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1 Université de Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251, Talence, France
2 RTE, Paris La Défense, France

Abstract

This paper introduces a new exact algorithm to solve two-stage stochastic linear programs. Based on

the multicut Benders reformulation of such problems, with one subproblem for each scenario, this method

relies on a partition of the subproblems into batches. The key idea is to solve at most iterations only a

small proportion of the subproblems by detecting as soon as possible that a first-stage candidate solution

cannot be proven optimal. We also propose a general framework to stabilize our algorithm, and show its

finite convergence and exact behavior. We report an extensive computational study on large-scale instances

of stochastic optimization literature that shows the efficiency of the proposed algorithm compared to nine

alternative algorithms from the literature. We also obtain significant additional computational time savings

using the primal stabilization schemes.

Keywords— Large-scale optimization, Benders Decomposition, Stochastic programming, Cut aggregation

1 Introduction

Large-scale two-stage stochastic linear programs arise in many applications such as network design, telecommunication

network planning, air freight scheduling, power generation planning. In such problems, first-stage decisions (also called

here-and-know decisions) are to be made before knowing the value taken by random parameters, then second-stage

decisions (also called wait-and-see decisions) are made after observing the value taken by each random parameter. In

practice, many approaches introduced to solve such problems are based on decomposition techniques (Ruszczyński, 1997).

In this paper, we study two-stage stochastic linear programs. We assume that the probability distribution is given

by a finite set of scenarios and focus on problems with a large number of scenarios. We consider the following linear

program with a scenario block structure:
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min cJx`
ÿ

sPS

psg
J
s ys

s.t. : Wsys “ ds ´ Tsx, @s P S

ys P Rn2
` , @s P S

x P X

(1)

where x P Rn1 , c P Rn1 , S is a finite set of scenarios, ps P R` is a positive weight associated with a scenario s P S

(e.g., a probability), gs P Rn2 , Ws P Rmˆn2 , Ts P Rmˆn1 , ds P Rm, and X Ă Rn1 is a polyhedral set. Variables x are

called first-stage variables and variables ys are called second-stage variables or recourse variables. Problem (1) is called

the extensive formulation of a two-stage stochastic problem.
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When the number of scenarios is large, problem (1) becomes intractable for LP solvers. Its reformulation as
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min cJx`
ÿ

sPS

psϕpx, sq

s.t. x P X

(2)

where for every s P S and every x P X,

ϕpx, sq “

$
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min
y

gJ
s y

s.t. Wsy “ ds ´ Tsx

y P Rn2
`

(3)

makes the use of decomposition methods attractive. If we fix the first-stage variables to x̂ P X, then the resulting problem

becomes separable according to the scenarios. We denote by pSP px̂, sqq the subproblem associated with a scenario s P S

and by ϕpx̂, sq its value.

Let Πs “ tπ P Rm
|WJ

s π ď gsu be the polyhedron associated with the dual of pSP px̂, sqq, which does not depend on

first-stage variables x. We denote by Rays(Πs) the set of extreme rays of Πs, and by Vert(Πs) the set of extreme points

of Πs. By Farkas’ Lemma, we can write an expression of the domain of ϕp¨, sq as dom
´

ϕp¨, sq
¯

“ tx P Rn1 |rJ
s pds ´Tsxq ď

0, @rs P RayspΠsqu. Then we can replace in formulation (2) the polyhedral mapping x ÞÑ ϕpx, sq by its outer linearization

on its domain. Using an epigraph variable θs for every s P S, we obtain the multicut Benders reformulation (Birge and

Louveaux, 1988) of problem (1):
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min
x,θ

cJx`
ÿ

sPS

psθs

s.t. : θs ě πJ
s pds ´ Tsxq, @s P S, @πs P VertpΠsq piq

0 ě rJ
s pds ´ Tsxq, @s P S, @rs P RayspΠsq piiq

x P X, θ P RcardpSq

(4)

Constraints piq are called optimality cuts, and constraints piiq, feasibility cuts. Without loss of generality, we assume

that the problem has relatively complete recourse (i.e., X Ă dom pϕp¨, sqq for every scenario s P S), meaning that every

subproblem is feasible for every x P X. As a result, only optimality cuts are required in the Benders decomposition

algorithm, and every x P X defines an upper bound on the optimal value of the problem. Every two-stage linear stochastic

program can be reformulated to a problem satisfying this hypothesis by introducing slack variables with large enough

coefficients in the objective function (see e.g. (Bodur and Luedtke, 2022) or (Shapiro and Nemirovski, 2005)).

The classic multicut Benders decomposition algorithm (see Algorithm 1 in the case of relatively complete recourse)

consists of the relaxation of constraints piq and piiq and an iterative scheme to add them until convergence is proven.

As the number of extreme rays and vertices of polyhedra Πs is finite, for every s P S, the total number of optimality

and feasibility cuts is finite. Then, this algorithm converges in a finite number of iterations. The relaxation of (4) at

iteration k of the algorithm is called the relaxed master program, denoted by pRMP q
pkq and its solution is denoted by

px̌pkq, pθ̌
pkq
s qsPSq.

Algorithm 1: Classic multicut Benders decomposition algorithm

Parameters: ϵ ě 0 the selected optimality gap
1 Initialization: k Ð 0, UBp0q

Ð `8, LBp0q
Ð ´8

2 while UBpkq
ą LBpkq

` ϵ do
3 k Ð k ` 1

4 Solve pRMP q
pkq and retrieve px̌pkq, pθ̌

pkq
s qsPSq

5 LBpkq
Ð cJx̌pkq

`
ř

sPS psθ̌
pkq
s

6 for s P S do

7 Solve pSP px̌pkq, sqq and retrieve πs P VertpΠsq

8 Add θs ě πJ
s pds ´ Tsxq to pRMP q

pkq

9 UBpkq
Ð min

´

UBpk´1q, cJx̌pkq
`

ř

sPS psπ
J
s pds ´ Tsx̌

pkq
q

¯

10 pRMP q
pk`1q

Ð pRMP q
pkq

11 Return x̌pkq

When the total number of subproblems is large, solving all the subproblems at each iteration, like in Algorithm 1,
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can be time-consuming. To overcome this issue, we introduce a new exact algorithm to solve problem (1), referred to as

the Benders by batch algorithm. The term batch refers to a given fixed partition of all subproblems into separate batches.

We propose a new stopping criterion that allows us to identify that a solution cannot be proven optimal at the current

iteration without necessarily having to solve all the subproblems. As a result, only a few subproblems are generally

solved at a first-stage candidate solution. To prevent introducing too many cuts in the relaxed master program, the

algorithm can use partial cut aggregation, thus generating a single cut from all subproblems that belong to an identical

batch. If the number of batches is equal to one, the Benders by batch algorithm is equivalent to the classic Benders

decomposition algorithm (multicut or monocut, depending on the use of cut aggregation). Several existing methods

based on similar ideas require fixed recourse (Ws “ W, @s P S in problem (1)) (Oliveira et al., 2011) and deterministic

second-stage objective function (gs “ g, @s P s in problem (1)) (Wets, 1983; Dantzig and Infanger, 1991; Higle and Sen,

1991). Moreover, some of them do not have finite convergence (Higle and Sen, 1991), or are not exact (Dantzig and

Infanger, 1991). The method proposed in this work is exact, has finite convergence, and does not require any assumption

on the value of the random parameters gs,Ws, ds, Ts in problem (1).

We also show how to stabilize the proposed algorithm. As the classical primal stabilization methods of the literature

(Ben-Ameur and Neto, 2007; Lemaréchal et al., 1995) are designed for algorithms which solve all the subproblems at

each iteration, it is not possible to apply them directly. They require the actual value of the recourse function at each

iteration, at least to evaluate their stopping criterion. We therefore propose a generic framework to stabilize the Benders

by batch algorithm and prove the finite convergence and exact behavior of the stabilized algorithm. Our algorithm is

also compatible with classical dual stabilization techniques (Magnanti and Wong, 1981; Papadakos, 2008; Sherali and

Lunday, 2013).

The contributions of the paper can be summarized as follows:

� We propose a new exact algorithm to solve the Benders reformulation of two-stage linear stochastic programs with

finite probability distribution. This algorithm is based on a sequential stopping criterion relying on a partition of

the subproblems. This stopping criterion allows the algorithm to solve only a few subproblems at most iterations

by detecting that a first-stage candidate solution cannot be proven optimal early in the subproblems’ solution

process.

� We develop a general framework to apply primal stabilization to the Benders by batch algorithm, as classical

primal stabilization methods cannot be applied if all the subproblems are not solved at each iteration. We state

sufficient conditions for the stabilized algorithm to be exact and have finite convergence and provide two effective

primal stabilization schemes.

� We perform an extensive numerical study showing the efficiency of the developed algorithm on some classical

stochastic instances from the literature compared to implementations of the classic monocut and multicut Ben-

ders decomposition algorithm, with and without in-out stabilization, the static multicut aggregation approach of

Trukhanov et al. (2010), and a level bundle method.

The paper is organized as follows. Section 2 reviews the literature on acceleration techniques for Benders decomposi-

tion, with a focus on the stochastic case, and on closely related methods. In section 3, we present the Benders by batch

algorithm. Section 4 presents a general framework to stabilize our algorithm and two stabilization schemes: the first one

based on the classical in-out separation scheme, and the second one based on exponential moving averages. Section 5

presents extensive computational experiments. Then, section 6 concludes and outlines perspectives.

2 Related work

The classic Benders decomposition algorithm can be slow to converge. Researchers have proposed several techniques

to accelerate its convergence. We first present classical primal and dual stabilization methods, which are the most

widespread and general methods to accelerate the Benders decomposition algorithm. We then present different methods

specific to stochastic programming, with a focus on methods that avoid systematically solving all the subproblems.

A well-known downside of cutting-plane methods, and therefore of the Benders decomposition algorithm, is the

oscillation of the first-stage variables (Nesterov, 2004; Pessoa et al., 2013). Because of the relaxation of all the constraints

related to the subproblems, the solutions of the relaxed master programs might be far from the optimal solution to the

initial problem. This might lead to a large amount of time spent in evaluating poor quality solutions in the early

iterations. To our knowledge, successful methods proposed so far to avoid the presented drawbacks of cutting-plane

methods are either inspired by bundle methods (Zverovich et al., 2012; Linderoth and Wright, 2003; Wolf et al., 2014),
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or by in-out separation approaches (Ben-Ameur and Neto, 2007). Those methods try to restrict the search of an optimal

solution to points close to a given first-stage solution. This solution is called stability center in the case of bundle

methods, or in-point in the case of in-out stabilization. On the one hand, many authors proposed quadratic stabilization

techniques, such as Ruszczyński (1986), who added a quadratic proximal term in the objective function of the relaxed

master program, or Zverovich et al. (2012), Wolf et al. (2014) and van Ackooij et al. (2017), who used quadratic level

stabilizations. Linderoth and Wright (2003) used a trust-region bundle method and proposed to use the infinity norm

with an effective asynchronous parallelized framework. On the other hand, the in-out separation scheme performs a linear

search between the in-point and the solution to the relaxed master program, and it can rely on the practical efficiency of

linear programming solvers. The in-out separation approach has been applied successfully in a cutting-plane algorithm

to solve a survivable network design problem (Ben-Ameur and Neto, 2007), in column generation (Pessoa et al., 2013),

in a branch-and-cut algorithm based on a Benders decomposition approach to solve facility location problems (Fischetti

et al., 2016), and in a cutting-plane algorithm applied to disjunctive optimization (Fischetti and Salvagnin, 2010).

Another family of acceleration techniques focuses on the quality of the optimality cuts. The polyhedral structure of

the second-stage function implies a degeneracy of the dual subproblem. In the singular points of this function, many

equivalent extreme dual solutions exist for the subproblem, each one defining a different optimality cut. The choice of a

“good” dual solution can improve dramatically the convergence of the algorithm. Magnanti and Wong (1981) proposed

to solve the dual of the subproblem twice in order to find the solution which maximizes the objective function at a fixed

core point of the master problem. A different choice of the core point leads to a different cut. A cut derived in this

framework is called a Pareto-optimal cut. Papadakos (2008) proposed a less restrictive way to choose the core point, and

a practical framework to update it. Sherali and Lunday (2013) improved the method, bypassing the need to solve the

subproblem twice.

In the case of stochastic programming, formulations rely either on one epigraph variable for every subproblem (see

formulation (4)) or on a single epigraph variable for all the subproblems, also called L-shaped method (Van Slyke and

Wets, 1969). The former formulation is referred to as the multicut Benders reformulation, whereas the latter is known as

the monocut Benders reformulation. The multicut Benders reformulation was introduced by Birge and Louveaux (1988).

You and Grossmann (2013) showed dramatic improvement both on computing time and number of iterations due to the

multicut reformulation on two supply chain planning problems. The multicut version provides a tighter approximation

of the second-stage function, and converges in less iterations than the monocut one. However the master problem might

suffer from the large number of cuts added through the optimization process, and thus might become time-consuming

to solve. The decision between using either the monocut or the multicut version of the algorithm is not straightforward.

As far as we know, one of the major improvements proposed to improve pure multicut Benders decomposition was to

use massive parallelization (Linderoth and Wright, 2003). Trukhanov et al. (2010) proposed a framework to aggregate

some optimality cuts with the aim of finding a compromise between the monocut and pure multicut versions of the

algorithm. Wolf et al. (2014) proposed to maintain both a multicut model and a monocut model. When, for a given

first-stage solution x, they observe that the monocut approximation of the recourse function is substantially lower than

the multicut approximation, they aggregate the active cuts from the multicut model to generate a cut in the monocut

one. As this cut has, at x, the value given by the multicut model, this cut improves the monocut approximation, without

having to solve any subproblem. They embed their algorithm in the general concept of oracles with on-demand accuracy

(de Oliveira and Sagastizábal, 2014). The concept of oracles with on-demand accuracy might embed the core idea of

the Benders by batch algorithm presented in this work. However, it requires that the oracle gives a subgradient which

belongs to an approximate subdifferential of the objective function at each iteration which is not required in the Benders

by batch algorithm, and may not be satisfied in the general case.

One of the major bottlenecks faced to solve two-stage stochastic programs is the large number of subproblems to solve

at each iteration to compute Benders cuts. Researchers proposed some methods to avoid solving all the subproblems

at each iteration of the Benders decomposition algorithm. In the case of stochastic problems with fixed recourse (i.e.,

Ws “ W for every s P S in problem (1)) where the second-stage objective function does not depend on the uncertainty

(i.e., gs “ g for every s P S in problem (1)), some authors, such as (Wets, 1983; Higle and Sen, 1991; Dantzig and

Infanger, 1991; Infanger, 1992), used the fact that the duals of all the subproblems share the same constraint polyhedron:

Πs “ Π , for every s P S. Given an optimal dual solution πs0 to a subproblem s0 P S, bunching (Wets, 1983) consists in

checking the primal feasibility of this solution for the other subproblems. This solution is optimal for all the subproblems

for which this solution is primal feasible, and there is no need to solve them. Dantzig and Infanger (1991) and Infanger

(1992) proposed to use importance sampling to compute a good approximation of the expected cut in the monocut

formulation with only a few scenarios. Although the resulting algorithm is not exact, they report results with small

confidence intervals on the objective value. Higle and Sen (1991) introduced stochastic decomposition. The method only
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solves a few subproblems at each iteration and computes cuts with all the dual solutions obtained at previous iterations.

Finally, Oliveira et al. (2011) proposed an algorithm which only requires the fixed recourse hypothesis (Ws “ W , @s P S).

It adapts the dual solutions of a subset of subproblems to generate inexact cuts to the remaining subproblems. The

methods of Oliveira et al. (2011), Dantzig and Infanger (1991) and Higle and Sen (1991) are designed for a monocut

algorithm, but the method of Oliveira et al. (2011) can be adapted to a multicut algorithm.

Finally, among other techniques used to accelerate the solution time of two-stage stochastic programs, Crainic et al.

(2020) proposed the so-called Partial Benders decomposition. Under the hypothesis gs “ g, @s P S, and fixed recourse,

they add one of the scenarios, or an artificial scenario computed as the expectation of the others, to the master problem.

They showed major improvements on some instances, both in computing time and number of iterations, even if the

master problem becomes way larger than the original one, and might be harder to solve at each iteration. Under the

same assumptions (gs “ g, Ws “ W, @s P S), Song and Luedtke (2015) proposed an adaptative partition-based approach,

which does not rely on Benders reformulation. Given a partition of the subproblems, they compute a relaxation of the

initial deterministic reformulation by summing the matrices and right-hand-sides of the subproblems of each element of

the partition. They showed the existence of a partition with the same optimal value as the initial problem and an iterative

algorithm to find it. van Ackooij et al. (2017) proposed to use level stabilization with the adaptative partition-based

approach and showed numerical experiments where the resulting algorithms largely outperform classic level bundle or

Benders decomposition methods. Table 1 classifies the different methods discussed in this section.

Paper Randomness Solve all Monocut or Exact Finite Cut Stabilization
hypothesis* SPs multicut method convergence aggregation

(Crainic et al., 2020) gs “ g,Ws “ W @s P S Yes Both Yes Yes No No
(Song and Luedtke, 2015) gs “ g,Ws “ W @s P S Yes Not applicable Yes Yes No No
(van Ackooij et al., 2017) gs “ g,Ws “ W @s P S No Both Yes Yes No Level

(Wets, 1983) gs “ g,Ws “ W @s P S No Both Yes Yes No No
(Dantzig and Infanger, 1991) gs “ g,Ws “ W @s P S No Monocut No Yes No No

(Higle and Sen, 1991) gs “ g,Ws “ W @s P S No Monocut Yes No No No
(Trukhanov et al., 2010) No Yes Multicut Yes Yes Yes No

(Linderoth and Wright, 2003) No Yes Multicut Yes Yes No Trust-region
(Wolf et al., 2014) No All or none Monocut and Multicut Yes Yes No Level

(Oliveira et al., 2011) Ws “ W @s P S No Monocut Inexact Yes No Proximal bundle
This work No No Multicut Yes Yes Yes In-out

* in addition to random parameters having a discrete finite probability distribution

Table 1: Comparison of stochastic methods to accelerate Benders decomposition. (SPs: subproblems)

3 The Benders by batch algorithm

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve exactly the multicut

Benders reformulation (4) of a two-stage stochastic linear program. The algorithm consists of solving the subproblems

by batch and stopping solving subproblems at an iteration as soon as we identify that the current first-stage solution

cannot be proven optimal. This is made possible by checking, after solving of a subset of subproblems, if the gap between

their optimal values and their epigraph approximations in the relaxed master program already exceeds the optimality

gap.

We first present some notations necessary to formally describe the algorithm. We consider an ordered set of scenarios

S “ ts1, s2, ..., scardpSqu and a given batch size 1 ď η ď cardpSq. We define κ “ rcardpSq{ηs as the number of batches

of subproblems. For every i P J1, κK, the ith batch of subproblems Si is defined as Si “ tspi´1qη`1, ..., spi´1qη`ηiu, where

ηi is the size of batch i, η1 “ ¨ ¨ ¨ “ ηκ´1 “ η and ηκ “ pcardpSq mod ηq. Family pSiqiPJ1,κK defines a partition of S.

We restrict ourselves to batches of the same size, but the method remains valid for any partition of S. We denote by

px̌pkq, pθ̌
pkq
s qsPSq the optimal solution to pRMP q

pkq at iteration k of the algorithm, where x̌pkq denotes the optimal value

to the first-stage variables and θ̌
pkq
s the optimal value to the epigraph variable associated with scenario s P S. A lower

bound on the optimal value of problem (1) is then computed as LBpkq
“ cJx̌pkq

`
ř

sPS psθ̌
pkq
s . For a first-stage solution

x P X, we denote by UBpxq “ cJx `
ř

sPS psϕpx, sq an upper bound on the optimal value of problem (1). Let ϵ ě 0 be

the optimality gap of the algorithm. We first define the notion of provable optimality in cutting-planes methods.

Definition 1. Let ϵ ě 0 be the optimality gap of the algorithm and k an iteration of the algorithm. We say that a

first-stage solution x P X cannot be proven optimal at an iteration k of the algorithm iff UBpxq ´ LBpkq
ą ϵ.

Saying that a first-stage solution x cannot be proven optimal at an iteration k of the algorithm means that, either

x is not an optimal solution to problem (1), or the current lower bound given by pRMP q
pkq is too low to prove the

optimality of an optimal solution. The classical stopping criterion UB´LB ď ϵ of the Benders decomposition algorithm

is based on such an optimality proof, but cannot be directly applied if not all the subproblems are solved. Specifically,
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an upper bound on the optimal value of the problem is only known after computing, for a first-stage solution x P X, the

optimal value ϕpx, sq of every subproblem pSP px, sqq.

We propose hereafter a new stopping criterion, which detects, when it occurs, that the current first-stage solution

x̌pkq to pRMP q
pkq cannot be proven optimal without necessarily having to solve all the subproblems. If after having

solved some batches of subproblems, the sum of the differences between their value and their epigraph approximation in

pRMP q
pkq already exceeds the optimality gap ϵ, the algorithm does not solve the remaining batches of subproblems, as

we already know that x̌pkq cannot be proven optimal (see Proposition 1). In this way, the Benders by batch algorithm

is likely to explore more first-stage solutions than classic Benders decomposition algorithms as it tends to solve only a

few subproblems at most iterations. The proposed stopping criterion is based on the concept of ϵi-approximation that

we define below.

Definition 2 (ϵi-approximation). Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration and σ a

permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is ϵi-approximated by pRMP q
pkq if

ÿ

sPSσpiq

ps
´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵi (5)

with ϵi “ ϵ´
i´1
ř

t“1

ř

sPSσptq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌
pkq
s

¯

.

We refer to ϵi as the remaining gap of batch Sσpiq according to the permutation σ and the optimality gap ϵ. For every

index i P J2, κK, we have ϵi “ ϵi´1 ´
ř

sPSσpi´1q
ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌
pkq
s

¯

, which means that computing the successive

remaining gaps consists in filling the gap ϵ with the differences between the true values of the subproblems and their

epigraph approximations in pRMP q
pkq.

The following proposition shows that ϵi-approximation can be used to derive a stopping criterion for the Benders by

batch algorithm.

Proposition 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm, and σ a

permutation of J1, κK. The first-stage solution x̌pkq is an optimal solution to problem (1) if and only if batch Sσpiq is

ϵi-approximated by pRMP q
pkq for every index i P J1, κK.

Proof of proposition 1. See Appendix A.1

Corollary 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration, and σ a permutation of J1, κK. If

there exists an index i P J1, κK such that
ř

sPSσpiq

ps
´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ą ϵi, then x̌
pkq cannot be proven optimal.

Remark 1. As stated in Proposition 1, the proposed stopping criterion is equivalent to the classical stopping criterion

UB ´ LB ď ϵ. This means that, given a relaxed master program with some Benders cuts, and a first-stage solution x̌,

either x̌ can be proven optimal by both stopping criteria, or both will reject it and let the algorithm continue.

We now present the Benders by batch algorithm (Algorithm 2). The while loop from lines 3 to 20 will be referred

hereafter as the master loop. Each pass of this loop corresponds to an iteration of the algorithm. At iteration k, the

relaxed master program pRMP q
pkq is solved to obtain a new first-stage solution x̌pkq. A permutation σ of J1, κK is then

chosen. This permutation defines the order in which the batches of subproblems pS1, S2, ..., Sκq will be solved at the

current first-stage solution. The while loop from lines 8 to 19 will be referred as the optimality loop. In each pass in this

loop:

� the subproblems of the current batch Sσpiq are solved (lines 9 to 10). This part of the algorithm can be parallelized,

as in the classic Benders decomposition algorithm, to accelerate the procedure.

� the cuts defined by the solutions of the subproblems are added to the relaxed master program (lines 11 to 15).

We add a parameter cutAggr to the algorithm. If this parameter is set to False, the cuts of each subproblem are

added independently to the relaxed master program, as it is the case in the classic multicut Benders decomposition

algorithm. If this parameter is set to True, we add only one cut, computed as the weighted sum of all the cuts of

the batch according to the probability distribution.

� the gap between the value of the subproblems and the value of their outer linearization is checked (line 16 to 19). If

the batch is ϵi-approximated by pRMP q
pkq, then i is increased by one, and the boolean stay at x still equals True.

The algorithm returns to line 8 and solves a new batch at the same first-stage solution, as i has been incremented.

If it reaches i “ κ` 1, then all batches are ϵi-approximated by pRMP q
pkq according to permutation σ, and x̌pkq is
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Algorithm 2: The Benders by batch algorithm

Parameters: ϵ ě 0, η P J1, cardpSqK the batch size, cutAggr P tTrue, Falseu

1 Initialization: i Ð 1, k Ð 0, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do
4 k Ð k ` 1

5 Solve pRMP q
pkq and retrieve

`

x̌pkq, pθ̌
pkq
s qsPS

˘

6 i Ð 1, ϵ1 Ð ϵ, stay at x Ð True

7 Choose a permutation σ of J1, κK
8 while stay at x “ True and i ă κ` 1 do
9 for s P Sσpiq do

10 Solve pSP px̌pkq, sqq and retrieve ϕpx̌pkq, sq and πs P VertpΠsq

11 if cutAggr then

12 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP q
pkq

13 else
14 for s P Sσpiq do

15 Add θs ě πJ
s pds ´ Tsxq to pRMP q

pkq

16 if
ř

sPSσpiq

ps
´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi then

17 ϵi`1 Ð ϵi ´
ř

sPSσpiq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌
pkq
s

¯

18 i Ð i` 1

19 else stay at x Ð False

20 pRMP q
pk`1q

Ð pRMP q
pkq

21 Return x̌pkq

an optimal solution to problem (1). If one of the batches is not ϵi-approximated by pRMP q
pkq, then x̌pkq cannot

be proven optimal. Then there exists at least one of the cuts which excludes the solution
`

x̌pkq, pθ̌
pkq
s qsPS

˘

from the

relaxed master program. The algorithm exits the optimality loop, and goes to line 3 to solve again the relaxed

master program.

Remark 2 (Partial cut aggregation). One of the most important drawbacks of the multicut Benders decomposition

algorithm is the large number of cuts added to the relaxed master program at each iteration. As this number of cuts

increases, the time needed to solve the master program can increase dramatically. The Benders by batch algorithm might

suffer from the same effect, even if this effect might be delayed by the method (it adds fewer cuts at each iteration). We

propose to aggregate the cuts of a batch, and add only one cut computed as
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

. As

the subproblems are linearly independent, this cut is the Benders cut associated with the problem created by concatenation

of the subproblems of a batch. As the partition of the subproblems into batches is done prior to the algorithm, the cuts

of the same subproblems are always aggregated together. This can be seen as the static cut aggregation strategy used in

(Trukhanov et al., 2010).

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. Let ϵ ě 0 be the optimality gap. The Benders by batch algorithm converges to an optimal solution to

problem 1 in a finite number of iterations.

Proof of proposition 2. See Appendix A.2.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume that there exists an initial

and arbitrary ordering of the batches S1, S2, ..., Sκ and σ “ id at the first iteration. When we choose a new permutation,

at the beginning of a master loop, the ordered strategy consists of starting from the first batch of subproblems that has

not been solved at the previous first-stage solution. We introduce the following cyclic permutation µ of the batches:

µ “

˜

1 2 ... κ´ 1 κ

2 3 ... κ 1

¸

7



Let N be the number of batches solved at the previous first-stage solution. Then, the ordered strategy consists of defining

the new permutation σ at line 7 of Algorithm (2) as σ Ð µN
˝ σ.

This strategy has a deterministic behavior and implies solving all the subproblems the same number of times during

the optimization process. A pure random strategy, shuffling the set of batches at the beginning of each master loop,

showed a high variance in the total number of iterations. In preliminary computational experiments, we observed factors

up to two between the running times of the fastest and the longest run on the same instance. As such a behavior is not

desirable, we did not pursue this path.

4 Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 2) may suffer, as every cutting-plane

algorithm, from strong oscillations of the first-stage variables, and thus may compute, in the early iterations, cuts that

exclude solutions that are far away from the optimal solution (see e.g. (Vanderbeck, 2005) section 7). However, the

classical primal stabilization procedures presented in Section 2 do not apply directly if we do not solve all the subproblems

at each iteration as they require the value of the recourse function for the current first-stage solution. We propose in

this section a general framework to stabilize our algorithm, and show a sufficient condition for the convergence of the

stabilized algorithm.

4.1 The stabilized Benders by batch algorithm

Many effective primal stabilization methods for cutting-plane algorithms solve, at each iteration, a separation problem in

a point xpkq (hereafter referred to as the separation point) that is different from the current optimal first-stage solution

x̌pkq to the relaxed master program (Zverovich et al., 2012; Pessoa et al., 2013). We define hereafter formally a primal

stabilization scheme, in which the separation point is computed as the image by a given mapping of a vector defining

the state of the stabilization. Such a scheme must also incorporate a way to update this state vector.

Definition 3 (Primal stabilization scheme). A primal stabilization scheme is characterized by a triplet pD, ψ1, ψ2q where

D is a stabilization state space and pψ1, ψ2q is a pair of mappings

#

ψ1 : X ˆ D Ñ D
ψ2 : D Ñ X

such that ψ2 is surjective.

At an iteration k of the stabilized algorithm, mapping ψ1 computes the state vector of the stabilization to be used

at the current iteration from the precedent state vector and the optimal solution to the current relaxed master program.

This state vector may contain some elements of X, such as the last optimal solution to the relaxed master program. An

initial stabilization state vector d0 P D is required when using the primal stabilization scheme in the first iteration of

our algorithm. From the current stabilization state vector, mapping ψ2 is then responsible for generating a first-stage

solution xpkq at which the subproblems are solved and cuts are generated. Function ψ2 is required to be surjective to

ensure that every first-stage solution can be separated.

We now present how to adapt the Benders by batch algorithm (Algorithm 2) when such a primal stabilization scheme

is used. We generalize Definition 2 and Proposition 1 to take into account that the lower bound at a given iteration

k is computed based on the current optimal solution x̌pkq to RMP, while the subproblems are solved at a separation

point x that is usually different from x̌pkq. As this difference between the first-stage solutions induces a difference in the

first-stage cost, we subtract in the definition of the remaining gap ϵi the difference cJ
px´ x̌pkq

q. Because θ̌
pkq
s is a lower

bound on ϕ
´

x̌pkq, s
¯

, but not on ϕ px, sq, we also need to account for cases where ϕ px, sq ´ θ̌
pkq
s ă 0.

Definition 4 (ϵipxq-approximation at a first-stage solution x). Let ϵ ě 0 be the optimality gap of the algorithm, k P Z`

an iteration and σ a permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is ϵipxq-approximated by pRMP q
pkq

at x P X if
”

ÿ

sPSσpiq

ps
´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵipxq

with ϵipxq “ ϵ´ cJ
px´ x̌pkq

q ´

” i´1
ř

t“1

ř

sPSσptq

ps
´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

and ζ`
“ maxtζ, 0u for any ζ P R.

Remark 3. Saying that a batch Sσpiq is ϵipx̌
pkq

q-approximated by pRMP q
pkq is equivalent to saying that Sσpiq is ϵi-

approximated by pRMP q
pkq in Algorithm 2.
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The following proposition introduces a valid stopping criterion for our stabilized version of the Benders by batch

algorithm.

Proposition 3. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm, and σ a

permutation of J1, κK. If there exists a first-stage solution x P X such that batch Sσpiq is ϵipxq-approximated by pRMP q
pkq,

for all i P J1, κK, then x is an optimal solution to problem (1).

Proof of proposition 3. See Appendix A.3

Algorithm 3: The stabilized Benders by batch algorithm

Parameters: ϵ ě 0, η P J1, cardpSqK the batch size, cutAggr P tTrue, Falseu, a primal stabilization scheme
pD, ψ1, ψ2q and an initial stabilization state vector dp0q

P D.
1 Initialization: i Ð 1, k Ð 0, misprice Ð False, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do

4 Solve pRMP q
pk`1q and retrieve

`

x̌pk`1q, pθ̌
pk`1q
s qsPS

˘

5 do
6 k Ð k ` 1

7 dpkq
Ð ψ1px̌pkq, dpk´1q

q

8 xpkq
Ð ψ2pdpkq

q

9 i Ð 1, ϵi Ð ϵ´ cJ
pxpkq

´ x̌pkq
q, stay at x Ð True

10 Choose a permutation σ of J1, κK
11 misprice Ð True

12 while stay at x “ True and i ă κ` 1 do
13 for s P Sσpiq do

14 Solve pSP pxpkq, sqq and retrieve ϕpxpkq, sq and πs P VertpΠsq

15 if cutAggr then

16 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP q
pkq

17 else
18 for s P Sσpiq do

19 Add θs ě πJ
s pds ´ Tsxq to pRMP q

pkq

20 if
ř

sPSσpiq

”

ps
´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

ď ϵi then

21 ϵi`1 Ð ϵ´ cJ
pxpkq

´ x̌pkq
q ´

” i
ř

t“1

ř

sPSσptq

ps
´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

22 i Ð i` 1

23 else
24 stay at x Ð False

25 if cutAggr then

26 if
ř

sPSσpiq

psθ̌
pkq
s ă

ř

sPSσpiq

ps
´

πJ
s pds ´ Tsx̌

pkq
q

¯

then misprice Ð False

27 else
28 for s P Sσpiq do

29 if θ̌
pkq
s ă πJ

s pds ´ Tsx̌
pkq

q then misprice Ð False

30 pRMP q
pk`1q

Ð pRMP q
pkq, x̌pk`1q

Ð x̌pkq, pθ̌
pk`1q
s qsPS Ð pθ̌

pkq
s qsPS

31 while misprice

32 Return xpkq

We now present the stabilized Benders by batch algorithm (Algorithm 3).

As, at each iteration, the cuts are now generated from a first-stage solution xpkq that may be different from the first-

solution to pRMP q
pkq, there is no guarantee that the cuts added separate the solution to the relaxed master program

px̌pkq, pθ̌
pkq
s qsPSq. When there is no cut, among added cuts, that separates the solution to the relaxed master program,

we say that first-stage solution xpkq induces a mis-pricing (Pessoa et al., 2013). We represent such a case in Figure 1.

Then, there is no need to solve again the relaxed master program as its solution remains the same. A boolean variable

misprice appears in Algorithm 3 to handle such a case.

9



The algorithm is structured in three nested while loops. The while loop from line 3 to 31 is called the master loop.

In this loop, the relaxed master program is solved in order to define a new first-stage solution x̌pkq. The while loop from

line 5 to 31 is called the separation loop. This loop updates the current separation point xpkq while the solution to the

relaxed master program x̌pkq remains constant. We increment the iteration counter k each time a new separation point

is calculated. The while loop from line 12 to 29 is called the optimality loop. In the optimality loop, the subproblems of

current batch Sσpiq are solved in xpkq. There are three possibilities at the end of this loop:

� Case 1: The current batch is ϵipx
pkq

q-approximated by pRMP q
pkq. It satisfies the condition of line 20 of Algorithm

3. Then, stay at x still equals True at the end of the loop, and i is incremented by one. If the algorithm reaches

i “ κ` 1, then the algorithm stops, and xpkq is an optimal solution to the problem with an optimality gap ϵ ě 0.

Otherwise, the algorithm solves the next batch of subproblems at the same first-stage solution.

� Case 2: The current batch Sσpiq is not ϵipx
pkq

q-approximated by pRMP q
pkq and there exists no cut derived from

this batch of subproblems, or a previous batch, which separates the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master

program [see Figure 1]. The variable misprice still equals True. As the solution to the relaxed master program has

not been cut, it is useless to solve the relaxed master program again. We exit the optimality loop, but stay in the

separation loop. We define a new separation point xpkq, a new permutation of J1, κK, and begin a new optimality

loop.

� Case 3: The current batch Sσpiq is not ϵipx
pkq

q-approximated by pRMP q
pkq and at least one of the cuts derived

from this batch of subproblems separates the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program [see Figure

2]. This means that misprice is set to False. The variable stay at x is set to False and we exit the optimality

loop. Since misprice equals False, we exit the separation loop. We then go to line 3, and solve again the relaxed

master program.

Figure 1: The cut derived from first-stage solu-
tion xpkq does not separate the solution to the re-

laxed master program px̌pkq, pθ̌
pkq
s qsPSq. The solu-

tion to pRMP qpkq remains the same. The separa-
tion point xpkq induces a mis-pricing.

Figure 2: The cut derived from first-stage solution
xpkq separates the solution to the relaxed master

program px̌pkq, pθ̌
pkq
s qsPSq.

4.2 A sufficient condition for the convergence of the stabilized Benders by batch

algorithm

In this section we prove that, if the sequence of separation points produced by the primal stabilization scheme converges

to the solution to the relaxed master program when this latter solution remains constant over the iterations (i.e., during

a mis-pricing sequence), then the stabilized Benders by batch algorithm (Algorithm 3) converges to an optimal solution

to problem (1) in a finite number of iterations.

Definition 5 (Convergence property and finite convergence property of a primal stabilization scheme). Let pD, ψ1, ψ2q

be a primal stabilization scheme. For every px, dq P X ˆ D we define pdℓxqℓPN˚ as

dℓx “

#

ψ1px, dℓ´1
x q ℓ ą 1

ψ1px, dq ℓ “ 1
@ℓ P N˚
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the sequence of stabilization state vectors obtained by successive applications of ψ1 on a constant first-stage solution

x P X.

� We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the convergence property if:

@px, dq P X ˆ D, lim
ℓÑ`8

ψ2

`

dℓx
˘

“ x

� We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the finite convergence property if:

@px, dq P X ˆ D, Dℓ0 P N˚, ψ2

`

dℓ0x
˘

“ x

We first need to prove the following intermediate results to show that the stabilized Benders by batch algorithm

effectively converges to an optimal solution to problem (1).

Proposition 4. Let ϵ ą 0 (resp. ϵ ě 0) be the optimality gap of Algorithm 3, k P Z` an iteration, and px̌pkq, pθ̌
pkq
s qsPSq

an optimal solution to pRMP q
pkq. If

`

xpk`rq
˘

rPN
is a sequence of elements of X converging to x̌pkq (resp. converging to

x̌pkq in a finite number of iterations) and
`

σpk`rq
˘

rPN
a sequence of permutations of J1, κK, then there exists t P N such

that one of the following assertions is true:

1. First-stage solution xpk`tq is proven to be an optimal solution to problem (1) with an optimality gap of ϵ ą 0 (resp.

ϵ ě 0).

2. There exists a cut generated in xpk`tq which separates px̌pkq, pθ̌
pkq
s qsPSq.

Proof of proposition 4. See Appendix A.4.

Proposition 5. If the primal stabilization scheme satisfies the convergence property (resp. finite convergence

property) of Definition 5, then the stabilized Benders by batch algorithm converges to an optimal solution to problem (1)

in a finite number of iterations, for every ϵ ą 0 (resp. ϵ ě 0).

Proof of proposition 5. Let k P Z` an iteration of the algorithm, σ a permutation of J1, κK, and xpkq
P X the separation

point. There are three possible cases:

1. @i P J1, κK, batch Sσpiq is ϵipx
pkq

q-approximated by pRMP q
pkq. Then xpkq is an optimal solution to problem (1)

with an optimality gap of ϵ ą 0 (resp. ϵ ě 0).

2. There exists an index i P J1, κK such that solving the subproblems of batch Sσpiq generates a cut which separates

the solution to pRMP q
pkq. As the total number of cuts is finite, we can only be in this situation a finite number

of times.

3. There exists no cut derived at xpkq which separates the solution to pRMP q
pkq. Then, xpkq induces a mis-pricing.

The solution to pRMP q
pk`1q remains the same. Let suppose that this happens during an infinite number of

consecutive iterations. Then, as the primal stabilization scheme satisfies the convergence property (resp. the finite

convergence property), the sequence of separation points converges to x̌pkq (resp. in a finite number of iterations).

Prop. 4 states that in that case, we end up in a finite number of iterations in case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations in case 1, and finds an

optimal solution to problem (1).

Remark 4. The classic Benders decomposition algorithm is equivalent to the Benders by batch algorithm with a batch

size η “ cardpSq. Therefore, Algorithm 3 describes a valid way to add primal stabilization to the classic Benders

decomposition algorithm (providing that the primal separation scheme satisfies the convergence property).

4.3 Two primal stabilization schemes satisfying the convergence property

We introduce in this section two primal stabilization schemes satisfying the convergence property, based on the in-out

stabilization approach (Ben-Ameur and Neto, 2007). In the in-out approach, the stability center x̂pkq at iteration k

is equal to the separation point (among those calculated so far) with the smallest objective function value: x̂pkq
“

argminjPJ0,k´1K tcJxpjq
`

ř

sPS psϕpxpjq, squ. Then the separation point xpkq is then defined on the segment between

x̂pkq (in-point) and x̌pkq (out-point): xpkq
“ αx̌pkq

` p1 ´ αqx̂pkq. The in-out approach creates a sequence of stability

centers with decreasing objective values converging to an optimal solution to the problem. The definition of x̂pkq requires
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computing the value ϕpxpjq, sq for every scenario s P S, meaning that all the subproblems need to be solved at every

separation point. As we generally do not solve all the subproblems at a given iteration, the in-out stabilization approach

needs to be adapted for use in the Benders by batch algorithm.

We present below two primal stabilization schemes.

Scheme 1 - Basic stabilization: Let α P p0, 1s be a stabilization parameter. The separation point at iteration k

is computed as follows:

xpkq
“ αx̌pkq

` p1 ´ αqxpk´1q

for k ě 1, and xp0q
P X is a feasible first-stage solution. This basically consists in doing 100α% of the way from the

previous separation point to the solution to the master program. This can be seen as an in-out stabilization, updating

the stability center to the last separation point at each iteration. By convexity of X, xpkq belongs to X for every k P N.

The basic stabilization scheme can be expressed according to Definition 3 as:

D “ X2

ψ1 :

#

X ˆ D Ñ D
x, py, zq ÞÑ px, αy ` p1 ´ αqzq

ψ2 :

#

D Ñ X

py, zq ÞÑ αy ` p1 ´ αqz

with d0 “ pxp0q, xp0q
q where xp0q

P X is a feasible first-stage solution. The vector of parameters dpkq computed at the

iteration k is equal to px̌pkq, xpk´1q
q.

Proposition 6. The basic stabilization scheme satisfies the convergence property.

Proof of proposition 6. See Appendix A.5.

Scheme 2 - Solution memory stabilization: This stabilization uses an exponentially weighted average of the

previous master solutions to compute the separation point. We choose a stabilization parameter α P p0, 1s and a memory

parameter β P r0, 1q. We also define the exponentially weighted averaged point x̄pkq on master solutions. The separation

point is computed as follows:
#

x̄pkq
“ βx̄pk´1q

` p1 ´ βqx̌pkq

xpkq
“ αx̄pkq

` p1 ´ αqxpk´1q

for k ě 1, and xp0q
“ x̄p0q

P X is a feasible first-stage solution. By convexity of X, xpkq belongs to X for every k P N. This

stabilization takes inspiration from the stochastic gradient algorithm with momentum (Polyak, 1964) that has proven

its efficiency in solving large-scale stochastic programs in the field of deep learning (Sutskever et al., 2013).

The solution memory stabilization scheme can be expressed according to Definition 3 as:

D “ X2

ψ1 :

#

X ˆ D Ñ D
x, py, zq ÞÑ pβy ` p1 ´ βqx, αy ` p1 ´ αqzq

ψ2 :

#

D Ñ X

py, zq ÞÑ αy ` p1 ´ αqz

with d0 “ pxp0q, xp0q
q where xp0q

P X is a feasible first-stage solution. The vector of parameters dpkq computed at the

iteration k is equal to px̄pkq, xpk´1q
q.

Proposition 7. The solution memory stabilization scheme satisfies the convergence property.

Proof of proposition 7. See Appendix A.6.

It is possible to adapt both schemes so that they satisfy the finite convergence property. Specifically, the separation

point should become equal to the solution to the relaxed master program in a finite number of iterations when there

are successive iterations which induce a mis-pricing. For the basic stabilization scheme, this implies that the value of α

should increase to become equal to one in a finite number of iterations if successive mis-pricings occur. If t P N denotes

the number of consecutive mis-pricings that have occurred before starting iteration k of the algorithm, then computing

xpkq replacing α by mint1, αp1 ` tqu works. For the solution memory stabilization scheme, in similar cases, the value of

α should increase to become equal to one and the value of β should decrease to become equal to zero in a finite number

of iterations.
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5 Experimental design and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the benchmark we use,

and our instance generation method. We then explain the different algorithms that we used for comparison, and how we

implemented them. Finally, we show and analyze the numerical results we obtained.

5.1 Instances

We use seven well studied instances from the literature. The first five, 20term (Mak et al., 1999), gbd (Dantzig, 1963),

LandS (Louveaux and Smeers, 1988), ssn (Sen et al., 1994) and storm (Mulvey and Ruszczyński, 1995), are available

from the following link: www.cs.wisc.edu/~swright/stochastic/sampling/. The problem 20term is taken from (Mak

et al., 1999). It is a model of motor freight carrier’s operations. The problem consists in choosing the position of

some vehicles at the beginning of the day, the first-stage variables, and then to use those vehicles to satisfy some

random demands on a network. Instance gbd has been created from chapter 28 of (Dantzig, 1963). It is an aircraft

allocation problem. LandS has been created from an electrical investment planning problem described in (Louveaux

and Smeers, 1988). In (Linderoth et al., 2006), the authors modified the problem to obtain an instance with 106

scenarios. Problem ssn is a problem of telecommunication network design taken from (Sen et al., 1994) and storm is

a cargo flight scheduling problem described by (Mulvey and Ruszczyński, 1995). The two last instances come from

https://people.orie.cornell.edu/huseyin/research/research.html. The first one, product, is the large instance

of the product distribution problem available at https://people.orie.cornell.edu/huseyin/research/sp_datasets/

sp_datasets.html. The second one, Fleet20 3 was found at http://www.ie.tsinghua.edu.cn/lzhao/ which was itself

taken from https://people.orie.cornell.edu/huseyin/research/research.html. It is a fleet-sizing problem, close

to 20term, with a two-week planning horizon.

As those instances have a tremendous number of scenarios (see Table 2), we generate instances by sampling scenarios

from the initial ones. We generated instances with sample sizes 1000, 5000, 10000, and 20000. Three random instances

have been generated for each problem and each sample size S, with random seeds S ` k, k P t0, 1, 2u so that two

instances of different sample size should not share sub-samples. This leads to a benchmark of 84 different instances. In

the following, we will refer to the instances of problem prob with #scenarios scenarios as prob-N#scenarios.

Table 2: Instances sizes, given in the format lines ˆ columns

problem first-stage second-stage scenarios

LandS 2 ˆ 4 7 ˆ 12 106

gbd 4 ˆ 17 5 ˆ 10 „ 105

20term 3 ˆ 64 124 ˆ 764 „ 1012

ssn 1 ˆ 89 175 ˆ 706 „ 1070

storm 185 ˆ 121 528 ˆ 1259 „ 1081

Fleet20 3 3 ˆ 60 321 ˆ 1921 ą 3200

product 75 ˆ 1500 700 ˆ 1450 3450

5.2 Experimental Design

In order to evaluate the numerical efficiency of our Benders by batch algorithm (BbB), we compare it to nine different

methods.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold SKL-6130 processor at 2,1

GHz with 96 GB of RAM with the TURBO boost (up to 3.7 GHz). The time limit is fixed to twelve hours for every

algorithm. The optimality gap is fixed to a relative gap of 10´6 for every algorithm. We set the lower bound on the

epigraph variables associated with the subproblems to 0 as it is a valid lower bound on LandS, gbd, ssn, storm, Fleet20 3

and 20term instances and to ´1010 on product instances as 0 is not a valid lower bound on those instances.

First, we run IBM ILOG CPLEX 12.10 (IBM, 2019) to solve the deterministic reformulation with the barrier algorithm

(CPLEX Barrier hereafter) and with its multicut Benders implementation (CPLEX Benders) (Bonami et al., 2020).

We also compare to our implementation of the multicut Benders decomposition algorithm (Classic multicut) and our

implementation of the monocut Benders decomposition algorithm (Classic monocut).
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In order to evaluate the effect of primal stabilization, we also run our implementations of the level bundle method

(Lemaréchal et al., 1995) using aggregated cut as in the monocut Benders decomposition algorithm (Level Bundle), our

implementation of the multicut Benders decomposition algorithm with an in-out stabilization (In-out multicut) and

our implementation of the monocut Benders decomposition algorithm with an in-out stabilization (In-out monocut).

We describe these algorithms in Appendix B.

As the partial cut aggregation proposed in the Benders by batch algorithm can be seen as the static cut aggregation

scheme described by Trukhanov et al. (2010), which have already shown improvements compared to pure monocut or

multicut Benders decomposition algorithms, we also implement the Benders decomposition algorithm with the same

cut aggregation level as the one used in the Benders by batch algorithms (Classic CutAggr). Given pSiqi“1,..,η the

same partition of the subproblems into batches than the one used in the Benders by batch algorithm, we solve all the

subproblems at each iteration and add the following cuts
ř

sPSi
psθs ě

ř

sPSi
ps

´

πJ
s pds ´ Tsxq

¯

, @i P J1, ηK. Finally, we
implement the Benders decomposition with static cut aggregation and in-out stabilization (In-out CutAggr).

CPLEX Benders is run with the following parameter values: benders strategy 2 (an annotation file contains

the first-stage variables, and CPLEX automatically decomposes the subproblems), threads 1 (to run CPLEX using one

core, as the other methods), timelimit 43200 (time limit of twelve hours). Classic multicut follows Algorithm 1. In

Classic monocut and In-out monocut, we compute the cuts as
ř

sPS psθs ě
ř

sPS ps
´

πJ
s pds ´ Tsxq

¯

.

The subproblems are solved with the dual simplex algorithm for all methods. In all our implementations, the first-

stage variables appear as variables in all the subproblems, and are fixed to the desired values during the optimization

process. The coefficients of the cuts are computed as the reduced cost of those variables in an optimal solution to the

subproblems.

In Level Bundle, In-out multicut, In-out monocut and In-out CutAggr and BbB with stabilization, the

starting solution xp0q is obtained by solving the mean-value problem. We use a dynamic strategy to update the stabi-

lization parameter α in In-out monocut, In-out multicut and In-out CutAggr. If cJxpkq
`

ř

sPS psϕps, xpkq
q ă

cJx̂pkq
`

ř

sPS psϕps, x̂pkq
q, then the separation point has a lower cost than the current stability center. If we had

separated farther, we could have found an even better point, so we increase α with the rule α Ð mint1.0, 1.2αu. If

cJxpkq
`

ř

sPS psϕps, xpkq
q ě cJx̂pkq

`
ř

sPS psϕps, x̂pkq
q, we did not stabilize enough, and we therefore decrease the stabi-

lization parameter α with the rule α Ð maxt0.1, 0.8αu. We initialize α to 0.5. Such a procedure cannot be used in the

stabilized Benders by batch algorithm as the actual value of the recourse function is required. Level Bundle is tested

with a level parameter λ “ 0.5 and a stability center tolerance κ “ 0.1 as in (van Ackooij et al., 2017).

We also evaluate different parameters of BbB. We first run BbB without stabilization, and try different batch sizes

with and without partial cut aggregation. Then, we evaluate the impact of the two proposed stabilization schemes, with

different values for the stabilization parameters.

We coded all the methods using C++ and compiled them with GCC 9.3.0. Every stochastic linear program to solve

is given as input to our program in the SMPS format (Gassmann and Schweitzer, 2001). Our implementation and the

instances are accessible from this link: https://gitlab.inria.fr/edge/benders-by-batch.

5.3 Numerical results

This section shows the numerical results obtained on the 84 instances of our benchmark. When an algorithm is stopped

at its time limit of 12 hours (43 200s), the computing time is denoted `8, and the ratio to the best time will be denoted

ą 43200
best time

in the tables, which means that this algorithm is at least this ratio slower than the best algorithm present in

the table. All the tables presented in this section show, for each method, the average computing time to solve the three

instances of each size, and the time ratio with respect to the best time obtained in this table. Detailed results instance

by instance are presented in Appendix E. We always present the average time on the three instances of each size for each

problem, rounded to the second (when computing times are larger than one second).

We present the results with the performance profiles introduced by Dolan and Moré (2002). Let P be a set of

problems, and M a set of methods. For any problem p P P and method m P M, we denote as tp,m the computing time

of method m to solve problem p. We define the performance ratio of method m P M on problem p P P as:

rp,m “
tp,m

minm1PMttp,m1 u

The performance profile of a method m P M is the cumulative distribution function of its performance ratios

computed over a set of problems P. It is defined as ρmpτq “ cardptp P P : rp,m ď τuq

The ratios presented in the following tables are computed as the expectation of the performance ratios over the three
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instances of each problem with the same number of subproblems.

5.3.1 Performance of BbB without stabilization

We first present the results of BbB without stabilization. We analyze the impact of the batch size, both without (Table

3) and with partial cut aggregation (Table 4). Each column of Tables 3 and 4 contains the average time in second to solve

the instances and the ratio to the best time. We analyze batch sizes from 1% to 20% of the total number of subproblems

(respectively denoted by BbB 1%, BbB 5%, BbB 10% and BbB 20%). The variants with cut aggregation are

respectively designated by BbB 1% CutAggr, BbB 5% CutAggr, BbB 10% CutAggr and BbB 20% CutAggr.

In order to estimate only the effect of performing an optimality check after solving each batch of subproblems,

we compare in Table 3 the Benders by batch algorithm without cut aggregation (BbB) to Classic multicut, which

can be seen as the Benders by batch algorithm without cut aggregation with a batch size equal to the total number

of subproblems. We compare in Table 4 the Benders by batch algorithm with cut aggregation (BbB CutAggr) to

Classic CutAggr, which corresponds to the Benders by batch algorithm with partial cut aggregation, in which all

subproblems are solved at each iteration. The same partition of subproblems is used in BbB 1% CutAggr and Classic

1% CutAggr, as well as in BbB 5% CutAggr and Classic 5% CutAggr. We also present the results of Classic

monocut, as a classical alternative to Classic multicut in Table 3 and as a method where cuts are fully aggregated in

Table 4.

Table 3: Results for the Benders by batch algorithm without partial cut aggregation, with batch sizes from 1%
to 20% of the total number of subproblems.

Classic Classic BbB BbB BbB BbB
monocut multicut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 3.0 0.75 1.1 2 2.7 0.83 1.3 0.72 1.1 0.66 1.0
LandS-N5000 11 1.7 9 1.5 13 2.2 8 1.3 7 1.1 6 1.0
LandS-N10000 22 1.1 29 1.5 38 2.0 25 1.3 21 1.1 20 1.0
LandS-N20000 45 1.0 105 2.3 130 2.9 89 2.0 80 1.8 72 1.6
gbd-N1000 2 3.3 0.94 1.4 2 3.6 0.65 1.0 0.84 1.3 0.96 1.5
gbd-N5000 12 1.9 10 1.7 16 2.5 6 1.0 7 1.1 8 1.3
gbd-N10000 23 1.2 33 1.7 47 2.5 19 1.0 22 1.2 25 1.3
gbd-N20000 48 1.0 121 2.5 96 2.0 61 1.3 71 1.5 87 1.8
ssn-N1000 2408 611.6 7 1.8 6 1.6 4 1.0 4 1.1 5 1.2
ssn-N5000 13460 590.1 57 2.5 32 1.4 24 1.0 28 1.2 32 1.4
ssn-N10000 25901 444.1 188 3.2 71 1.2 79 1.3 59 1.0 79 1.3
ssn-N20000 `8 ą364.8 488 4.1 145 1.2 274 2.3 624 5.2 2821 24.9
storm-N1000 24 3.7 11 1.7 21 3.2 8 1.3 6 1.0 8 1.3
storm-N5000 114 2.1 106 1.9 175 3.2 60 1.1 55 1.0 65 1.2
storm-N10000 224 1.4 496 3.2 492 3.2 156 1.0 159 1.0 189 1.2
storm-N20000 458 1.0 2370 5.2 1390 3.0 580 1.3 672 1.5 588 1.3
20term-N1000 577 15.2 757 19.9 38 1.0 82 2.2 49 1.3 74 1.9
20term-N5000 3506 5.6 24429 38.6 634 1.0 2101 3.3 1335 2.1 2247 3.6
20term-N10000 6901 3.0 `8 ą19.9 2270 1.0 10733 4.7 6199 2.7 10413 4.6
20term-N20000 13687 1.3 `8 ą6.2 20625 1.7 `8 ą4.2 `8 ą4.2 `8 ą4.2
Fleet20 3-N1000 533 9.1 225 3.9 145 2.5 95 1.7 102 1.7 74 1.2
Fleet20 3-N5000 2757 1.5 5330 2.9 2417 1.3 1950 1.0 1873 1.0 2097 1.1
Fleet20 3-N10000 5710 1.0 28933 5.1 9903 1.7 19913 3.4 8537 1.5 21383 3.7
Fleet20 3-N20000 11300 1.0 `8 ą4.1 34900 3.1 `8 ą3.8 `8 ą3.9 `8 ą3.9
product-N1000 1947 19.0 186 1.8 270 2.6 123 1.2 105 1.0 103 1.0
product-N5000 10467 7.6 3497 2.5 3730 2.7 1873 1.4 1483 1.1 1377 1.0
product-N10000 20200 3.7 15200 2.8 13300 2.5 6893 1.3 5583 1.0 5397 1.0
product-N20000 43000 1.9 `8 ą2.0 `8 ą1.9 29700 1.3 24733 1.1 23067 1.0

We first notice in Table 3 that BbB 1% solves all the instances, except Fleet20 3-N20000 where it only succeeds

to solve one out of three problems, whereas Classic Multicut fails to solve optimally four groups of instances. As the

algorithm avoids solving many subproblems and adding cuts in the relaxed master program, it overcomes the issue of

the time spent in solving subproblems and delays the size growth of the relaxed master program. However, as we still

add one cut for each solved subproblem in the Benders by batch algorithm, it still does not scale well when the number

of subproblems becomes large. Classic monocut outperforms BbB on large-scale instances such as 20term with 20000

subproblems or Fleet20 3 with 20000 subproblems.

Table 4 shows that when partial cut aggregation is used, all the presented methods clearly outperform Classic

monocut. As we aggregate the cuts over each batch, the size of the relaxed master program remains reasonable, and

as the cuts are only computed on samples of subproblems, the algorithms avoid many symmetries due to the sum of

the cuts over the subproblems. The table shows also that the best batch sizes are 1% and 5% (respectively BbB 1%

CutAggr and BbB 5% CutAggr), except for two small instances. The two methods can be up to 25 times faster than

Classic 1% CutAggr and more than 58 times faster than Classic 5% CutAggr.
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Table 4: Results for the Benders by batch algorithm with partial cut aggregation, with batch sizes from 1% to
20% of the total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 2.5 1 1.3 1 1.7 2 2.1 0.88 1.1 0.78 1.0 0.89 1.1
LandS-N5000 11 2.6 7 1.8 8 2.0 9 2.3 5 1.1 4 1.0 4 1.1
LandS-N10000 22 2.7 16 2.0 19 2.3 16 2.0 8 1.0 8 1.0 9 1.2
LandS-N20000 45 2.6 34 1.9 39 2.3 44 2.6 17 1.0 18 1.0 20 1.2
gbd-N1000 2 3.6 1 2.0 2 2.7 2 2.7 0.61 1.0 0.78 1.3 0.93 1.5
gbd-N5000 12 3.6 9 2.6 10 3.0 9 2.7 3 1.0 4 1.1 4 1.3
gbd-N10000 23 3.7 19 3.1 21 3.3 15 2.3 6 1.0 8 1.3 9 1.5
gbd-N20000 48 3.6 41 3.0 46 3.4 41 3.1 14 1.0 15 1.1 19 1.4
ssn-N1000 2408 175.8 24 1.8 142 10.5 14 1.0 61 4.5 134 9.8 242 17.7
ssn-N5000 13460 150.6 399 4.5 1582 17.7 89 1.0 322 3.6 659 7.4 1322 14.8
ssn-N10000 25901 140.4 1246 6.7 4858 26.1 185 1.0 707 3.8 1423 7.7 2914 15.8
ssn-N20000 `8 ą98.4 8603 20.0 26122 58.9 441 1.0 1615 3.7 3386 7.7 6757 15.4
storm-N1000 24 3.8 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 9 1.5
storm-N5000 114 3.4 72 2.1 94 2.8 52 1.5 34 1.0 36 1.1 55 1.6
storm-N10000 224 3.0 164 2.2 198 2.7 110 1.5 74 1.0 82 1.1 104 1.4
storm-N20000 458 2.9 369 2.3 423 2.6 226 1.4 163 1.0 169 1.1 238 1.5
20term-N1000 577 39.4 272 18.5 313 21.4 15 1.0 37 2.5 68 4.6 141 9.6
20term-N5000 3506 50.3 1604 23.2 1945 28.0 70 1.0 193 2.8 395 5.7 839 12.1
20term-N10000 6901 53.2 3364 26.0 4840 37.4 130 1.0 402 3.1 898 6.9 1978 15.3
20term-N20000 13687 49.1 7032 25.2 16287 57.3 280 1.0 914 3.3 2051 7.3 18312 65.2
Fleet20 3-N1000 533 18.9 125 4.4 222 7.9 28 1.0 42 1.5 74 2.6 131 4.7
Fleet20 3-N5000 2757 25.7 903 8.4 1530 14.3 107 1.0 211 2.0 358 3.3 649 6.1
Fleet20 3-N10000 5710 26.9 2000 9.4 3460 16.3 212 1.0 440 2.1 721 3.4 1310 6.2
Fleet20 3-N20000 11300 27.0 5053 12.1 7860 18.8 419 1.0 876 2.1 1520 3.6 2777 6.6
product-N1000 1947 20.0 190 2.0 431 4.4 98 1.0 141 1.5 253 2.6 505 5.2
product-N5000 10467 28.9 1523 4.2 3323 9.2 362 1.0 773 2.1 1567 4.3 2873 7.9
product-N10000 20200 25.0 3827 4.8 7757 9.7 823 1.0 1523 1.9 3053 3.8 5530 6.9
product-N20000 43000 25.7 9963 6.0 19367 11.6 1693 1.0 3367 2.0 6320 3.8 12500 7.5

algorithm
total (RMP) (SP)
time time # solved time # solved

Classic
ą43200 ą43200 ą20 ą206 ą400000

multicut
Classic

13429 23 1732 12297 34640000
monocut
Classic 1%

7375 1472 665 5610 13300000
CutAggr
BbB 1%

261 26 1706 204 576000
CutAggr

(a) a 20term instance with 20000 subproblems (20term-N20000-s20000)

algorithm
total (RMP) (SP)
time time # solved time # solved

Classic
ą43200 ą43200 ą17 ą664 ą340000

multicut
Classic

ą43200 ą1697 ą864 ą25704 ą17280000
monocut
Classic 1%

9820 957 204 6186 4080000
CutAggr
BbB 1%

1790 211 1994 863 547000
CutAggr

(b) a product instance with 20000 subproblems (product-N20000-s20000)

Figure 3: Number of subproblems solved at each iteration by BbB 1% CutAggr and Classic 1% CutAggr
(left plots). For Classic monocut, Classic multicut, BbB 1% CutAggr, Classic 1% CutAggr, the
total number of relaxed master programs and subproblems solved, as well as the associated solution time (right
plots). Symbol “ą” means that the time limit is reached without proven optimality. To the sum of the time
needed to solve the relaxed master programs and the subproblems, one must add the time needed for the other
operations (e.g., solving the mean-value problem to obtain xp0q, cut computation and their addition to (RMP),
configuration of the subproblems for each new first-stage solution).
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The better performance of the Benders by batch algorithm with partial cut aggregation can be explained by Figure

3. We see that in most of the iterations, the algorithm solves only one batch of subproblems to show that the current

first-stage solution cannot be proven optimal and to separate it. Despite the greater number of iterations performed

by BbB 1% CutAggr due to its explorative nature, we observe that it needs to solve less subproblems than Classic

1% CutAggr to converge. Specifically, for a 20term instance with 20000 subproblems and a product instance with

20000 subproblems, BbB 1% CutAggr solves respectively 23 times less and 7 times less subproblems than Classic 1%

CutAggr to converge. Although Classic 1% CutAggr evaluates almost three times less first-stage solutions for the

20term instance (and more than 10 times less for the product instance), it takes ultimately more time to converge than

BbB 1% CutAggr: 7375 seconds for Classic 1% CutAggr compared to 261 seconds for BbB 1% CutAggr to solve

the 20term instance, and 9820 seconds for Classic 1% CutAggr compared to 1790 seconds for BbB 1% CutAggr

to solve the product instance. This can be explained by the fact that the relaxed master program contains fewer cuts

at most iterations in BbB 1% CutAggr than in Classic 1% CutAggr. We observe that the time spent in solving

the subproblems represents most of the computing time for the 20term instance and most of the computing time for the

product instance. All of the above suggests that the smaller the first-stage problem is, the more efficient the Benders by

batch algorithm is.

5.3.2 Impact of the stabilization on BbB

We now present the results obtained when the two stabilization schemes presented in §4.3 are applied to the most

competitive versions of Bbb (batch sizes of 1% and 5%, and with partial cut aggregation). Figures 4 and 5 show the

performance profiles of BbB CutAggr with and without stabilization. We present the results with basic stabilization

for α P t0.1, 0.5, 0.9u and with solution memory stabilization for α P t0.1, 0.5, 0.9u and β P t0.1, 0.5, 0.9u. Each stabilized

method is denoted by BbB 1% CutAggr or BbB 5% CutAggr followed by the values for the parameters.

Figure 4: Performance profiles of the stabilized Benders by batch algorithm with batch size of 1% and cut
aggregation.

Figure 4 shows that the proposed stabilization schemes accelerate BbB 1% CutAggr, and can be up to 70% faster

than the unstabilized algorithm. Four stabilizations are more efficient on the tested instances and give similar results,

namely the basic stabilization with α “ 0.5, and the solution memory stabilization with pα, βq P tp0.5, 0.1q, p0.5, 0.5q, p0.9, 0.5qu.

Figure 5 shows similar results for BbB 5% CutAggr. The same four methods are the most efficient and equivalent

to each other. The algorithm with a solution memory stabilization parameterized by pα, βq “ p0.1, 0.9q is less efficient

than BbB 5% CutAggr. In this case, a small step size (α “ 0.1) and a high memory parameter (β “ 0.9) slow down

the convergence. For all the other cases, the use of a primal stabilization scheme accelerates the algorithm.

To conclude, results show no clear difference between the two proposed stabilization schemes. The solution memory

stabilization does efficiently stabilize the algorithm, but the basic stabilization might be the method of choice as it is

much simpler and provides similar computational results for the tested instances.
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Figure 5: Performance profiles of the stabilized Benders by batch algorithm with batch size of 5% and cut
aggregation.

Table 5: Final results, the best stabilized Benders by batch algorithm compared to all stabilized benchmark
methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle multicut monocut 1% CutAggr 5% CutAggr CutAggr α “ 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 0.07 1.0 1 17.3 0.89 12.4 1 20.0 0.71 9.7 0.98 13.4 0.96 13.2
LandS-N5000 1 1.0 7 9.0 8 10.5 9 10.5 5 6.0 6 7.2 5 6.7
LandS-N10000 1 1.0 14 14.0 24 23.6 16 15.6 10 9.7 11 11.1 9 9.0
LandS-N20000 5 1.0 27 6.8 62 16.5 41 10.4 22 5.6 22 5.5 21 5.4
gbd-N1000 0.04 1.0 2 61.2 1 36.6 2 58.8 1 33.6 2 44.8 0.88 25.6
gbd-N5000 0.17 1.0 10 60.1 10 60.9 10 64.0 7 41.8 8 47.1 4 24.8
gbd-N10000 0.35 1.0 24 69.5 23 67.5 21 61.7 16 45.7 17 50.3 8 22.2
gbd-N20000 0.91 1.0 44 48.8 82 89.8 54 60.6 30 34.3 34 39.1 17 18.5
ssn-N1000 32 6.0 90 17.1 6 1.0 137 27.3 10 1.8 19 3.6 8 1.5
ssn-N5000 310 10.6 657 22.2 31 1.0 795 27.4 70 2.4 133 4.5 47 1.6
ssn-N10000 1223 20.3 1501 25.2 63 1.0 1464 23.3 171 2.9 312 5.2 91 1.5
ssn-N20000 2619 13.7 3109 16.3 243 1.3 2861 15.2 400 2.1 736 3.9 191 1.0
storm-N1000 41 5.8 15 2.1 9 1.3 14 2.1 8 1.1 9 1.4 7 1.0
storm-N5000 316 9.7 76 2.3 41 1.3 62 1.9 49 1.5 52 1.6 33 1.0
storm-N10000 764 11.8 145 2.3 125 1.9 201 3.1 99 1.5 110 1.7 65 1.0
storm-N20000 2390 17.4 288 2.1 573 4.2 252 1.8 211 1.5 232 1.7 137 1.0
20term-N1000 14 1.3 217 20.9 36 3.5 114 10.8 27 2.6 44 4.3 10 1.0
20term-N5000 82 1.7 1044 21.2 482 9.7 681 13.8 197 4.0 269 5.5 50 1.0
20term-N10000 199 2.0 2450 24.4 2805 27.9 1190 11.8 474 4.7 593 5.9 100 1.0
20term-N20000 455 2.3 4843 24.7 10992 56.0 1754 8.9 1010 5.1 1371 7.0 197 1.0
Fleet20 3-N1000 23 1.3 107 6.2 50 2.9 93 5.4 26 1.5 41 2.4 17 1.0
Fleet20 3-N5000 269 3.6 500 6.7 719 9.6 473 6.3 184 2.4 250 3.3 75 1.0
Fleet20 3-N10000 809 5.5 1004 6.9 3747 25.6 1029 7.0 435 3.0 590 4.0 146 1.0
Fleet20 3-N20000 2446 7.9 2730 8.8 17000 54.7 1780 5.8 1018 3.3 1313 4.2 310 1.0
product-N1000 179 2.3 625 8.2 81 1.1 513 6.7 113 1.5 183 2.4 76 1.0
product-N5000 2121 6.7 3200 10.3 1127 3.6 2690 8.7 787 2.5 1380 4.4 312 1.0
product-N10000 4397 8.0 7173 13.0 5357 9.8 5730 10.4 1970 3.6 3133 5.7 552 1.0
product-N20000 15463 13.6 14300 12.5 `8 ą40.5 12333 10.8 4887 4.3 7983 7.0 1140 1.0

5.3.3 Comparison with state-of-the-art methods

We now compare the stabilized Benders by batch algorithm to classical methods of the literature. We show in Table 5

the times and ratios of CPLEX Barrier and all the stabilized methods of our benchmark, In-out monocut, In-out

multicut, Level bundle, In-out 1% CutAggr and In-out 5% CutAggr with the best performing stabilized Benders

by batch BbB 1% CutAggr α “ 0.5. We first observe that, on the small instances LandS and gbd, CPLEX Barrier

converges faster than all the other methods. As those instances have very few variables both in first and second stages,

they remain small even with 20000 subproblems, and are solved very efficiently by CPLEX Barrier. However, we can

notice that even for these small instances, BbB 1% CutAggr α “ 0.5 is the best method among all the cutting planes

algorithms. Table 5 shows clearly that the stabilized Benders by batch algorithm outperforms all the other methods on

the large instances, and can be up to more than 25 times faster than Level Bundle or 15 times faster than In-out
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monocut. We also show that, even if In-out 1% CutAggr outperforms other classical stabilized methods from the

literature, the stabilized Benders by batch algorithm can be up to 5 times faster. This shows that, firstly, using a static

cut aggregation combined with primal stabilization allows to speed up classical methods used to benchmark algorithms

from the literature, and secondly, that not solving systematically all the subproblems allows to further improve the

computing times on the test instances.

As for the unstabilized case, we observe in our experiments that BbB 1% CutAggr α “ 0.5 needs to solve way

less subproblems than other methods to converge, and that the time spent in solving the subproblems represents almost

all the computing time in all presented methods (see Appendix C).

Figure 6 shows the evolution of the relative gap between the lower bound and the optimal value, of twodifferent

algorithms, on four different instances, according to the time. We see that adding only a few cuts at each iterations

allows the lower bound to converge faster to the optimal value to the problem. Moreover, we observe that, on three of

the four presented instances, BbB 1% CutAggr α “ 0.5 reaches a relative gap of 10´6 while all the other algorithms

still have a large relative gap (e.g. 100 on ssn or 10´1 on Fleet). Although BbB 1% CutAggr α “ 0.5 adds less cuts at

each iteration, its lower bound value is usually larger than the one computed in the other algorithms, when compared for

the same computing time, except for some very short time intervals early in the solution process where the lower bound

in In-Out 1% CutAggr is better. This suggests that the cuts generated when the approximation of the subproblem

value function is coarse, not only take time to be computed, but also do not help much to improve the value of the lower

bound.

Figure 6: Evolution of the relative gap between the lower bound and the optimal value as a function of time,
on a two instances with 20000 subproblems (20term-N20000-s20000 and product-N20000-s20000)

5.3.4 Sensitivity of BbB to the initial order of the subproblems

We performed several experiments testing different initial orders of the subproblems to assess the sensitivity of the

computing time of our method to this choice. We ran BbB 1% CutAggr α “ 0.5, for 500 different initial orders, on

one instance with 5000 subproblems and one with 10000 subproblems for each tested problem. We report in Table 6 the

minimum and maximum times observed, the median, and the first and ninth decile on computing times. We observe

that the initial order has usually a limited impact on the efficiency of our algorithm. We also remark that the stabilized

Benders by batch algorithm present lower computing times than In-out 1% CutAggr, the best performing method

used as comparison in the numerical results, even for the maximum time observed. Although the impact is in general

limited, we observe that the initial order can have an impact on the computing time for some instances, such as LandS

or gbd. However, the computing times observed are almost always smaller than the computing times of In-out 1%

CutAggr, the best performing method in the literature to which BbB is compared to in the paper.

We also evaluated the impact of the optimality gap on the convergence of the algorithm. We see expected results

(see Appendix D), that is, a smaller optimality gap induces larger computing times on the largest instances of our test

set, but this would also be the case with the other algorithms.
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Table 6: Computing times for BbB 1% CutAggr α “ 0.5 on 500 different initial orders of the subproblems

Min 10% 50% 90% Max In-out
Time Time 1% CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N5000 4.1 1.0 4.5 1.1 5.3 1.3 6.2 1.5 7.3 1.8 5.0 1.2
LandS-N10000 8.3 1.0 9.2 1.1 10.2 1.2 11.9 1.4 15.6 1.9 10.0 1.2
gbd-N5000 3.1 1.0 3.5 1.1 4.1 1.3 5.0 1.6 7.1 2.3 7.0 2.3
gbd-N10000 6.0 1.0 7.2 1.2 8.3 1.4 10.3 1.7 14.0 2.3 16.0 2.7
ssn-N5000 40.2 1.0 44.3 1.1 46.8 1.2 49.8 1.2 54.1 1.3 70.0 1.7
ssn-N10000 82.5 1.0 87.3 1.1 92.5 1.1 102.0 1.2 122.4 1.5 171.0 2.1
storm-N5000 28.0 1.0 29.8 1.1 31.4 1.1 34.5 1.2 43.5 1.6 49.0 1.8
storm-N10000 58.0 1.0 60.5 1.0 64.2 1.1 69.7 1.2 83.2 1.4 99.0 1.7
20term-N5000 43.5 1.0 47.8 1.1 54.1 1.2 61.6 1.4 77.2 1.8 197.0 4.5
20term-N10000 82.0 1.0 91.5 1.1 103.2 1.3 115.0 1.4 136.2 1.7 474.0 5.8
Fleet20 3-N5000 72.5 1.0 74.7 1.0 76.6 1.1 78.7 1.1 83.3 1.1 184.0 2.5
Fleet20 3-N10000 142.0 1.0 148.0 1.0 152.0 1.1 157.0 1.1 166.0 1.2 435.0 3.1
product-N5000 268.0 1.0 279.0 1.0 292.0 1.1 315.0 1.2 355.0 1.3 787.0 2.9
product-N10000 528.0 1.0 553.0 1.0 573.0 1.1 603.0 1.1 679.0 1.3 1970.0 3.7

6 Conclusion

We proposed in this paper the Benders by batch algorithm to solve two-stage stochastic linear programming problems

with finite probability distribution. This algorithm solves only a few subproblems at most iterations. The algorithm is

exact and does not need a fixed recourse or a deterministic objective function. We showed that performing an optimality

check after the resolution of a very few subproblems, each 1% of the numbers of subproblems in our tests, allows to

significantly improve the solution time.

To avoid strong oscillations of the first-stage variables, we also introduced a stabilized version of the algorithm. This

algorithm is based on a primal stabilization scheme responsible for generating the points at which the subproblems are

solved. We presented a sufficient condition for a primal stabilization scheme that ensures the convergence of the Benders

by batch algorithm and proposed two schemes satisfying it. The stabilized Benders by batch algorithm can be up to 25

times faster than the level bundle method, or 5 times faster than Benders decomposition with in-out stabilization and

static partial cut aggregation of (Trukhanov et al., 2010).

Applying dual stabilization (Magnanti and Wong, 1981; Sherali and Lunday, 2013) to the Benders by batch algorithm

is straightforward and could improve the results. The algorithm can be parallelized and may benefit from effective

parallelized methods, such as the asynchronous method of Linderoth and Wright (2003). The use of more advanced cut

aggregation strategies is also a path worth exploring. Finally, an interesting perspective is to adapt the Benders by batch

algorithm to solve mixed-integer master programs within a Branch&Cut framework.
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A Proofs

A.1 Proof of Proposition 1

Proof. pñq Assume that x̌pkq is an optimal solution to problem 1. We have:

UBpx̌pkq
q ´ LBpkq

ď ϵ

ðñ cJx̌pkq
`

ÿ

sPS

psϕpx̌pkq, sq ´

˜

cJx̌pkq
`

ÿ

sPS

psθ̌
pkq
s

¸

ď ϵ

ðñ
ÿ

sPS

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

As family
`

Sσp1q, Sσp2q, ..., Sσpκq

˘

defines a partition of S, the previous equation gives:

κ
ÿ

t“1

ÿ

sPSσptq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

ðñ

κ
ÿ

t“i

ÿ

sPSσptq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

As ps ě 0, @s P S, and as pRMP q
pkq is a relaxation of problem 1, by independence of the batches, we have:

ř

sPSσptq

ps
´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ě 0, @t P t1, . . . , κu. We therefore have:

ÿ

sPSσpiq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

which is the definition of batch Sσpiq being ϵi-approximated by pRMP q
pkq.

pðq Assume that for every index i P J1, κK, we have
ř

sPSσpiq
ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi and therefore:

ÿ

sPSσpκq

ps
´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵκ (6)

By definition of ϵκ we have:

ϵκ “ ϵ´

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ðñ ϵκ `

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

“ ϵ

Then, using equation (6), we have:

κ
ÿ

i“1

«

ÿ

sPSσpiq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ď ϵ

ðñ UBpx̌pkq
q ´ LBpkq

ď ϵ

which implies that x̌pkq is an optimal solution to problem 1.

A.2 Proof of Proposition 2

Proof. We solve each subproblem at most once for every optimal solution to pRMP q
pkq because pS1, S2, ..., Sκq defines

a partition of S. Then if there exists a cut violated by
`

x̌pkq, pθ̌
pkq
s qsPS

˘

, we find it in at most cardpSq iterations in the

optimality loop. Then, as the total number of optimality cuts is finite and equal to
ř

sPS cardpVertpΠsqq, this algorithm

converges in at most cardpSqˆ
ř

sPS cardpVertpΠsqq iterations. When the cuts are aggregated, if the cut of a subproblem

separates the solution to the relaxed master program
`

x̌pkq, pθ̌
pkq
s qsPS

˘

, then the aggregated cut of the batch also separates

it, and the result remains true.

23



A.3 Proof of Proposition 3

Proof. Let x P X be a first-stage solution such that batch Sσpiq is ϵipxq-approximated by pRMP q
pkq, for all i P J1, κK.

Then, Sσpκq is ϵκpxq-approximated by pRMP q
pkq. This means:

”

ÿ

sPSσpκq

ps
´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵ´ cJ
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”
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px´ x̌pkq

q

As ζ ď ζ` for any ζ P R, we have:

κ
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t“1
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sPSσptq
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ϕ px, sq ´ θ̌
pkq
s

¯
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px´ x̌pkq

q

ñ
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sPS

ps
´

ϕ px, sq ´ θ̌
pkq
s

¯
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px´ x̌pkq

q
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cJx`
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sPS

psϕ px, sq
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´
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cJx̌pkq
`

ř

sPS

psθ̌
pkq
s

˙

ď ϵ

ñ UBpxq ´ LBpkq
ď ϵ

and x is an optimal solution to problem (1).

A.4 Proof of Proposition 4

Proof. The proof consists of two cases:

1. ϵ ą 0 and
`

xpk`rq
˘

rPN
converges to x̌pkq

2. ϵ ě 0 and
`

xpk`rq
˘

rPN
converges to x̌pkq in a finite number of iterations

� Case 1: Let ϵ ą 0 be the optimality gap and
`

xpk`rq
˘

rPN
be a sequence of elements of X converging to x̌pkq. We

focus on the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program. There are two possible sub-cases:

– Sub-case 1.1 There exists t0 P N such that for all l ě t0 and for each index i P J1, κK, batch Sσpk`lqpiq is

ϵipx̌
pkq

q-approximated by pRMP q
pkq with an optimality gap of ϵ

4

– Sub-case 1.2 For all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch Sσpk`lqpiq is not

ϵipx̌
pkq

q-approximated by pRMP q
pkq with an optimality gap of ϵ

4

Sub-case 1.1: Assume that there exists t0 P N such that for all l ě t0 and for each index i P J1, κK, batch Sσpk`lqpiq

is ϵipx̌
pkq

q-approximated by pRMP q
pkq with an initial gap of ϵ

4
. This means that for every l ě t0 and for every index
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As the number of permutations of J1, κK is finite, as for every l ě t0 and for each index i P J1, κK, the application
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s
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is continuous, and as sequence
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And, as pxpk`rq
qrPN converges to x̌pkq, there exists t3 P N such that, @l ě t3, 0 ď ϵ

4
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Then, by setting t4 “ maxtt1, t2, t3u, and jointly using (7), (8) and (9), we have, for every l ě t4 and for every index
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And for every index i P J1, κK, batch Sσpk`t4qpiq
is ϵipx

pk`t4q
q-approximated by pRMP q

pkq with an optimality gap of ϵ,

which implies, by Proposition 3, that xpk`t4q is an optimal solution to problem (1).

Sub-case 1.2: Now assume that for all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch Sσpk`lqpiq

is not ϵipx̌
pkq

q-approximated by pRMP q
pkq with an initial optimality gap of ϵ

4
. This means, that for all t0 P N, there

exists l ě t0 and an index i P J1, κK such that:
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”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps
´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

(10)

Then, there exists δ ą 0 such that, for all t0 P N, there exists l ě t0 and an index i P J1, κK (the first index such that

(10) occurs) such that:
ÿ

sPS
σpk`lqpiq

ps
´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ą δ (11)

Let g
pk`τq

i P Rn1 be a subgradient associated with the function x ÞÑ
ř

sPS
σpk`τqpiq

psϕpxpk`τq, sq at point xpk`τq. The

aggregated cut obtained after solving batch Sσpk`τqpiq can be written as follows:

g
pk`τqJ

i px´ xpk`τq
q `

ÿ

sPS
σpk`τqpiq

psϕpxpk`τq, sq ď
ÿ

sPS
σpk`τqpiq

psθs

By continuity of ϕp., sq for all s P S and as the total number of cuts is finite, there exists L ą 0 such that for every l P N

and for every i P J1, κK, ||g
pk`lq
i ||2 ď L. Then, as sequence

`

xpk`rq
˘

rPN
converges to x̌pkq, there exists t1 P N such that

for all l ě t1 and for all i P J1, κK,

|g
pk`lqJ

i px̌´ xpk`lq
q| ă

δ

3
(12)

Moreover, as sequence
`

xpk`rq
˘

rPN
converges to x̌pkq and by continuity of ϕp., sq, there exists t2 P N such that for all

l ě t2 and for each index i P J1, κK:

ÿ

sPS
σpk`lqpiq

psϕpx̌pkq, sq ă
ÿ

sPS
σpk`lqpiq

psϕpxpk`lq, sq `
δ

3
(13)

Then, let t3 “ maxtt1, t2u. Let i P J1, κK and l0 ě t3 be the first indices such that (11) occurs. By combining (11), (12)

and (13), we have:

g
pk`l0qJ

i px̌pkq
´ xpk`l0q

q `
ÿ

sPS
σpk`l0qpiq

psϕpxpk`l0q, sq ´
ÿ

sPS
σpk`l0qpiq

psθ̌
pkq
s ą

δ

3

Then, at xpk`l0q, the aggregated cut of the batch Sσpk`l0qpiq
separates the solution to the relaxed master program, as

its value at x̌pkq is strictly larger than the outer linearization given by the relaxed master program. If cutAggr “ False,

there exists at least one of the cuts associated with a subproblem of the batch which separates the solution to the relaxed
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master program.

� Case 2: Let ϵ ě 0 be the optimality gap and
`

xpk`rq
˘

rPN
be a sequence of elements of X converging to x̌pkq in a

finite number of iterations.

As
`

xpk`rq
˘

rPN
converges to x̌pkq, the proof of case 1 holds also in this case for every ϵ ą 0. We need to prove

that the proposition is true if ϵ “ 0. Let t0 be the first iteration such that xpk`t0q
“ x̌pkq. Either, for each index

i P J1, κK, batch Sσpk`t0qpiq
is ϵipx̌

pkq
q-approximated by pRMP q

pkq with an optimality gap of 0, and by proposition

3, xpk`t0q is an optimal solution to problem (1) with an optimality gap ϵ “ 0, or there exists a batch which is not

ϵipx̌
pkq

q-approximated by pRMP q
pkq, and the aggregated cut derived from this batch separates the solution to the

relaxed master program.

A.5 Proof of Proposition 6

Proof. Let px, py, zqq P X ˆ D. We have:

d1x “
`

x, αy ` p1 ´ αqz
˘

d2x “
`

x, αx` p1 ´ αqαy ` p1 ´ αq
2z

˘

Let u “ αy ` p1 ´ αqz ´ x, we have d2x “
`

x, x` p1 ´ αqu
˘

. Then, by induction,

@ℓ ě 2, dℓx “
`

x, x` p1 ´ αq
ℓ´1u

˘

And @ℓ ě 2, ψ2pdℓxq “ x` p1 ´ αq
ℓu. Finally, lim

ℓÑ`8
ψ2

`

dℓx
˘

“ x.

A.6 Proof of Proposition 7

Proof. Let px, py, zqq P X ˆ D. We have:

d1x “
`

x` βpy ´ xq, αy ` p1 ´ αqz
˘

d2x “
`

x` β2
py ´ xq, x´ p1 ´ αqx` αβpy ´ xq ` p1 ´ αqαy ` p1 ´ αq

2z
˘

We define u “ y ´ x and v “ αy ` p1 ´ αqz ´ x. Then

d2x “
`

x` β2u, x` αβu` p1 ´ αqv
˘

d3x “
`

x` β3u, x` αpβ2
` βp1 ´ αqqu` p1 ´ αq

2v
˘

By induction, we have

dℓx “
`

x` βℓu, x` α
`

řℓ´1
i“1 β

i
p1 ´ αq

ℓ´i´1
˘

u` p1 ´ αq
ℓ´1v

˘

, @l ě 2

We define δ “ maxtβ, p1 ´ αqu. For all i ě 0 and for all l ě 2, βi
ď δi and p1 ´ αq

l´i´1
ď δl´i´1. Then

ℓ´1
ÿ

i“1

βi
p1 ´ αq

ℓ´i´1
ď pℓ´ 1qδℓ´1

Then, lim
ℓÑ`8

řℓ´1
i“1 β

i
p1 ´ αq

ℓ´i´1
“ 0 and lim

ℓÑ`8
dℓx “ px, xq. Finally, lim

ℓÑ`8
ψ2

`

dℓx
˘

“ x.
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B Detailed benchmark algorithms

Algorithm 4 describes our implementation of In-out monocut (cutAggr=True) and In-out multicut (cutAggr=False).

Algorithm 4: The Benders decomposition algorithm with in-out stabilization

Parameters: ϵ ě 0, xp0q
P X, cutAggr P tTrue, Falseu, α P p0; 1s

1 Initialization: k Ð 0, x̂p1q
Ð xp0q, UBp0q

Ð cJxp0q
`

ř

sPS psπ
J
s pds ´ Tsx

p0q
q, LBp0q

Ð ´8, α1 Ð α

2 while UBpkq
ą LBpkq

` ϵ do
3 k Ð k ` 1

4 Solve pRMP q
pkq and retrieve

`

x̌pkq, pθ̌
pkq
s qsPS

˘

5 LBpkq
Ð cJx̌pkq

`
ř

sPS psθ̌
pkq

6 xpkq
Ð αkx̌

pkq
` p1 ´ αkqx̂pkq

7 for s P S do

8 Solve pSP pxpkq, sqq and retrieve πs an extreme point of Πs

9 if cutAggr then
10 Add

ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

11 else
12 for s P S do

13 Add θs ě πJ
s pds ´ Tsxq to pRMP q

pkq

14 if UBpk´1q
ą cJxpkq

`
ř

sPS psπ
J
s pds ´ Tsx

pkq
q then

15 UBpkq
Ð cJxpkq

`
ř

sPS psπ
J
s pds ´ Tsx

pkq
q

16 x̂pk`1q
Ð xpkq

17 αk`1 Ð mint1.0, 1.2αku

18 else

19 x̂pk`1q
Ð x̂pkq, UBpkq

Ð UBpk´1q

20 αk`1 Ð maxt0.1, 0.8αku

21 pRMP q
pk`1q

Ð pRMP q
pkq

22 Return x̂pk`1q

We now describe the level bundle method. We first define the quadratic master program. Let λ P p0, 1q denote

the level parameter, LB a lower bound on the optimal value of the problem, and UB an upper bound. We define

flev “ p1 ´ λqUB ` λLB and a stability center x̂ as in the in-out stabilization approach. The quadratic master program

pQMP qpx̂, flevq parametrized by x̂ and flev is the following:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min
x,θ

1

2
||x´ x̂||

2
2

s.t. :
ÿ

sPS

psθs ě
ÿ

sPS

psπ
J
s pds ´ Tsxq, @s P S, @πs P VertpΠsq

cJx`
ÿ

sPS

psθs ď flev

x P X, θ P RCardpSq

We denote by pRQMP q
pkq

px̂, flevq its relaxation at iteration k of the algorithm and by κ P p0, λq a acceptation

tolerance to update the stability center. Algorithm 5 describes our implementation of Level bundle.
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Algorithm 5: Level bundle method

Parameters: ϵ ě 0, xp0q
P X, λ P r0, 1q, LBp0q a valid lower bound on the objective value, κ P p0, λq

1 Initialization: k Ð 0, UBp0q
Ð cJxp0q

`
ř

sPS psπ
J
s pds ´ Tsx̂

p0q
q, x̂p1q

Ð xp0q

2 while UBpkq
ą LBpkq

` ϵ do
3 k Ð k ` 1

4 f
pkq

lev “ p1 ´ λqUBpk´1q
` λLBpk´1q

5 Solve pRQMP q
pkq

px̂pkq, f
pkq

lev q

6 if pRQMP q
pkq

px̂pkq, f
pkq

lev q is infeasible then

7 LBpkq
Ð flevpkq

8 x̂pk`1q
Ð x̂pkq

9 UBpkq
Ð UBpk´1q

10 else

11 Retrieve xpkq solution to pRQMP q
pkq

px̂pkq, f
pkq

lev q

12 for s P S do

13 Solve pSP pxpkq, sqq and retrieve πs an extreme point of Πs

14 Add
ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

15 if cJxpkq
`

ř

sPS psπ
J
s pds ´ Tsx

pkq
q ă p1 ´ κqUBpk´1q

` κf
pkq

lev then

16 UBpkq
Ð cJxpkq

`
ř

sPS psπ
J
s pds ´ Tsx

pkq
q

17 x̂pk`1q
Ð xpkq

18 else

19 x̂pk`1q
Ð x̂pkq

20 UBpkq
Ð UBpk´1q

21 LBpkq
Ð LBpk´1q

22 pRQMP q
pk`1q

Ð pRQMP q
pkq

23 Return x̂pk`1q
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C Impact of the stabilization on BbB - additional analysis

For 8 different instances, we show the total time spent solving the relaxed master programs and the subproblems, as well

as the total number of subproblems solved for each of the following methods: Level bundle, In-out monocut, In-out

1% CutAggr and BbB 1% CutAggr α “ 0.5.

Figure 7: Time spent in solving the master program and the subproblems, for 8 different instances, solved by
Level bundle, In-out monocut, In-out 1% CutAggr and BbB 1% CutAggr α “ 0.5. The total number
of solved subproblems is written vertically on the top of each bar.

D Sensitivity of BbB to the optimality gap

We analyze the impact of the optimality gap on the convergence of the algorithm. The choice of a different optimality

gap ϵ in the Benders by batch algorithm might have an impact on the number of batches that would be solved at each

iteration. With a larger optimality gap, the algorithm tends to solve more batches at each iteration, and to add more

cuts. As this might have an impact on the first-stage iterates, and then on the computing times, we show on Figure 8

the cumulative distribution of the computing times to solve our 84 instances with BbB 1% CutAggr α “ 0.5 with

four different optimality gaps t10´3, 10´4, 10´5, 10´6
u. The figure shows that different optimality gaps have a negligible

impact on the computing times on most instances. A smaller optimality gap induces larger computing times on the

largest instances of our test set, but this would also be the case with other classical algorithms.
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Figure 8: Cumulative distribution of the computing times on our 84 instances, for BbB with cut aggregation
and base stabilization with α “ 0.5, and with optimality gaps in t10´3, 10´4, 10´5, 10´5u

E Detailed numerical results

This section gives the detailed numerical results of our experiments.
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Table 7: Results for the Benders by batch algorithm without aggregation, with batch sizes from 1% to 20% of
the total number of subproblems.

Classic Classic BbB BbB BbB BbB
multicut monocut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 3.2 0.81 1.3 2 2.8 0.91 1.5 0.75 1.2 0.62 1.0
LandS-N1000-s1001 2 2.9 0.72 1.0 2 2.4 0.86 1.2 0.74 1.1 0.70 1.0
LandS-N1000-s1002 2 3.0 0.72 1.1 2 2.9 0.71 1.1 0.65 1.0 0.66 1.0
LandS-N5000-s5000 11 1.6 9 1.3 12 1.9 8 1.2 7 1.1 7 1.0
LandS-N5000-s5001 10 1.6 10 1.6 15 2.5 8 1.3 6 1.1 6 1.0
LandS-N5000-s5002 11 1.9 9 1.5 13 2.2 8 1.3 7 1.2 6 1.0
LandS-N10000-s10000 22 1.1 26 1.3 41 2.0 25 1.2 20 1.0 21 1.0
LandS-N10000-s10001 22 1.1 30 1.5 36 1.8 25 1.2 22 1.1 20 1.0
LandS-N10000-s10002 20 1.1 30 1.7 37 2.0 25 1.4 22 1.2 18 1.0
LandS-N20000-s20000 49 1.0 96 1.9 134 2.7 86 1.7 78 1.6 71 1.4
LandS-N20000-s20001 43 1.0 119 2.8 130 3.0 92 2.1 77 1.8 71 1.7
LandS-N20000-s20002 44 1.0 99 2.2 125 2.8 90 2.0 85 1.9 73 1.7
gbd-N1000-s1000 2 2.7 0.95 1.4 2 3.3 0.68 1.0 0.78 1.1 0.95 1.4
gbd-N1000-s1001 2 3.7 0.90 1.4 2 3.8 0.65 1.0 0.90 1.4 0.94 1.5
gbd-N1000-s1002 2 3.6 0.96 1.6 2 3.7 0.62 1.0 0.83 1.3 0.99 1.6
gbd-N5000-s5000 13 2.0 10 1.7 18 2.9 6 1.0 7 1.2 8 1.4
gbd-N5000-s5001 11 1.9 10 1.7 14 2.3 6 1.0 7 1.1 8 1.3
gbd-N5000-s5002 12 1.8 11 1.6 15 2.4 6 1.0 7 1.1 9 1.3
gbd-N10000-s10000 24 1.2 34 1.8 54 2.8 19 1.0 21 1.1 26 1.4
gbd-N10000-s10001 24 1.3 32 1.7 41 2.2 19 1.0 24 1.3 26 1.4
gbd-N10000-s10002 23 1.2 32 1.7 46 2.4 19 1.0 22 1.1 24 1.2
gbd-N20000-s20000 48 1.0 119 2.5 97 2.0 63 1.3 71 1.5 86 1.8
gbd-N20000-s20001 51 1.0 120 2.3 100 2.0 64 1.2 73 1.4 90 1.8
gbd-N20000-s20002 47 1.0 125 2.7 92 2.0 57 1.2 70 1.5 85 1.8
ssn-N1000-s1000 2279 552.2 7 1.7 6 1.3 4 1.0 5 1.1 5 1.2
ssn-N1000-s1001 2720 679.7 7 1.8 6 1.6 4 1.0 4 1.0 5 1.2
ssn-N1000-s1002 2226 602.8 7 1.8 6 1.8 4 1.0 4 1.1 5 1.3
ssn-N5000-s5000 13425 580.9 62 2.7 31 1.3 23 1.0 33 1.4 33 1.4
ssn-N5000-s5001 14260 631.1 45 2.0 33 1.5 23 1.0 27 1.2 31 1.4
ssn-N5000-s5002 12695 558.4 64 2.8 31 1.4 25 1.1 23 1.0 31 1.4
ssn-N10000-s10000 26559 420.0 185 2.9 63 1.0 123 2.0 64 1.0 79 1.3
ssn-N10000-s10001 26228 449.1 193 3.3 72 1.2 58 1.0 59 1.0 78 1.3
ssn-N10000-s10002 24916 463.1 187 3.5 80 1.5 56 1.0 54 1.0 79 1.5
ssn-N20000-s20000 `8 ą382.6 512 4.5 152 1.3 113 1.0 120 1.1 8143 72.1
ssn-N20000-s20001 `8 ą355.0 503 4.1 122 1.0 588 4.8 128 1.1 167 1.4
ssn-N20000-s20002 `8 ą356.6 450 3.7 160 1.3 121 1.0 1624 13.4 154 1.3
storm-N1000-s1000 23 3.6 10 1.6 19 3.0 8 1.3 6 1.0 8 1.3
storm-N1000-s1001 24 3.7 11 1.6 23 3.5 8 1.3 7 1.0 8 1.3
storm-N1000-s1002 24 3.8 11 1.7 21 3.3 8 1.3 6 1.0 8 1.3
storm-N5000-s5000 110 2.0 100 1.8 159 2.9 58 1.1 54 1.0 65 1.2
storm-N5000-s5001 117 2.2 118 2.2 184 3.4 59 1.1 54 1.0 65 1.2
storm-N5000-s5002 116 2.1 99 1.8 181 3.3 63 1.1 55 1.0 65 1.2
storm-N10000-s10000 215 1.4 468 3.0 508 3.2 162 1.0 159 1.0 191 1.2
storm-N10000-s10001 225 1.5 479 3.1 494 3.2 154 1.0 161 1.1 188 1.2
storm-N10000-s10002 233 1.5 542 3.5 474 3.1 153 1.0 157 1.0 189 1.2
storm-N20000-s20000 465 1.0 2240 4.8 1470 3.2 581 1.2 704 1.5 574 1.2
storm-N20000-s20001 434 1.0 2460 5.7 1300 3.0 585 1.3 669 1.5 603 1.4
storm-N20000-s20002 476 1.0 2410 5.1 1400 2.9 574 1.2 642 1.3 587 1.2
20term-N1000-s1000 544 13.5 749 18.6 40 1.0 82 2.0 46 1.1 74 1.8
20term-N1000-s1001 584 16.1 646 17.8 36 1.0 82 2.3 47 1.3 72 2.0
20term-N1000-s1002 604 16.0 877 23.2 38 1.0 82 2.2 53 1.4 76 2.0
20term-N5000-s5000 3095 4.7 29455 44.6 660 1.0 2059 3.1 1497 2.3 1951 3.0
20term-N5000-s5001 3699 5.4 22490 33.0 681 1.0 2066 3.0 1333 2.0 2302 3.4
20term-N5000-s5002 3725 6.6 21342 38.0 561 1.0 2178 3.9 1176 2.1 2486 4.4
20term-N10000-s10000 6803 3.1 `8 ą20.4 2193 1.0 9654 4.4 5526 2.5 11592 5.3
20term-N10000-s10001 6404 2.7 `8 ą19.5 2330 1.0 11062 4.7 7874 3.4 9436 4.1
20term-N10000-s10002 7494 3.3 `8 ą19.6 2288 1.0 11483 5.0 5196 2.3 10212 4.5
20term-N20000-s20000 13429 1.0 `8 ą5.7 `8 ą3.2 `8 ą3.2 `8 ą3.2 `8 ą3.2
20term-N20000-s20001 12763 1.4 `8 ą5.0 9062 1.0 `8 ą4.8 `8 ą4.8 `8 ą4.8
20term-N20000-s20002 14868 1.5 `8 ą8.1 9613 1.0 `8 ą4.5 `8 ą4.6 `8 ą4.6
Fleet20 3-N1000-s1000 513 9.4 224 4.1 143 2.6 105 1.9 102 1.9 55 1.0
Fleet20 3-N1000-s1001 539 10.1 228 4.3 139 2.6 110 2.1 100 1.9 53 1.0
Fleet20 3-N1000-s1002 546 7.7 224 3.2 154 2.2 70 1.0 103 1.5 115 1.6
Fleet20 3-N5000-s5000 2780 1.5 5530 2.9 2380 1.3 2050 1.1 1880 1.0 2110 1.1
Fleet20 3-N5000-s5001 2760 1.5 5090 2.8 2260 1.2 1850 1.0 1870 1.0 2070 1.1
Fleet20 3-N5000-s5002 2730 1.5 5370 2.9 2610 1.4 1950 1.0 1870 1.0 2110 1.1
Fleet20 3-N10000-s10000 5860 1.0 29600 5.1 10400 1.8 `8 ą7.4 8780 1.5 11000 1.9
Fleet20 3-N10000-s10001 5480 1.0 28200 5.1 8310 1.5 8350 1.5 8560 1.6 9950 1.8
Fleet20 3-N10000-s10002 5790 1.0 29000 5.0 11000 1.9 8190 1.4 8270 1.4 `8 ą7.5
Fleet20 3-N20000-s20000 11400 1.0 `8 ą4.0 `8 ą3.8 `8 ą3.8 `8 ą3.8 `8 ą3.9
Fleet20 3-N20000-s20001 11500 1.0 `8 ą3.8 18200 1.6 `8 ą3.8 `8 ą3.8 `8 ą3.8
Fleet20 3-N20000-s20002 11000 1.0 `8 ą4.6 `8 ą3.9 `8 ą3.9 `8 ą3.9 `8 ą4.0
product-N1000-s1000 1920 17.9 184 1.7 259 2.4 123 1.1 109 1.0 107 1.0
product-N1000-s1001 2070 19.9 197 1.9 302 2.9 125 1.2 109 1.0 104 1.0
product-N1000-s1002 1850 19.1 178 1.8 249 2.6 120 1.2 97 1.0 97 1.0
product-N5000-s5000 10500 8.0 3220 2.5 3630 2.8 1830 1.4 1390 1.1 1310 1.0
product-N5000-s5001 10100 7.4 3440 2.5 3830 2.8 1700 1.2 1480 1.1 1360 1.0
product-N5000-s5002 10800 7.4 3830 2.6 3730 2.6 2090 1.4 1580 1.1 1460 1.0
product-N10000-s10000 20200 3.6 15300 2.7 14000 2.5 7330 1.3 5820 1.0 5580 1.0
product-N10000-s10001 19100 3.7 13300 2.5 11800 2.3 6580 1.3 5560 1.1 5230 1.0
product-N10000-s10002 21300 4.0 17000 3.2 14100 2.6 6770 1.3 5370 1.0 5380 1.0
product-N20000-s20000 `8 ą1.7 `8 ą2.0 `8 ą1.7 32700 1.3 26000 1.0 25200 1.0
product-N20000-s20001 42600 2.1 `8 ą2.2 `8 ą2.2 26600 1.3 24100 1.2 20000 1.0
product-N20000-s20002 `8 ą1.8 `8 ą1.8 `8 ą1.8 29800 1.2 24100 1.0 24000 1.0
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Table 8: Results for the Benders by batch algorithm with aggregation, with batch sizes from 1% to 20% of the
total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 2.6 0.94 1.2 1 1.6 2 2.2 0.89 1.2 0.77 1.0 0.86 1.1
LandS-N1000-s1001 2 2.7 1.00 1.3 1 1.8 2 2.1 0.75 1.0 0.75 1.0 0.90 1.2
LandS-N1000-s1002 2 2.3 1 1.3 1 1.7 2 2.0 0.99 1.2 0.84 1.0 0.91 1.1
LandS-N5000-s5000 11 2.7 7 1.8 8 2.0 10 2.6 5 1.2 4 1.0 4 1.1
LandS-N5000-s5001 10 2.3 7 1.6 9 2.0 9 2.1 5 1.2 4 1.0 4 1.0
LandS-N5000-s5002 11 2.9 7 1.9 8 2.1 9 2.2 4 1.0 4 1.0 4 1.1
LandS-N10000-s10000 22 2.7 16 1.9 18 2.2 17 2.0 8 1.0 9 1.1 9 1.1
LandS-N10000-s10001 22 2.8 16 2.0 20 2.5 14 1.8 8 1.0 8 1.0 9 1.2
LandS-N10000-s10002 20 2.6 16 2.0 18 2.2 17 2.1 8 1.0 8 1.0 9 1.2
LandS-N20000-s20000 49 3.0 34 2.0 39 2.3 45 2.7 17 1.0 18 1.1 19 1.2
LandS-N20000-s20001 43 2.4 35 1.9 39 2.2 42 2.4 18 1.0 18 1.0 21 1.2
LandS-N20000-s20002 44 2.6 32 1.9 40 2.3 45 2.6 18 1.0 17 1.0 19 1.1
gbd-N1000-s1000 2 3.5 1 2.4 2 3.1 2 2.9 0.53 1.0 0.68 1.3 0.89 1.7
gbd-N1000-s1001 2 3.6 1 1.6 2 2.5 2 2.4 0.67 1.0 0.99 1.5 1 1.5
gbd-N1000-s1002 2 3.6 1 1.9 2 2.5 2 3.0 0.61 1.0 0.68 1.1 0.88 1.4
gbd-N5000-s5000 13 3.8 8 2.4 11 3.2 10 3.0 3 1.0 4 1.1 4 1.3
gbd-N5000-s5001 11 3.6 9 2.8 10 3.2 8 2.5 3 1.0 4 1.1 4 1.4
gbd-N5000-s5002 12 3.4 9 2.6 9 2.7 9 2.6 3 1.0 4 1.1 5 1.3
gbd-N10000-s10000 24 3.4 18 2.5 21 2.9 18 2.5 7 1.0 8 1.1 9 1.2
gbd-N10000-s10001 24 4.0 19 3.3 19 3.2 13 2.1 6 1.0 8 1.4 9 1.5
gbd-N10000-s10002 23 3.8 20 3.4 23 3.9 14 2.3 6 1.0 8 1.4 11 1.8
gbd-N20000-s20000 48 3.8 39 3.2 47 3.7 50 4.0 12 1.0 16 1.3 20 1.6
gbd-N20000-s20001 51 3.6 42 3.0 45 3.2 31 2.2 15 1.1 14 1.0 19 1.4
gbd-N20000-s20002 47 3.4 41 3.0 45 3.3 43 3.2 14 1.0 14 1.0 19 1.4
ssn-N1000-s1000 2279 168.5 25 1.9 146 10.8 14 1.0 63 4.6 129 9.5 235 17.4
ssn-N1000-s1001 2720 185.6 24 1.7 135 9.2 15 1.0 63 4.3 130 8.8 253 17.3
ssn-N1000-s1002 2226 173.3 23 1.8 146 11.4 13 1.0 59 4.6 144 11.2 238 18.5
ssn-N5000-s5000 13425 152.4 371 4.2 1685 19.1 88 1.0 337 3.8 630 7.2 1342 15.2
ssn-N5000-s5001 14260 158.7 411 4.6 1536 17.1 90 1.0 322 3.6 672 7.5 1343 15.0
ssn-N5000-s5002 12695 140.6 416 4.6 1524 16.9 90 1.0 308 3.4 674 7.5 1280 14.2
ssn-N10000-s10000 26559 151.5 1212 6.9 3343 19.1 175 1.0 672 3.8 1396 8.0 2771 15.8
ssn-N10000-s10001 26228 140.6 1378 7.4 6126 32.8 187 1.0 760 4.1 1477 7.9 3143 16.8
ssn-N10000-s10002 24916 129.1 1147 5.9 5105 26.4 193 1.0 690 3.6 1397 7.2 2827 14.6
ssn-N20000-s20000 `8 ą94.6 7066 15.5 18068 39.6 457 1.0 1651 3.6 3463 7.6 6588 14.4
ssn-N20000-s20001 `8 ą94.3 5558 12.1 40319 88.0 458 1.0 1651 3.6 3065 6.7 6749 14.7
ssn-N20000-s20002 `8 ą106.2 13186 32.4 19979 49.1 407 1.0 1543 3.8 3630 8.9 6934 17.0
storm-N1000-s1000 23 3.7 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 10 1.6
storm-N1000-s1001 24 3.8 12 1.9 16 2.5 12 1.9 6 1.0 7 1.1 9 1.4
storm-N1000-s1002 24 3.7 13 2.0 15 2.3 13 2.0 6 1.0 7 1.1 9 1.4
storm-N5000-s5000 110 3.3 73 2.2 92 2.8 44 1.3 33 1.0 35 1.1 54 1.6
storm-N5000-s5001 117 3.6 72 2.2 97 3.0 54 1.6 33 1.0 36 1.1 56 1.7
storm-N5000-s5002 116 3.2 72 2.0 93 2.6 58 1.6 37 1.0 36 1.0 55 1.5
storm-N10000-s10000 215 3.0 157 2.2 202 2.8 121 1.7 73 1.0 82 1.1 105 1.4
storm-N10000-s10001 225 3.0 169 2.2 198 2.6 90 1.2 76 1.0 83 1.1 101 1.3
storm-N10000-s10002 233 3.2 166 2.3 194 2.7 118 1.6 73 1.0 80 1.1 107 1.5
storm-N20000-s20000 465 2.9 370 2.3 434 2.7 216 1.3 167 1.0 161 1.0 232 1.4
storm-N20000-s20001 434 2.7 380 2.4 413 2.6 245 1.5 161 1.0 179 1.1 246 1.5
storm-N20000-s20002 476 3.0 356 2.2 422 2.6 218 1.4 160 1.0 167 1.0 236 1.5
20term-N1000-s1000 544 36.7 272 18.4 310 20.9 15 1.0 36 2.5 71 4.8 140 9.5
20term-N1000-s1001 584 40.0 239 16.4 266 18.2 15 1.0 37 2.5 67 4.6 135 9.3
20term-N1000-s1002 604 41.4 305 20.9 364 25.0 15 1.0 37 2.5 65 4.5 148 10.2
20term-N5000-s5000 3095 46.0 1627 24.2 2026 30.1 67 1.0 199 3.0 401 6.0 830 12.4
20term-N5000-s5001 3699 47.2 1453 18.5 1911 24.4 78 1.0 197 2.5 381 4.9 794 10.1
20term-N5000-s5002 3725 57.8 1733 26.9 1898 29.5 64 1.0 182 2.8 404 6.3 893 13.9
20term-N10000-s10000 6803 52.5 3885 30.0 4741 36.6 129 1.0 411 3.2 892 6.9 1874 14.5
20term-N10000-s10001 6404 52.5 3193 26.2 4915 40.3 122 1.0 409 3.3 914 7.5 1970 16.1
20term-N10000-s10002 7494 54.5 3015 21.9 4864 35.4 137 1.0 388 2.8 886 6.4 2089 15.2
20term-N20000-s20000 13429 51.5 7375 28.3 10772 41.3 261 1.0 860 3.3 1913 7.3 7032 27.0
20term-N20000-s20001 12763 43.2 7433 25.1 26284 88.9 296 1.0 985 3.3 2139 7.2 4704 15.9
20term-N20000-s20002 14868 52.5 6287 22.2 11803 41.7 283 1.0 897 3.2 2101 7.4 `8 ą152.6
Fleet20 3-N1000-s1000 513 18.6 123 4.5 221 8.0 28 1.0 42 1.5 71 2.6 127 4.6
Fleet20 3-N1000-s1001 539 20.0 126 4.7 219 8.1 27 1.0 40 1.5 73 2.7 131 4.9
Fleet20 3-N1000-s1002 546 18.2 126 4.2 225 7.5 30 1.0 43 1.4 77 2.6 135 4.5
Fleet20 3-N5000-s5000 2780 25.7 905 8.4 1570 14.5 108 1.0 218 2.0 354 3.3 675 6.2
Fleet20 3-N5000-s5001 2760 26.5 930 8.9 1500 14.4 104 1.0 209 2.0 363 3.5 645 6.2
Fleet20 3-N5000-s5002 2730 24.8 873 7.9 1520 13.8 110 1.0 205 1.9 356 3.2 628 5.7
Fleet20 3-N10000-s10000 5860 27.4 2030 9.5 3430 16.0 214 1.0 426 2.0 725 3.4 1290 6.0
Fleet20 3-N10000-s10001 5480 26.2 1960 9.4 3520 16.8 209 1.0 467 2.2 721 3.4 1290 6.2
Fleet20 3-N10000-s10002 5790 27.2 2010 9.4 3430 16.1 213 1.0 426 2.0 716 3.4 1350 6.3
Fleet20 3-N20000-s20000 11400 28.4 5200 12.9 8040 20.0 402 1.0 886 2.2 1510 3.8 2810 7.0
Fleet20 3-N20000-s20001 11500 26.8 4820 11.2 7690 17.9 429 1.0 856 2.0 1490 3.5 2750 6.4
Fleet20 3-N20000-s20002 11000 25.9 5140 12.1 7850 18.5 425 1.0 885 2.1 1560 3.7 2770 6.5
product-N1000-s1000 1920 18.5 191 1.8 415 4.0 104 1.0 140 1.3 246 2.4 471 4.5
product-N1000-s1001 2070 21.3 197 2.0 452 4.7 97 1.0 149 1.5 266 2.7 528 5.4
product-N1000-s1002 1850 20.2 182 2.0 425 4.6 91 1.0 135 1.5 247 2.7 515 5.6
product-N5000-s5000 10500 29.8 1530 4.3 3290 9.3 352 1.0 734 2.1 1550 4.4 3180 9.0
product-N5000-s5001 10100 29.3 1460 4.2 3250 9.4 345 1.0 787 2.3 1420 4.1 2580 7.5
product-N5000-s5002 10800 27.7 1580 4.1 3430 8.8 390 1.0 797 2.0 1730 4.4 2860 7.3
product-N10000-s10000 20200 28.7 3830 5.4 8170 11.6 704 1.0 1620 2.3 2980 4.2 5670 8.1
product-N10000-s10001 19100 25.3 3910 5.2 7480 9.9 756 1.0 1400 1.9 2980 3.9 5140 6.8
product-N10000-s10002 21300 21.1 3740 3.7 7620 7.5 1010 1.0 1550 1.5 3200 3.2 5780 5.7
product-N20000-s20000 `8 ą24.1 9820 5.5 19300 10.8 1790 1.0 3330 1.9 6740 3.8 13500 7.5
product-N20000-s20001 42600 23.3 9670 5.3 19200 10.5 1830 1.0 3230 1.8 5950 3.3 11500 6.3
product-N20000-s20002 `8 ą29.6 10400 7.1 19600 13.4 1460 1.0 3540 2.4 6270 4.3 12500 8.6
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Table 9: Detailed results for the Benders by batch algorithm, with a batch size of 1%, cut aggregation, and
stabilization (basic or solution memory) compared to without stabilization

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

α
“

0
.1

α
“

0
.5

α
“

0
.9

α
“

0
.1

α
“

0
.1

α
“

0
.1

α
“

0
.5

α
“

0
.5

α
“

0
.5

α
“

0
.9

α
“

0
.9

α
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

in
st
a
n
c
e

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
0

2
2
.0

1
1
.6

1
.0
0

1
.2

1
1
.3

1
1
.8

2
1
.8

0
.8

5
1
.0

0
.9
8

1
.2

0
.9
5

1
.1

1
1
.8

1
1
.4

0
.9
5

1
.1

1
1
.7

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
1

2
1
.7

2
1
.8

1
1
.1

1
1
.4

2
1
.7

2
1
.6

2
1
.8

0
.9
7

1
.1

0
.9

2
1
.0

2
1
.6

1
1
.2

1
1
.1

2
1
.7

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
2

2
2
.1

0
.9
2

1
.1

0
.8
8

1
.1

1
1
.4

0
.8
3

1
.0

0
.8

3
1
.0

0
.9
0

1
.1

0
.8
5

1
.0

0
.8
8

1
.1

0
.9
2

1
.1

1
1
.5

0
.9
2

1
.1

0
.9
0

1
.1

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
0

1
0

2
.3

7
1
.7

4
1
.0

5
1
.2

7
1
.7

7
1
.7

4
1
.0

5
1
.1

5
1
.1

7
1
.7

6
1
.3

5
1
.1

7
1
.6

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
1

9
2
.3

5
1
.1

5
1
.3

6
1
.6

4
1
.1

4
1
.0

5
1
.2

5
1
.2

5
1
.2

4
1
.0

6
1
.5

5
1
.3

4
1
.1

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
2

9
1
.9

7
1
.6

5
1
.1

5
1
.1

7
1
.7

7
1
.6

8
1
.7

6
1
.2

4
1
.0

7
1
.7

4
1
.0

5
1
.2

7
1
.7

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
0

1
7

2
.0

9
1
.0

9
1
.1

1
2

1
.4

9
1
.0

1
5

1
.8

1
5

1
.8

1
0

1
.2

1
0

1
.2

1
5

1
.8

1
0

1
.2

1
0

1
.2

9
1
.0

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
1

1
4

1
.5

1
5

1
.6

9
1
.0

1
3

1
.3

1
5

1
.6

1
6

1
.6

1
6

1
.7

1
1

1
.1

1
6

1
.7

1
5

1
.6

1
0

1
.1

1
1

1
.1

1
6

1
.6

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
2

1
7

2
.0

9
1
.0

9
1
.0

1
0

1
.1

9
1
.0

9
1
.1

1
5

1
.7

1
1

1
.3

9
1
.1

9
1
.1

1
0

1
.2

1
1

1
.3

9
1
.0

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
0

4
5

2
.4

3
0

1
.6

2
1

1
.1

2
1

1
.1

3
1

1
.6

3
2

1
.7

1
9

1
.0

2
1

1
.1

2
1

1
.1

3
1

1
.6

2
5

1
.3

2
1

1
.1

3
1

1
.6

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
1

4
2

2
.4

3
1

1
.8

2
1

1
.2

2
1

1
.2

3
1

1
.8

3
3

1
.9

1
7

1
.0

2
0

1
.2

2
3

1
.3

3
2

1
.9

2
4

1
.4

2
0

1
.2

3
1

1
.8

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
2

4
5

2
.7

2
9

1
.7

2
0

1
.2

2
9

1
.7

3
0

1
.8

3
0

1
.8

3
0

1
.8

2
1

1
.2

1
7

1
.0

3
1

1
.8

1
8

1
.1

2
2

1
.3

3
1

1
.8

g
b
d
-N

1
0
0
0
-s
1
0
0
0

2
1
.9

1
1
.8

0
.8

1
1
.0

0
.9
9

1
.2

2
1
.9

2
1
.9

2
2
.4

0
.9
0

1
.1

0
.9
6

1
.2

2
1
.9

1
1
.7

0
.8
5

1
.0

2
1
.9

g
b
d
-N

1
0
0
0
-s
1
0
0
1

2
2
.0

2
2
.2

1
1
.3

1
1
.8

2
2
.0

2
2
.0

2
2
.3

0
.8
8

1
.1

0
.8
3

1
.1

2
1
.9

1
1
.3

0
.7

9
1
.0

2
2
.2

g
b
d
-N

1
0
0
0
-s
1
0
0
2

2
2
.3

1
1
.9

0
.8
2

1
.0

1
1
.6

1
1
.9

2
2
.0

2
2
.4

0
.8
1

1
.0

0
.8
0

1
.0

2
2
.0

1
1
.3

0
.7

9
1
.0

1
1
.9

g
b
d
-N

5
0
0
0
-s
5
0
0
0

1
0

2
.7

7
2
.0

4
1
.0

6
1
.7

7
1
.9

8
2
.1

9
2
.4

4
1
.2

5
1
.4

8
2
.1

6
1
.7

4
1
.2

7
1
.9

g
b
d
-N

5
0
0
0
-s
5
0
0
1

8
2
.3

8
2
.2

4
1
.1

3
1
.0

7
2
.2

8
2
.2

8
2
.4

5
1
.4

4
1
.1

8
2
.2

4
1
.0

5
1
.4

7
2
.2

g
b
d
-N

5
0
0
0
-s
5
0
0
2

9
2
.6

9
2
.4

5
1
.4

4
1
.2

8
2
.4

8
2
.4

8
2
.3

6
1
.6

5
1
.5

8
2
.3

4
1
.0

6
1
.6

8
2
.4

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
0

1
8

2
.4

1
4

1
.8

7
1
.0

1
0

1
.3

1
5

2
.0

1
5

2
.0

1
6

2
.2

1
0

1
.4

9
1
.2

1
5

2
.0

8
1
.1

1
0

1
.4

1
5

2
.0

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
1

1
3

1
.7

1
4

1
.9

7
1
.0

9
1
.2

1
3

1
.8

1
4

2
.0

1
7

2
.3

1
1

1
.4

8
1
.1

1
4

2
.0

1
0

1
.4

1
0

1
.4

1
4

1
.9

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
2

1
4

2
.0

1
4

2
.1

8
1
.2

7
1
.1

1
4

2
.0

1
4

2
.0

1
9

2
.7

8
1
.2

7
1
.1

1
5

2
.1

7
1
.0

8
1
.2

1
4

2
.0

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
0

5
0

3
.5

5
2

3
.6

1
9

1
.3

1
9

1
.3

3
2

2
.2

3
0

2
.1

1
7

1
.2

1
5

1
.1

1
6

1
.1

3
0

2
.1

1
4

1
.0

1
5

1
.1

3
2

2
.2

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
1

3
1

1
.9

2
6

1
.6

1
7

1
.0

2
2

1
.3

2
8

1
.7

2
9

1
.7

3
0

1
.8

1
8

1
.1

1
9

1
.1

3
0

1
.8

1
7

1
.0

1
8

1
.1

2
9

1
.7

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
2

4
3

3
.0

2
7

1
.9

1
5

1
.0

1
4

1
.0

3
0

2
.1

2
9

2
.0

3
2

2
.3

2
0

1
.4

1
8

1
.2

3
0

2
.1

1
6

1
.1

2
0

1
.4

3
0

2
.1

ss
n
-N

1
0
0
0
-s
1
0
0
0

1
4

1
.8

1
0

1
.4

8
1
.0

1
1

1
.4

9
1
.2

1
0

1
.3

1
1

1
.4

9
1
.2

9
1
.2

1
1

1
.4

1
0

1
.3

8
1
.1

9
1
.2

ss
n
-N

1
0
0
0
-s
1
0
0
1

1
5

1
.9

9
1
.2

8
1
.1

1
3

1
.6

1
2

1
.6

9
1
.2

1
1

1
.4

9
1
.2

8
1
.1

1
0

1
.3

1
2

1
.6

8
1
.0

1
0

1
.3

ss
n
-N

1
0
0
0
-s
1
0
0
2

1
3

1
.6

8
1
.0

8
1
.0

1
1

1
.3

9
1
.1

9
1
.1

1
1

1
.4

8
1
.0

8
1
.0

1
0

1
.2

1
1

1
.3

8
1
.0

9
1
.1

ss
n
-N

5
0
0
0
-s
5
0
0
0

8
8

2
.0

5
1

1
.1

4
7

1
.1

7
0

1
.6

5
4

1
.2

5
2

1
.2

5
6

1
.3

4
7

1
.0

4
5

1
.0

5
4

1
.2

6
4

1
.4

4
6

1
.0

5
4

1
.2

ss
n
-N

5
0
0
0
-s
5
0
0
1

9
0

2
.0

4
8

1
.0

4
6

1
.0

6
5

1
.4

4
9

1
.1

5
2

1
.1

6
0

1
.3

4
7

1
.0

4
6

1
.0

5
3

1
.2

6
2

1
.4

4
6

1
.0

4
9

1
.1

ss
n
-N

5
0
0
0
-s
5
0
0
2

9
0

2
.0

5
1

1
.1

4
9

1
.1

6
8

1
.5

5
0

1
.1

5
2

1
.1

5
8

1
.3

5
2

1
.1

4
6

1
.0

5
2

1
.1

6
1

1
.3

4
8

1
.1

5
2

1
.1

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
0

1
7
5

2
.1

1
1
7

1
.4

8
4

1
.0

1
2
6

1
.5

1
0
1

1
.2

1
0
8

1
.3

1
2
0

1
.4

9
2

1
.1

9
5

1
.1

1
1
3

1
.3

1
1
5

1
.4

9
2

1
.1

1
0
6

1
.3

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
1

1
8
7

2
.0

1
1
2

1
.2

9
8

1
.1

1
2
9

1
.4

1
1
2

1
.2

1
1
1

1
.2

1
2
8

1
.4

9
3

1
.0

1
0
5

1
.1

1
0
6

1
.1

1
1
9

1
.3

9
3

1
.0

1
0
6

1
.2

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
2

1
9
3

2
.2

1
0
1

1
.2

9
0

1
.0

1
3
4

1
.6

1
0
8

1
.3

1
0
7

1
.2

1
2
3

1
.4

9
3

1
.1

8
6

1
.0

1
1
2

1
.3

1
1
5

1
.3

8
8

1
.0

1
0
1

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
0

4
5
7

2
.5

2
2
1

1
.2

1
8
1

1
.0

2
7
9

1
.5

2
4
2

1
.3

2
3
5

1
.3

2
7
0

1
.5

2
0
3

1
.1

1
8
3

1
.0

2
3
2

1
.3

2
4
4

1
.3

1
9
8

1
.1

2
1
3

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
1

4
5
8

2
.5

2
0
7

1
.1

1
9
0

1
.0

2
8
4

1
.6

2
3
2

1
.3

2
2
8

1
.3

2
6
5

1
.5

1
8
2

1
.0

1
8
6

1
.0

2
3
0

1
.3

2
5
9

1
.4

1
8
6

1
.0

2
2
1

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
2

4
0
7

2
.1

2
1
5

1
.1

2
0
1

1
.1

3
0
5

1
.6

2
1
5

1
.1

2
2
8

1
.2

2
5
5

1
.3

1
9
0

1
.0

2
0
0

1
.1

2
3
5

1
.2

2
5
1

1
.3

1
9
3

1
.0

2
2
6

1
.2

st
o
rm

-N
1
0
0
0
-s
1
0
0
0

1
2

1
.9

9
1
.5

8
1
.2

7
1
.2

1
0

1
.5

1
0

1
.6

7
1
.1

8
1
.3

6
1
.0

1
0

1
.6

7
1
.1

7
1
.0

1
0

1
.6

st
o
rm

-N
1
0
0
0
-s
1
0
0
1

1
2

2
.0

7
1
.1

7
1
.2

8
1
.4

7
1
.1

1
0

1
.6

7
1
.2

6
1
.0

7
1
.2

9
1
.6

7
1
.2

8
1
.3

7
1
.1

st
o
rm

-N
1
0
0
0
-s
1
0
0
2

1
3

2
.0

9
1
.5

7
1
.0

8
1
.2

1
0

1
.5

1
0

1
.5

7
1
.0

7
1
.1

8
1
.2

1
0

1
.5

7
1
.1

6
1
.0

1
0

1
.5

st
o
rm

-N
5
0
0
0
-s
5
0
0
0

4
4

1
.4

3
3

1
.1

3
2

1
.1

3
7

1
.2

3
2

1
.0

3
3

1
.1

3
6

1
.2

3
1

1
.0

3
7

1
.2

3
3

1
.1

3
5

1
.1

3
1

1
.0

3
1

1
.0

st
o
rm

-N
5
0
0
0
-s
5
0
0
1

5
4

1
.7

4
7

1
.5

3
5

1
.1

3
7

1
.2

4
7

1
.5

3
4

1
.1

3
5

1
.1

4
2

1
.3

3
2

1
.0

3
3

1
.0

3
3

1
.0

3
2

1
.0

4
8

1
.5

st
o
rm

-N
5
0
0
0
-s
5
0
0
2

5
8

1
.9

3
3

1
.1

3
0

1
.0

3
2

1
.1

3
4

1
.1

3
2

1
.1

3
3

1
.1

3
2

1
.0

3
3

1
.1

3
2

1
.1

3
7

1
.2

3
2

1
.1

3
4

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

1
2
1

2
.0

6
5

1
.1

6
4

1
.1

8
1

1
.4

6
7

1
.1

6
7

1
.1

1
0
9

1
.8

6
4

1
.1

6
8

1
.1

6
8

1
.1

6
2

1
.0

5
9

1
.0

6
7

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

9
0

1
.4

6
8

1
.1

6
4

1
.0

6
8

1
.1

6
8

1
.1

6
6

1
.0

1
0
8

1
.7

6
7

1
.1

6
6

1
.0

6
7

1
.0

7
1

1
.1

6
5

1
.0

6
8

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

1
1
8

1
.9

6
6

1
.1

6
6

1
.1

9
8

1
.6

6
7

1
.1

1
0
1

1
.6

7
0

1
.1

6
9

1
.1

6
4

1
.0

1
0
0

1
.6

6
2

1
.0

6
6

1
.1

6
7

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

2
1
6

1
.7

1
4
1

1
.1

1
3
9

1
.1

1
6
2

1
.3

1
3
9

1
.1

1
3
8

1
.1

1
4
4

1
.1

1
3
0

1
.0

1
2
7

1
.0

1
3
6

1
.1

1
5
2

1
.2

1
3
1

1
.0

1
3
9

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

2
4
5

2
.0

1
3
4

1
.1

1
3
7

1
.1

1
2
7

1
.0

1
4
0

1
.1

1
2
9

1
.0

1
4
6

1
.2

1
3
0

1
.1

1
2
3

1
.0

1
2
8

1
.0

1
3
7

1
.1

1
2
6

1
.0

1
4
1

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

2
1
8

1
.7

1
4
5

1
.1

1
3
5

1
.0

1
3
7

1
.1

1
3
0

1
.0

1
3
5

1
.0

1
4
3

1
.1

1
4
1

1
.1

1
3
5

1
.0

1
3
3

1
.0

1
9
2

1
.5

1
5
2

1
.2

1
3
1

1
.0

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
0

1
5

1
.7

1
3

1
.5

1
1

1
.3

1
4

1
.6

1
4

1
.6

1
2

1
.4

1
6

1
.8

9
1
.0

1
0

1
.2

1
0

1
.1

1
2

1
.4

1
1

1
.3

1
5

1
.7

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
1

1
5

1
.5

1
0

1
.1

1
0

1
.0

1
3

1
.4

1
5

1
.6

1
7

1
.7

1
8

1
.9

1
1

1
.2

1
1

1
.2

1
6

1
.7

1
2

1
.3

1
0

1
.0

1
0

1
.0

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
2

1
5

1
.6

1
1

1
.3

1
0

1
.2

1
4

1
.6

1
8

2
.0

1
2

1
.4

2
2

2
.4

1
1

1
.2

1
1

1
.2

1
4

1
.5

1
2

1
.3

9
1
.0

1
6

1
.8

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
0

6
7

1
.3

6
0

1
.2

5
2

1
.0

6
4

1
.3

6
0

1
.2

6
7

1
.3

8
4

1
.6

5
1

1
.0

5
7

1
.1

5
1

1
.0

5
8

1
.1

6
6

1
.3

6
1

1
.2

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
1

7
8

1
.8

6
4

1
.5

4
3

1
.0

5
7

1
.3

6
7

1
.5

6
7

1
.5

8
4

1
.9

5
1

1
.2

4
6

1
.1

7
4

1
.7

5
8

1
.3

4
8

1
.1

7
4

1
.7

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
2

6
4

1
.4

5
4

1
.2

5
4

1
.2

5
8

1
.3

7
0

1
.5

6
9

1
.5

1
1
7

2
.6

5
6

1
.2

4
5

1
.0

6
5

1
.4

5
5

1
.2

5
3

1
.2

6
8

1
.5

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

1
2
9

1
.3

1
1
4

1
.1

1
0
1

1
.0

1
1
6

1
.2

1
1
8

1
.2

1
4
7

1
.5

1
8
8

1
.9

1
0
1

1
.0

1
0
1

1
.0

1
3
5

1
.3

1
0
1

1
.0

1
0
2

1
.0

1
1
3

1
.1

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

1
2
2

1
.3

1
4
8

1
.6

1
0
1

1
.1

1
1
4

1
.3

1
3
5

1
.5

1
3
9

1
.5

1
5
2

1
.7

1
1
5

1
.3

9
1

1
.0

1
5
1

1
.7

1
1
5

1
.3

1
1
0

1
.2

1
7
9

2
.0

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

1
3
7

1
.6

1
3
8

1
.6

1
0
0

1
.2

1
2
5

1
.5

1
2
6

1
.5

1
2
6

1
.5

1
6
9

2
.0

8
7

1
.0

8
5

1
.0

1
0
2

1
.2

1
3
6

1
.6

1
0
1

1
.2

1
7
6

2
.1

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

2
6
1

1
.4

2
7
9

1
.5

1
9
1

1
.0

2
5
8

1
.4

1
9
3

1
.0

3
3
0

1
.7

3
6
7

1
.9

2
2
6

1
.2

2
4
4

1
.3

3
6
1

1
.9

2
5
1

1
.3

2
2
2

1
.2

2
7
6

1
.4

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

2
9
6

1
.4

3
1
1

1
.5

2
1
0

1
.0

2
5
6

1
.2

2
8
9

1
.4

3
3
7

1
.6

3
2
6

1
.6

2
4
1

1
.2

2
4
3

1
.2

2
7
2

1
.3

2
3
6

1
.1

2
2
4

1
.1

2
6
7

1
.3

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

2
8
3

1
.8

1
5
9

1
.0

1
9
1

1
.2

2
7
0

1
.7

2
3
7

1
.5

1
7
8

1
.1

3
6
1

2
.3

2
3
3

1
.5

2
1
2

1
.3

2
8
8

1
.8

2
5
4

1
.6

2
3
0

1
.4

3
3
7

2
.1

F
le
e
t2

0
3
-N

1
0
0
0
-s
1
0
0
0

2
8

1
.7

2
0

1
.2

1
7

1
.0

1
9

1
.1

1
8

1
.1

2
1

1
.3

2
4

1
.4

1
7

1
.0

1
8

1
.1

2
2

1
.3

1
9

1
.1

1
7

1
.0

1
9

1
.1

F
le
e
t2

0
3
-N

1
0
0
0
-s
1
0
0
1

2
7

1
.6

1
7

1
.0

1
7

1
.0

2
0

1
.2

1
8

1
.1

2
0

1
.2

2
4

1
.4

1
7

1
.0

1
8

1
.0

2
2

1
.3

1
9

1
.1

1
8

1
.1

1
8

1
.1

F
le
e
t2

0
3
-N

1
0
0
0
-s
1
0
0
2

3
0

1
.7

2
0

1
.2

1
8

1
.0

2
1

1
.2

2
1

1
.2

2
1

1
.2

2
7

1
.5

1
9

1
.1

1
8

1
.0

2
2

1
.2

2
0

1
.2

1
8

1
.0

1
8

1
.1

F
le
e
t2

0
3
-N

5
0
0
0
-s
5
0
0
0

1
0
8

1
.4

8
6

1
.2

7
5

1
.0

8
3

1
.1

8
9

1
.2

9
6

1
.3

1
2
5

1
.7

7
8

1
.0

8
4

1
.1

9
5

1
.3

8
3

1
.1

7
6

1
.0

8
9

1
.2

F
le
e
t2

0
3
-N

5
0
0
0
-s
5
0
0
1

1
0
4

1
.4

9
5

1
.3

7
7

1
.0

8
4

1
.1

9
0

1
.2

9
4

1
.2

1
3
5

1
.8

7
6

1
.0

8
1

1
.1

1
0
5

1
.4

8
0

1
.1

7
8

1
.0

1
0
3

1
.4

F
le
e
t2

0
3
-N

5
0
0
0
-s
5
0
0
2

1
1
0

1
.5

9
6

1
.3

7
4

1
.0

8
4

1
.1

9
3

1
.3

1
0
1

1
.4

1
3
7

1
.9

7
4

1
.0

7
9

1
.1

1
0
7

1
.4

8
2

1
.1

7
7

1
.0

1
0
1

1
.4

F
le
e
t2

0
3
-N

1
0
0
0
0
-s
1
0
0
0
0

2
1
4

1
.5

1
7
2

1
.2

1
4
7

1
.0

1
6
3

1
.1

1
8
4

1
.3

1
9
7

1
.3

2
7
0

1
.8

1
5
5

1
.1

1
5
9

1
.1

1
9
1

1
.3

1
6
3

1
.1

1
5
2

1
.0

1
7
4

1
.2

F
le
e
t2

0
3
-N

1
0
0
0
0
-s
1
0
0
0
1

2
0
9

1
.4

1
9
6

1
.3

1
4
8

1
.0

1
6
7

1
.1

1
8
3

1
.2

1
9
3

1
.3

2
4
0

1
.6

1
5
5

1
.0

1
6
4

1
.1

1
9
3

1
.3

1
8
0

1
.2

1
5
6

1
.1

1
7
5

1
.2

F
le
e
t2

0
3
-N

1
0
0
0
0
-s
1
0
0
0
2

2
1
3

1
.5

1
9
2

1
.4

1
4
4

1
.0

1
6
1

1
.1

2
0
6

1
.5

2
2
0

1
.5

2
7
5

1
.9

1
5
4

1
.1

1
6
3

1
.1

2
1
3

1
.5

1
6
3

1
.1

1
4
2

1
.0

1
8
1

1
.3

F
le
e
t2

0
3
-N

2
0
0
0
0
-s
2
0
0
0
0

4
0
2

1
.3

3
5
8

1
.2

3
0
2

1
.0

3
4
7

1
.1

4
2
6

1
.4

4
8
2

1
.6

5
5
7

1
.8

3
0
7

1
.0

3
2
7

1
.1

4
3
4

1
.4

3
4
0

1
.1

3
1
5

1
.0

4
0
1

1
.3

F
le
e
t2

0
3
-N

2
0
0
0
0
-s
2
0
0
0
1

4
2
9

1
.4

3
9
1

1
.3

3
1
0

1
.0

3
3
3

1
.1

3
6
4

1
.2

4
1
6

1
.4

5
3
4

1
.8

3
2
2

1
.1

3
3
2

1
.1

4
6
0

1
.5

3
4
0

1
.1

3
0
1

1
.0

4
2
2

1
.4

F
le
e
t2

0
3
-N

2
0
0
0
0
-s
2
0
0
0
2

4
2
5

1
.4

4
2
4

1
.4

3
1
7

1
.0

3
5
5

1
.2

3
8
5

1
.3

4
6
2

1
.5

5
6
4

1
.8

3
1
1

1
.0

3
3
3

1
.1

4
6
0

1
.5

3
3
7

1
.1

3
0
5

1
.0

3
8
9

1
.3

p
ro

d
u
c
t-
N
1
0
0
0
-s
1
0
0
0

1
0
4

1
.4

8
7

1
.2

7
6

1
.0

8
9

1
.2

9
6

1
.3

9
1

1
.2

1
2
4

1
.6

8
5

1
.1

7
6

1
.0

9
2

1
.2

8
8

1
.2

8
0

1
.1

9
5

1
.3

p
ro

d
u
c
t-
N
1
0
0
0
-s
1
0
0
1

9
7

1
.2

8
8

1
.1

7
8

1
.0

7
9

1
.0

8
3

1
.1

8
1

1
.0

1
4
5

1
.9

8
9

1
.1

8
2

1
.1

7
9

1
.0

8
5

1
.1

8
8

1
.1

8
3

1
.1

p
ro

d
u
c
t-
N
1
0
0
0
-s
1
0
0
2

9
1

1
.2

8
4

1
.1

7
5

1
.0

8
3

1
.1

8
2

1
.1

7
5

1
.0

1
1
0

1
.5

7
6

1
.0

7
7

1
.0

7
5

1
.0

7
9

1
.1

7
6

1
.0

8
1

1
.1

p
ro

d
u
c
t-
N
5
0
0
0
-s
5
0
0
0

3
5
2

1
.3

2
6
4

1
.0

3
0
5

1
.2

3
1
2

1
.2

2
6
6

1
.0

3
0
6

1
.2

3
8
2

1
.4

2
9
0

1
.1

2
9
6

1
.1

2
9
4

1
.1

3
3
1

1
.3

2
9
1

1
.1

2
8
8

1
.1

p
ro

d
u
c
t-
N
5
0
0
0
-s
5
0
0
1

3
4
5

1
.3

2
6
9

1
.0

3
3
5

1
.2

3
0
3

1
.1

2
9
0

1
.1

2
9
3

1
.1

3
9
6

1
.5

3
0
3

1
.1

2
8
6

1
.1

2
9
3

1
.1

3
1
5

1
.2

2
8
1

1
.0

2
8
8

1
.1

p
ro

d
u
c
t-
N
5
0
0
0
-s
5
0
0
2

3
9
0

1
.4

2
8
5

1
.0

2
9
5

1
.0

3
0
1

1
.1

2
9
8

1
.1

3
0
8

1
.1

4
0
0

1
.4

2
8
7

1
.0

2
8
3

1
.0

3
0
5

1
.1

3
0
6

1
.1

2
8
6

1
.0

2
9
8

1
.1

p
ro

d
u
c
t-
N
1
0
0
0
0
-s
1
0
0
0
0

7
0
4

1
.3

5
2
2

1
.0

5
6
5

1
.1

6
3
0

1
.2

5
4
9

1
.1

6
3
6

1
.2

8
2
4

1
.6

5
7
9

1
.1

5
9
0

1
.1

6
3
8

1
.2

5
9
4

1
.1

5
8
1

1
.1

5
4
4

1
.0

p
ro

d
u
c
t-
N
1
0
0
0
0
-s
1
0
0
0
1

7
5
6

1
.4

5
6
3

1
.1

5
3
4

1
.0

5
6
7

1
.1

5
4
0

1
.0

6
2
0

1
.2

7
3
5

1
.4

5
5
4

1
.0

5
4
3

1
.0

6
2
6

1
.2

5
7
9

1
.1

5
5
3

1
.0

5
4
2

1
.0

p
ro

d
u
c
t-
N
1
0
0
0
0
-s
1
0
0
0
2

1
0
1
0

1
.8

5
5
5

1
.0

5
5
6

1
.0

5
9
3

1
.1

6
1
0

1
.1

5
8
3

1
.1

7
4
9

1
.3

5
6
1

1
.0

5
6
2

1
.0

5
8
8

1
.1

6
1
4

1
.1

5
6
2

1
.0

6
1
0

1
.1

p
ro

d
u
c
t-
N
2
0
0
0
0
-s
2
0
0
0
0

1
7
9
0

1
.6

1
3
0
0

1
.1

1
1
4
0

1
.0

1
2
8
0

1
.1

1
3
0
0

1
.1

1
3
7
0

1
.2

1
8
3
0

1
.6

1
1
7
0

1
.0

1
3
3
0

1
.2

1
3
7
0

1
.2

1
2
4
0

1
.1

1
1
5
0

1
.0

1
3
0
0

1
.1

p
ro

d
u
c
t-
N
2
0
0
0
0
-s
2
0
0
0
1

1
8
3
0

1
.6

1
2
6
0

1
.1

1
1
4
0

1
.0

1
3
6
0

1
.2

1
1
7
0

1
.1

1
1
6
0

1
.0

1
6
1
0

1
.5

1
1
2
0

1
.0

1
2
2
0

1
.1

1
2
3
0

1
.1

1
1
6
0

1
.0

1
1
1
0

1
.0

1
1
8
0

1
.1

p
ro

d
u
c
t-
N
2
0
0
0
0
-s
2
0
0
0
2

1
4
6
0

1
.3

1
2
3
0

1
.1

1
1
4
0

1
.0

1
2
3
0

1
.1

1
2
6
0

1
.1

1
2
6
0

1
.1

1
6
9
0

1
.5

1
1
9
0

1
.1

1
3
0
0

1
.2

1
2
5
0

1
.1

1
2
4
0

1
.1

1
1
1
0

1
.0

1
2
5
0

1
.1

33



Table 10: Detailed results for the Benders by batch algorithm, with a batch size of 5%, cut aggregation, and
stabilization (basic or solution memory) compared to without stabilization
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Table 11: Final results, the best stabilized Benders by batch algorithm compared to all stabilized benchmark
methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle monocut multicut 1% CutAggr 5% CutAggr CutAggr α “ 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 0.07 1.0 1 17.3 1 15.6 2 29.4 0.71 10.1 1 14.4 1.00 14.2
LandS-N1000-s1001 0.08 1.0 1 17.0 0.59 7.4 1 15.0 0.74 9.3 1 12.7 1 12.8
LandS-N1000-s1002 0.07 1.0 1 17.8 0.99 14.1 1 15.6 0.69 9.9 0.91 13.0 0.88 12.5
LandS-N5000-s5000 1 1.0 8 5.7 8 6.3 10 7.6 5 3.5 5 3.9 4 3.3
LandS-N5000-s5001 0.41 1.0 7 17.2 8 19.4 6 15.5 5 11.2 6 13.5 5 13.2
LandS-N5000-s5002 1 1.0 6 4.2 8 5.8 12 8.4 4 3.2 6 4.3 5 3.5
LandS-N10000-s10000 0.96 1.0 14 14.5 24 24.8 11 11.6 9 9.4 12 12.4 9 9.4
LandS-N10000-s10001 1 1.0 13 12.1 24 22.1 13 11.9 10 9.4 10 9.3 9 8.7
LandS-N10000-s10002 0.97 1.0 15 15.5 23 23.8 23 23.4 10 10.3 11 11.7 9 9.0
LandS-N20000-s20000 7 1.0 28 4.1 71 10.4 42 6.1 22 3.2 26 3.8 21 3.1
LandS-N20000-s20001 2 1.0 26 12.4 67 32.4 40 19.0 22 10.5 21 9.9 21 10.3
LandS-N20000-s20002 7 1.0 29 4.0 48 6.7 43 6.0 22 3.1 21 2.9 20 2.7
gbd-N1000-s1000 0.03 1.0 2 58.1 1 42.2 3 88.7 0.97 32.2 2 57.0 0.81 26.9
gbd-N1000-s1001 0.03 1.0 2 78.4 1 42.0 2 53.0 1 46.8 2 50.9 1 33.6
gbd-N1000-s1002 0.05 1.0 2 46.9 1 25.4 2 34.6 1 21.8 1 26.5 0.82 16.4
gbd-N5000-s5000 0.15 1.0 8 55.7 7 48.5 13 89.3 7 48.3 9 58.5 4 24.4
gbd-N5000-s5001 0.18 1.0 11 61.4 11 63.7 9 50.5 7 37.2 7 41.3 4 20.1
gbd-N5000-s5002 0.17 1.0 11 63.1 12 70.5 9 52.0 7 39.8 7 41.5 5 29.8
gbd-N10000-s10000 0.32 1.0 23 70.9 19 57.9 30 93.1 17 54.5 18 54.8 7 23.0
gbd-N10000-s10001 0.35 1.0 26 74.3 32 91.1 18 50.5 14 39.2 17 47.6 7 21.0
gbd-N10000-s10002 0.37 1.0 23 63.4 20 53.5 15 41.5 16 43.4 18 48.6 8 22.4
gbd-N20000-s20000 1 1.0 45 40.1 107 94.6 56 49.7 30 26.5 34 30.1 19 16.5
gbd-N20000-s20001 0.86 1.0 47 54.1 72 83.4 55 64.5 30 34.7 31 35.9 17 19.4
gbd-N20000-s20002 0.75 1.0 39 52.3 69 91.4 51 67.6 31 41.8 38 51.3 15 19.6
ssn-N1000-s1000 32 7.9 97 24.0 4 1.0 187 46.4 9 2.3 19 4.8 8 1.9
ssn-N1000-s1001 32 5.2 85 13.6 6 1.0 117 18.7 10 1.5 19 3.1 8 1.3
ssn-N1000-s1002 31 4.9 87 13.8 6 1.0 106 16.9 10 1.6 19 3.0 8 1.3
ssn-N5000-s5000 293 8.3 621 17.6 35 1.0 936 26.5 67 1.9 139 3.9 47 1.3
ssn-N5000-s5001 327 9.4 719 20.6 35 1.0 597 17.1 69 2.0 128 3.7 46 1.3
ssn-N5000-s5002 311 14.1 631 28.5 22 1.0 852 38.5 74 3.4 133 6.0 49 2.2
ssn-N10000-s10000 1271 15.1 1440 17.1 86 1.0 1937 23.0 167 2.0 319 3.8 84 1.0
ssn-N10000-s10001 1332 25.0 1613 30.2 53 1.0 1261 23.6 185 3.5 318 6.0 98 1.8
ssn-N10000-s10002 1064 20.8 1451 28.3 51 1.0 1195 23.3 161 3.1 298 5.8 90 1.8
ssn-N20000-s20000 2592 14.3 3232 17.9 245 1.4 3791 21.0 441 2.4 729 4.0 181 1.0
ssn-N20000-s20001 2070 10.9 2986 15.7 237 1.2 2460 12.9 365 1.9 743 3.9 190 1.0
ssn-N20000-s20002 3195 15.9 3108 15.4 246 1.2 2332 11.6 395 2.0 735 3.6 201 1.0
storm-N1000-s1000 41 5.4 14 1.9 10 1.3 11 1.4 8 1.0 10 1.3 8 1.0
storm-N1000-s1001 41 6.0 16 2.2 7 1.0 21 3.0 7 1.0 10 1.4 7 1.1
storm-N1000-s1002 41 6.2 15 2.3 11 1.7 12 1.8 7 1.1 9 1.4 7 1.0
storm-N5000-s5000 348 10.7 74 2.3 41 1.3 63 1.9 52 1.6 53 1.6 32 1.0
storm-N5000-s5001 294 8.4 78 2.2 38 1.1 61 1.7 51 1.5 53 1.5 35 1.0
storm-N5000-s5002 305 10.1 76 2.5 43 1.4 63 2.1 45 1.5 51 1.7 30 1.0
storm-N10000-s10000 808 12.7 140 2.2 108 1.7 212 3.3 94 1.5 100 1.6 64 1.0
storm-N10000-s10001 732 11.5 149 2.3 105 1.6 201 3.2 104 1.6 117 1.8 64 1.0
storm-N10000-s10002 751 11.3 147 2.2 161 2.4 189 2.8 99 1.5 114 1.7 66 1.0
storm-N20000-s20000 2510 18.1 316 2.3 515 3.7 259 1.9 218 1.6 237 1.7 139 1.0
storm-N20000-s20001 2362 17.2 266 1.9 633 4.6 251 1.8 202 1.5 230 1.7 137 1.0
storm-N20000-s20002 2297 17.0 283 2.1 570 4.2 246 1.8 214 1.6 228 1.7 135 1.0
20term-N1000-s1000 14 1.2 197 17.3 27 2.4 128 11.3 24 2.1 41 3.6 11 1.0
20term-N1000-s1001 14 1.4 214 22.1 43 4.5 74 7.6 26 2.7 46 4.8 10 1.0
20term-N1000-s1002 14 1.3 241 23.2 38 3.7 139 13.4 31 3.0 45 4.4 10 1.0
20term-N5000-s5000 83 1.6 994 19.1 581 11.2 661 12.7 188 3.6 271 5.2 52 1.0
20term-N5000-s5001 80 1.8 1059 24.4 423 9.7 650 14.9 206 4.7 277 6.4 43 1.0
20term-N5000-s5002 84 1.6 1078 20.1 443 8.3 732 13.7 198 3.7 257 4.8 54 1.0
20term-N10000-s10000 205 2.0 2305 22.8 2491 24.7 863 8.5 465 4.6 649 6.4 101 1.0
20term-N10000-s10001 199 2.0 2647 26.3 3382 33.6 1389 13.8 491 4.9 560 5.6 101 1.0
20term-N10000-s10002 194 1.9 2400 24.1 2543 25.5 1317 13.2 467 4.7 569 5.7 100 1.0
20term-N20000-s20000 457 2.4 4562 23.9 13423 70.4 1834 9.6 1007 5.3 1412 7.4 191 1.0
20term-N20000-s20001 457 2.2 4378 20.9 10267 49.0 1680 8.0 980 4.7 1407 6.7 210 1.0
20term-N20000-s20002 451 2.4 5588 29.3 9286 48.7 1748 9.2 1043 5.5 1295 6.8 191 1.0
Fleet20 3-N1000-s1000 24 1.5 104 6.2 61 3.7 71 4.3 27 1.6 42 2.5 17 1.0
Fleet20 3-N1000-s1001 23 1.3 103 6.0 34 2.0 103 6.0 26 1.5 39 2.3 17 1.0
Fleet20 3-N1000-s1002 22 1.2 114 6.3 55 3.1 106 5.9 25 1.4 43 2.4 18 1.0
Fleet20 3-N5000-s5000 266 3.6 485 6.5 933 12.5 552 7.4 181 2.4 239 3.2 75 1.0
Fleet20 3-N5000-s5001 273 3.6 509 6.6 541 7.1 331 4.3 172 2.2 264 3.4 77 1.0
Fleet20 3-N5000-s5002 267 3.6 506 6.8 682 9.2 535 7.2 198 2.7 248 3.4 74 1.0
Fleet20 3-N10000-s10000 784 5.3 988 6.7 3540 24.1 1150 7.8 435 3.0 598 4.1 147 1.0
Fleet20 3-N10000-s10001 816 5.5 1040 7.0 4750 32.1 1230 8.3 422 2.9 550 3.7 148 1.0
Fleet20 3-N10000-s10002 826 5.7 984 6.8 2950 20.5 708 4.9 448 3.1 623 4.3 144 1.0
Fleet20 3-N20000-s20000 2488 8.2 2630 8.7 14900 49.3 2470 8.2 1070 3.5 1270 4.2 302 1.0
Fleet20 3-N20000-s20001 2469 8.0 2910 9.4 14100 45.5 1490 4.8 945 3.0 1240 4.0 310 1.0
Fleet20 3-N20000-s20002 2381 7.5 2650 8.4 22000 69.4 1380 4.4 1040 3.3 1430 4.5 317 1.0
product-N1000-s1000 185 2.5 479 6.4 75 1.0 480 6.4 108 1.4 180 2.4 76 1.0
product-N1000-s1001 186 2.4 718 9.2 83 1.1 539 6.9 124 1.6 179 2.3 78 1.0
product-N1000-s1002 165 2.2 677 9.0 84 1.1 519 6.9 108 1.4 189 2.5 75 1.0
product-N5000-s5000 1374 4.5 3290 10.8 1070 3.5 2840 9.3 820 2.7 1460 4.8 305 1.0
product-N5000-s5001 3073 9.2 3150 9.4 1100 3.3 2550 7.6 724 2.2 1330 4.0 335 1.0
product-N5000-s5002 1916 6.5 3160 10.7 1210 4.1 2680 9.1 817 2.8 1350 4.6 295 1.0
product-N10000-s10000 4991 8.8 6910 12.2 4940 8.7 5750 10.2 2030 3.6 3130 5.5 565 1.0
product-N10000-s10001 3850 7.2 6670 12.5 6860 12.8 5920 11.1 2000 3.7 2810 5.3 534 1.0
product-N10000-s10002 4351 7.8 7940 14.3 4270 7.7 5520 9.9 1880 3.4 3460 6.2 556 1.0
product-N20000-s20000 14757 12.9 13200 11.6 `8 ą43.5 12700 11.1 4700 4.1 8300 7.3 1140 1.0
product-N20000-s20001 14346 12.6 13900 12.2 `8 ą46.7 11700 10.3 4690 4.1 7580 6.6 1140 1.0
product-N20000-s20002 17287 15.2 15800 13.9 35600 31.2 12600 11.1 5270 4.6 8070 7.1 1140 1.0
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