproblems of a batch. As the partition of the subproblems into batches is done prior to the algorithm, the cuts of the same subproblems are always aggregated together. This can be seen as the static cut aggregation strategy used in [START_REF] Trukhanov | Adaptive multicut aggregation for two-stage stochastic linear programs with recourse[END_REF].

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. Let ϵ ě 0 be the optimality gap. The Benders by batch algorithm converges to an optimal solution to problem 1 in a finite number of iterations.

Proof of proposition 2. See Appendix A.2.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume that there exists an initial and arbitrary ordering of the batches S1, S2, ..., Sκ and σ " id at the first iteration. When we choose a new permutation, at the beginning of a master loop, the ordered strategy consists of starting from the first batch of subproblems that has not been solved at the previous first-stage solution. We introduce the following cyclic permutation µ of the batches:

µ " ˜1 2 ... κ ´1 κ 2 3 ... κ 1
Let N be the number of batches solved at the previous first-stage solution. Then, the ordered strategy consists of defining the new permutation σ at line 7 of Algorithm (2) as σ Ð µ N ˝σ. This strategy has a deterministic behavior and implies solving all the subproblems the same number of times during the optimization process. A pure random strategy, shuffling the set of batches at the beginning of each master loop, showed a high variance in the total number of iterations. In preliminary computational experiments, we observed factors up to two between the running times of the fastest and the longest run on the same instance. As such a behavior is not desirable, we did not pursue this path.

Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 2) may suffer, as every cutting-plane algorithm, from strong oscillations of the first-stage variables, and thus may compute, in the early iterations, cuts that exclude solutions that are far away from the optimal solution (see e.g. [START_REF] Vanderbeck | Implementing Mixed Integer Column Generation[END_REF] section 7). However, the classical primal stabilization procedures presented in Section 2 do not apply directly if we do not solve all the subproblems at each iteration as they require the value of the recourse function for the current first-stage solution. We propose in this section a general framework to stabilize our algorithm, and show a sufficient condition for the convergence of the stabilized algorithm.

The stabilized Benders by batch algorithm

Many effective primal stabilization methods for cutting-plane algorithms solve, at each iteration, a separation problem in a point x pkq (hereafter referred to as the separation point) that is different from the current optimal first-stage solution xpkq to the relaxed master program [START_REF] Zverovich | A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition[END_REF][START_REF] Pessoa | In-Out Separation and Column Generation Stabilization by Dual Price Smoothing[END_REF]. We define hereafter formally a primal stabilization scheme, in which the separation point is computed as the image by a given mapping of a vector defining the state of the stabilization. Such a scheme must also incorporate a way to update this state vector.

Definition 3 (Primal stabilization scheme). A primal stabilization scheme is characterized by a triplet pD, ψ1, ψ2q where D is a stabilization state space and pψ1, ψ2q is a pair of mappings

ψ1 : X ˆD Ñ D ψ2 : D Ñ X such that ψ2 is surjective.
At an iteration k of the stabilized algorithm, mapping ψ1 computes the state vector of the stabilization to be used at the current iteration from the precedent state vector and the optimal solution to the current relaxed master program. This state vector may contain some elements of X, such as the last optimal solution to the relaxed master program. An initial stabilization state vector d 0 P D is required when using the primal stabilization scheme in the first iteration of our algorithm. From the current stabilization state vector, mapping ψ2 is then responsible for generating a first-stage solution x pkq at which the subproblems are solved and cuts are generated. Function ψ2 is required to be surjective to ensure that every first-stage solution can be separated.

We now present how to adapt the Benders by batch algorithm (Algorithm 2) when such a primal stabilization scheme is used. We generalize Definition 2 and Proposition 1 to take into account that the lower bound at a given iteration k is computed based on the current optimal solution xpkq to RMP, while the subproblems are solved at a separation point x that is usually different from xpkq . As this difference between the first-stage solutions induces a difference in the first-stage cost, we subtract in the definition of the remaining gap ϵi the difference c J px ´x pkq q. Because θpkq s is a lower bound on ϕ ´x pkq , s ¯, but not on ϕ px, sq, we also need to account for cases where ϕ px, sq ´θ pkq s ă 0.

Definition 4 (ϵipxq-approximation at a first-stage solution x). Let ϵ ě 0 be the optimality gap of the algorithm, k P Z àn iteration and σ a permutation of 1, κ . For every i P 1, κ , we say that batch S σpiq is ϵipxq-approximated by pRM P q pkq at x P X if " ÿ Remark 3. Saying that a batch S σpiq is ϵipx pkq q-approximated by pRM P q pkq is equivalent to saying that S σpiq is ϵiapproximated by pRM P q pkq in Algorithm 2.

The following proposition introduces a valid stopping criterion for our stabilized version of the Benders by batch algorithm.

Proposition 3. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z `an iteration of the algorithm, and σ a permutation of 1, κ . If there exists a first-stage solution x P X such that batch S σpiq is ϵipxq-approximated by pRM P q pkq , for all i P 1, κ , then x is an optimal solution to problem (1).

Proof of proposition 3. See Appendix A.3

Algorithm 3: The stabilized Benders by batch algorithm Parameters: ϵ ě 0, η P 1, cardpSq the batch size, cutAggr P tTrue, Falseu, a primal stabilization scheme pD, ψ1, ψ2q and an initial stabilization state vector d p0q P D. 1 Initialization: i Ð 1, k Ð 0, misprice Ð False, stay at x Ð True 2 Define a partition `Si ˘iP 1,κ of the subproblems according to batch size η 3 while i ă κ `1 do 4 Solve pRM P q pk`1q and retrieve `x pk`1q , p θpk`1q We now present the stabilized Benders by batch algorithm (Algorithm 3). As, at each iteration, the cuts are now generated from a first-stage solution x pkq that may be different from the firstsolution to pRM P q pkq , there is no guarantee that the cuts added separate the solution to the relaxed master program px pkq , p θpkq s qsPSq. When there is no cut, among added cuts, that separates the solution to the relaxed master program, we say that first-stage solution x pkq induces a mis-pricing [START_REF] Pessoa | In-Out Separation and Column Generation Stabilization by Dual Price Smoothing[END_REF]. We represent such a case in Figure 1. Then, there is no need to solve again the relaxed master program as its solution remains the same. A boolean variable misprice appears in Algorithm 3 to handle such a case.

s qsPS 5 do 6 k Ð k `1 7 d pkq Ð ψ1px pkq , d pk´1q q 8 x pkq Ð ψ2pd pkq q 9 i Ð 1, ϵi Ð ϵ ´cJ
The algorithm is structured in three nested while loops. The while loop from line 3 to 31 is called the master loop. In this loop, the relaxed master program is solved in order to define a new first-stage solution xpkq . The while loop from line 5 to 31 is called the separation loop. This loop updates the current separation point x pkq while the solution to the relaxed master program xpkq remains constant. We increment the iteration counter k each time a new separation point is calculated. The while loop from line 12 to 29 is called the optimality loop. In the optimality loop, the subproblems of current batch S σpiq are solved in x pkq . There are three possibilities at the end of this loop:

Case 1: The current batch is ϵipx pkq q-approximated by pRM P q pkq . It satisfies the condition of line 20 of Algorithm 3. Then, stay at x still equals True at the end of the loop, and i is incremented by one. If the algorithm reaches i " κ `1, then the algorithm stops, and x pkq is an optimal solution to the problem with an optimality gap ϵ ě 0. Otherwise, the algorithm solves the next batch of subproblems at the same first-stage solution.

Case 2: The current batch S σpiq is not ϵipx pkq q-approximated by pRM P q pkq and there exists no cut derived from this batch of subproblems, or a previous batch, which separates the solution px pkq , p θpkq s qsPSq to the relaxed master program [see Figure 1]. The variable misprice still equals True. As the solution to the relaxed master program has not been cut, it is useless to solve the relaxed master program again. We exit the optimality loop, but stay in the separation loop. We define a new separation point x pkq , a new permutation of 1, κ , and begin a new optimality loop.

Case 3: The current batch S σpiq is not ϵipx pkq q-approximated by pRM P q pkq and at least one of the cuts derived from this batch of subproblems separates the solution px pkq , p θpkq s qsPSq to the relaxed master program [see Figure 2]. This means that misprice is set to False. The variable stay at x is set to False and we exit the optimality loop. Since misprice equals False, we exit the separation loop. We then go to line 3, and solve again the relaxed master program.

Figure 1: The cut derived from first-stage solution x pkq does not separate the solution to the relaxed master program px pkq , p θpkq s q sPS q. The solution to pRM P q pkq remains the same. The separation point x pkq induces a mis-pricing.

Figure 2: The cut derived from first-stage solution x pkq separates the solution to the relaxed master program px pkq , p θpkq s q sPS q.

A sufficient condition for the convergence of the stabilized Benders by batch algorithm

In this section we prove that, if the sequence of separation points produced by the primal stabilization scheme converges to the solution to the relaxed master program when this latter solution remains constant over the iterations (i.e., during a mis-pricing sequence), then the stabilized Benders by batch algorithm (Algorithm 3) converges to an optimal solution to problem (1) in a finite number of iterations.

Definition 5 (Convergence property and finite convergence property of a primal stabilization scheme). Let pD, ψ1, ψ2q be a primal stabilization scheme. For every px, dq P X ˆD we define pd ℓ x q ℓPN ˚as

d ℓ x " # ψ1px, d ℓ´1 x q ℓ ą 1 ψ1px, dq ℓ " 1 @ℓ P N
the sequence of stabilization state vectors obtained by successive applications of ψ1 on a constant first-stage solution x P X.

We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the convergence property if:

@px, dq P X ˆD, lim ℓÑ`8 ψ2 `dℓ x ˘" x
We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the finite convergence property if:

@px, dq P X ˆD, Dℓ0 P N ˚, ψ2 `dℓ 0 x ˘" x

We first need to prove the following intermediate results to show that the stabilized Benders by batch algorithm effectively converges to an optimal solution to problem (1).

Proposition 4. Let ϵ ą 0 (resp. ϵ ě 0) be the optimality gap of Algorithm 3, k P Z `an iteration, and px pkq , p θpkq s qsPSq an optimal solution to pRM P q pkq . If `xpk`rq ˘rPN is a sequence of elements of X converging to xpkq (resp. converging to xpkq in a finite number of iterations) and `σpk`rq ˘rPN a sequence of permutations of 1, κ , then there exists t P N such that one of the following assertions is true:

1. First-stage solution x pk`tq is proven to be an optimal solution to problem (1) with an optimality gap of ϵ ą 0 (resp. ϵ ě 0).

2. There exists a cut generated in x pk`tq which separates px pkq , p θpkq s qsPSq.

Proof of proposition 4. See Appendix A.4.

Proposition 5. If the primal stabilization scheme satisfies the convergence property (resp. finite convergence property) of Definition 5, then the stabilized Benders by batch algorithm converges to an optimal solution to problem (1) in a finite number of iterations, for every ϵ ą 0 (resp. ϵ ě 0).

Proof of proposition 5. Let k P Z `an iteration of the algorithm, σ a permutation of 1, κ , and x pkq P X the separation point. There are three possible cases:

1. @i P 1, κ , batch S σpiq is ϵipx pkq q-approximated by pRM P q pkq . Then x pkq is an optimal solution to problem (1) with an optimality gap of ϵ ą 0 (resp. ϵ ě 0).

2. There exists an index i P 1, κ such that solving the subproblems of batch S σpiq generates a cut which separates the solution to pRM P q pkq . As the total number of cuts is finite, we can only be in this situation a finite number of times.

3. There exists no cut derived at x pkq which separates the solution to pRM P q pkq . Then, x pkq induces a mis-pricing.

The solution to pRM P q pk`1q remains the same. Let suppose that this happens during an infinite number of consecutive iterations. Then, as the primal stabilization scheme satisfies the convergence property (resp. the finite convergence property), the sequence of separation points converges to xpkq (resp. in a finite number of iterations).

Prop. 4 states that in that case, we end up in a finite number of iterations in case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations in case 1, and finds an optimal solution to problem (1).

Remark 4. The classic Benders decomposition algorithm is equivalent to the Benders by batch algorithm with a batch size η " cardpSq. Therefore, Algorithm 3 describes a valid way to add primal stabilization to the classic Benders decomposition algorithm (providing that the primal separation scheme satisfies the convergence property).

Two primal stabilization schemes satisfying the convergence property

We introduce in this section two primal stabilization schemes satisfying the convergence property, based on the in-out stabilization approach (Ben-Ameur and Neto, 2007). In the in-out approach, the stability center xpkq at iteration k is equal to the separation point (among those calculated so far) with the smallest objective function value: xpkq " arg min jP 0,k´1 tc J x pjq `řsPS psϕpx pjq , squ. Then the separation point x pkq is then defined on the segment between xpkq (in-point) and xpkq (out-point): x pkq " αx pkq `p1 ´αqx pkq . The in-out approach creates a sequence of stability centers with decreasing objective values converging to an optimal solution to the problem. The definition of xpkq requires computing the value ϕpx pjq , sq for every scenario s P S, meaning that all the subproblems need to be solved at every separation point. As we generally do not solve all the subproblems at a given iteration, the in-out stabilization approach needs to be adapted for use in the Benders by batch algorithm.

We present below two primal stabilization schemes. Scheme 1 -Basic stabilization: Let α P p0, 1s be a stabilization parameter. The separation point at iteration k is computed as follows:

x pkq " αx pkq `p1 ´αqx pk´1q

for k ě 1, and x p0q P X is a feasible first-stage solution. This basically consists in doing 100α% of the way from the previous separation point to the solution to the master program. This can be seen as an in-out stabilization, updating the stability center to the last separation point at each iteration. By convexity of X, x pkq belongs to X for every k P N.

The basic stabilization scheme can be expressed according to Definition 3 as:

D " X 2 ψ1 : # X ˆD Ñ D x, py, zq Þ Ñ px, αy `p1 ´αqzq ψ2 : # D Ñ X py, zq Þ Ñ αy `p1 ´αqz
with d 0 " px p0q , x p0q q where x p0q P X is a feasible first-stage solution. The vector of parameters d pkq computed at the iteration k is equal to px pkq , x pk´1q q. Proposition 6. The basic stabilization scheme satisfies the convergence property.

Proof of proposition 6. See Appendix A.5.

Scheme 2 -Solution memory stabilization: This stabilization uses an exponentially weighted average of the previous master solutions to compute the separation point. We choose a stabilization parameter α P p0, 1s and a memory parameter β P r0, 1q. We also define the exponentially weighted averaged point xpkq on master solutions. The separation point is computed as follows:

xpkq " β xpk´1q `p1 ´βqx pkq x pkq " αx pkq `p1 ´αqx pk´1q

for k ě 1, and x p0q " xp0q P X is a feasible first-stage solution. By convexity of X, x pkq belongs to X for every k P N. This stabilization takes inspiration from the stochastic gradient algorithm with momentum [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] that has proven its efficiency in solving large-scale stochastic programs in the field of deep learning [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF].

The solution memory stabilization scheme can be expressed according to Definition 3 as:

D " X 2 ψ1 : # X ˆD Ñ D x, py, zq Þ Ñ pβy `p1 ´βqx, αy `p1 ´αqzq ψ2 : # D Ñ X py, zq Þ Ñ αy `p1 ´αqz
with d 0 " px p0q , x p0q q where x p0q P X is a feasible first-stage solution. The vector of parameters d pkq computed at the iteration k is equal to px pkq , x pk´1q q.

Proposition 7. The solution memory stabilization scheme satisfies the convergence property.

Proof of proposition 7. See Appendix A.6.

It is possible to adapt both schemes so that they satisfy the finite convergence property. Specifically, the separation point should become equal to the solution to the relaxed master program in a finite number of iterations when there are successive iterations which induce a mis-pricing. For the basic stabilization scheme, this implies that the value of α should increase to become equal to one in a finite number of iterations if successive mis-pricings occur. If t P N denotes the number of consecutive mis-pricings that have occurred before starting iteration k of the algorithm, then computing x pkq replacing α by mint1, αp1 `tqu works. For the solution memory stabilization scheme, in similar cases, the value of α should increase to become equal to one and the value of β should decrease to become equal to zero in a finite number of iterations.

Experimental design and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the benchmark we use, and our instance generation method. We then explain the different algorithms that we used for comparison, and how we implemented them. Finally, we show and analyze the numerical results we obtained.

Instances

We use seven well studied instances from the literature. The first five, 20term [START_REF] Mak | Monte Carlo bounding techniques for determining solution quality in stochastic programs[END_REF], gbd [START_REF] Dantzig | Linear Programming and Extensions[END_REF], LandS [START_REF] Louveaux | Optimal Investments for Electricity Generation: A Stochastic Model and a Test-Problem[END_REF], ssn [START_REF] Sen | Network planning with random demand[END_REF] and storm [START_REF] Mulvey | A New Scenario Decomposition Method for Large-Scale Stochastic Optimization[END_REF], are available from the following link: www.cs.wisc.edu/ ~swright/stochastic/sampling/. The problem 20term is taken from [START_REF] Mak | Monte Carlo bounding techniques for determining solution quality in stochastic programs[END_REF]. It is a model of motor freight carrier's operations. The problem consists in choosing the position of some vehicles at the beginning of the day, the first-stage variables, and then to use those vehicles to satisfy some random demands on a network. Instance gbd has been created from chapter 28 of [START_REF] Dantzig | Linear Programming and Extensions[END_REF]. It is an aircraft allocation problem. LandS has been created from an electrical investment planning problem described in [START_REF] Louveaux | Optimal Investments for Electricity Generation: A Stochastic Model and a Test-Problem[END_REF]. In [START_REF] Linderoth | The empirical behavior of sampling methods for stochastic programming[END_REF], the authors modified the problem to obtain an instance with 10 6 scenarios. Problem ssn is a problem of telecommunication network design taken from [START_REF] Sen | Network planning with random demand[END_REF] and storm is a cargo flight scheduling problem described by [START_REF] Mulvey | A New Scenario Decomposition Method for Large-Scale Stochastic Optimization[END_REF]. The two last instances come from https://people.orie.cornell.edu/huseyin/research/research.html. The first one, product, is the large instance of the product distribution problem available at https://people.orie.cornell.edu/huseyin/research/sp_datasets/ sp_datasets.html. The second one, Fleet20 3 was found at http://www.ie.tsinghua.edu.cn/lzhao/ which was itself taken from https://people.orie.cornell.edu/huseyin/research/research.html. It is a fleet-sizing problem, close to 20term, with a two-week planning horizon.

As those instances have a tremendous number of scenarios (see Table 2), we generate instances by sampling scenarios from the initial ones. We generated instances with sample sizes 1000, 5000, 10000, and 20000. Three random instances have been generated for each problem and each sample size S, with random seeds S `k, k P t0, 1, 2u so that two instances of different sample size should not share sub-samples. This leads to a benchmark of 84 different instances. In the following, we will refer to the instances of problem prob with #scenarios scenarios as prob-N#scenarios.

Experimental Design

In order to evaluate the numerical efficiency of our Benders by batch algorithm (BbB), we compare it to nine different methods.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold SKL-6130 processor at 2,1 GHz with 96 GB of RAM with the TURBO boost (up to 3.7 GHz). The time limit is fixed to twelve hours for every algorithm. The optimality gap is fixed to a relative gap of 10 ´6 for every algorithm. We set the lower bound on the epigraph variables associated with the subproblems to 0 as it is a valid lower bound on LandS, gbd, ssn, storm, Fleet20 3 and 20term instances and to ´10 10 on product instances as 0 is not a valid lower bound on those instances.

First, we run IBM ILOG CPLEX 12.10 (IBM, 2019) to solve the deterministic reformulation with the barrier algorithm (CPLEX Barrier hereafter) and with its multicut Benders implementation (CPLEX Benders) [START_REF] Bonami | Implementing Automatic Benders Decomposition in a Modern MIP Solver[END_REF]. We also compare to our implementation of the multicut Benders decomposition algorithm (Classic multicut) and our implementation of the monocut Benders decomposition algorithm (Classic monocut).

In order to evaluate the effect of primal stabilization, we also run our implementations of the level bundle method [START_REF] Lemaréchal | New variants of bundle methods[END_REF] using aggregated cut as in the monocut Benders decomposition algorithm (Level Bundle), our implementation of the multicut Benders decomposition algorithm with an in-out stabilization (In-out multicut) and our implementation of the monocut Benders decomposition algorithm with an in-out stabilization (In-out monocut). We describe these algorithms in Appendix B.

As the partial cut aggregation proposed in the Benders by batch algorithm can be seen as the static cut aggregation scheme described by [START_REF] Trukhanov | Adaptive multicut aggregation for two-stage stochastic linear programs with recourse[END_REF], which have already shown improvements compared to pure monocut or multicut Benders decomposition algorithms, we also implement the Benders decomposition algorithm with the same cut aggregation level as the one used in the Benders by batch algorithms (Classic CutAggr). Given pSiqi"1,..,η the same partition of the subproblems into batches than the one used in the Benders by batch algorithm, we solve all the subproblems at each iteration and add the following cuts ř sPS i psθs ě ř sPS i ps ´πJ s pds ´Tsxq ¯, @i P 1, η . Finally, we implement the Benders decomposition with static cut aggregation and in-out stabilization (In-out CutAggr).

CPLEX Benders is run with the following parameter values: benders strategy 2 (an annotation file contains the first-stage variables, and CPLEX automatically decomposes the subproblems), threads 1 (to run CPLEX using one core, as the other methods), timelimit 43200 (time limit of twelve hours). Classic multicut follows Algorithm 1. In Classic monocut and In-out monocut, we compute the cuts as ř sPS psθs ě ř sPS ps ´πJ s pds ´Tsxq ¯.

The subproblems are solved with the dual simplex algorithm for all methods. In all our implementations, the firststage variables appear as variables in all the subproblems, and are fixed to the desired values during the optimization process. The coefficients of the cuts are computed as the reduced cost of those variables in an optimal solution to the subproblems.

In Level Bundle, In-out multicut, In-out monocut and In-out CutAggr and BbB with stabilization, the starting solution x p0q is obtained by solving the mean-value problem. We use a dynamic strategy to update the stabilization parameter α in In-out monocut, In-out multicut and In-out CutAggr. If c J x pkq `řsPS psϕps, x pkq q ă c J xpkq `řsPS psϕps, xpkq q, then the separation point has a lower cost than the current stability center. If we had separated farther, we could have found an even better point, so we increase α with the rule α Ð mint1.0, 1.2αu. If c J x pkq `řsPS psϕps, x pkq q ě c J xpkq `řsPS psϕps, xpkq q, we did not stabilize enough, and we therefore decrease the stabilization parameter α with the rule α Ð maxt0.1, 0.8αu. We initialize α to 0.5. Such a procedure cannot be used in the stabilized Benders by batch algorithm as the actual value of the recourse function is required. Level Bundle is tested with a level parameter λ " 0.5 and a stability center tolerance κ " 0.1 as in [START_REF] Van Ackooij | Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse[END_REF].

We also evaluate different parameters of BbB. We first run BbB without stabilization, and try different batch sizes with and without partial cut aggregation. Then, we evaluate the impact of the two proposed stabilization schemes, with different values for the stabilization parameters.

We coded all the methods using C++ and compiled them with GCC 9.3.0. Every stochastic linear program to solve is given as input to our program in the SMPS format [START_REF] Gassmann | A comprehensive input format for stochastic linear programs[END_REF]. Our implementation and the instances are accessible from this link: https://gitlab.inria.fr/edge/benders-by-batch.

Numerical results

This section shows the numerical results obtained on the 84 instances of our benchmark. When an algorithm is stopped at its time limit of 12 hours (43 200s), the computing time is denoted `8, and the ratio to the best time will be denoted

ą 43200
best time in the tables, which means that this algorithm is at least this ratio slower than the best algorithm present in the table. All the tables presented in this section show, for each method, the average computing time to solve the three instances of each size, and the time ratio with respect to the best time obtained in this table. Detailed results instance by instance are presented in Appendix E. We always present the average time on the three instances of each size for each problem, rounded to the second (when computing times are larger than one second).

We present the results with the performance profiles introduced by [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF]. Let P be a set of problems, and M a set of methods. For any problem p P P and method m P M, we denote as tp,m the computing time of method m to solve problem p. We define the performance ratio of method m P M on problem p P P as:

rp,m " tp,m min m 1 PM tt p,m 1 u
The performance profile of a method m P M is the cumulative distribution function of its performance ratios computed over a set of problems P. It is defined as ρmpτ q " cardptp P P : rp,m ď τ uq

The ratios presented in the following tables are computed as the expectation of the performance ratios over the three instances of each problem with the same number of subproblems.

Performance of BbB without stabilization

We first present the results of BbB without stabilization. We analyze the impact of the batch size, both without (Table 3) and with partial cut aggregation (Table 4). Each column of Tables 3 and4 contains the average time in second to solve the instances and the ratio to the best time. We analyze batch sizes from 1% to 20% of the total number of subproblems (respectively denoted by BbB 1%, BbB 5%, BbB 10% and BbB 20%). The variants with cut aggregation are respectively designated by BbB 1% CutAggr, BbB 5% CutAggr, BbB 10% CutAggr and BbB 20% CutAggr.

In order to estimate only the effect of performing an optimality check after solving each batch of subproblems, we compare in Table 3 the Benders by batch algorithm without cut aggregation (BbB) to Classic multicut, which can be seen as the Benders by batch algorithm without cut aggregation with a batch size equal to the total number of subproblems. We compare in Table 4 the Benders by batch algorithm with cut aggregation (BbB CutAggr) to Classic CutAggr, which corresponds to the Benders by batch algorithm with partial cut aggregation, in which all subproblems are solved at each iteration. The same partition of subproblems is used in BbB 1% CutAggr and Classic 1% CutAggr, as well as in BbB 5% CutAggr and Classic 5% CutAggr. We also present the results of Classic monocut, as a classical alternative to Classic multicut in Table 3 and as a method where cuts are fully aggregated in Table 4. We first notice in Table 3 that BbB 1% solves all the instances, except Fleet20 3-N20000 where it only succeeds to solve one out of three problems, whereas Classic Multicut fails to solve optimally four groups of instances. As the algorithm avoids solving many subproblems and adding cuts in the relaxed master program, it overcomes the issue of the time spent in solving subproblems and delays the size growth of the relaxed master program. However, as we still add one cut for each solved subproblem in the Benders by batch algorithm, it still does not scale well when the number of subproblems becomes large. Classic monocut outperforms BbB on large-scale instances such as 20term with 20000 subproblems or Fleet20 3 with 20000 subproblems.

Table 4 shows that when partial cut aggregation is used, all the presented methods clearly outperform Classic monocut. As we aggregate the cuts over each batch, the size of the relaxed master program remains reasonable, and as the cuts are only computed on samples of subproblems, the algorithms avoid many symmetries due to the sum of the cuts over the subproblems. The table shows also that the best batch sizes are 1% and 5% (respectively BbB 1% CutAggr and BbB 5% CutAggr), except for two small instances. The two methods can be up to 25 times faster than Classic 1% CutAggr and more than 58 times faster than Classic 5% CutAggr. (b) a product instance with 20000 subproblems (product-N20000-s20000)

Figure 3: Number of subproblems solved at each iteration by BbB 1% CutAggr and Classic 1% CutAggr (left plots). For Classic monocut, Classic multicut, BbB 1% CutAggr, Classic 1% CutAggr, the total number of relaxed master programs and subproblems solved, as well as the associated solution time (right plots). Symbol "ą" means that the time limit is reached without proven optimality. To the sum of the time needed to solve the relaxed master programs and the subproblems, one must add the time needed for the other operations (e.g., solving the mean-value problem to obtain x p0q , cut computation and their addition to (RMP), configuration of the subproblems for each new first-stage solution).

The better performance of the Benders by batch algorithm with partial cut aggregation can be explained by Figure 3. We see that in most of the iterations, the algorithm solves only one batch of subproblems to show that the current first-stage solution cannot be proven optimal and to separate it. Despite the greater number of iterations performed by BbB 1% CutAggr due to its explorative nature, we observe that it needs to solve less subproblems than Classic 1% CutAggr to converge. Specifically, for a 20term instance with 20000 subproblems and a product instance with 20000 subproblems, BbB 1% CutAggr solves respectively 23 times less and 7 times less subproblems than Classic 1% CutAggr to converge. Although Classic 1% CutAggr evaluates almost three times less first-stage solutions for the 20term instance (and more than 10 times less for the product instance), it takes ultimately more time to converge than BbB 1% CutAggr: 7375 seconds for Classic 1% CutAggr compared to 261 seconds for BbB 1% CutAggr to solve the 20term instance, and 9820 seconds for Classic 1% CutAggr compared to 1790 seconds for BbB 1% CutAggr to solve the product instance. This can be explained by the fact that the relaxed master program contains fewer cuts at most iterations in BbB 1% CutAggr than in Classic 1% CutAggr. We observe that the time spent in solving the subproblems represents most of the computing time for the 20term instance and most of the computing time for the product instance. All of the above suggests that the smaller the first-stage problem is, the more efficient the Benders by batch algorithm is.

Impact of the stabilization on BbB

We now present the results obtained when the two stabilization schemes presented in §4.3 are applied to the most competitive versions of Bbb (batch sizes of 1% and 5%, and with partial cut aggregation). Figures 4 and5 show the performance profiles of BbB CutAggr with and without stabilization. We present the results with basic stabilization for α P t0.1, 0.5, 0.9u and with solution memory stabilization for α P t0.1, 0.5, 0.9u and β P t0.1, 0.5, 0.9u. Each stabilized method is denoted by BbB 1% CutAggr or BbB 5% CutAggr followed by the values for the parameters. Figure 4 shows that the proposed stabilization schemes accelerate BbB 1% CutAggr, and can be up to 70% faster than the unstabilized algorithm. Four stabilizations are more efficient on the tested instances and give similar results, namely the basic stabilization with α " 0.5, and the solution memory stabilization with pα, βq P tp0.5, 0.1q, p0.5, 0.5q, p0.9, 0.5qu.

Figure 5 shows similar results for BbB 5% CutAggr. The same four methods are the most efficient and equivalent to each other. The algorithm with a solution memory stabilization parameterized by pα, βq " p0.1, 0.9q is less efficient than BbB 5% CutAggr. In this case, a small step size (α " 0.1) and a high memory parameter (β " 0.9) slow down the convergence. For all the other cases, the use of a primal stabilization scheme accelerates the algorithm.

To conclude, results show no clear difference between the two proposed stabilization schemes. The solution memory stabilization does efficiently stabilize the algorithm, but the basic stabilization might be the method of choice as it is much simpler and provides similar computational results for the tested instances.

Comparison with state-of-the-art methods

We now compare the stabilized Benders by batch algorithm to classical methods of the literature. We show in Table 5 the times and ratios of CPLEX Barrier and all the stabilized methods of our benchmark, In-out monocut, In-out multicut, Level bundle, In-out 1% CutAggr and In-out 5% CutAggr with the best performing stabilized Benders by batch BbB 1% CutAggr α " 0.5. We first observe that, on the small instances LandS and gbd, CPLEX Barrier converges faster than all the other methods. As those instances have very few variables both in first and second stages, they remain small even with 20000 subproblems, and are solved very efficiently by CPLEX Barrier. However, we can notice that even for these small instances, BbB 1% CutAggr α " 0.5 is the best method among all the cutting planes algorithms. Table 5 shows clearly that the stabilized Benders by batch algorithm outperforms all the other methods on the large instances, and can be up to more than 25 times faster than Level Bundle or 15 times faster than In-out monocut. We also show that, even if In-out 1% CutAggr outperforms other classical stabilized methods from the literature, the stabilized Benders by batch algorithm can be up to 5 times faster. This shows that, firstly, using a static cut aggregation combined with primal stabilization allows to speed up classical methods used to benchmark algorithms from the literature, and secondly, that not solving systematically all the subproblems allows to further improve the computing times on the test instances.

As for the unstabilized case, we observe in our experiments that BbB 1% CutAggr α " 0.5 needs to solve way less subproblems than other methods to converge, and that the time spent in solving the subproblems represents almost all the computing time in all presented methods (see Appendix C).

Figure 6 shows the evolution of the relative gap between the lower bound and the optimal value, of twodifferent algorithms, on four different instances, according to the time. We see that adding only a few cuts at each iterations allows the lower bound to converge faster to the optimal value to the problem. Moreover, we observe that, on three of the four presented instances, BbB 1% CutAggr α " 0.5 reaches a relative gap of 10 ´6 while all the other algorithms still have a large relative gap (e.g. 10 0 on ssn or 10 ´1 on Fleet). Although BbB 1% CutAggr α " 0.5 adds less cuts at each iteration, its lower bound value is usually larger than the one computed in the other algorithms, when compared for the same computing time, except for some very short time intervals early in the solution process where the lower bound in In-Out 1% CutAggr is better. This suggests that the cuts generated when the approximation of the subproblem value function is coarse, not only take time to be computed, but also do not help much to improve the value of the lower bound.

Figure 6: Evolution of the relative gap between the lower bound and the optimal value as a function of time, on a two instances with 20000 subproblems (20term-N20000-s20000 and product-N20000-s20000)

Sensitivity of BbB to the initial order of the subproblems

We performed several experiments testing different initial orders of the subproblems to assess the sensitivity of the computing time of our method to this choice. We ran BbB 1% CutAggr α " 0.5, for 500 different initial orders, on one instance with 5000 subproblems and one with 10000 subproblems for each tested problem. We report in Table 6 the minimum and maximum times observed, the median, and the first and ninth decile on computing times. We observe that the initial order has usually a limited impact on the efficiency of our algorithm. We also remark that the stabilized Benders by batch algorithm present lower computing times than In-out 1% CutAggr, the best performing method used as comparison in the numerical results, even for the maximum time observed. Although the impact is in general limited, we observe that the initial order can have an impact on the computing time for some instances, such as LandS or gbd. However, the computing times observed are almost always smaller than the computing times of In-out 1% CutAggr, the best performing method in the literature to which BbB is compared to in the paper.

We also evaluated the impact of the optimality gap on the convergence of the algorithm. We see expected results (see Appendix D), that is, a smaller optimality gap induces larger computing times on the largest instances of our test set, but this would also be the case with the other algorithms.

Conclusion

We proposed in this paper the Benders by batch algorithm to solve two-stage stochastic linear programming problems with finite probability distribution. This algorithm solves only a few subproblems at most iterations. The algorithm is exact and does not need a fixed recourse or a deterministic objective function. We showed that performing an optimality check after the resolution of a very few subproblems, each 1% of the numbers of subproblems in our tests, allows to significantly improve the solution time.

To avoid strong oscillations of the first-stage variables, we also introduced a stabilized version of the algorithm. This algorithm is based on a primal stabilization scheme responsible for generating the points at which the subproblems are solved. We presented a sufficient condition for a primal stabilization scheme that ensures the convergence of the Benders by batch algorithm and proposed two schemes satisfying it. The stabilized Benders by batch algorithm can be up to 25 times faster than the level bundle method, or 5 times faster than Benders decomposition with in-out stabilization and static partial cut aggregation of [START_REF] Trukhanov | Adaptive multicut aggregation for two-stage stochastic linear programs with recourse[END_REF].

Applying dual stabilization [START_REF] Magnanti | Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria[END_REF][START_REF] Sherali | On generating maximal nondominated Benders cuts[END_REF] to the Benders by batch algorithm is straightforward and could improve the results. The algorithm can be parallelized and may benefit from effective parallelized methods, such as the asynchronous method of [START_REF] Linderoth | Decomposition Algorithms for Stochastic Programming on a Computational Grid[END_REF]. The use of more advanced cut aggregation strategies is also a path worth exploring. Finally, an interesting perspective is to adapt the Benders by batch algorithm to solve mixed-integer master programs within a Branch&Cut framework.

A Proofs

A.1 Proof of Proposition 1

Proof. pñq Assume that xpkq is an optimal solution to problem 1. We have: Then, using equation (6), we have:

U Bpx pkq q ´LB pkq ď ϵ ðñ c J xpkq `ÿ sPS psϕpx pkq ,
κ ÿ i"1 « ÿ sPS σpiq ps ´ϕ ´x pkq , s ¯´θ pkq s ¯ff ď ϵ ðñ U Bpx pkq q ´LB pkq ď ϵ
which implies that xpkq is an optimal solution to problem 1.

A.2 Proof of Proposition 2

Proof. We solve each subproblem at most once for every optimal solution to pRM P q pkq because pS1, S2, ..., Sκq defines a partition of S. Then if there exists a cut violated by `x pkq , p θpkq s qsPS ˘, we find it in at most cardpSq iterations in the optimality loop. Then, as the total number of optimality cuts is finite and equal to ř sPS cardpVertpΠsqq, this algorithm converges in at most cardpSq ˆřsPS cardpVertpΠsqq iterations. When the cuts are aggregated, if the cut of a subproblem separates the solution to the relaxed master program `x pkq , p θpkq s qsPS ˘, then the aggregated cut of the batch also separates it, and the result remains true.

A.3 Proof of Proposition 3

Proof. Let x P X be a first-stage solution such that batch S σpiq is ϵipxq-approximated by pRM P q pkq , for all i P 1, κ . Then, S σpκq is ϵκpxq-approximated by pRM P q pkq . This means:

"

A.4 Proof of Proposition 4

Proof. The proof consists of two cases:

1. ϵ ą 0 and `xpk`rq ˘rPN converges to xpkq 2. ϵ ě 0 and `xpk`rq ˘rPN converges to xpkq in a finite number of iterations Case 1: Let ϵ ą 0 be the optimality gap and `xpk`rq ˘rPN be a sequence of elements of X converging to xpkq . We focus on the solution px pkq , p θpkq s qsPSq to the relaxed master program. There are two possible sub-cases:

-Sub-case 1.1 There exists t0 P N such that for all l ě t0 and for each index i P 1, κ , batch S σ pk`lq piq is ϵipx pkq q-approximated by pRM P q pkq with an optimality gap of ϵ 4 -Sub-case 1.2 For all t0 P N, there exists l ě t0 and an index i P 1, κ such that batch S σ pk`lq piq is not ϵipx pkq q-approximated by pRM P q pkq with an optimality gap of ϵ 4 Sub-case 1.1: Assume that there exists t0 P N such that for all l ě t0 and for each index i P 1, κ , batch S σ pk`lq piq is ϵipx pkq q-approximated by pRM P q pkq with an initial gap of ϵ 4 . This means that for every l ě t0 and for every index i P 1, κ , As the number of permutations of 1, κ is finite, as for every l ě t0 and for each index i P 1, κ , the application And, as px pk`rq qrPN converges to xpkq , there exists t3 P N such that, @l ě t3, 0 ď ϵ 4 ´cJ px pk`lq ´x pkq q. Then, by setting t4 " maxtt1, t2, t3u, and jointly using (7), (8) and (9), we have, for every l ě t4 and for every index i P 1, κ : nd for every index i P 1, κ , batch S σ pk`t 4 q piq is ϵipx pk`t 4 q q-approximated by pRM P q pkq with an optimality gap of ϵ, which implies, by Proposition 3, that x pk`t 4 q is an optimal solution to problem (1).

x Þ Ñ " ř sPS σ pk`
" ÿ sPS σ pk`
Sub-case 1.2: Now assume that for all t0 P N, there exists l ě t0 and an index i P 1, κ such that batch S σ pk`lq piq is not ϵipx pkq q-approximated by pRM P q pkq with an initial optimality gap of ϵ 4 . This means, that for all t0 P N, there exists l ě t0 and an index i P 1, κ such that: Then, there exists δ ą 0 such that, for all t0 P N, there exists l ě t0 and an index i P 1, κ (the first index such that (10) occurs) such that: ÿ sPS σ pk`lq piq ps ´ϕpx pkq , sq ´θ pkq s ¯ą δ (11)

Let g pk`τ q i P R n 1 be a subgradient associated with the function x Þ Ñ ř sPS σ pk`τ q piq psϕpx pk`τ q , sq at point x pk`τ q . The aggregated cut obtained after solving batch S σ pk`τ q piq can be written as follows: g pk`τ qJ i px ´xpk`τq q `ÿ sPS σ pk`τ q piq psϕpx pk`τ q , sq ď ÿ sPS σ pk`τ q piq psθs By continuity of ϕp., sq for all s P S and as the total number of cuts is finite, there exists L ą 0 such that for every l P N and for every i P 1, κ , ||g pk`lq i ||2 ď L. Then, as sequence `xpk`rq ˘rPN converges to xpkq , there exists t1 P N such that for all l ě t1 and for all i P 1, κ ,

|g pk`lqJ i px ´xpk`lq q| ă δ 3 (12)
Moreover, as sequence `xpk`rq ˘rPN converges to xpkq and by continuity of ϕp., sq, there exists t2 P N such that for all l ě t2 and for each index i P 1, κ :

ÿ sPS σ pk`lq piq psϕpx pkq , sq ă ÿ sPS σ pk`lq piq psϕpx pk`lq , sq `δ 3 (13)
Then, let t3 " maxtt1, t2u. Let i P 1, κ and l0 ě t3 be the first indices such that (11) occurs. By combining (11), (12) and (13), we have: g pk`l 0 qJ i px pkq ´xpk`l 0 q q `ÿ sPS σ pk`l 0 q piq psϕpx pk`l 0 q , sq ´ÿ sPS σ pk`l 0 q piq ps θpkq

s ą δ 3
Then, at x pk`l 0 q , the aggregated cut of the batch S σ pk`l 0 q piq separates the solution to the relaxed master program, as its value at xpkq is strictly larger than the outer linearization given by the relaxed master program. If cutAggr " F alse, there exists at least one of the cuts associated with a subproblem of the batch which separates the solution to the relaxed master program.

Case 2: Let ϵ ě 0 be the optimality gap and `xpk`rq ˘rPN be a sequence of elements of X converging to xpkq in a finite number of iterations.

As `xpk`rq ˘rPN converges to xpkq , the proof of case 1 holds also in this case for every ϵ ą 0. We need to prove that the proposition is true if ϵ " 0. Let t0 be the first iteration such that x pk`t 0 q " xpkq . Either, for each index i P 1, κ , batch S σ pk`t 0 q piq is ϵipx pkq q-approximated by pRM P q pkq with an optimality gap of 0, and by proposition 3, x pk`t 0 q is an optimal solution to problem (1) with an optimality gap ϵ " 0, or there exists a batch which is not ϵipx pkq q-approximated by pRM P q pkq , and the aggregated cut derived from this batch separates the solution to the relaxed master program.

A.5 Proof of Proposition 6

Proof. Let px, py, zqq P X ˆD. We have:

d 1
x " `x, αy `p1 ´αqz d2

x " `x, αx `p1 ´αqαy `p1 ´αq 2 z Let u " αy `p1 ´αqz ´x, we have d 2

x " `x, x `p1 ´αqu ˘. Then, by induction,

@ℓ ě 2, d ℓ x " `x, x `p1 ´αq ℓ´1 u Ȃnd @ℓ ě 2, ψ2pd ℓ x q " x `p1 ´αq ℓ u. Finally, lim ℓÑ`8 ψ2 `dℓ x ˘" x.
A.6 Proof of Proposition 7

Proof. Let px, py, zqq P X ˆD. We have:

d 1
x " `x `βpy ´xq, αy `p1 ´αqz d2

x " `x `β2 py ´xq, x ´p1 ´αqx `αβpy ´xq `p1 ´αqαy `p1 ´αq 2 z We define u " y ´x and v " αy `p1 ´αqz ´x. Then d 2

x " `x `β2 u, x `αβu `p1 ´αqv d3

x " `x `β3 u, x `αpβ 2 `βp1 ´αqqu `p1 ´αq 2 v By induction, we have

d ℓ x " `x `βℓ u, x `α`ř ℓ´1 i"1 β i p1 ´αq ℓ´i´1 ˘u `p1 ´αq ℓ´1 v ˘, @l ě 2
We define δ " maxtβ, p1 ´αqu. For all i ě 0 and for all l ě 2, β i ď δ i and p1 ´αq l´i´1 ď δ l´i´1 . Then

ℓ´1 ÿ i"1 β i p1 ´αq ℓ´i´1 ď pℓ ´1qδ ℓ´1
Then, lim

B Detailed benchmark algorithms

Algorithm 4 describes our implementation of In-out monocut (cutAggr=True) and In-out multicut (cutAggr=False).

Algorithm 4: The Benders decomposition algorithm with in-out stabilization

Parameters: ϵ ě 0, x p0q P X, cutAggr P tT rue, F alseu, α P p0; 1s

1 Initialization: k Ð 0, xp1q Ð x p0q , U B p0q Ð c J x p0q `řsPS psπ J s pds ´Tsx p0q q, LB p0q Ð ´8, α1 Ð α 2 while U B pkq ą LB pkq `ϵ do 3 k Ð k `1 4
Solve pRM P q pkq and retrieve `x Add θs ě π J s pds ´Tsxq to pRM P q pkq 14 if U B pk´1q ą c J x pkq `řsPS psπ J s pds ´Tsx pkq q then 15 U B pkq Ð c J x pkq `řsPS psπ J s pds ´Tsx pkq q

16 xpk`1q Ð x pkq 17 α k`1 Ð mint1.0, 1.2α k u 18 else 19 xpk`1q Ð xpkq , U B pkq Ð U B pk´1q 20 α k`1 Ð maxt0.1, 0.8α k u 21 pRM P q pk`1q Ð pRM P q pkq 22 Return xpk`1q
We now describe the level bundle method. We first define the quadratic master program. Let λ P p0, 1q denote the level parameter, LB a lower bound on the optimal value of the problem, and U B an upper bound. We define f lev " p1 ´λqU B `λLB and a stability center x as in the in-out stabilization approach. The quadratic master program pQM P qpx, f lev q parametrized by x and f lev is the following:

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % min x,θ 1 2 ||x ´x|| 2 2 s.t. : ÿ sPS psθs ě ÿ sPS
psπ J s pds ´Tsxq, @s P S, @πs P VertpΠsq

c J x `ÿ sPS psθs ď f lev x P X, θ P R CardpSq
We denote by pRQM P q pkq px, f lev q its relaxation at iteration k of the algorithm and by κ P p0, λq a acceptation tolerance to update the stability center. Algorithm 5 describes our implementation of Level bundle.

Algorithm 5: Level bundle method

Parameters: ϵ ě 0, x p0q P X, λ P r0, 1q, LB p0q a valid lower bound on the objective value, κ P p0, λq

1 Initialization: k Ð 0, U B p0q Ð c J x p0q `řsPS psπ J s pds ´Ts xp0q q, xp1q Ð x p0q 2 while U B pkq ą LB pkq `ϵ do 3 k Ð k `1 4 f pkq lev " p1 ´λqU B pk´1q `λLB pk´1q 5
Solve pRQM P q pkq px pkq , f pkq lev q 6 if pRQM P q pkq px pkq , f pkq lev q is infeasible then C Impact of the stabilization on BbB -additional analysis

For 8 different instances, we show the total time spent solving the relaxed master programs and the subproblems, as well as the total number of subproblems solved for each of the following methods: Level bundle, In-out monocut, In-out 1% CutAggr and BbB 1% CutAggr α " 0.5.

D Sensitivity of BbB to the optimality gap

We analyze the impact of the optimality gap on the convergence of the algorithm. The choice of a different optimality gap ϵ in the Benders by batch algorithm might have an impact on the number of batches that would be solved at each iteration. With a larger optimality gap, the algorithm tends to solve more batches at each iteration, and to add more cuts. As this might have an impact on the first-stage iterates, and then on the computing times, we show on Figure 8 the cumulative distribution of the computing times to solve our 84 instances with BbB 1% CutAggr α " 0.5 with four different optimality gaps t10 ´3, 10 ´4, 10 ´5, 10 ´6u. The figure shows that different optimality gaps have a negligible impact on the computing times on most instances. A smaller optimality gap induces larger computing times on the largest instances of our test set, but this would also be the case with other classical algorithms.

E Detailed numerical results

This section gives the detailed numerical results of our experiments.

α " 0.1 α " 0.5 α " 0.9 α " 0.1 α " 0.1 α " 0.1 α " 0.5 α " 0.5 α " 0.5
α " 0.9 α " 0.9 α " 0.9

β " 0.1 β " 0.5 β " 0.9 β " 0.1 β " 0.5 β " 0.9 β " 0.1 β " 0.5 β " 0.

Figure 4 :

 4 Figure 4: Performance profiles of the stabilized Benders by batch algorithm with batch size of 1% and cut aggregation.

Figure 5 :

 5 Figure 5: Performance profiles of the stabilized Benders by batch algorithm with batch size of 5% and cut aggregation.

 solution to pRQM P q pkq px pkq , f pkq lev q 12 for s P S do 13 Solve pSP px pkq , sqq and retrieve πs an extreme point of Πs 14 Add ř sPS psθs ě ř sPS psπ J s pds ´Tsxq 15 if c J x pkq `řsPS psπ J s pds ´Tsx pkq q ă p1 ´κqU B pk´1q `κf pkq lev then 16 U B pkq Ð c J x pkq `řsPS psπ J s pds ´Tsx pkq q 17 xpk`1q Ð x pkq 18 else 19 xpk`1q Ð xpkq 20 U B pkq Ð U B pk´1q 21 LB pkq Ð LB pk´1q 22 pRQM P q pk`1q Ð pRQM P q pkq 23 Return xpk`1q

Figure 7 :

 7 Figure 7: Time spent in solving the master program and the subproblems, for 8 different instances, solved by Level bundle, In-out monocut, In-out 1% CutAggr and BbB 1% CutAggr α " 0.5. The total number of solved subproblems is written vertically on the top of each bar.

Figure 8 :

 8 Figure 8: Cumulative distribution of the computing times on our 84 instances, for BbB with cut aggregation and base stabilization with α " 0.5, and with optimality gaps in t10 ´3, 10 ´4, 10 ´5, 10 ´5u

 When the number of scenarios is large, problem (1) becomes intractable for LP solvers. Its reformulation as

	$ ' & min c J x	`ÿ sPS	psϕpx, sq	(2)
	' %	s.t. x P X
	where for every s P S and every x P X,			
		$ ' ' ' min y	g J s y
		&		
	ϕpx, sq "	s.t. Wsy " ds ´Tsx
		'		
		' ' %			y P R n 2 `(3)

 Table 1 classifies the different methods discussed in this section.

	Paper	Randomness	Solve all	Monocut or	Exact	Finite	Cut	Stabilization
		hypothesis*	SPs	multicut	method	convergence	aggregation	
	(Crainic et al., 2020)							

Table 1 :

 1 Comparison of stochastic methods to accelerate Benders decomposition. (SPs: subproblems)

 stay at x Ð True Solve pSP px pkq , sqq and retrieve ϕpx pkq , sq and πs P VertpΠsq

	7	Choose a permutation σ of 1, κ
	8	while stay at x " True and i ă κ `1 do
	9	for s P S σpiq do	
	10					
	11	if cutAggr then	
	12	Add	ř	psθs ě		ř	ps `πJ s pds ´Tsxq ˘to pRM P q pkq
			sPS σpiq	sPS σpiq
	13	else				
	14	for s P S σpiq do	
	15		Add θs ě π J s pds ´Tsxq to pRM P q pkq
	16	if	ř	ps ´ϕpx pkq , sq ´θ s ¯ď ϵi then pkq
		sPS σpiq			
	17	ϵi`1 Ð ϵi	´ř sPS σpiq	ps	s ´ϕ ´x pkq , s ¯´θ pkq	18
		i Ð i	`1		
	19	else stay at x Ð False
	20					

 px pkq ´x pkq q, stay at x Ð True Solve pSP px pkq , sqq and retrieve ϕpx pkq , sq and πs P VertpΠsq

	10	Choose a permutation σ of 1, κ
	11	misprice Ð True			
	12	while stay at x " True and i ă κ `1 do
	13	for s P S σpiq do	
	14								
	15	if cutAggr then	
	16	Add		ř		psθs ě	ř	ps `πJ s pds ´Tsxq ˘to pRM P q pkq
				sPS σpiq		sPS σpiq
	17	else							
	18	for s P S σpiq do
	19		Add θs ě π J s pds ´Tsxq to pRM P q pkq
	20	if	ř	" ps ´ϕpx pkq , sq ´θ	pkq s	¯ı`ď	ϵi then
		sPS σpiq					
	21	ϵi`1 Ð ϵ ´cJ px pkq ´x pkq q	´" i ř	ř	ps ´ϕpx pkq , sq ´θ	s pkq	¯ı2
										t"1	sPS σptq
	2	i Ð i	`1			
	23	else							
	24	stay at x Ð False
	25	if cutAggr then	
	26	if	ř	ps	θpkq s	ă	ř	ps ´πJ s pds ´Ts	xpkq q ¯then misprice Ð False
			sPS σpiq				sPS σpiq
	27	else							
	28	for s P S σpiq do
	29		if	θpkq s	ă π J s pds ´Ts	xpkq q then misprice Ð False
	30	pRM P q pk`1q Ð pRM P q pkq , xpk`1q Ð xpkq , p	θpk`1q s	qsPS Ð p	θpkq s qsPS
	31	while misprice					
	32 Return x pkq							

Table 2 :

 2 Instances sizes, given in the format lines ˆcolumns

	problem first-stage second-stage scenarios
	LandS	2 ˆ4	7 ˆ12	10 6
	gbd	4 ˆ17	5 ˆ10	" 10 5
	20term	3 ˆ64	124 ˆ764	" 10 12
	ssn	1 ˆ89	175 ˆ706	" 10 70
	storm	185 ˆ121	528 ˆ1259	" 10 81
	Fleet20 3	3 ˆ60	321 ˆ1921	ą 3 200
	product	75 ˆ1500	700 ˆ1450	3 450

Table 3 :

 3 Results for the Benders by batch algorithm without partial cut aggregation, with batch sizes from 1% to 20% of the total number of subproblems.

		Classic	Classic	BbB		BbB	BbB		BbB	
		monocut	multicut	1%		5%		10%		20%	
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000	2	3.0	0.75	1.1	2	2.7	0.83	1.3	0.72	1.1	0.66	1.0
	LandS-N5000	11	1.7	9	1.5	13	2.2	8	1.3	7	1.1	6	1.0
	LandS-N10000	22	1.1	29	1.5	38	2.0	25	1.3	21	1.1	20	1.0
	LandS-N20000	45	1.0	105	2.3	130	2.9	89	2.0	80	1.8	72	1.6
	gbd-N1000	2	3.3	0.94	1.4	2	3.6	0.65	1.0	0.84	1.3	0.96	1.5
	gbd-N5000	12	1.9	10	1.7	16	2.5	6	1.0	7	1.1	8	1.3
	gbd-N10000	23	1.2	33	1.7	47	2.5	19	1.0	22	1.2	25	1.3
	gbd-N20000	48	1.0	121	2.5	96	2.0	61	1.3	71	1.5	87	1.8
	ssn-N1000	2408	611.6	7	1.8	6	1.6	4	1.0	4	1.1	5	1.2
	ssn-N5000	13460	590.1	57	2.5	32	1.4	24	1.0	28	1.2	32	1.4
	ssn-N10000	25901	444.1	188	3.2	71	1.2	79	1.3	59	1.0	79	1.3
	ssn-N20000	`8	ą364.8	488	4.1	145	1.2	274	2.3	624	5.2	2821	24.9
	storm-N1000	24	3.7	11	1.7	21	3.2	8	1.3	6	1.0	8	1.3
	storm-N5000	114	2.1	106	1.9	175	3.2	60	1.1	55	1.0	65	1.2
	storm-N10000	224	1.4	496	3.2	492	3.2	156	1.0	159	1.0	189	1.2
	storm-N20000	458	1.0	2370	5.2	1390	3.0	580	1.3	672	1.5	588	1.3
	20term-N1000	577	15.2	757	19.9	38	1.0	82	2.2	49	1.3	74	1.9
	20term-N5000	3506	5.6	24429	38.6	634	1.0	2101	3.3	1335	2.1	2247	3.6
	20term-N10000	6901	3.0	`8	ą19.9	2270	1.0	10733	4.7	6199	2.7	10413	4.6
	20term-N20000	13687	1.3	`8	ą6.2	20625	1.7	`8	ą4.2	`8	ą4.2	`8	ą4.2
	Fleet20 3-N1000	533	9.1	225	3.9	145	2.5	95	1.7	102	1.7	74	1.2
	Fleet20 3-N5000	2757	1.5	5330	2.9	2417	1.3	1950	1.0	1873	1.0	2097	1.1
	Fleet20 3-N10000	5710	1.0	28933	5.1	9903	1.7	19913	3.4	8537	1.5	21383	3.7
	Fleet20 3-N20000	11300	1.0	`8	ą4.1	34900	3.1	`8	ą3.8	`8	ą3.9	`8	ą3.9
	product-N1000	1947	19.0	186	1.8	270	2.6	123	1.2	105	1.0	103	1.0
	product-N5000	10467	7.6	3497	2.5	3730	2.7	1873	1.4	1483	1.1	1377	1.0
	product-N10000	20200	3.7	15200	2.8	13300	2.5	6893	1.3	5583	1.0	5397	1.0
	product-N20000	43000	1.9	`8	ą2.0	`8	ą1.9	29700	1.3	24733	1.1	23067	1.0

Table 4 :

 4 Results for the Benders by batch algorithm with partial cut aggregation, with batch sizes from 1% to 20% of the total number of subproblems.

		Classic	Classic	Classic	BbB 1%	BbB 5%	BbB 10%		BbB 20%
		monocut	1% CutAggr	5% CutAggr	CutAggr	CutAggr	CutAggr		CutAggr
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000	2	2.5	1	1.3	1	1.7	2	2.1	0.88	1.1	0.78	1.0	0.89	1.1
	LandS-N5000	11	2.6	7	1.8	8	2.0	9	2.3	5	1.1	4	1.0	4	1.1
	LandS-N10000	22	2.7	16	2.0	19	2.3	16	2.0	8	1.0	8	1.0	9	1.2
	LandS-N20000	45	2.6	34	1.9	39	2.3	44	2.6	17	1.0	18	1.0	20	1.2
	gbd-N1000	2	3.6	1	2.0	2	2.7	2	2.7	0.61	1.0	0.78	1.3	0.93	1.5
	gbd-N5000	12	3.6	9	2.6	10	3.0	9	2.7	3	1.0	4	1.1	4	1.3
	gbd-N10000	23	3.7	19	3.1	21	3.3	15	2.3	6	1.0	8	1.3	9	1.5
	gbd-N20000	48	3.6	41	3.0	46	3.4	41	3.1	14	1.0	15	1.1	19	1.4
	ssn-N1000	2408	175.8	24	1.8	142	10.5	14	1.0	61	4.5	134	9.8	242	17.7
	ssn-N5000	13460	150.6	399	4.5	1582	17.7	89	1.0	322	3.6	659	7.4	1322	14.8
	ssn-N10000	25901	140.4	1246	6.7	4858	26.1	185	1.0	707	3.8	1423	7.7	2914	15.8
	ssn-N20000	`8	ą98.4	8603	20.0	26122	58.9	441	1.0	1615	3.7	3386	7.7	6757	15.4
	storm-N1000	24	3.8	12	2.0	15	2.4	12	1.9	6	1.0	7	1.1	9	1.5
	storm-N5000	114	3.4	72	2.1	94	2.8	52	1.5	34	1.0	36	1.1	55	1.6
	storm-N10000	224	3.0	164	2.2	198	2.7	110	1.5	74	1.0	82	1.1	104	1.4
	storm-N20000	458	2.9	369	2.3	423	2.6	226	1.4	163	1.0	169	1.1	238	1.5
	20term-N1000	577	39.4	272	18.5	313	21.4	15	1.0	37	2.5	68	4.6	141	9.6
	20term-N5000	3506	50.3	1604	23.2	1945	28.0	70	1.0	193	2.8	395	5.7	839	12.1
	20term-N10000	6901	53.2	3364	26.0	4840	37.4	130	1.0	402	3.1	898	6.9	1978	15.3
	20term-N20000	13687	49.1	7032	25.2	16287	57.3	280	1.0	914	3.3	2051	7.3	18312	65.2
	Fleet20 3-N1000	533	18.9	125	4.4	222	7.9	28	1.0	42	1.5	74	2.6	131	4.7
	Fleet20 3-N5000	2757	25.7	903	8.4	1530	14.3	107	1.0	211	2.0	358	3.3	649	6.1
	Fleet20 3-N10000	5710	26.9	2000	9.4	3460	16.3	212	1.0	440	2.1	721	3.4	1310	6.2
	Fleet20 3-N20000	11300	27.0	5053	12.1	7860	18.8	419	1.0	876	2.1	1520	3.6	2777	6.6
	product-N1000	1947	20.0	190	2.0	431	4.4	98	1.0	141	1.5	253	2.6	505	5.2
	product-N5000	10467	28.9	1523	4.2	3323	9.2	362	1.0	773	2.1	1567	4.3	2873	7.9
	product-N10000	20200	25.0	3827	4.8	7757	9.7	823	1.0	1523	1.9	3053	3.8	5530	6.9
	product-N20000	43000	25.7	9963	6.0	19367	11.6	1693	1.0	3367	2.0	6320	3.8	12500	7.5
									algorithm	total time	(RMP) time # solved time	(SP) # solved
									Classic multicut	ą43200 ą43200	ą20 ą206 ą400000
									Classic monocut	13429	23	1732 12297 34640000
									Classic 1% CutAggr	7375	1472	665	5610 13300000
									BbB 1% CutAggr	261	26	1706	204		576000
		(a) a 20term instance with 20000 subproblems (20term-N20000-s20000)			
									algorithm	total time	(RMP) time # solved	time	(SP) # solved
									Classic multicut	ą43200 ą43200	ą17	ą664		ą340000
									Classic monocut	ą43200	ą1697	ą864 ą25704 ą17280000
									Classic 1% CutAggr	9820	957	204	6186		4080000
									BbB 1% CutAggr	1790	211	1994	863		547000

Table 5 :

 5 Final results, the best stabilized Benders by batch algorithm compared to all stabilized benchmark methods.

		CPLEX	Level	In-out	In-out	In-out	In-out	BbB 1%
		Barrier	Bundle	multicut	monocut	1% CutAggr	5% CutAggr	CutAggr α " 0.5
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000	0.07	1.0	1	17.3	0.89	12.4	1	20.0	0.71	9.7	0.98	13.4	0.96	13.2
	LandS-N5000	1	1.0	7	9.0	8	10.5	9	10.5	5	6.0	6	7.2	5	6.7
	LandS-N10000	1	1.0	14	14.0	24	23.6	16	15.6	10	9.7	11	11.1	9	9.0
	LandS-N20000	5	1.0	27	6.8	62	16.5	41	10.4	22	5.6	22	5.5	21	5.4
	gbd-N1000	0.04	1.0	2	61.2	1	36.6	2	58.8	1	33.6	2	44.8	0.88	25.6
	gbd-N5000	0.17	1.0	10	60.1	10	60.9	10	64.0	7	41.8	8	47.1	4	24.8
	gbd-N10000	0.35	1.0	24	69.5	23	67.5	21	61.7	16	45.7	17	50.3	8	22.2
	gbd-N20000	0.91	1.0	44	48.8	82	89.8	54	60.6	30	34.3	34	39.1	17	18.5
	ssn-N1000	32	6.0	90	17.1	6	1.0	137	27.3	10	1.8	19	3.6	8	1.5
	ssn-N5000	310	10.6	657	22.2	31	1.0	795	27.4	70	2.4	133	4.5	47	1.6
	ssn-N10000	1223	20.3	1501	25.2	63	1.0	1464	23.3	171	2.9	312	5.2	91	1.5
	ssn-N20000	2619	13.7	3109	16.3	243	1.3	2861	15.2	400	2.1	736	3.9	191	1.0
	storm-N1000	41	5.8	15	2.1	9	1.3	14	2.1	8	1.1	9	1.4	7	1.0
	storm-N5000	316	9.7	76	2.3	41	1.3	62	1.9	49	1.5	52	1.6	33	1.0
	storm-N10000	764	11.8	145	2.3	125	1.9	201	3.1	99	1.5	110	1.7	65	1.0
	storm-N20000	2390	17.4	288	2.1	573	4.2	252	1.8	211	1.5	232	1.7	137	1.0
	20term-N1000	14	1.3	217	20.9	36	3.5	114	10.8	27	2.6	44	4.3	10	1.0
	20term-N5000	82	1.7	1044	21.2	482	9.7	681	13.8	197	4.0	269	5.5	50	1.0
	20term-N10000	199	2.0	2450	24.4	2805	27.9	1190	11.8	474	4.7	593	5.9	100	1.0
	20term-N20000	455	2.3	4843	24.7	10992	56.0	1754	8.9	1010	5.1	1371	7.0	197	1.0
	Fleet20 3-N1000	23	1.3	107	6.2	50	2.9	93	5.4	26	1.5	41	2.4	17	1.0
	Fleet20 3-N5000	269	3.6	500	6.7	719	9.6	473	6.3	184	2.4	250	3.3	75	1.0
	Fleet20 3-N10000	809	5.5	1004	6.9	3747	25.6	1029	7.0	435	3.0	590	4.0	146	1.0
	Fleet20 3-N20000	2446	7.9	2730	8.8	17000	54.7	1780	5.8	1018	3.3	1313	4.2	310	1.0
	product-N1000	179	2.3	625	8.2	81	1.1	513	6.7	113	1.5	183	2.4	76	1.0
	product-N5000	2121	6.7	3200	10.3	1127	3.6	2690	8.7	787	2.5	1380	4.4	312	1.0
	product-N10000	4397	8.0	7173	13.0	5357	9.8	5730	10.4	1970	3.6	3133	5.7	552	1.0
	product-N20000	15463	13.6	14300	12.5	`8	ą40.5	12333	10.8	4887	4.3	7983	7.0	1140	1.0

Table 6 :

 6 Computing times for BbB 1% CutAggr α " 0.5 on 500 different initial orders of the subproblems

		Min		10%	50%	90%	Max	In-out
		Time								Time	1% CutAggr
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N5000	4.1	1.0	4.5	1.1	5.3	1.3	6.2	1.5	7.3	1.8	5.0	1.2
	LandS-N10000	8.3	1.0	9.2	1.1	10.2	1.2	11.9	1.4	15.6	1.9	10.0	1.2
	gbd-N5000	3.1	1.0	3.5	1.1	4.1	1.3	5.0	1.6	7.1	2.3	7.0	2.3
	gbd-N10000	6.0	1.0	7.2	1.2	8.3	1.4	10.3	1.7	14.0	2.3	16.0	2.7
	ssn-N5000	40.2	1.0	44.3	1.1	46.8	1.2	49.8	1.2	54.1	1.3	70.0	1.7
	ssn-N10000	82.5	1.0	87.3	1.1	92.5	1.1	102.0	1.2	122.4	1.5	171.0	2.1
	storm-N5000	28.0	1.0	29.8	1.1	31.4	1.1	34.5	1.2	43.5	1.6	49.0	1.8
	storm-N10000	58.0	1.0	60.5	1.0	64.2	1.1	69.7	1.2	83.2	1.4	99.0	1.7
	20term-N5000	43.5	1.0	47.8	1.1	54.1	1.2	61.6	1.4	77.2	1.8	197.0	4.5
	20term-N10000	82.0	1.0	91.5	1.1	103.2	1.3	115.0	1.4	136.2	1.7	474.0	5.8
	Fleet20 3-N5000	72.5	1.0	74.7	1.0	76.6	1.1	78.7	1.1	83.3	1.1	184.0	2.5
	Fleet20 3-N10000	142.0	1.0	148.0	1.0	152.0	1.1	157.0	1.1	166.0	1.2	435.0	3.1
	product-N5000	268.0	1.0	279.0	1.0	292.0	1.1	315.0	1.2	355.0	1.3	787.0	2.9
	product-N10000	528.0	1.0	553.0	1.0	573.0	1.1	603.0	1.1	679.0	1.3	1970.0	3.7

 sq ´˜c J xpkq `ÿ sPS As family `Sσp1q , S σp2q , ..., S σpκq ˘defines a partition of S, the previous equation gives:

							ps θpkq s ¸ď ϵ
	ðñ	ÿ	ps	´ϕ ´x pkq , s ¯´θ pkq s ¯ď ϵ
		sPS			
		κ ÿ	ÿ		ps	´ϕ ´x pkq , s ¯´θ pkq s ¯ď ϵ
		t"1	sPS σptq		
	ðñ	κ ÿ	ÿ	ps	´ϕ ´x pkq , s ¯´θ pkq s ¯ď ϵi, @i P t1, . . . , κu
		t"i	sPS σptq		
				ÿ	ps ´ϕpx pkq , sq ´θ pkq s ¯ď ϵκ	(6)
				sPS σpκq
	By definition of ϵκ we have:					
							«
			ϵκ " ϵ	´κ´1 ÿ	ÿ	ps	s ´ϕ ´x pkq , s ¯´θ pkq	¯ff
							i"1	sPS σpiq
							«
	ðñ ϵκ	`κ´1 ÿ	ÿ	ps	´ϕ ´x
				i"1	sPS σpiq

As ps ě 0, @s P S, and as pRM P q pkq is a relaxation of problem 1, by independence of the batches, we have: ř sPS σptq ps ´ϕpx pkq , sq ´θ pkq s ¯ě 0, @t P t1, . . . , κu. We therefore have:

ÿ sPS σpiq

ps ´ϕ ´x pkq , s ¯´θ pkq s ¯ď ϵi, @i P t1, . . . , κu which is the definition of batch S σpiq being ϵi-approximated by pRM P q pkq . pðq Assume that for every index i P 1, κ , we have ř sPS σpiq ps ´ϕpx pkq , sq ´θ pkq s ¯ď ϵi and therefore: pkq , s ¯´θ pkq s ¯ff " ϵ

 ÿ

		ps ´ϕ px, sq ´θ pkq s	¯ı`ď	ϵ ´cJ px ´x pkq q	´κ´1 ÿ	"	ÿ	s ps ´ϕ px, sq ´θ pkq	¯ıñ
	sPS σpκq							t"1	sPS σptq
	"	ÿ	ps ´ϕ px, sq ´θ pkq s	¯ı``" κ´1 ÿ	ÿ	ps ´ϕ px, sq ´θ pkq s	¯ı`ď	ϵ ´cJ px ´x pkq q
		sPS σpκq							t"1	sPS σptq
	As ζ ď ζ `for any ζ P R, we have:					
				κ ř		ř	ps ´ϕ px, sq ´θ s ¯ď ϵ ´cJ px ´x pkq q pkq
				t"1	sPS σptq
			ñ	ř	ps ´ϕ px, sq ´θ	pkq s ¯ď ϵ ´cJ px ´x pkq q
				sPS				
			ñ ˆcJ x	`ř sPS	psϕ px, sq ˙´ˆc	J xpkq `ř sPS	ps	θpkq s ˙ď ϵ

ñ U Bpxq ´LB pkq ď ϵ and x is an optimal solution to problem (1).

 Solve pSP px pkq , sqq and retrieve πs an extreme point of Πs

					pkq , p	θpkq s qsPS	5
		LB pkq Ð c J xpkq `řsPS ps θpkq
	6	x pkq Ð α k	xpkq `p1 ´αk qx pkq
	7	for s P S do
	8			
	9	if cutAggr then
	10	Add	ř sPS psθs ě	ř sPS psπ J s pds ´Tsxq
	11	else		
	12	for s P S do
	13			

Table 7 :

 7 Results for the Benders by batch algorithm without aggregation, with batch sizes from 1% to 20% of the total number of subproblems.

		Classic	Classic	BbB		BbB		BbB		BbB	
		multicut	monocut	1%		5%		10%		20%	
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000-s1000	2	3.2	0.81	1.3	2	2.8	0.91	1.5	0.75	1.2	0.62	1.0
	LandS-N1000-s1001	2	2.9	0.72	1.0	2	2.4	0.86	1.2	0.74	1.1	0.70	1.0
	LandS-N1000-s1002	2	3.0	0.72	1.1	2	2.9	0.71	1.1	0.65	1.0	0.66	1.0
	LandS-N5000-s5000	11	1.6	9	1.3	12	1.9	8	1.2	7	1.1	7	1.0
	LandS-N5000-s5001	10	1.6	10	1.6	15	2.5	8	1.3	6	1.1	6	1.0
	LandS-N5000-s5002	11	1.9	9	1.5	13	2.2	8	1.3	7	1.2	6	1.0
	LandS-N10000-s10000	22	1.1	26	1.3	41	2.0	25	1.2	20	1.0	21	1.0
	LandS-N10000-s10001	22	1.1	30	1.5	36	1.8	25	1.2	22	1.1	20	1.0
	LandS-N10000-s10002	20	1.1	30	1.7	37	2.0	25	1.4	22	1.2	18	1.0
	LandS-N20000-s20000	49	1.0	96	1.9	134	2.7	86	1.7	78	1.6	71	1.4
	LandS-N20000-s20001	43	1.0	119	2.8	130	3.0	92	2.1	77	1.8	71	1.7
	LandS-N20000-s20002	44	1.0	99	2.2	125	2.8	90	2.0	85	1.9	73	1.7
	gbd-N1000-s1000	2	2.7	0.95	1.4	2	3.3	0.68	1.0	0.78	1.1	0.95	1.4
	gbd-N1000-s1001	2	3.7	0.90	1.4	2	3.8	0.65	1.0	0.90	1.4	0.94	1.5
	gbd-N1000-s1002	2	3.6	0.96	1.6	2	3.7	0.62	1.0	0.83	1.3	0.99	1.6
	gbd-N5000-s5000	13	2.0	10	1.7	18	2.9	6	1.0	7	1.2	8	1.4
	gbd-N5000-s5001	11	1.9	10	1.7	14	2.3	6	1.0	7	1.1	8	1.3
	gbd-N5000-s5002	12	1.8	11	1.6	15	2.4	6	1.0	7	1.1	9	1.3
	gbd-N10000-s10000	24	1.2	34	1.8	54	2.8	19	1.0	21	1.1	26	1.4
	gbd-N10000-s10001	24	1.3	32	1.7	41	2.2	19	1.0	24	1.3	26	1.4
	gbd-N10000-s10002	23	1.2	32	1.7	46	2.4	19	1.0	22	1.1	24	1.2
	gbd-N20000-s20000	48	1.0	119	2.5	97	2.0	63	1.3	71	1.5	86	1.8
	gbd-N20000-s20001	51	1.0	120	2.3	100	2.0	64	1.2	73	1.4	90	1.8
	gbd-N20000-s20002	47	1.0	125	2.7	92	2.0	57	1.2	70	1.5	85	1.8
	ssn-N1000-s1000	2279	552.2	7	1.7	6	1.3	4	1.0	5	1.1	5	1.2
	ssn-N1000-s1001	2720	679.7	7	1.8	6	1.6	4	1.0	4	1.0	5	1.2
	ssn-N1000-s1002	2226	602.8	7	1.8	6	1.8	4	1.0	4	1.1	5	1.3
	ssn-N5000-s5000	13425	580.9	62	2.7	31	1.3	23	1.0	33	1.4	33	1.4
	ssn-N5000-s5001	14260	631.1	45	2.0	33	1.5	23	1.0	27	1.2	31	1.4
	ssn-N5000-s5002	12695	558.4	64	2.8	31	1.4	25	1.1	23	1.0	31	1.4
	ssn-N10000-s10000	26559	420.0	185	2.9	63	1.0	123	2.0	64	1.0	79	1.3
	ssn-N10000-s10001	26228	449.1	193	3.3	72	1.2	58	1.0	59	1.0	78	1.3
	ssn-N10000-s10002	24916	463.1	187	3.5	80	1.5	56	1.0	54	1.0	79	1.5
	ssn-N20000-s20000	`8	ą382.6	512	4.5	152	1.3	113	1.0	120	1.1	8143	72.1
	ssn-N20000-s20001	`8	ą355.0	503	4.1	122	1.0	588	4.8	128	1.1	167	1.4
	ssn-N20000-s20002	`8	ą356.6	450	3.7	160	1.3	121	1.0	1624	13.4	154	1.3
	storm-N1000-s1000	23	3.6	10	1.6	19	3.0	8	1.3	6	1.0	8	1.3
	storm-N1000-s1001	24	3.7	11	1.6	23	3.5	8	1.3	7	1.0	8	1.3
	storm-N1000-s1002	24	3.8	11	1.7	21	3.3	8	1.3	6	1.0	8	1.3
	storm-N5000-s5000	110	2.0	100	1.8	159	2.9	58	1.1	54	1.0	65	1.2
	storm-N5000-s5001	117	2.2	118	2.2	184	3.4	59	1.1	54	1.0	65	1.2
	storm-N5000-s5002	116	2.1	99	1.8	181	3.3	63	1.1	55	1.0	65	1.2
	storm-N10000-s10000	215	1.4	468	3.0	508	3.2	162	1.0	159	1.0	191	1.2
	storm-N10000-s10001	225	1.5	479	3.1	494	3.2	154	1.0	161	1.1	188	1.2
	storm-N10000-s10002	233	1.5	542	3.5	474	3.1	153	1.0	157	1.0	189	1.2
	storm-N20000-s20000	465	1.0	2240	4.8	1470	3.2	581	1.2	704	1.5	574	1.2
	storm-N20000-s20001	434	1.0	2460	5.7	1300	3.0	585	1.3	669	1.5	603	1.4
	storm-N20000-s20002	476	1.0	2410	5.1	1400	2.9	574	1.2	642	1.3	587	1.2
	20term-N1000-s1000	544	13.5	749	18.6	40	1.0	82	2.0	46	1.1	74	1.8
	20term-N1000-s1001	584	16.1	646	17.8	36	1.0	82	2.3	47	1.3	72	2.0
	20term-N1000-s1002	604	16.0	877	23.2	38	1.0	82	2.2	53	1.4	76	2.0
	20term-N5000-s5000	3095	4.7	29455	44.6	660	1.0	2059	3.1	1497	2.3	1951	3.0
	20term-N5000-s5001	3699	5.4	22490	33.0	681	1.0	2066	3.0	1333	2.0	2302	3.4
	20term-N5000-s5002	3725	6.6	21342	38.0	561	1.0	2178	3.9	1176	2.1	2486	4.4
	20term-N10000-s10000	6803	3.1	`8	ą20.4	2193	1.0	9654	4.4	5526	2.5	11592	5.3
	20term-N10000-s10001	6404	2.7	`8	ą19.5	2330	1.0	11062	4.7	7874	3.4	9436	4.1
	20term-N10000-s10002	7494	3.3	`8	ą19.6	2288	1.0	11483	5.0	5196	2.3	10212	4.5
	20term-N20000-s20000	13429	1.0	`8	ą5.7	`8	ą3.2	`8	ą3.2	`8	ą3.2	`8	ą3.2
	20term-N20000-s20001	12763	1.4	`8	ą5.0	9062	1.0	`8	ą4.8	`8	ą4.8	`8	ą4.8
	20term-N20000-s20002	14868	1.5	`8	ą8.1	9613	1.0	`8	ą4.5	`8	ą4.6	`8	ą4.6
	Fleet20 3-N1000-s1000	513	9.4	224	4.1	143	2.6	105	1.9	102	1.9	55	1.0
	Fleet20 3-N1000-s1001	539	10.1	228	4.3	139	2.6	110	2.1	100	1.9	53	1.0
	Fleet20 3-N1000-s1002	546	7.7	224	3.2	154	2.2	70	1.0	103	1.5	115	1.6
	Fleet20 3-N5000-s5000	2780	1.5	5530	2.9	2380	1.3	2050	1.1	1880	1.0	2110	1.1
	Fleet20 3-N5000-s5001	2760	1.5	5090	2.8	2260	1.2	1850	1.0	1870	1.0	2070	1.1
	Fleet20 3-N5000-s5002	2730	1.5	5370	2.9	2610	1.4	1950	1.0	1870	1.0	2110	1.1
	Fleet20 3-N10000-s10000	5860	1.0	29600	5.1	10400	1.8	`8	ą7.4	8780	1.5	11000	1.9
	Fleet20 3-N10000-s10001	5480	1.0	28200	5.1	8310	1.5	8350	1.5	8560	1.6	9950	1.8
	Fleet20 3-N10000-s10002	5790	1.0	29000	5.0	11000	1.9	8190	1.4	8270	1.4	`8	ą7.5
	Fleet20 3-N20000-s20000	11400	1.0	`8	ą4.0	`8	ą3.8	`8	ą3.8	`8	ą3.8	`8	ą3.9
	Fleet20 3-N20000-s20001	11500	1.0	`8	ą3.8	18200	1.6	`8	ą3.8	`8	ą3.8	`8	ą3.8
	Fleet20 3-N20000-s20002	11000	1.0	`8	ą4.6	`8	ą3.9	`8	ą3.9	`8	ą3.9	`8	ą4.0
	product-N1000-s1000	1920	17.9	184	1.7	259	2.4	123	1.1	109	1.0	107	1.0
	product-N1000-s1001	2070	19.9	197	1.9	302	2.9	125	1.2	109	1.0	104	1.0
	product-N1000-s1002	1850	19.1	178	1.8	249	2.6	120	1.2	97	1.0	97	1.0
	product-N5000-s5000	10500	8.0	3220	2.5	3630	2.8	1830	1.4	1390	1.1	1310	1.0
	product-N5000-s5001	10100	7.4	3440	2.5	3830	2.8	1700	1.2	1480	1.1	1360	1.0
	product-N5000-s5002	10800	7.4	3830	2.6	3730	2.6	2090	1.4	1580	1.1	1460	1.0
	product-N10000-s10000	20200	3.6	15300	2.7	14000	2.5	7330	1.3	5820	1.0	5580	1.0
	product-N10000-s10001	19100	3.7	13300	2.5	11800	2.3	6580	1.3	5560	1.1	5230	1.0
	product-N10000-s10002	21300	4.0	17000	3.2	14100	2.6	6770	1.3	5370	1.0	5380	1.0
	product-N20000-s20000	`8	ą1.7	`8	ą2.0	`8	ą1.7	32700	1.3	26000	1.0	25200	1.0
	product-N20000-s20001	42600	2.1	`8	ą2.2	`8	ą2.2	26600	1.3	24100	1.2	20000	1.0
	product-N20000-s20002	`8	ą1.8	`8	ą1.8	`8	ą1.8	29800	1.2	24100	1.0	24000	1.0

Table 8 :

 8 Results for the Benders by batch algorithm with aggregation, with batch sizes from 1% to 20% of the total number of subproblems.

		Classic	Classic	Classic	BbB 1%	BbB 5%	BbB 10%	BbB 20%
		monocut	1% CutAggr	5% CutAggr	CutAggr	CutAggr	CutAggr	CutAggr
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000-s1000	2	2.6	0.94	1.2	1	1.6	2	2.2	0.89	1.2	0.77	1.0	0.86	1.1
	LandS-N1000-s1001	2	2.7	1.00	1.3	1	1.8	2	2.1	0.75	1.0	0.75	1.0	0.90	1.2
	LandS-N1000-s1002	2	2.3	1	1.3	1	1.7	2	2.0	0.99	1.2	0.84	1.0	0.91	1.1
	LandS-N5000-s5000	11	2.7	7	1.8	8	2.0	10	2.6	5	1.2	4	1.0	4	1.1
	LandS-N5000-s5001	10	2.3	7	1.6	9	2.0	9	2.1	5	1.2	4	1.0	4	1.0
	LandS-N5000-s5002	11	2.9	7	1.9	8	2.1	9	2.2	4	1.0	4	1.0	4	1.1
	LandS-N10000-s10000	22	2.7	16	1.9	18	2.2	17	2.0	8	1.0	9	1.1	9	1.1
	LandS-N10000-s10001	22	2.8	16	2.0	20	2.5	14	1.8	8	1.0	8	1.0	9	1.2
	LandS-N10000-s10002	20	2.6	16	2.0	18	2.2	17	2.1	8	1.0	8	1.0	9	1.2
	LandS-N20000-s20000	49	3.0	34	2.0	39	2.3	45	2.7	17	1.0	18	1.1	19	1.2
	LandS-N20000-s20001	43	2.4	35	1.9	39	2.2	42	2.4	18	1.0	18	1.0	21	1.2
	LandS-N20000-s20002	44	2.6	32	1.9	40	2.3	45	2.6	18	1.0	17	1.0	19	1.1
	gbd-N1000-s1000	2	3.5	1	2.4	2	3.1	2	2.9	0.53	1.0	0.68	1.3	0.89	1.7
	gbd-N1000-s1001	2	3.6	1	1.6	2	2.5	2	2.4	0.67	1.0	0.99	1.5	1	1.5
	gbd-N1000-s1002	2	3.6	1	1.9	2	2.5	2	3.0	0.61	1.0	0.68	1.1	0.88	1.4
	gbd-N5000-s5000	13	3.8	8	2.4	11	3.2	10	3.0	3	1.0	4	1.1	4	1.3
	gbd-N5000-s5001	11	3.6	9	2.8	10	3.2	8	2.5	3	1.0	4	1.1	4	1.4
	gbd-N5000-s5002	12	3.4	9	2.6	9	2.7	9	2.6	3	1.0	4	1.1	5	1.3
	gbd-N10000-s10000	24	3.4	18	2.5	21	2.9	18	2.5	7	1.0	8	1.1	9	1.2
	gbd-N10000-s10001	24	4.0	19	3.3	19	3.2	13	2.1	6	1.0	8	1.4	9	1.5
	gbd-N10000-s10002	23	3.8	20	3.4	23	3.9	14	2.3	6	1.0	8	1.4	11	1.8
	gbd-N20000-s20000	48	3.8	39	3.2	47	3.7	50	4.0	12	1.0	16	1.3	20	1.6
	gbd-N20000-s20001	51	3.6	42	3.0	45	3.2	31	2.2	15	1.1	14	1.0	19	1.4
	gbd-N20000-s20002	47	3.4	41	3.0	45	3.3	43	3.2	14	1.0	14	1.0	19	1.4
	ssn-N1000-s1000	2279	168.5	25	1.9	146	10.8	14	1.0	63	4.6	129	9.5	235	17.4
	ssn-N1000-s1001	2720	185.6	24	1.7	135	9.2	15	1.0	63	4.3	130	8.8	253	17.3
	ssn-N1000-s1002	2226	173.3	23	1.8	146	11.4	13	1.0	59	4.6	144	11.2	238	18.5
	ssn-N5000-s5000	13425	152.4	371	4.2	1685	19.1	88	1.0	337	3.8	630	7.2	1342	15.2
	ssn-N5000-s5001	14260	158.7	411	4.6	1536	17.1	90	1.0	322	3.6	672	7.5	1343	15.0
	ssn-N5000-s5002	12695	140.6	416	4.6	1524	16.9	90	1.0	308	3.4	674	7.5	1280	14.2
	ssn-N10000-s10000	26559	151.5	1212	6.9	3343	19.1	175	1.0	672	3.8	1396	8.0	2771	15.8
	ssn-N10000-s10001	26228	140.6	1378	7.4	6126	32.8	187	1.0	760	4.1	1477	7.9	3143	16.8
	ssn-N10000-s10002	24916	129.1	1147	5.9	5105	26.4	193	1.0	690	3.6	1397	7.2	2827	14.6
	ssn-N20000-s20000	`8	ą94.6	7066	15.5	18068	39.6	457	1.0	1651	3.6	3463	7.6	6588	14.4
	ssn-N20000-s20001	`8	ą94.3	5558	12.1	40319	88.0	458	1.0	1651	3.6	3065	6.7	6749	14.7
	ssn-N20000-s20002	`8		13186	32.4	19979	49.1	407	1.0	1543	3.8	3630	8.9	6934	17.0
	storm-N1000-s1000	23	3.7	12	2.0	15	2.4	12	1.9	6	1.0	7	1.1	10	1.6
	storm-N1000-s1001	24	3.8	12	1.9	16	2.5	12	1.9	6	1.0	7	1.1	9	1.4
	storm-N1000-s1002	24	3.7	13	2.0	15	2.3	13	2.0	6	1.0	7	1.1	9	1.4
	storm-N5000-s5000	110	3.3	73	2.2	92	2.8	44	1.3	33	1.0	35	1.1	54	1.6
	storm-N5000-s5001	117	3.6	72	2.2	97	3.0	54	1.6	33	1.0	36	1.1	56	1.7
	storm-N5000-s5002	116	3.2	72	2.0	93	2.6	58	1.6	37	1.0	36	1.0	55	1.5
	storm-N10000-s10000	215	3.0	157	2.2	202	2.8	121	1.7	73	1.0	82	1.1	105	1.4
	storm-N10000-s10001	225	3.0	169	2.2	198	2.6	90	1.2	76	1.0	83	1.1	101	1.3
	storm-N10000-s10002	233	3.2	166	2.3	194	2.7	118	1.6	73	1.0	80	1.1	107	1.5
	storm-N20000-s20000	465	2.9	370	2.3	434	2.7	216	1.3	167	1.0	161	1.0	232	1.4
	storm-N20000-s20001	434	2.7	380	2.4	413	2.6	245	1.5	161	1.0	179	1.1	246	1.5
	storm-N20000-s20002	476	3.0	356	2.2	422	2.6	218	1.4	160	1.0	167	1.0	236	1.5
	20term-N1000-s1000	544	36.7	272	18.4	310	20.9	15	1.0	36	2.5	71	4.8	140	9.5
	20term-N1000-s1001	584	40.0	239	16.4	266	18.2	15	1.0	37	2.5	67	4.6	135	9.3
	20term-N1000-s1002	604	41.4	305	20.9	364	25.0	15	1.0	37	2.5	65	4.5	148	10.2
	20term-N5000-s5000	3095	46.0	1627	24.2	2026	30.1	67	1.0	199	3.0	401	6.0	830	12.4
	20term-N5000-s5001	3699	47.2	1453	18.5	1911	24.4	78	1.0	197	2.5	381	4.9	794	10.1
	20term-N5000-s5002	3725	57.8	1733	26.9	1898	29.5	64	1.0	182	2.8	404	6.3	893	13.9
	20term-N10000-s10000	6803	52.5	3885	30.0	4741	36.6	129	1.0	411	3.2	892	6.9	1874	14.5
	20term-N10000-s10001	6404	52.5	3193	26.2	4915	40.3	122	1.0	409	3.3	914	7.5	1970	16.1
	20term-N10000-s10002	7494	54.5	3015	21.9	4864	35.4	137	1.0	388	2.8	886	6.4	2089	15.2
	20term-N20000-s20000	13429	51.5	7375	28.3	10772	41.3	261	1.0	860	3.3	1913	7.3	7032	27.0
	20term-N20000-s20001	12763	43.2	7433	25.1	26284	88.9	296	1.0	985	3.3	2139	7.2	4704	15.9
	20term-N20000-s20002	14868	52.5	6287	22.2	11803	41.7	283	1.0	897	3.2	2101	7.4	`8	ą152.6
	Fleet20 3-N1000-s1000	513	18.6	123	4.5	221	8.0	28	1.0	42	1.5	71	2.6	127	4.6
	Fleet20 3-N1000-s1001	539	20.0	126	4.7	219	8.1	27	1.0	40	1.5	73	2.7	131	4.9
	Fleet20 3-N1000-s1002	546	18.2	126	4.2	225	7.5	30	1.0	43	1.4	77	2.6	135	4.5
	Fleet20 3-N5000-s5000	2780	25.7	905	8.4	1570	14.5	108	1.0	218	2.0	354	3.3	675	6.2
	Fleet20 3-N5000-s5001	2760	26.5	930	8.9	1500	14.4	104	1.0	209	2.0	363	3.5	645	6.2
	Fleet20 3-N5000-s5002	2730	24.8	873	7.9	1520	13.8	110	1.0	205	1.9	356	3.2	628	5.7
	Fleet20 3-N10000-s10000	5860	27.4	2030	9.5	3430	16.0	214	1.0	426	2.0	725	3.4	1290	6.0
	Fleet20 3-N10000-s10001	5480	26.2	1960	9.4	3520	16.8	209	1.0	467	2.2	721	3.4	1290	6.2
	Fleet20 3-N10000-s10002	5790	27.2	2010	9.4	3430	16.1	213	1.0	426	2.0	716	3.4	1350	6.3
	Fleet20 3-N20000-s20000	11400	28.4	5200	12.9	8040	20.0	402	1.0	886	2.2	1510	3.8	2810	7.0
	Fleet20 3-N20000-s20001	11500	26.8	4820	11.2	7690	17.9	429	1.0	856	2.0	1490	3.5	2750	6.4
	Fleet20 3-N20000-s20002	11000	25.9	5140	12.1	7850	18.5	425	1.0	885	2.1	1560	3.7	2770	6.5
	product-N1000-s1000	1920	18.5	191	1.8	415	4.0	104	1.0	140	1.3	246	2.4	471	4.5
	product-N1000-s1001	2070	21.3	197	2.0	452	4.7	97	1.0	149	1.5	266	2.7	528	5.4
	product-N1000-s1002	1850	20.2	182	2.0	425	4.6	91	1.0	135	1.5	247	2.7	515	5.6
	product-N5000-s5000	10500	29.8	1530	4.3	3290	9.3	352	1.0	734	2.1	1550	4.4	3180	9.0
	product-N5000-s5001	10100	29.3	1460	4.2	3250	9.4	345	1.0	787	2.3	1420	4.1	2580	7.5
	product-N5000-s5002	10800	27.7	1580	4.1	3430	8.8	390	1.0	797	2.0	1730	4.4	2860	7.3
	product-N10000-s10000	20200	28.7	3830	5.4	8170	11.6	704	1.0	1620	2.3	2980	4.2	5670	8.1
	product-N10000-s10001	19100	25.3	3910	5.2	7480	9.9	756	1.0	1400	1.9	2980	3.9	5140	6.8
	product-N10000-s10002	21300	21.1	3740	3.7	7620	7.5	1010	1.0	1550	1.5	3200	3.2	5780	5.7
	product-N20000-s20000	`8	ą24.1	9820	5.5	19300	10.8	1790	1.0	3330	1.9	6740	3.8	13500	7.5
	product-N20000-s20001	42600	23.3	9670	5.3	19200	10.5	1830	1.0	3230	1.8	5950	3.3	11500	6.3
	product-N20000-s20002	`8	ą29.6	10400	7.1	19600	13.4	1460	1.0	3540	2.4	6270	4.3	12500	8.6

Table 9 :

 9 Detailed results for the Benders by batch algorithm, with a batch size of 1%, cut aggregation, and stabilization (basic or solution memory) compared to without stabilization

	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr
	BbB 1%	CutAggr

Table 10 :

 10 Detailed results for the Benders by batch algorithm, with a batch size of 5%, cut aggregation, and stabilization (basic or solution memory) compared to without stabilization

	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr
	BbB 5%	CutAggr

Table 11 :

 11 Final results, the best stabilized Benders by batch algorithm compared to all stabilized benchmark methods.

		CPLEX	Level	In-out	In-out	In-out	In-out	BbB 1%
		Barrier	Bundle	monocut	multicut	1% CutAggr	5% CutAggr	CutAggr α " 0.5
	instance	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio	time	ratio
	LandS-N1000-s1000	0.07	1.0	1	17.3	1	15.6	2	29.4	0.71	10.1	1	14.4	1.00	14.2
	LandS-N1000-s1001	0.08	1.0	1	17.0	0.59	7.4	1	15.0	0.74	9.3	1	12.7	1	12.8
	LandS-N1000-s1002	0.07	1.0	1	17.8	0.99	14.1	1	15.6	0.69	9.9	0.91	13.0	0.88	12.5
	LandS-N5000-s5000	1	1.0	8	5.7	8	6.3	10	7.6	5	3.5	5	3.9	4	3.3
	LandS-N5000-s5001	0.41	1.0	7	17.2	8	19.4	6	15.5	5	11.2	6	13.5	5	13.2
	LandS-N5000-s5002	1	1.0	6	4.2	8	5.8	12	8.4	4	3.2	6	4.3	5	3.5
	LandS-N10000-s10000	0.96	1.0	14	14.5	24	24.8	11	11.6	9	9.4	12	12.4	9	9.4
	LandS-N10000-s10001	1	1.0	13	12.1	24	22.1	13	11.9	10	9.4	10	9.3	9	8.7
	LandS-N10000-s10002	0.97	1.0	15	15.5	23	23.8	23	23.4	10	10.3	11	11.7	9	9.0
	LandS-N20000-s20000	7	1.0	28	4.1	71	10.4	42	6.1	22	3.2	26	3.8	21	3.1
	LandS-N20000-s20001	2	1.0	26	12.4	67	32.4	40	19.0	22	10.5	21	9.9	21	10.3
	LandS-N20000-s20002	7	1.0	29	4.0	48	6.7	43	6.0	22	3.1	21	2.9	20	2.7
	gbd-N1000-s1000	0.03	1.0	2	58.1	1	42.2	3	88.7	0.97	32.2	2	57.0	0.81	26.9
	gbd-N1000-s1001	0.03	1.0	2	78.4	1	42.0	2	53.0	1	46.8	2	50.9	1	33.6
	gbd-N1000-s1002	0.05	1.0	2	46.9	1	25.4	2	34.6	1	21.8	1	26.5	0.82	16.4
	gbd-N5000-s5000	0.15	1.0	8	55.7	7	48.5	13	89.3	7	48.3	9	58.5	4	24.4
	gbd-N5000-s5001	0.18	1.0	11	61.4	11	63.7	9	50.5	7	37.2	7	41.3	4	20.1
	gbd-N5000-s5002	0.17	1.0	11	63.1	12	70.5	9	52.0	7	39.8	7	41.5	5	29.8
	gbd-N10000-s10000	0.32	1.0	23	70.9	19	57.9	30	93.1	17	54.5	18	54.8	7	23.0
	gbd-N10000-s10001	0.35	1.0	26	74.3	32	91.1	18	50.5	14	39.2	17	47.6	7	21.0
	gbd-N10000-s10002	0.37	1.0	23	63.4	20	53.5	15	41.5	16	43.4	18	48.6	8	22.4
	gbd-N20000-s20000	1	1.0	45	40.1	107	94.6	56	49.7	30	26.5	34	30.1	19	16.5
	gbd-N20000-s20001	0.86	1.0	47	54.1	72	83.4	55	64.5	30	34.7	31	35.9	17	19.4
	gbd-N20000-s20002	0.75	1.0	39	52.3	69	91.4	51	67.6	31	41.8	38	51.3	15	19.6
	ssn-N1000-s1000	32	7.9	97	24.0	4	1.0	187	46.4	9	2.3	19	4.8	8	1.9
	ssn-N1000-s1001	32	5.2	85	13.6	6	1.0	117	18.7	10	1.5	19	3.1	8	1.3
	ssn-N1000-s1002	31	4.9	87	13.8	6	1.0	106	16.9	10	1.6	19	3.0	8	1.3
	ssn-N5000-s5000	293	8.3	621	17.6	35	1.0	936	26.5	67	1.9	139	3.9	47	1.3
	ssn-N5000-s5001	327	9.4	719	20.6	35	1.0	597	17.1	69	2.0	128	3.7	46	1.3
	ssn-N5000-s5002	311	14.1	631	28.5	22	1.0	852	38.5	74	3.4	133	6.0	49	2.2
	ssn-N10000-s10000	1271	15.1	1440	17.1	86	1.0	1937	23.0	167	2.0	319	3.8	84	1.0
	ssn-N10000-s10001	1332	25.0	1613	30.2	53	1.0	1261	23.6	185	3.5	318	6.0	98	1.8
	ssn-N10000-s10002	1064	20.8	1451	28.3	51	1.0	1195	23.3	161	3.1	298	5.8	90	1.8
	ssn-N20000-s20000	2592	14.3	3232	17.9	245	1.4	3791	21.0	441	2.4	729	4.0	181	1.0
	ssn-N20000-s20001	2070	10.9	2986	15.7	237	1.2	2460	12.9	365	1.9	743	3.9	190	1.0
	ssn-N20000-s20002	3195	15.9	3108	15.4	246	1.2	2332	11.6	395	2.0	735	3.6	201	1.0
	storm-N1000-s1000	41	5.4	14	1.9	10	1.3	11	1.4	8	1.0	10	1.3	8	1.0
	storm-N1000-s1001	41	6.0	16	2.2	7	1.0	21	3.0	7	1.0	10	1.4	7	1.1
	storm-N1000-s1002	41	6.2	15	2.3	11	1.7	12	1.8	7	1.1	9	1.4	7	1.0
	storm-N5000-s5000	348	10.7	74	2.3	41	1.3	63	1.9	52	1.6	53	1.6	32	1.0
	storm-N5000-s5001	294	8.4	78	2.2	38	1.1	61	1.7	51	1.5	53	1.5	35	1.0
	storm-N5000-s5002	305	10.1	76	2.5	43	1.4	63	2.1	45	1.5	51	1.7	30	1.0
	storm-N10000-s10000	808	12.7	140	2.2	108	1.7	212	3.3	94	1.5	100	1.6	64	1.0
	storm-N10000-s10001	732	11.5	149	2.3	105	1.6	201	3.2	104	1.6	117	1.8	64	1.0
	storm-N10000-s10002	751	11.3	147	2.2	161	2.4	189	2.8	99	1.5	114	1.7	66	1.0
	storm-N20000-s20000	2510	18.1	316	2.3	515	3.7	259	1.9	218	1.6	237	1.7	139	1.0
	storm-N20000-s20001	2362	17.2	266	1.9	633	4.6	251	1.8	202	1.5	230	1.7	137	1.0
	storm-N20000-s20002	2297	17.0	283	2.1	570	4.2	246	1.8	214	1.6	228	1.7	135	1.0
	20term-N1000-s1000	14	1.2	197	17.3	27	2.4	128	11.3	24	2.1	41	3.6	11	1.0
	20term-N1000-s1001	14	1.4	214	22.1	43	4.5	74	7.6	26	2.7	46	4.8	10	1.0
	20term-N1000-s1002	14	1.3	241	23.2	38	3.7	139	13.4	31	3.0	45	4.4	10	1.0
	20term-N5000-s5000	83	1.6	994	19.1	581	11.2	661	12.7	188	3.6	271	5.2	52	1.0
	20term-N5000-s5001	80	1.8	1059	24.4	423	9.7	650	14.9	206	4.7	277	6.4	43	1.0
	20term-N5000-s5002	84	1.6	1078	20.1	443	8.3	732	13.7	198	3.7	257	4.8	54	1.0
	20term-N10000-s10000	205	2.0	2305	22.8	2491	24.7	863	8.5	465	4.6	649	6.4	101	1.0
	20term-N10000-s10001	199	2.0	2647	26.3	3382	33.6	1389	13.8	491	4.9	560	5.6	101	1.0
	20term-N10000-s10002	194	1.9	2400	24.1	2543	25.5	1317	13.2	467	4.7	569	5.7	100	1.0
	20term-N20000-s20000	457	2.4	4562	23.9	13423	70.4	1834	9.6	1007	5.3	1412	7.4	191	1.0
	20term-N20000-s20001	457	2.2	4378	20.9	10267	49.0	1680	8.0	980	4.7	1407	6.7	210	1.0
	20term-N20000-s20002	451	2.4	5588	29.3	9286	48.7	1748	9.2	1043	5.5	1295	6.8	191	1.0
	Fleet20 3-N1000-s1000	24	1.5	104	6.2	61	3.7	71	4.3	27	1.6	42	2.5	17	1.0
	Fleet20 3-N1000-s1001	23	1.3	103	6.0	34	2.0	103	6.0	26	1.5	39	2.3	17	1.0
	Fleet20 3-N1000-s1002	22	1.2	114	6.3	55	3.1	106	5.9	25	1.4	43	2.4	18	1.0
	Fleet20 3-N5000-s5000	266	3.6	485	6.5	933	12.5	552	7.4	181	2.4	239	3.2	75	1.0
	Fleet20 3-N5000-s5001	273	3.6	509	6.6	541	7.1	331	4.3	172	2.2	264	3.4	77	1.0
	Fleet20 3-N5000-s5002	267	3.6	506	6.8	682	9.2	535	7.2	198	2.7	248	3.4	74	1.0
	Fleet20 3-N10000-s10000	784	5.3	988	6.7	3540	24.1	1150	7.8	435	3.0	598	4.1	147	1.0
	Fleet20 3-N10000-s10001	816	5.5	1040	7.0	4750	32.1	1230	8.3	422	2.9	550	3.7	148	1.0
	Fleet20 3-N10000-s10002	826	5.7	984	6.8	2950	20.5	708	4.9	448	3.1	623	4.3	144	1.0
	Fleet20 3-N20000-s20000	2488	8.2	2630	8.7	14900	49.3	2470	8.2	1070	3.5	1270	4.2	302	1.0
	Fleet20 3-N20000-s20001	2469	8.0	2910	9.4	14100	45.5	1490	4.8	945	3.0	1240	4.0	310	1.0
	Fleet20 3-N20000-s20002	2381	7.5	2650	8.4	22000	69.4	1380	4.4	1040	3.3	1430	4.5	317	1.0
	product-N1000-s1000	185	2.5	479	6.4	75	1.0	480	6.4		1.4	180		76	1.0
	product-N1000-s1001	186	2.4	718	9.2	83	1.1	539	6.9	124	1.6	179	2.3	78	1.0
	product-N1000-s1002	165	2.2	677	9.0	84	1.1	519	6.9	108	1.4	189	2.5	75	1.0
	product-N5000-s5000	1374	4.5	3290	10.8	1070	3.5	2840	9.3	820	2.7	1460	4.8	305	1.0
	product-N5000-s5001	3073	9.2	3150	9.4	1100	3.3	2550	7.6	724	2.2	1330	4.0	335	1.0
	product-N5000-s5002	1916	6.5	3160	10.7	1210	4.1	2680	9.1	817	2.8	1350	4.6	295	1.0
	product-N10000-s10000	4991	8.8	6910	12.2	4940	8.7	5750	10.2	2030	3.6	3130	5.5	565	1.0
	product-N10000-s10001	3850	7.2	6670	12.5	6860	12.8	5920	11.1	2000	3.7	2810	5.3	534	1.0
	product-N10000-s10002	4351	7.8	7940	14.3	4270	7.7	5520	9.9	1880	3.4	3460	6.2	556	1.0
	product-N20000-s20000	14757	12.9	13200	11.6	`8	ą43.5	12700	11.1	4700	4.1	8300	7.3	1140	1.0
	product-N20000-s20001	14346	12.6	13900	12.2	`8	ą46.7	11700	10.3	4690	4.1	7580	6.6	1140	1.0
	product-N20000-s20002	17287	15.2	15800	13.9	35600	31.2	12600	11.1	5270	4.6	8070	7.1	1140	1.0

Acknowledgments

This project has been funded by RTE (Réseau de Transport d'Electricité), French company in charge of the electricity network management, through the projects Antares and Antares Xpansion: https://github.com/AntaresSimulatorTeam/ antares-xpansion, which are used for long-term adequacy studies. Computer time for this study was provided by the computing facilities MCIA (Mésocentre de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays de l'Adour. We thank the anonymous referees, whose comments helped improve and clarify this paper.