
HAL Id: hal-03286135
https://hal.science/hal-03286135v3

Preprint submitted on 13 Jul 2022 (v3), last revised 15 Dec 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Benders by batch algorithm: design and
stabilization of an enhanced algorithm to solve multicut
Benders reformulation of two-stage stochastic programs

Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel
Ruiz

To cite this version:
Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel Ruiz. The Benders
by batch algorithm: design and stabilization of an enhanced algorithm to solve multicut Benders
reformulation of two-stage stochastic programs. 2022. �hal-03286135v3�

https://hal.science/hal-03286135v3
https://hal.archives-ouvertes.fr

The Benders by batch algorithm: design and stabilization of an

enhanced algorithm to solve multicut Benders reformulation of

two-stage stochastic programs

Xavier Blanchot1,2 François Clautiaux1 Boris Detienne1 Aurélien Froger1

Manuel Ruiz2

July 13, 2022

1 Université de Bordeaux, UMR CNRS 5251, Inria Bordeaux Sud-Ouest, Talence,France
2 RTE, Paris La Défense, France

Abstract

This paper introduces a new exact algorithm to solve two-stage stochastic linear programs.

Based on the multicut Benders reformulation of such problems, with one subproblem for each

scenario, this method relies on a partition of the subproblems into batches. It solves only a

small proportion of the subproblems at most iterations by detecting as soon as possible that a

first-stage candidate solution cannot be proven optimal. We also propose a general framework to

stabilize our algorithm, and show its finite convergence and exact behavior. We report an extensive

computational study on large-scale instances of stochastic optimization literature that shows the

efficiency of the proposed algorithm compared to nine alternative algorithms from the literature.

We also obtain significant additional computational time savings using the primal stabilization

schemes.

Keywords— L arge-scale optimization, Benders Decomposition, Stochastic programming, Cut aggrega-

tion

1 Introduction

Large-scale two-stage stochastic linear programs arise in many applications such as network design,

telecommunication network planning, air freight scheduling, power generation planning. In such

problems, first-stage decisions (also called here-and-know decisions) are to be made before knowing

the value taken by random parameters, then second-stage decisions (also called wait-and-see decisions)

are made after observing the value taken by each random parameter. In practice, many approaches

introduced to solve such problems are based on decomposition techniques (Ruszczyński, 1997).

In this paper, we study two-stage stochastic linear programs. We assume that the probability

distribution is given by a finite set of scenarios and focus on problems with a large number of scenarios.

Email addresses: xavier.blanchot@rte-france.com, xavier.blanchot@u-bordeaux.fr (Xavier Blanchot),
francois.clautiaux@math.u-bordeaux.fr (François Clautiaux), boris.detienne@math.u-bordeaux.fr (Boris Deti-
enne), aurelien.froger@u-bordeaux.fr (Aurélien Froger), manuel.ruiz@rte-france.com (Manuel Ruiz)

1

We consider the following linear program with a scenario block structure:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min cJx`
ÿ

sPS

psg
J
s ys

s.t. : Wsys “ ds ´ Tsx, @s P S

ys P Rn2
` , @s P S

x P X

(1)

where x P Rn1 , c P Rn1 , S is a finite set of scenarios, ps P R` is a positive weight associated with

a scenario s P S (e.g., a probability), gs P Rn2 , Ws P Rmˆn2 , Ts P Rmˆn1 , ds P Rm, and X Ă Rn1

is a polyhedral set. Variables x are called first-stage variables and variables ys are called second-

stage variables or recourse variables. Problem (1) is called the extensive formulation of a two-stage

stochastic problem.

When the number of scenarios is large, problem (1) becomes intractable for LP solvers. Its

reformulation as
$

’

&

’

%

min cJx`
ÿ

sPS

psϕpx, sq

s.t. x P X

(2)

where for every s P S and every x P X,

ϕpx, sq “

$

’

’

’

&

’

’

’

%

min
y

gJ
s y

s.t. Wsy “ ds ´ Tsx

y P Rn2
`

(3)

makes the use of decomposition methods attractive. If we fix the first-stage variables to x̂ P X, then

the resulting problem becomes separable according to the scenarios. We denote by pSP px̂, sqq the

subproblem associated with a scenario s P S and by ϕpx̂, sq its value.

Let Πs “ tπ P Rm|WJ
s π ď gsu be the polyhedron associated with the dual of pSP px̂, sqq, which

does not depend on first-stage variables x. We denote by Rays(Πs) the set of extreme rays of Πs,

and by Vert(Πs) the set of extreme points of Πs. By Farkas’ Lemma, we can write an expression

of the domain of ϕp¨, sq as dom
´

ϕp¨, sq
¯

“ tx P Rn1 |rJ
s pds ´ Tsxq ď 0, @rs P RayspΠsqu. Then we

can replace in formulation (2) the polyhedral mapping x ÞÑ ϕpx, sq by its outer linearization on its

domain. Using an epigraph variable θs for every s P S, we obtain the multicut Benders reformulation

(Birge and Louveaux, 1988) of problem (1):

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
x,θ

cJx`
ÿ

sPS

psθs

s.t. : θs ě πJ
s pds ´ Tsxq, @s P S, @πs P VertpΠsq piq

0 ě rJ
s pds ´ Tsxq, @s P S, @rs P RayspΠsq piiq

x P X, θ P RcardpSq

(4)

Constraints piq are called optimality cuts, and constraints piiq, feasibility cuts. Without loss of

generality, we assume that the problem has relatively complete recourse (i.e., X Ă dom pϕp¨, sqq for

every scenario s P S), meaning that every subproblem is feasible for every x P X. As a result, only

optimality cuts are required in the Benders decomposition algorithm, and every x P X defines an

2

upper bound on the optimal value of the problem. Every two-stage linear stochastic program can be

reformulated to a problem satisfying this hypothesis by introducing slack variables with large enough

coefficients in the objective function (see e.g. (Bodur and Luedtke, 2022) or (Shapiro and Nemirovski,

2005)).

The classical version of the multicut Benders decomposition algorithm (see Algorithm 1 in the case

of relatively complete recourse) consists of the relaxation of constraints piq and piiq and an iterative

scheme to add them until convergence is proven. As the number of extreme rays and vertices of

polyhedra Πs is finite, for every s P S, the total number of optimality and feasibility cuts is finite.

Then, this algorithm converges in a finite number of iterations. The relaxation of (4) at iteration k of

the algorithm is called the relaxed master program, denoted by pRMP qpkq and its solution is denoted

by px̌pkq, pθ̌
pkq
s qsPSq.

Algorithm 1: Classical version of the multicut Benders decomposition algorithm

Parameters: ϵ ě 0 the selected optimality gap
1 Initialization: k Ð 0, UBp0q Ð `8, LBp0q Ð ´8

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 Solve pRMP qpkq and retrieve px̌pkq, pθ̌
pkq
s qsPSq

5 LBpkq Ð cJx̌pkq `
ř

sPS psθ̌
pkq
s

6 for s P S do

7 Solve pSP px̌pkq, sqq and retrieve πs P VertpΠsq

8 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

9 UBpkq Ð min
´

UBpk´1q, cJx̌pkq `
ř

sPS psπ
J
s pds ´ Tsx̌

pkqq

¯

10 pRMP qpk`1q Ð pRMP qpkq

11 Return x̌pkq

When the total number of subproblems is large, solving all the subproblems at each iteration, like

in Algorithm 1, can be time-consuming. To overcome this issue, we introduce a new exact algorithm to

solve problem (1), referred to as the Benders by batch algorithm. The term batch refers to a given fixed

partition of all subproblems into separate batches. We propose a new stopping criterion that allows

us to identify that a solution cannot be proven optimal at the current iteration without necessarily

having to solve all the subproblems. As a result, only few subproblems are generally solved at a

first-stage candidate solution. To prevent introducing too many cuts in the relaxed master program,

the algorithm can use partial cut aggregation, thus generating a single cut from all subproblems

that belong to an identical batch. If the number of batches is equal to one, the Benders by batch

algorithm is equivalent to the classical version of the Benders decomposition algorithm (multicut or

monocut, depending on the use of cut aggregation). Several existing methods based on similar ideas

require fixed recourse (Ws “ W, @s P S in problem (1)) (Oliveira et al., 2011) and deterministic

second-stage objective function (gs “ g, @s P s in problem (1)) (Wets, 1983; Dantzig and Infanger,

1991; Higle and Sen, 1991). Moreover, some of them do not have finite convergence (Higle and Sen,

1991), or are not exact (Dantzig and Infanger, 1991). The method proposed in this work is exact,

has finite convergence, and does not require any assumption on the value of the random parameters

gs,Ws, ds, Ts in problem (1).

We also show how to stabilize the proposed algorithm. As the classical primal stabilization

methods of the literature (Ben-Ameur and Neto, 2007; Lemaréchal et al., 1995) are designed for

algorithms which solve all the subproblems at each iteration, it is not possible to apply them directly.

3

They require the actual value of the recourse function at each iteration, at least to evaluate their

stopping criterion. We therefore propose a generic framework to stabilize the Benders by batch

algorithm and prove the finite convergence and exact behavior of the stabilized algorithm. Our

algorithm is also compatible with classical dual stabilization techniques (Magnanti and Wong, 1981;

Papadakos, 2008; Sherali and Lunday, 2013).

The contributions of the paper can be summarized as follows:

• We propose a new exact algorithm to solve the Benders reformulation of two-stage linear stochas-

tic programs with finite probability distribution. This algorithm is based on a sequential stop-

ping criterion relying on a partition of the subproblems. This stopping criterion allows the

algorithm to solve only a few subproblems at most iterations by detecting that a first-stage

candidate solution cannot be proven optimal early in the subproblems solution process.

• We develop a general framework to apply primal stabilization to the Benders by batch algorithm,

as classical primal stabilization methods cannot be applied if all the subproblems are not solved

at each iteration. We state sufficient conditions for the stabilized algorithm to be exact and

have finite convergence and provide two effective primal stabilization schemes.

• We perform an extensive numerical study showing the efficiency of the developed algorithm on

some classical stochastic instances from the literature compared to classical implementations of

the monocut and multicut Benders decomposition algorithm, with and without in-out stabiliza-

tion, the static multicut aggregation approach of Trukhanov et al. (2010), and a level bundle

method.

The paper is organized as follows. Section 2 reviews the literature on acceleration techniques for

Benders decomposition, with a focus on the stochastic case, and on closely related methods. In section

3, we present the Benders by batch algorithm. Section 4 presents a general framework to stabilize

our algorithm and two stabilization schemes: the first one based on the classical in-out separation

scheme, and the second one based on exponential moving averages. Section 5 presents extensive

computational experiments. Then, section 6 concludes and outlines perspectives.

2 Related work

The classical version of the Benders decomposition algorithm can be slow to converge. Researchers

have proposed several techniques to accelerate its convergence. We first present classical primal and

dual stabilization methods, which are the most widespread and general methods to accelerate the Ben-

ders decomposition algorithm. We then present different methods specific to stochastic programming,

with a focus on methods that avoid systematically solving all the subproblems.

A well-known downside of cutting-plane methods, and therefore of the Benders decomposition

algorithm, is the oscillation of the first-stage variables (Nesterov, 2004; Pessoa et al., 2013). Because

of the relaxation of all the constraints related to the subproblems, the solutions of the relaxed master

programs might be far from the optimal solution to the initial problem. This might lead to a large

amount of time spent in evaluating poor quality solutions in the early iterations. To our knowledge,

successful methods proposed so far to avoid the presented drawbacks of cutting-plane methods are

either inspired by bundle methods (Zverovich et al., 2012; Linderoth and Wright, 2003; Wolf et al.,

2014), or by in-out separation approaches (Ben-Ameur and Neto, 2007). Those methods try to restrict

4

the search of an optimal solution to points close to a given first-stage solution. This solution is called

stability center in the case of bundle methods, or in-point in the case of in-out stabilization. On

the one hand, many authors proposed quadratic stabilization techniques, such as Ruszczyński (1986),

who added a quadratic proximal term in the objective function of the relaxed master program, or

Zverovich et al. (2012), Wolf et al. (2014) and van Ackooij et al. (2017), who used quadratic level

stabilizations. Linderoth and Wright (2003) used a trust-region bundle method and proposed to use

the infinity norm with an effective asynchronous parallelized framework. On the other hand, the in-

out separation scheme performs a linear search between the in-point and the solution to the relaxed

master program, and it can rely on the practical efficiency of linear programming solvers. The in-out

separation approach has been applied successfully in a cutting-plane algorithm to solve a survivable

network design problem (Ben-Ameur and Neto, 2007), in column generation (Pessoa et al., 2013),

in a branch-and-cut algorithm based on a Benders decomposition approach to solve facility location

problems (Fischetti et al., 2016), and in a cutting-plane algorithm applied to disjunctive optimization

(Fischetti and Salvagnin, 2010).

Another family of acceleration techniques focuses on the quality of the optimality cuts. The

polyhedral structure of the second-stage function implies a degeneracy of the dual subproblem. In

the singular points of this function, many equivalent extreme dual solutions exist for the subproblem,

each one defining a different optimality cut. The choice of a “good” dual solution can improve

dramatically the convergence of the algorithm. Magnanti and Wong (1981) proposed to solve the

dual of the subproblem twice in order to find the solution which maximizes the objective function at

a fixed core point of the master problem. A different choice of the core point leads to a different cut.

A cut derived in this framework is called a Pareto-optimal cut. Papadakos (2008) proposed a less

restrictive way to choose the core point, and a practical framework to update it. Sherali and Lunday

(2013) improved the method, bypassing the need to solve the subproblem twice.

In the case of stochastic programming, formulations rely either on one epigraph variable for every

subproblem (see formulation (4)) or on a single epigraph variable for all the subproblems, also called

L-shaped method (Van Slyke and Wets, 1969). The former formulation is referred to as the multicut

Benders reformulation, whereas the latter is known as the monocut Benders reformulation. The

multicut Benders reformulation was introduced by Birge and Louveaux (1988). You and Grossmann

(2013) showed dramatic improvement both on computing time and number of iterations due to the

multicut reformulation on two supply chain planning problems. The multicut version provides a

tighter approximation of the second-stage function, and converges in less iterations than the monocut

one. However the master problem might suffer from the large number of cuts added through the

optimization process, and thus might become time-consuming to solve. The decision between using

either the monocut or the multicut version of the algorithm is not straightforward. As far as we know,

one of the major improvements proposed to improve pure multicut Benders decomposition was to use

massive parallelization (Linderoth and Wright, 2003). Trukhanov et al. (2010) proposed a framework

to aggregate some optimality cuts with the aim of finding a compromise between the monocut and

pure multicut versions of the algorithm. Wolf et al. (2014) proposed to maintain both a multicut

model and a monocut model. When, for a given first-stage solution x, they observe that the monocut

approximation of the recourse function is substantially lower than the multicut approximation, they

aggregate the active cuts from the multicut model to generate a cut in the monocut one. As this cut

have, at x, the value given by the multicut model, this cut improves the monocut approximation,

without having to solve any subproblem. They embed their algorithm in the general concept of

5

oracles with on-demand accuracy (de Oliveira and Sagastizábal, 2014). The concept of oracles with

on-demand accuracy might embed the core idea of the Benders by batch algorithm presented in this

work. However, it requires that the oracle gives a subgradient which belongs to an approximate

subdifferential of the objective function at each iteration which is not required in the Benders by

batch algorithm, and may not be satisfied in the general case.

One of the major bottlenecks faced to solve two-stage stochastic programs is the large number of

subproblems to solve at each iteration to compute Benders cuts. Researchers proposed some methods

to avoid solving all the subproblems at each iteration of the Benders decomposition algorithm. In the

case of stochastic problems with fixed recourse (i.e., Ws “ W for every s P S in problem (1)) where

the second-stage objective function does not depend on the uncertainty (i.e., gs “ g for every s P S

in problem (1)), some authors, such as (Wets, 1983; Higle and Sen, 1991; Dantzig and Infanger,

1991; Infanger, 1992), used the fact that the duals of all the subproblems share the same constraint

polyhedron: Πs “ Π , for every s P S. Given an optimal dual solution πs0 to a subproblem s0 P

S, bunching (Wets, 1983) consists in checking the primal feasibility of this solution for the other

subproblems. This solution is optimal for all the subproblems for which this solution is primal

feasible, and there is no need to solve them. Dantzig and Infanger (1991) and Infanger (1992)

proposed to use importance sampling to compute a good approximation of the expected cut in the

monocut formulation with only a few scenarios. Although the resulting algorithm is not exact, they

report results with small confidence intervals on the objective value. Higle and Sen (1991) introduced

stochastic decomposition. The method only solves a few subproblems at each iteration and computes

cuts with all the dual solutions obtained at previous iterations. Finally, Oliveira et al. (2011) proposed

an algorithm which only requires the fixed recourse hypothesis (Ws “ W , @s P S). It adapts the

dual solutions of a subset of subproblems to generate inexact cuts to the remaining subproblems. The

methods of Oliveira et al. (2011), Dantzig and Infanger (1991) and Higle and Sen (1991) are designed

for a monocut algorithm, but the method of Oliveira et al. (2011) can be adapted to a multicut

algorithm.

Finally, among other techniques used to accelerate the solution time of two-stage stochastic pro-

grams, Crainic et al. (2020) proposed the so-called Partial Benders decomposition. Under the hy-

pothesis gs “ g, @s P S, and fixed recourse, they add one of the scenarios, or an artificial scenario

computed as the expectation of the others, to the master problem. They showed major improvements

on some instances, both in computing time and number of iterations, even if the master problem

becomes way larger than the original one, and might be harder to solve at each iteration. Under

the same assumptions (gs “ g, Ws “ W, @s P S), Song and Luedtke (2015) proposed an adaptative

partition-based approach, which does not rely on Benders reformulation. Given a partition of the

subproblems, they compute a relaxation of the initial deterministic reformulation by summing the

matrices and right-hand-sides of the subproblems of each element of the partition. They showed the

existence of a partition with the same optimal value as the initial problem and an iterative algorithm

to find it. van Ackooij et al. (2017) proposed to use level stabilization with the adaptative partition-

based approach and showed numerical experiments where the resulting algorithms largely outperform

classical level bundle or Benders decomposition methods. Table 1 classifies the different methods

discussed in this section.

6

Paper Randomness Solve all Monocut or Exact Finite Cut Stabilization
hypothesis* SPs multicut method convergence aggregation

(Crainic et al., 2020) gs “ g,Ws “ W @s P S Yes Both Yes Yes No No
(Song and Luedtke, 2015) gs “ g,Ws “ W @s P S Yes Not applicable Yes Yes No No
(van Ackooij et al., 2017) gs “ g,Ws “ W @s P S No Both Yes Yes No Level

(Wets, 1983) gs “ g,Ws “ W @s P S No Both Yes Yes No No
(Dantzig and Infanger, 1991) gs “ g,Ws “ W @s P S No Monocut No Yes No No

(Higle and Sen, 1991) gs “ g,Ws “ W @s P S No Monocut Yes No No No
(Trukhanov et al., 2010) No Yes Multicut Yes Yes Yes No

(Linderoth and Wright, 2003) No Yes Multicut Yes Yes No Trust-region
(Wolf et al., 2014) No All or none Monocut and Multicut Yes Yes No Level

(Oliveira et al., 2011) Ws “ W @s P S No Monocut Inexact Yes No Proximal bundle
This work No No Multicut Yes Yes Yes In-out

* in addition to random parameters having a discrete finite probability distribution

Table 1: Comparison of stochastic methods to accelerate Benders decomposition. (SPs: subproblems)

3 The Benders by batch algorithm

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve ex-

actly the multicut Benders reformulation (4) of a two-stage stochastic linear program. The algorithm

consists of solving the subproblems by batch and stopping solving subproblems at an iteration as

soon as we identify that the current first-stage solution cannot be proven optimal. This is made

possible by checking, after solving of a subset of subproblems, if the gap between their optimal values

and their epigraph approximations in the relaxed master program already exceeds the optimality gap.

We first present some notations necessary to formally describe the algorithm. We consider an

ordered set of scenarios S “ ts1, s2, ..., scardpSqu and a given batch size 1 ď η ď cardpSq. We

define κ “ rcardpSq{ηs as the number of batches of subproblems. For every i P J1, κK, the ith

batch of subproblems Si is defined as Si “ tspi´1qη`1, ..., spi´1qη`ηiu, where ηi is the size of batch

i, η1 “ ¨ ¨ ¨ “ ηκ´1 “ η and ηκ “ pcardpSq mod ηq. Family pSiqiPJ1,κK defines a partition of S.

We restrict ourselves to batches of the same size, but the method remains valid for any partition of

S. We denote by px̌pkq, pθ̌
pkq
s qsPSq the optimal solution to pRMP qpkq at iteration k of the algorithm,

where x̌pkq denotes the optimal value to the first-stage variables and θ̌
pkq
s the optimal value to the

epigraph variable associated with scenario s P S. A lower bound on the optimal value of problem (1)

is then computed as LBpkq “ cJx̌pkq `
ř

sPS psθ̌
pkq
s . For a first-stage solution x P X, we denote by

UBpxq “ cJx`
ř

sPS psϕpx, sq an upper bound on the optimal value of problem (1). Let ϵ ě 0 be the

optimality gap of the algorithm. We first define the notion of provable optimality in cutting-planes

methods.

Definition 1. Let ϵ ě 0 be the optimality gap of the algorithm and k an iteration of the algorithm.

We say that a first-stage solution x P X cannot be proven optimal at an iteration k of the algorithm

iff UBpxq ´ LBpkq ą ϵ.

Saying that a first-stage solution x cannot be proven optimal at an iteration k of the algorithm

means that, either x is not an optimal solution to problem (1), or the current lower bound given by

pRMP qpkq is too low to prove the optimality of an optimal solution. The classical stopping criterion

UB ´ LB ď ϵ of the Benders decomposition algorithm is based on such an optimality proof, but

cannot be directly applied if not all the subproblems are solved. Specifically, an upper bound on the

optimal value of the problem is only known after computing, for a first-stage solution x P X, the

optimal value ϕpx, sq of every subproblem pSP px, sqq.

We propose hereafter a new stopping criterion, which detects, when it occurs, that the current

7

first-stage solution x̌pkq to pRMP qpkq cannot be proven optimal without necessarily having to solve

all the subproblems. If after having solved some batches of subproblems, the sum of the differences

between their value and their epigraph approximation in pRMP qpkq already exceeds the optimality

gap ϵ, the algorithm does not solve the remaining batches of subproblems, as we already know that

x̌pkq cannot be proven optimal (see Proposition 1). In this way, the Benders by batch algorithm is

likely to explore more first-stage solutions than classical Benders decomposition algorithms as it tends

to solve only a few number of subproblems at most iterations. The proposed stopping criterion is

based on the concept of ϵi-approximation that we define below.

Definition 2 (ϵi-approximation). Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration

and σ a permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is ϵi-approximated by

pRMP qpkq if
ÿ

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵi (5)

with ϵi “ ϵ´
i´1
ř

t“1

ř

sPSσptq

ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

.

We refer to ϵi as the remaining gap of batch Sσpiq according to the permutation σ and the optimality

gap ϵ. For every index i P J2, κK, we have ϵi “ ϵi´1 ´
ř

sPSσpi´1q
ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

, which means

that computing the successive remaining gaps consists in filling the gap ϵ with the differences between

the true values of the subproblems and their epigraph approximations in pRMP qpkq.

The following proposition shows that ϵi-approximation can be used to derive a stopping criterion

for the Benders by batch algorithm.

Proposition 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm,

and σ a permutation of J1, κK. The first-stage solution x̌pkq is an optimal solution to problem (1) if

and only if batch Sσpiq is ϵi-approximated by pRMP qpkq for every index i P J1, κK.

Proof of proposition 1. See Appendix A.1 on the online supplement

Corollary 1. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration, and σ a

permutation of J1, κK. If there exists an index i P J1, κK such that
ř

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ą ϵi,

then x̌pkq cannot be proven optimal.

Remark 1. As stated in Proposition 1, the proposed stopping criterion is equivalent to the classical

stopping criterion UB´LB ď ϵ. This means that, given a relaxed master program with some Benders

cuts, and a first-stage solution x̌, either x̌ can be proven optimal by both stopping criteria, or both

will reject it and let the algorithm continue.

We now present the Benders by batch algorithm (Algorithm 2). The while loop from lines 3 to 20

will be referred hereafter as the master loop. Each pass of this loop corresponds to an iteration of the

algorithm. At iteration k, the relaxed master program pRMP qpkq is solved to obtain a new first-stage

solution x̌pkq. A permutation σ of J1, κK is then chosen. This permutation defines the order in which

the batches of subproblems pS1, S2, ..., Sκq will be solved at the current first-stage solution. The while

loop from lines 8 to 19 will be referred as the optimality loop. In each pass in this loop:

8

Algorithm 2: The Benders by batch algorithm

Parameters: ϵ ě 0, η P J1, cardpSqK the batch size, cutAggr P tTrue, Falseu

1 Initialization: i Ð 1, k Ð 0, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do
4 k Ð k ` 1

5 Solve pRMP qpkq and retrieve x̌pkq, pθ̌
pkq
s qsPS

6 i Ð 1, ϵ1 Ð ϵ, stay at x Ð True

7 Choose a permutation σ of J1, κK
8 while stay at x “ True and i ă κ` 1 do
9 for s P Sσpiq do

10 Solve pSP px̌pkq, sqq and retrieve ϕpx̌pkq, sq and πs P VertpΠsq

11 if cutAggr then

12 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP qpkq

13 else
14 for s P Sσpiq do

15 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

16 if
ř

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi then

17 ϵi`1 Ð ϵi ´
ř

sPSσpiq

ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

18 i Ð i` 1

19 else stay at x Ð False

20 pRMP qpk`1q Ð pRMP qpkq

21 Return x̌pkq

• the subproblems of the current batch Sσpiq are solved (lines 9 to 10). This part of the algo-

rithm can be parallelized, as in the classical Benders decomposition algorithm, to accelerate the

procedure.

• the cuts defined by the solutions of the subproblems are added to the relaxed master program

(lines 11 to 15). We add a parameter cutAggr to the algorithm. If this parameter is set to

False, the cuts of each subproblem are added independently to the relaxed master program,

as it is the case in the classical multicut Benders decomposition algorithm. If this parameter is

set to True, we add only one cut, computed as the weighted sum of all the cuts of the batch

according to the probability distribution.

• the gap between the value of the subproblems and the value of their outer linearization is checked

(line 16 to 19). If the batch is ϵi-approximated by pRMP qpkq, then i is increased by one, and

the boolean stay at x still equals True. The algorithm returns to line 8 and solves a new batch

at the same first-stage solution, as i has been incremented. If it reaches i “ κ ` 1, then all

batches are ϵi-approximated by pRMP qpkq according to permutation σ, and x̌pkq is an optimal

solution to problem (1). If one of the batches is not ϵi-approximated by pRMP qpkq, then x̌pkq

cannot be proven optimal. Then there exists at least one of the cuts which excludes the solution

px̌pkq, θ̌pkqq from the relaxed master program. The algorithm exits the optimality loop, and goes

to line 3 to solve again the relaxed master program.

Remark 2 (Partial cut aggregation). One of the most important drawbacks of the multicut Benders

9

decomposition algorithm is the large number of cuts added to the relaxed master program at each

iteration. As this number of cuts increases, the time needed to solve the master program can increase

dramatically. The Benders by batch algorithm might suffer from the same effect, even if this effect

might be delayed by the method (it adds fewer cuts at each iteration). We propose to aggregate the

cuts of a batch, and add only one cut computed as
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

. As the

subproblems are linearly independent, this cut is the Benders cut associated with the problem created

by concatenation of the subproblems of a batch. As the partition of the subproblems into batches is

done prior to the algorithm, the cuts of the same subproblems are always aggregated together. This

can be seen as the static cut aggregation strategy used in (Trukhanov et al., 2010).

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. Let ϵ ě 0 be the optimality gap. The Benders by batch algorithm converges to an

optimal solution to problem 1 in a finite number of iterations.

Proof of proposition 2. See Appendix A.2 on the online supplement.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume that

there exists an initial and arbitrary ordering of the batches S1, S2, ..., Sκ and σ “ id at the first

iteration. When we choose a new permutation, at the beginning of a master loop, the ordered strategy

consists of starting from the first batch of subproblems that has not been solved at the previous

first-stage solution. We introduce the following cyclic permutation µ of the batches:

µ “

˜

1 2 ... κ´ 1 κ

2 3 ... κ 1

¸

Let N be the number of batches solved at the previous first-stage solution. Then, the ordered strategy

consists of defining the new permutation σ at line 7 of Algorithm (2) as σ Ð µN ˝ σ.

This strategy has a deterministic behavior and implies solving all the subproblems the same

number of times during the optimization process. A pure random strategy, shuffling the set of batches

at the beginning of each master loop, showed a high variance in the total number of iterations. In

preliminary computational experiments, we observed factors up to two between the running times of

the fastest and the longest run on the same instance. As such a behavior is not desirable, we did not

pursue this path.

4 Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 2) may suffer, as every

cutting-plane algorithm, from strong oscillations of the first-stage variables, and thus may compute,

in the early iterations, cuts that exclude solutions that are far away from the optimal solution (see e.g.

(Vanderbeck, 2005) section 7). However, the classical primal stabilization procedures presented in

Section 2 do not apply directly if we do not solve all the subproblems at each iteration as they require

the value of the recourse function for the current first-stage solution. We propose in this section a

general framework to stabilize our algorithm, and show a sufficient condition for the convergence of

the stabilized algorithm.

10

4.1 The stabilized Benders by batch algorithm

Many effective primal stabilization methods for cutting-plane algorithms solve, at each iteration, a

separation problem in a point xpkq (hereafter referred to as the separation point) that is different

from the current optimal first-stage solution x̌pkq to the relaxed master program (Zverovich et al.,

2012; Pessoa et al., 2013). We define hereafter formally a primal stabilization scheme, in which the

separation point is computed as the image by a given mapping of a vector defining the state of the

stabilization. Such a scheme must also incorporate a way to update this state vector.

Definition 3 (Primal stabilization scheme). A primal stabilization scheme is characterized by a triplet

pD, ψ1, ψ2q where D is a stabilization state space and pψ1, ψ2q is a pair of mappings

#

ψ1 : X ˆ D Ñ D
ψ2 : D Ñ X

such that ψ2 is surjective.

At an iteration k of the stabilized algorithm, mapping ψ1 computes the state vector of the stabi-

lization to be used at the current iteration from the precedent state vector and the optimal solution

to the current relaxed master program. This state vector may contain some elements of X, such as

the last optimal solution to the relaxed master program. An initial stabilization state vector d0 P D is

required when using the primal stabilization scheme in the first iteration of our algorithm. From the

current stabilization state vector, mapping ψ2 is then responsible for generating a first-stage solution

xpkq at which the subproblems are solved and cuts are generated. Function Ψ2 is required to be

surjective to ensure that every first-stage solution can be separated.

We now present how to adapt the Benders by batch algorithm (Algorithm 2) when such a primal

stabilization scheme is used. We generalize Definition 2 and Proposition 1 to take into account that

the lower bound at a given iteration k is computed based on the current optimal solution x̌pkq to

RMP, while the subproblems are solved at a separation point x that is usually different from x̌pkq. As

this difference between the first-stage solutions induces a difference in the first-stage cost, we subtract

in the definition of the remaining gap ϵi the difference cJpx´ x̌pkqq. Because θ̌
pkq
s is a lower bound on

ϕ
`

x̌pkq, s
˘

, but not on ϕ px, sq, we also need to account for cases where ϕ px, sq ´ θ̌
pkq
s ă 0.

Definition 4 (ϵipxq-approximation at a first-stage solution x). Let ϵ ě 0 be the optimality gap of the

algorithm, k P Z` an iteration and σ a permutation of J1, κK. For every i P J1, κK, we say that batch

Sσpiq is ϵipxq-approximated by pRMP qpkq at x P X if

”

ÿ

sPSσpiq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵipxq

with ϵipxq “ ϵ´ cJpx´ x̌pkqq ´

” i´1
ř

t“1

ř

sPSσptq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

and ζ` “ maxtζ, 0u for any ζ P R.

Remark 3. Saying that a batch Sσpiq is ϵipx̌
pkqq-approximated by pRMP qpkq is equivalent to saying

that Sσpiq is ϵi-approximated by pRMP qpkq in Algorithm 2.

The following proposition introduces a valid stopping criterion for our stabilized version of the

Benders by batch algorithm.

11

Proposition 3. Let ϵ ě 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm,

and σ a permutation of J1, κK. If there exists a first-stage solution x P X such that batch Sσpiq is ϵipxq-

approximated by pRMP qpkq, for all i P J1, κK, then x is an optimal solution to problem (1).

Proof of proposition 3. See Appendix B.1 in the online supplement

Algorithm 3: The stabilized Benders by batch algorithm

Parameters: ϵ ě 0, η P J1, cardpSqK the batch size, cutAggr P tTrue, Falseu, a primal stabilization
scheme pD, ψ1, ψ2q and an initial stabilization state vector dp0q P D.

1 Initialization: i Ð 1, k Ð 0, misprice Ð False, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do

4 Solve pRMP qpk`1q and retrieve x̌pk`1q, pθ̌
pk`1q
s qsPS

5 do
6 k Ð k ` 1

7 dpkq Ð ψ1px̌pkq, dpk´1qq

8 xpkq Ð ψ2pdpkqq

9 i Ð 1, ϵi Ð ϵ´ cJpxpkq ´ x̌pkqq, stay at x Ð True

10 Choose a permutation σ of J1, κK
11 misprice Ð True

12 while stay at x “ True and i ă κ` 1 do
13 for s P Sσpiq do

14 Solve pSP pxpkq, sqq and retrieve ϕpxpkq, sq and πs P VertpΠsq

15 if cutAggr then

16 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP qpkq

17 else
18 for s P Sσpiq do

19 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

20 if
ř

sPSσpiq

”

ps

´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

ď ϵi then

21 ϵi`1 Ð ϵ´ cJpxpkq ´ x̌pkqq ´

” i
ř

t“1

ř

sPSσptq

ps

´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

22 i Ð i` 1

23 else
24 stay at x Ð False

25 if cutAggr then

26 if
ř

sPSσpiq

psθ̌
pkq
s ă

ř

sPSσpiq

ps
`

πJ
s pds ´ Tsx̌

pkqq
˘

then misprice Ð False

27 else
28 for s P Sσpiq do

29 if θ̌
pkq
s ă πJ

s pds ´ Tsx̌
pkqq then misprice Ð False

30 pRMP qpk`1q Ð pRMP qpkq, x̌pk`1q Ð x̌pkq, pθ̌
pk`1q
s qsPS Ð pθ̌

pkq
s qsPS

31 while misprice

32 Return xpkq

We now present the stabilized Benders by batch algorithm (Algorithm 3).

As, at each iteration, the cuts are now generated from a first-stage solution xpkq that may be

different from the first-solution to pRMP qpkq, there is no guarantee that the cuts added separate

the solution to the relaxed master program px̌pkq, pθ̌
pkq
s qsPSq. When there is no cut, among added

cuts, that separates the solution to the relaxed master program, we say that first-stage solution xpkq

12

induces a mis-pricing (Pessoa et al., 2013). We represent such a case in Figure 1. Then, there is no

need to solve again the relaxed master program as its solution remains the same. A boolean variable

misprice appears in Algorithm 3 to handle such a case.

The algorithm is structured in three nested while loops. The while loop from line 3 to 31 is called

the master loop. In this loop, the relaxed master program is solved in order to define a new first-stage

solution x̌pkq. The while loop from line 5 to 31 is called the separation loop. This loop updates the

current separation point xpkq while the solution to the relaxed master program x̌pkq remains constant.

We increment the iteration counter k each time a new separation point is calculated. The while loop

from line 12 to 29 is called the optimality loop. In the optimality loop, the subproblems of current

batch Sσpiq are solved in xpkq. There are three possibilities at the end of this loop:

• Case 1: The current batch is ϵipx
pkqq-approximated by pRMP qpkq. It satisfies the condition

of line 20 of Algorithm 3. Then, stay at x still equals True at the end of the loop, and i is

incremented by one. If the algorithm reaches i “ κ` 1, then the algorithm stops, and xpkq is an

optimal solution to the problem with an optimality gap ϵ ě 0. Otherwise, the algorithm solves

the next batch of subproblems at the same first-stage solution.

• Case 2: The current batch Sσpiq is not ϵipx
pkqq-approximated by pRMP qpkq and there exists no

cut derived from this batch of subproblems, or a previous batch, which separates the solution

px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program [see Figure 1]. The variable misprice still equals

True. As the solution to the relaxed master program has not been cut, it is useless to solve the

relaxed master program again. We exit the optimality loop, but stay in the separation loop.

We define a new separation point xpkq, a new permutation of J1, κK, and begin a new optimality

loop.

• Case 3: The current batch Sσpiq is not ϵipx
pkqq-approximated by pRMP qpkq and at least one of

the cuts derived from this batch of subproblems separates the solution px̌pkq, pθ̌
pkq
s qsPSq to the

relaxed master program [see Figure 2]. This means that misprice is set to False. The variable

stay at x is set to False and we exit the optimality loop. Since misprice equals False, we

exit the separation loop. We then go to line 3, and solve again the relaxed master program.

Figure 1: The cut derived from first-stage so-

lution xpkq does not separate the solution to

the relaxed master program px̌pkq, pθ̌
pkq
s qsPSq.

The solution to pRMP qpkq remains the same.

The separation point xpkq induces a mis-

pricing.

Figure 2: The cut derived from first-stage so-

lution xpkq separates the solution to the re-

laxed master program px̌pkq, pθ̌
pkq
s qsPSq.

13

4.2 A sufficient condition for the convergence of the stabilized Benders by batch

algorithm

In this section we prove that, if the sequence of separation points produced by the primal stabilization

scheme converges to the solution to the relaxed master program when this latter solution remains

constant over the iterations (i.e., during a mis-pricing sequence), then the stabilized Benders by

batch algorithm (Algorithm 3) converges to an optimal solution to problem (1) in a finite number of

iterations.

Definition 5 (Convergence property and finite convergence property of a primal stabilization scheme).

Let pD, ψ1, ψ2q be a primal stabilization scheme. For every px, dq P X ˆ D we define pdℓxqℓPN˚ as

dℓx “

#

ψ1px, dℓ´1
x q ℓ ą 1

ψ1px, dq ℓ “ 1
@ℓ P N˚

the sequence of stabilization state vectors obtained by successive applications of ψ1 on a constant

first-stage solution x P X.

• We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the convergence property if:

@px, dq P X ˆ D, lim
ℓÑ`8

ψ2

`

dℓx
˘

“ x

• We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the finite convergence property

if:

@px, dq P X ˆ D, Dℓ0 P N˚, ψ2

`

dℓ0x
˘

“ x

We first need to prove the following intermediate results to show that the stabilized Benders by

batch algorithm effectively converges to an optimal solution to problem (1).

Proposition 4. Let ϵ ą 0 (resp. ϵ ě 0) be the optimality gap of Algorithm 3, k P Z` an iteration,

and px̌pkq, pθ̌
pkq
s qsPSq an optimal solution to pRMP qpkq. If

`

xpk`rq
˘

rPN is a sequence of elements of

X converging to x̌pkq (resp. converging to x̌pkq in a finite number of iterations) and
`

σpk`rq
˘

rPN a

sequence of permutations of J1, κK, then there exists t P N such that one of the following assertions is

true:

1. First-stage solution xpk`tq is proven to be an optimal solution to problem (1) with an optimality

gap of ϵ ą 0 (resp. ϵ ě 0).

2. There exists a cut generated in xpk`tq which separates px̌pkq, pθ̌
pkq
s qsPSq.

Proof of proposition 4. See Appendix B.2 of the supplementary material.

Proposition 5. If the primal stabilization scheme satisfies the convergence property (resp. finite

convergence property) of Definition 5, then the stabilized Benders by batch algorithm converges to

an optimal solution to problem (1) in a finite number of iterations, for every ϵ ą 0 (resp. ϵ ě 0).

Proof of proposition 5. Let k P Z` an iteration of the algorithm, σ a permutation of J1, κK, and

xpkq P X the separation point. There are three possible cases:

14

1. @i P J1, κK, batch Sσpiq is ϵipx
pkqq-approximated by pRMP qpkq. Then xpkq is an optimal solution

to problem (1) with an optimality gap of ϵ ą 0 (resp. ϵ ě 0).

2. There exists an index i P J1, κK such that solving the subproblems of batch Sσpiq generates a cut

which separates the solution to pRMP qpkq. As the total number of cuts is finite, we can only

be in this situation a finite number of times.

3. There exists no cut derived at xpkq which separates the solution to pRMP qpkq. Then, xpkq

induces a mis-pricing. The solution to pRMP qpk`1q remains the same. Let suppose that this

happens during an infinite number of consecutive iterations. Then, as the primal stabilization

scheme satisfies the convergence property (resp. the finite convergence property) , the sequence

of separation points converges to x̌pkq (resp. in a finite number of iterations) . Prop. 4 states

that in that case, we end up in a finite number of iterations in case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations in

case 1, and finds an optimal solution to problem (1).

Remark 4. The classical Benders decomposition algorithm is equivalent to the Benders by batch

algorithm with a batch size η “ cardpSq. Therefore, Algorithm 3 describes a valid way to add primal

stabilization to the classical Benders decomposition algorithm (providing that the primal separation

scheme satisfies the convergence property).

4.3 Two primal stabilization schemes satisfying the convergence property

We introduce in this section two primal stabilization schemes satisfying the convergence property,

based on the in-out stabilization approach (Ben-Ameur and Neto, 2007). In the in-out approach, the

stability center x̂pkq at iteration k is equal to the separation point (among those calculated so far)

with the smallest objective function value: x̂pkq “ argminjPJ0,k´1K tcJxpjq `
ř

sPS psϕpxpjq, squ. Then

the separation point xpkq is then defined on the segment between x̂pkq (in-point) and x̌pkq (out-point):

xpkq “ αx̌pkq `p1´αqx̂pkq. The in-out approach creates a sequence of stability centers with decreasing

objective values converging to an optimal solution to the problem. The definition of x̂pkq requires

computing the value ϕpxpjq, sq for every scenario s P S, meaning that all the subproblems need to be

solved at every separation point. As we generally do not solve all the subproblems at a given iteration,

the in-out stabilization approach needs to be adapted for use in the Benders by batch algorithm.

We present below two primal stabilization schemes.

Scheme 1 - Basic stabilization: Let α P p0, 1s be a stabilization parameter. The separation

point at iteration k is computed as follows:

xpkq “ αx̌pkq ` p1 ´ αqxpk´1q

for k ě 1, and xp0q P X is a feasible first-stage solution. This basically consists in doing 100α% of

the way from the previous separation point to the solution to the master program. This can be seen

as an in-out stabilization, updating the stability center to the last separation point at each iteration.

By convexity of X, xpkq belongs to X for every k P N.

15

The basic stabilization scheme can be expressed according to Definition 3 as:

D “ X2

Ψ1 :

#

X ˆ D Ñ D
x, py, zq ÞÑ px, αy ` p1 ´ αqzq

Ψ2 :

#

D Ñ X

px, yq ÞÑ αx` p1 ´ αqy

with d0 “ pxp0q, xp0qq where xp0q P X is a feasible first-stage solution. The vector of parameters dpkq

computed at the iteration k is equal to px̌pkq, xpk´1qq.

Proposition 6. The basic stabilization scheme satisfies the convergence property.

Proof of proposition 6. See Appendix B.3 of the supplementary material.

Scheme 2 - Solution memory stabilization: This stabilization uses an exponentially

weighted average of the previous master solutions to compute the separation point. We choose a

stabilization parameter α P p0, 1s and a memory parameter β P r0, 1q. We also define the expo-

nentially weighted averaged point x̄pkq on master solutions. The separation point is computed as

follows:
#

x̄pkq “ βx̄pk´1q ` p1 ´ βqx̌pkq

xpkq “ αx̄pkq ` p1 ´ αqxpk´1q

for k ě 1, and xp0q “ x̄p0q P X is a feasible first-stage solution. By convexity of X, xpkq belongs to

X for every k P N. This stabilization takes inspiration from the stochastic gradient algorithm with

momentum (Polyak, 1964) that has proven its efficiency in solving large-scale stochastic programs in

the field of deep learning (Sutskever et al., 2013).

The solution memory stabilization scheme can be expressed according to Definition 3 as:

D “ X2

Ψ1 :

#

X ˆ D Ñ D
x, py, zq ÞÑ pβy ` p1 ´ βqx, αy ` p1 ´ αqzq

Ψ2 :

#

D Ñ X

px, yq ÞÑ αx` p1 ´ αqy

with d0 “ pxp0q, xp0qq where xp0q P X is a feasible first-stage solution. The vector of parameters dpkq

computed at the iteration k is equal to px̄pkq, xpk´1qq.

Proposition 7. The solution memory stabilization scheme satisfies the convergence property.

Proof of proposition 7. See Appendix B.4 of the supplementary material.

It is possible to adapt both schemes so that they satisfy the finite convergence property. Specif-

ically, the separation point should become equal to the solution to the relaxed master program in a

finite number of iterations when there are successive iterations which induce a mis-pricing. For the

basic stabilization scheme, this implies that the value of α should increase to become equal to one

in a finite number of iterations if successive mis-pricings occur. If t P N denotes the number of con-

secutive mis-pricings that have occurred before starting iteration k of the algorithm, then computing

xpkq replacing α by mint1, αp1 ` tqu works. For the solution memory stabilization scheme, in similar

16

cases, the value of α should increase to become equal to one and the value of β should decrease to

become equal to zero in a finite number of iterations.

5 Experimental design and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the

benchmark we use, and our instance generation method. We then explain the different algorithms

that we used for comparison, and how we implemented them. Finally, we show and analyze the

numerical results we obtained.

5.1 Instances

We use seven well studied instances from the literature. The first five, 20term (Mak et al., 1999),

gbd (Dantzig, 1963), LandS (Louveaux and Smeers, 1988), ssn (Sen et al., 1994) and storm (Mul-

vey and Ruszczyński, 1995), are available from the following link: www.cs.wisc.edu/~swright/

stochastic/sampling/. The problem 20term is taken from (Mak et al., 1999). It is a model

of motor freight carrier’s operations. The problem consists in choosing the position of some vehi-

cles at the beginning of the day, the first-stage variables, and then to use those vehicles to satisfy

some random demands on a network. Instance gbd has been created from chapter 28 of (Dantzig,

1963). It is an aircraft allocation problem. LandS has been created from an electrical invest-

ment planning problem described in (Louveaux and Smeers, 1988). In (Linderoth et al., 2006),

the authors modified the problem to obtain an instance with 106 scenarios. Problem ssn is a prob-

lem of telecommunication network design taken from (Sen et al., 1994) and storm is a cargo flight

scheduling problem described by (Mulvey and Ruszczyński, 1995). The two last instances come from

https://people.orie.cornell.edu/huseyin/research/research.html. The first one, Product, is

the large instance of the product distribution problem available at https://people.orie.cornell.

edu/huseyin/research/sp_datasets/sp_datasets.html. The second one, Fleet20 3 was found

at http://www.ie.tsinghua.edu.cn/lzhao/ which was itself taken from https://people.orie.

cornell.edu/huseyin/research/research.html. It is a fleet-sizing problem, close to 20term, with

a two-week planning horizon.

As those instances have a tremendous number of scenarios (see Table 2), we generate instances

by sampling scenarios from the initial ones. We generated instances with sample sizes 1000, 5000,

10000, and 20000. Three random instances have been generated for each problem and each sample

size S, with random seeds S ` k, k P t0, 1, 2u so that two instances of different sample size should

not share sub-samples. This leads to a benchmark of 84 different instances. In the following, we will

refer to the instances of problem prob with #scenarios scenarios as prob-N#scenarios.

5.2 Experimental Design

In order to evaluate the numerical efficiency of our Benders by batch algorithm (BbB), we compare

it to nine different methods.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold SKL-

6130 processor at 2,1 GHz with 96 GB of RAM with the TURBO boost (up to 3.7 GHz). The

time limit is fixed to twelve hours for every algorithm. The optimality gap is fixed to a relative

gap of 10´6 for every algorithm. We set the lower bound on the epigraph variables associated with

17

www.cs.wisc.edu /~swright/stochastic/sampling/
www.cs.wisc.edu /~swright/stochastic/sampling/
https://people.orie.cornell.edu/huseyin/research/research.html
https://people.orie.cornell.edu/huseyin/research/sp_datasets/sp_datasets.html
https://people.orie.cornell.edu/huseyin/research/sp_datasets/sp_datasets.html
http://www.ie.tsinghua.edu.cn/lzhao/
https://people.orie.cornell.edu/huseyin/research/research.html
https://people.orie.cornell.edu/huseyin/research/research.html

Table 2: Instances sizes, given in the format lines ˆ columns

problem first-stage second-stage scenarios

LandS 2 ˆ 4 7 ˆ 12 106

gbd 4 ˆ 17 5 ˆ 10 „ 105

20term 3 ˆ 64 124 ˆ 764 „ 1012

ssn 1 ˆ 89 175 ˆ 706 „ 1070

storm 185 ˆ 121 528 ˆ 1259 „ 1081

Fleet20 3 3 ˆ 60 321 ˆ 1921 ą 3200

product 75 ˆ 1500 700 ˆ 1450 3450

the subproblems to 0 as it is a valid lower bound on LandS, gbd, ssn, storm, Fleet20 3 and 20term

instances and to ´1010 on product instances as 0 is not a valid lower bound on those instances.

First, we run IBM ILOG CPLEX 12.10 (IBM, 2019) to solve the deterministic reformulation with

the barrier algorithm (CPLEX Barrier hereafter) and with its multicut Benders implementation

(CPLEX Benders) (Bonami et al., 2020). We also compare to our implementation of the multi-

cut Benders decomposition algorithm (Classic multicut) and our implementation of the monocut

Benders decomposition algorithm (Classic monocut).

In order to evaluate the effect of primal stabilization, we also run our implementations of the

level bundle method (Lemaréchal et al., 1995) using aggregated cut as in the monocut Benders de-

composition algorithm (Level Bundle), our implementation of the multicut Benders decomposition

algorithm with an in-out stabilization (In-out multicut) and our implementation of the monocut

Benders decomposition algorithm with an in-out stabilization (In-out monocut). We describe these

algorithms in Appendix C of the supplementary material.

As the partial cut aggregation proposed in the Benders by batch algorithm can be seen as the static

cut aggregation scheme described by Trukhanov et al. (2010), which have already shown improvements

compared to pure monocut or multicut Benders decomposition algorithms, we also implement the

Benders decomposition algorithm with the same cut aggregation level as the one used in the Benders

by batch algorithms (Classic CutAggr). Given pSiqi“1,..,η the same partition of the subproblems

into batches than the one used in the Benders by batch algorithm, we solve all the subproblems at

each iteration and add the following cuts
ř

sPSi
psθs ě

ř

sPSi
ps

´

πJ
s pds ´ Tsxq

¯

, @i P J1, ηK. Finally,

we implement the Benders decomposition with static cut aggregation and in-out stabilization (In-out

CutAggr).

CPLEX Benders is run with the following parameter values: benders strategy 2 (an annota-

tion file contains the first-stage variables, and CPLEX automatically decomposes the subproblems),

threads 1 (to run CPLEX using one core, as the other methods), timelimit 43200 (time limit of

twelve hours). Classic multicut follows Algorithm 1. In Classic monocut and In-out monocut,

we compute the cuts as
ř

sPS psθs ě
ř

sPS ps

´

πJ
s pds ´ Tsxq

¯

.

The subproblems are solved with the dual simplex algorithm for all methods. In all our imple-

mentations, the first-stage variables appear as variables in all the subproblems, and are fixed to the

desired values during the optimization process. The coefficients of the cuts are computed as the

reduced cost of those variables in an optimal solution to the subproblems.

In Level Bundle, In-out multicut, In-out monocut and In-out CutAggr and BbB with

stabilization, the starting solution xp0q is obtained by solving the mean-value problem. We use a

18

dynamic strategy to update the stabilization parameter α in In-out monocut, In-out multicut and

In-out CutAggr. If cJxpkq `
ř

sPS psϕps, xpkqq ă cJx̂pkq `
ř

sPS psϕps, x̂pkqq, then the separation point

has a lower cost than the current stability center. If we had separated farther, we could have found an

even better point, so we increase α with the rule α Ð mint1.0, 1.2αu. If cJxpkq `
ř

sPS psϕps, xpkqq ě

cJx̂pkq `
ř

sPS psϕps, x̂pkqq, we did not stabilize enough, and we therefore decrease the stabilization

parameter α with the rule α Ð maxt0.1, 0.8αu. We initialize α to 0.5. Such a procedure cannot

be used in the stabilized Benders by batch algorithm as the actual value of the recourse function is

required. Level Bundle is tested with a level parameter λ “ 0.5 and a stability center tolerance

κ “ 0.1 as in (van Ackooij et al., 2017).

We also evaluate different parameters of BbB. We first run BbB without stabilization, and try

different batch sizes with and without partial cut aggregation. Then, we evaluate the impact of the

two proposed stabilization schemes, with different values for the stabilization parameters.

5.3 Numerical results

This section shows the numerical results obtained on the 84 instances of our benchmark. When an

algorithm is stopped at its time limit of 12 hours (43 200s), the computing time is denoted `8, and

the ratio to the best time will be denoted ą 43200
best time in the tables, which means that this algorithm is

at least this ratio slower than the best algorithm present in the table. All the tables presented in this

section show, for each method, the average computing time to solve the three instances of each size,

and the time ratio with respect to the best time obtained in this table. Results instance by instance

are presented in Appendix D of the supplementary material. We always present the average time on

the three instances of each size for each problem, rounded to the second (when computing times are

larger than one second).

We present the results with the performance profiles introduced by Dolan and Moré (2002). Let

P be a set of problems, and M a set of methods. For any problem p P P and method m P M, we

denote as tp,m the computing time of method m to solve problem p. We define the performance ratio

of method m P M on problem p P P as:

rp,m “
tp,m

minm1PMttp,m1u

The performance profile of a method m P M is the cumulative distribution function of its perfor-

mance ratios computed over a set of problems P. It is defined as ρmpτq “ cardptp P P : rp,m ď τuq

The ratios presented in the following tables are computed as the expectation of the performance

ratios over the three instances of each problem with the same number of subproblems.

5.3.1 Performance of BbB without stabilization

We first present the results of BbB without stabilization. We analyze the impact of the batch size,

both without (Table 3) and with partial cut aggregation (Table 4). Each column of Tables 3 and 4

contains the average time in second to solve the instances and the ratio to the best time. We analyze

batch sizes from 1% to 20% of the total number of subproblems (respectively denoted by BbB 1%,

BbB 5%, BbB 10% and BbB 20%). The variants with cut aggregation are respectively designated

by BbB 1% CutAggr, BbB 5% CutAggr, BbB 10% CutAggr and BbB 20% CutAggr.

In order to estimate only the effect of performing an optimality check after solving each batch

19

of subproblems, we compare the Benders by batch algorithm without cut aggregation (BbB) to

Classic multicut and the Benders by batch algorithm with cut aggregation (BbB CutAggr) to

Classic CutAggr 1% and Classic CutAggr 5%, where 1% and 5% represent the same partitions

of subproblems as the ones used in BbB 1% CutAggr and BbB 5% CutAggr. Classic multicut

can be seen as the Benders by batch algorithm without cut aggregation with a batch size equal to

the total number of subproblems, Classic CutAggr 1% and Classic CutAggr 5% can be seen as

the equivalent algorithms as the Benders by batch algorithm with partial cut aggregation, in which

all the subproblems are solved at each iteration. We also present the results of Classic monocut in

each table, as a classical alternative to Classic multicut in table 3 and as a fully aggregated method

in table 4.

Table 3: Results for the Benders by batch algorithm without partial cut aggregation, with batch sizes
from 1% to 20% of the total of subproblems.

Classic Classic BbB BbB BbB BbB
monocut multicut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 3.0 0.75 1.1 2 2.7 0.83 1.3 0.72 1.1 0.66 1.0
LandS-N5000 11 1.7 9 1.5 13 2.2 8 1.3 7 1.1 6 1.0
LandS-N10000 22 1.1 29 1.5 38 2.0 25 1.3 21 1.1 20 1.0
LandS-N20000 45 1.0 105 2.3 130 2.9 89 2.0 80 1.8 72 1.6
gbd-N1000 2 3.3 0.94 1.4 2 3.6 0.65 1.0 0.84 1.3 0.96 1.5
gbd-N5000 12 1.9 10 1.7 16 2.5 6 1.0 7 1.1 8 1.3
gbd-N10000 23 1.2 33 1.7 47 2.5 19 1.0 22 1.2 25 1.3
gbd-N20000 48 1.0 121 2.5 96 2.0 61 1.3 71 1.5 87 1.8
ssn-N1000 2408 611.6 7 1.8 6 1.6 4 1.0 4 1.1 5 1.2
ssn-N5000 13460 590.1 57 2.5 32 1.4 24 1.0 28 1.2 32 1.4
ssn-N10000 25901 444.1 188 3.2 71 1.2 79 1.3 59 1.0 79 1.3
ssn-N20000 `8 ą364.8 488 4.1 145 1.2 274 2.3 624 5.2 2821 24.9
storm-N1000 24 3.7 11 1.7 21 3.2 8 1.3 6 1.0 8 1.3
storm-N5000 114 2.1 106 1.9 175 3.2 60 1.1 55 1.0 65 1.2
storm-N10000 224 1.4 496 3.2 492 3.2 156 1.0 159 1.0 189 1.2
storm-N20000 458 1.0 2370 5.2 1390 3.0 580 1.3 672 1.5 588 1.3
20term-N1000 577 15.2 757 19.9 38 1.0 82 2.2 49 1.3 74 1.9
20term-N5000 3506 5.6 24429 38.6 634 1.0 2101 3.3 1335 2.1 2247 3.6
20term-N10000 6901 3.0 `8 ą19.9 2270 1.0 10733 4.7 6199 2.7 10413 4.6
20term-N20000 13687 1.3 `8 ą6.2 20625 1.7 `8 ą4.2 `8 ą4.2 `8 ą4.2
Fleet20-N1000 533 9.1 225 3.9 145 2.5 95 1.7 102 1.7 74 1.2
Fleet20-N5000 2757 1.5 5330 2.9 2417 1.3 1950 1.0 1873 1.0 2097 1.1
Fleet20-N10000 5710 1.0 28933 5.1 9903 1.7 19913 3.4 8537 1.5 21383 3.7
Fleet20-N20000 11300 1.0 `8 ą4.1 34900 3.1 `8 ą3.8 `8 ą3.9 `8 ą3.9
productLarge-N1000 1947 19.0 186 1.8 270 2.6 123 1.2 105 1.0 103 1.0
productLarge-N5000 10467 7.6 3497 2.5 3730 2.7 1873 1.4 1483 1.1 1377 1.0
productLarge-N10000 20200 3.7 15200 2.8 13300 2.5 6893 1.3 5583 1.0 5397 1.0
productLarge-N20000 43000 1.9 `8 ą2.0 `8 ą1.9 29700 1.3 24733 1.1 23067 1.0

We first notice in Table 3 that BbB 1% solves all the instances, except Fleet20-N20000 where it

only succeeds to solve one out of three problems, whereas Classic Multicut fails to solve optimally

four groups of instances. As the algorithm avoids solving many subproblems and adding cuts in

the relaxed master program, it overcomes the issue of the time spent in solving subproblems and

delays the size growth of the relaxed master program. However, as we still add one cut for each

solved subproblem in the Benders by batch algorithm, it still does not scale well when the number

of subproblems becomes large. Classic monocut outperforms BbB on large-scale instances such as

20term with 20000 subproblems or Fleet20 3 with 20000 subproblems.

Table 4 shows that when partial cut aggregation is used, all the presented methods clearly out-

perform Classic monocut. As we aggregate the cuts over each batch, the size of the relaxed master

program remains reasonable, and as the cuts are only computed on samples of subproblems, the algo-

rithms avoid many symmetries due to the sum of the cuts over the subproblems. The table shows also

20

Table 4: Results for the Benders by batch algorithm with partial cut aggregation, with batch sizes
from 1% to 20% of the total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 2.5 1 1.3 1 1.7 2 2.1 0.88 1.1 0.78 1.0 0.89 1.1
LandS-N5000 11 2.6 7 1.8 8 2.0 9 2.3 5 1.1 4 1.0 4 1.1
LandS-N10000 22 2.7 16 2.0 19 2.3 16 2.0 8 1.0 8 1.0 9 1.2
LandS-N20000 45 2.6 34 1.9 39 2.3 44 2.6 17 1.0 18 1.0 20 1.2
gbd-N1000 2 3.6 1 2.0 2 2.7 2 2.7 0.61 1.0 0.78 1.3 0.93 1.5
gbd-N5000 12 3.6 9 2.6 10 3.0 9 2.7 3 1.0 4 1.1 4 1.3
gbd-N10000 23 3.7 19 3.1 21 3.3 15 2.3 6 1.0 8 1.3 9 1.5
gbd-N20000 48 3.6 41 3.0 46 3.4 41 3.1 14 1.0 15 1.1 19 1.4
ssn-N1000 2408 175.8 24 1.8 142 10.5 14 1.0 61 4.5 134 9.8 242 17.7
ssn-N5000 13460 150.6 399 4.5 1582 17.7 89 1.0 322 3.6 659 7.4 1322 14.8
ssn-N10000 25901 140.4 1246 6.7 4858 26.1 185 1.0 707 3.8 1423 7.7 2914 15.8
ssn-N20000 `8 ą98.4 8603 20.0 26122 58.9 441 1.0 1615 3.7 3386 7.7 6757 15.4
storm-N1000 24 3.8 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 9 1.5
storm-N5000 114 3.4 72 2.1 94 2.8 52 1.5 34 1.0 36 1.1 55 1.6
storm-N10000 224 3.0 164 2.2 198 2.7 110 1.5 74 1.0 82 1.1 104 1.4
storm-N20000 458 2.9 369 2.3 423 2.6 226 1.4 163 1.0 169 1.1 238 1.5
20term-N1000 577 39.4 272 18.5 313 21.4 15 1.0 37 2.5 68 4.6 141 9.6
20term-N5000 3506 50.3 1604 23.2 1945 28.0 70 1.0 193 2.8 395 5.7 839 12.1
20term-N10000 6901 53.2 3364 26.0 4840 37.4 130 1.0 402 3.1 898 6.9 1978 15.3
20term-N20000 13687 49.1 7032 25.2 16287 57.3 280 1.0 914 3.3 2051 7.3 18312 65.2
Fleet20-N1000 533 18.9 125 4.4 222 7.9 28 1.0 42 1.5 74 2.6 131 4.7
Fleet20-N5000 2757 25.7 903 8.4 1530 14.3 107 1.0 211 2.0 358 3.3 649 6.1
Fleet20-N10000 5710 26.9 2000 9.4 3460 16.3 212 1.0 440 2.1 721 3.4 1310 6.2
Fleet20-N20000 11300 27.0 5053 12.1 7860 18.8 419 1.0 876 2.1 1520 3.6 2777 6.6
product-N1000 1947 20.0 190 2.0 431 4.4 98 1.0 141 1.5 253 2.6 505 5.2
product-N5000 10467 28.9 1523 4.2 3323 9.2 362 1.0 773 2.1 1567 4.3 2873 7.9
product-N10000 20200 25.0 3827 4.8 7757 9.7 823 1.0 1523 1.9 3053 3.8 5530 6.9
product-N20000 43000 25.7 9963 6.0 19367 11.6 1693 1.0 3367 2.0 6320 3.8 12500 7.5

that the best batch sizes are 1% and 5% (respectively BbB 1% CutAggr and BbB 5% CutAggr),

except for two small instances. The two methods can be up to 25 times faster than Classic CutAggr

1% and more than 58 times faster than Classic CutAggr 5%.

The better performance of the Benders by batch algorithm with partial cut aggregation can be

explained by Figure 3. We see that at almost all the iterations, BbB CutAggr solves only one

batch of subproblems to show that the current first-stage candidate cannot be proven optimal, and

to separate the solution to the relaxed master program. It follows that BbB CutAggr 1% needs

to solve less subproblems than Classic CutAggr 1% to converge. For a storm instance with 20000

subproblems, BbB CutAggr 1% needs to solve twice less subproblems than Classic CutAggr

1%, for a 20term instance with 20000 subproblems, BbB CutAggr 1% needs to solve 23 times

less subproblems than Classic CutAggr to converge. Although Classic CutAggr 1% evaluates

almost three times less first-stage solutions for the 20term instance (and more than 5 times less for

the storm instance), it takes ultimately more time to converge than the Benders by batch algorithm:

1006 seconds for Classic CutAggr 1% compared to 261 seconds for BbB 1% CutAggr to solve

the 20term instance and 370 seconds for Classic CutAggr 1% compared to 216 seconds for BbB

1% CutAggr to solve the storm instance.

5.3.2 Impact of the stabilization on BbB

We now present the results obtained when the two stabilization schemes presented in §4.3 are applied

to the most competitive versions of Bbb (batch sizes of 1% and 5%, and with partial cut aggregation).

Figures 4 and 5 show the performance profiles of BbB CutAggr with and without stabilization. We

present the results with basic stabilization for α P t0.1, 0.5, 0.9u and with solution memory stabiliza-

21

Figure 3: Number of subproblems solved at each iteration by BbB CutAggr 1% and Classic
CutAggr 1% (left plots), with their cumulative evolution (right plots) for a 20term instance with
20000 subproblems (top plots) and a storm instance with 20000 subproblems (bottom plots). The
“Total” in the legend shows the total number of subproblems evaluated during the algorithms.

tion for α P t0.1, 0.5, 0.9u and β P t0.1, 0.5, 0.9u. Each stabilized method is denoted by BbB 1%

CutAggr or BbB 5% CutAggr followed by the values for the parameters.

Figure 4: Performance profiles of the stabilized Benders by batch algorithm with batch size of 1%
and cut aggregation.

Figure 4 shows that the proposed stabilization schemes accelerate BbB 1% CutAggr, and can

be up to 70% faster than the unstabilized algorithm. Four stabilizations are more efficient on the

tested instances and give similar results, namely the basic stabilization with α “ 0.5, and the solution

22

Figure 5: Performance profiles of the stabilized Benders by batch algorithm with batch size of 5%
and cut aggregation.

memory stabilization with pα, βq P tp0.5, 0.1q, p0.5, 0.5q, p0.9, 0.5qu.

Figure 5 shows similar results for BbB 5% CutAggr. The same four methods are the most

efficient and equivalent to each other. The algorithm with a solution memory stabilization param-

eterized by pα, βq “ p0.1, 0.9q is less efficient than BbB 5% CutAggr. In this case, a small step

size (α “ 0.1) and a high memory parameter (β “ 0.9) slow down the convergence. For all the other

cases, the use of a primal stabilization scheme accelerates the algorithm.

To conclude, results show no clear difference between the two proposed stabilization schemes.

The solution memory stabilization does efficiently stabilize the algorithm, but the basic stabilization

might be the method of choice as it is much simpler and provides similar computational results.

5.3.3 Comparison with state-of-the-art methods

We now compare the stabilized Benders by batch algorithm to classical methods of the literature.

We show in Table 5 the times and ratios of CPLEX Barrier and all the stabilized methods of our

benchmark, In-out monocut, In-out multicut, Level bundle, In-out CutAggr 1% and In-

out CutAggr 5% with the best performing stabilized Benders by batch BbB 1% CutAggr with

α “ 0.5. We first observe that, on the small instances LandS and gbd, CPLEX Barrier converges

faster than all the other methods. As those instances have very few variables both in first and second

stages, they remain small even with 20000 subproblems, and are solved very efficiently by CPLEX

Barrier. However, we can notice that even for these small instances, BbB 1% CutAggr α “ 0.5 is

the best method among all the cutting planes algorithms. Table 5 shows clearly that the stabilized

Benders by batch algorithm outperforms all the other methods on the large instances, and can be

up to more than 25 times faster than Level Bundle or 15 times faster than In-out monocut.

We also show that, even if In-out CutAggr outperforms other classical stabilized methods from

the literature, the stabilized Benders by batch algorithm can be up to 5 times faster. This shows

that, firstly, using a static cut aggregation combined with primal stabilization allows to speed up

classical methods used to benchmark algorithms from the literature, and secondly, that not solving

23

Table 5: Final results, the best stabilized Benders by batch algorithm compared to all stabilized
benchmark methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle multicut monocut 1% CutAggr 5% CutAggr CutAggr α “ 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 0.07 1.0 1 17.3 0.89 12.4 1 20.0 0.71 9.7 0.98 13.4 0.96 13.2
LandS-N5000 1 1.0 7 9.0 8 10.5 9 10.5 5 6.0 6 7.2 5 6.7
LandS-N10000 1 1.0 14 14.0 24 23.6 16 15.6 10 9.7 11 11.1 9 9.0
LandS-N20000 5 1.0 27 6.8 62 16.5 41 10.4 22 5.6 22 5.5 21 5.4
gbd-N1000 0.04 1.0 2 61.2 1 36.6 2 58.8 1 33.6 2 44.8 0.88 25.6
gbd-N5000 0.17 1.0 10 60.1 10 60.9 10 64.0 7 41.8 8 47.1 4 24.8
gbd-N10000 0.35 1.0 24 69.5 23 67.5 21 61.7 16 45.7 17 50.3 8 22.2
gbd-N20000 0.91 1.0 44 48.8 82 89.8 54 60.6 30 34.3 34 39.1 17 18.5
ssn-N1000 32 6.0 90 17.1 6 1.0 137 27.3 10 1.8 19 3.6 8 1.5
ssn-N5000 310 10.6 657 22.2 31 1.0 795 27.4 70 2.4 133 4.5 47 1.6
ssn-N10000 1223 20.3 1501 25.2 63 1.0 1464 23.3 171 2.9 312 5.2 91 1.5
ssn-N20000 2619 13.7 3109 16.3 243 1.3 2861 15.2 400 2.1 736 3.9 191 1.0
storm-N1000 41 5.8 15 2.1 9 1.3 14 2.1 8 1.1 9 1.4 7 1.0
storm-N5000 316 9.7 76 2.3 41 1.3 62 1.9 49 1.5 52 1.6 33 1.0
storm-N10000 764 11.8 145 2.3 125 1.9 201 3.1 99 1.5 110 1.7 65 1.0
storm-N20000 2390 17.4 288 2.1 573 4.2 252 1.8 211 1.5 232 1.7 137 1.0
20term-N1000 14 1.3 217 20.9 36 3.5 114 10.8 27 2.6 44 4.3 10 1.0
20term-N5000 82 1.7 1044 21.2 482 9.7 681 13.8 197 4.0 269 5.5 50 1.0
20term-N10000 199 2.0 2450 24.4 2805 27.9 1190 11.8 474 4.7 593 5.9 100 1.0
20term-N20000 455 2.3 4843 24.7 10992 56.0 1754 8.9 1010 5.1 1371 7.0 197 1.0
Fleet20-N1000 23 1.3 107 6.2 50 2.9 93 5.4 26 1.5 41 2.4 17 1.0
Fleet20-N5000 269 3.6 500 6.7 719 9.6 473 6.3 184 2.4 250 3.3 75 1.0
Fleet20-N10000 809 5.5 1004 6.9 3747 25.6 1029 7.0 435 3.0 590 4.0 146 1.0
Fleet20-N20000 2446 7.9 2730 8.8 17000 54.7 1780 5.8 1018 3.3 1313 4.2 310 1.0
product-N1000 179 2.3 625 8.2 81 1.1 513 6.7 113 1.5 183 2.4 76 1.0
product-N5000 2121 6.7 3200 10.3 1127 3.6 2690 8.7 787 2.5 1380 4.4 312 1.0
product-N10000 4397 8.0 7173 13.0 5357 9.8 5730 10.4 1970 3.6 3133 5.7 552 1.0
product-N20000 15463 13.6 14300 12.5 `8 ą40.5 12333 10.8 4887 4.3 7983 7.0 1140 1.0

systematically all the subproblems allows to further improve the computing times on the test instances.

Indeed, we show in Figure 6 that BbB 1% CutAggr α “ 0.5 needs to solve way less subproblems

than other methods to converge, and that the time spent in solving the subproblems represent almost

all the computing times in all presented methods.

Figure 7 shows the evolution of the relative gap between the lower bound and the optimal value,

of four different algorithms, on four different instances, according to the time. We see that adding

only a few cuts at each iterations allows the lower bound to converge faster to the optimal value to the

problem. Moreover, we observe that, on three of the four presented instances, BbB 1% CutAggr

α “ 0.5 reaches a relative gap of 10´6 while all the other algorithms still have a large relative gap

(e.g. 100 on ssn or 10´1 on Fleet).

5.3.4 Sensitivity of BbB to parameters

We finally present the impact on the computing time of two parameters of the Benders by batch

algorithm, the optimality gap and the initial order of the subproblems.

We first analyze the impact of the optimality gap on the convergence of the algorithm. The choice

of a different optimality gap ϵ in the Benders by batch algorithm might have an impact on the number

of batches that would be solved at each iteration. With a larger optimality gap, the algorithm tends

to solve more batches at each iteration, and to add more cuts. As this might have an impact on the

first-stage iterates, and then on the computing times, we show on Figure 8 the cumulative distribution

of the computing times to solve our 84 instances with BbB 1% CutAggr and α “ 0.5 with four

different optimality gaps t10´3, 10´4, 10´5, 10´6u. The figure shows that different optimality gaps

have a negligible impact on the computing times on most instances. A smaller optimality gap induces

24

Figure 6: Time spent in solving the master program and the subproblems, for 8 different instances,
solved by Level bundle, In-out monocut, In-out CutAggr 1% and BbB 1% CutAggr α “ 0.5. The
total number of solved subproblems is written vertically on the top of each bar.

Figure 7: Evolution of the relative gap between the lower bound and the optimal value as a function
of time, on a four different instances with 20000 subproblems

larger computing times on the largest instances of our test set, but this would also be the case with

other classical algorithms.

We finally ran several experiments testing different initial orders to assess the sensitivity of our

method to this choice. We ran BbB 1% CutAggr α “ 0.5, for 500 different initial orders, on one

instance with 5000 subproblems and one with 10000 subproblems for each tested problem. We report

in Table 6 the minimum and maximum times observed, the median, and the first and ninth decile on

25

Figure 8: Cumulative distribution of the computing times on our 84 instances, for BbB with cut
aggregation and base stabilization with α “ 0.5, and with optimality gaps in t10´3, 10´4, 10´5, 10´5u

computing times. We observe that the initial order has usually a limited impact on the efficiency of our

algorithm. We also remark that the stabilized Benders by batch algorithm present lower computing

times than In-out CutAggr 1%, the best performing method used as comparison in the numerical

results, even for the maximum time observed. Although the impact is in general limited, we observe

that the initial order can have an impact on the computing time for some instances, such as LandS

or gbd. However, the computing times observed are almost always smaller than the computing times

of In-out CutAggr 1%, the best performing method presented in the paper.

Table 6: Computing times for BbB 1% CutAggr α “ 0.5 on 500 different initial orders of the
subproblems

Min 10% 50% 90% Max In-out
Time Time CutAggr 1%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N5000 4.1 1.0 4.5 1.1 5.3 1.3 6.2 1.5 7.3 1.8 5.0 1.2
LandS-N10000 8.3 1.0 9.2 1.1 10.2 1.2 11.9 1.4 15.6 1.9 10.0 1.2
gbd-N5000 3.1 1.0 3.5 1.1 4.1 1.3 5.0 1.6 7.1 2.3 7.0 2.3
gbd-N10000 6.0 1.0 7.2 1.2 8.3 1.4 10.3 1.7 14.0 2.3 16.0 2.7
ssn-N5000 40.2 1.0 44.3 1.1 46.8 1.2 49.8 1.2 54.1 1.3 70.0 1.7
ssn-N10000 82.5 1.0 87.3 1.1 92.5 1.1 102.0 1.2 122.4 1.5 171.0 2.1
storm-N5000 28.0 1.0 29.8 1.1 31.4 1.1 34.5 1.2 43.5 1.6 49.0 1.8
storm-N10000 58.0 1.0 60.5 1.0 64.2 1.1 69.7 1.2 83.2 1.4 99.0 1.7
20term-N5000 43.5 1.0 47.8 1.1 54.1 1.2 61.6 1.4 77.2 1.8 197.0 4.5
20term-N10000 82.0 1.0 91.5 1.1 103.2 1.3 115.0 1.4 136.2 1.7 474.0 5.8
Fleet20-N5000 72.5 1.0 74.7 1.0 76.6 1.1 78.7 1.1 83.3 1.1 184.0 2.5
Fleet20-N10000 142.0 1.0 148.0 1.0 152.0 1.1 157.0 1.1 166.0 1.2 435.0 3.1
productLarge-N5000 268.0 1.0 279.0 1.0 292.0 1.1 315.0 1.2 355.0 1.3 787.0 2.9
productLarge-N10000 528.0 1.0 553.0 1.0 573.0 1.1 603.0 1.1 679.0 1.3 1970.0 3.7

6 Conclusion

We proposed in this paper the Benders by batch algorithm to solve two-stage stochastic linear pro-

gramming problems with finite probability distribution. This algorithm solves only a few subproblems

at most iterations. The algorithm is exact and does not need a fixed recourse or a deterministic ob-

jective function. We showed that performing an optimality check after the resolution of a very few

subproblems, each 1% of the numbers of subproblems in our tests, allows to significantly improve the

26

solution time.

To avoid strong oscillations of the first-stage variables, we also introduced a stabilized version of

the algorithm. This algorithm is based on a primal stabilization scheme responsible for generating

the points at which the subproblems are solved. We presented a sufficient condition for a primal

stabilization scheme that ensures the convergence of the Benders by batch algorithm and proposed

two schemes satisfying it. The stabilized Benders by batch algorithm can be up to 25 times faster

than the level bundle method, or 5 times faster than Benders decomposition with in-out stabilization

and static partial cut aggregation of (Trukhanov et al., 2010).

Applying dual stabilization (Magnanti and Wong, 1981; Sherali and Lunday, 2013) to the Benders

by batch algorithm is straightforward and could improve the results. The algorithm can be parallelized

and may benefit from effective parallelized methods, such as the asynchronous method of Linderoth

andWright (2003). The use of more advanced cut aggregation strategies is also a path worth exploring.

Finally, an interesting perspective is to adapt the Benders by batch algorithm to solve mixed-integer

master programs within a Branch&Cut framework.

Acknowledgements

This project has been funded by RTE (Réseau de Transport d’Electricité), french company in charge

of the electricity network management, through the projects Antares and Antares Xpansion: https:

//github.com/AntaresSimulatorTeam/antares-xpansion, which are used for long-term adequacy

studies. Computer time for this study was provided by the computing facilities MCIA (Mésocentre

de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays

de l’Adour.

References

Ben-Ameur, W. and Neto, J. (2007). Acceleration of cutting-plane and column generation algorithms:

Applications to network design. Networks, 49(1):3–17.

Birge, J. R. and Louveaux, F. (1988). A multicut algorithm for two-stage stochastic linear programs.

European Journal of Operational Research, 34(3):384–392.

Bodur, M. and Luedtke, J. R. (2022). Two-stage linear decision rules for multi-stage stochastic

programming. Mathematical Programming, 191(1):347–380.

Bonami, P., Salvagnin, D., and Tramontani, A. (2020). Implementing Automatic Benders Decompo-

sition in a Modern MIP Solver. In Integer Programming and Combinatorial Optimization, volume

12125, pages 78–90. Springer International Publishing, Cham.

Crainic, T. G., Hewitt, M., Maggioni, F., and Rei, W. (2020). Partial Benders Decomposition:

General Methodology and Application to Stochastic Network Design. Transportation Science.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton, New Jersey, princeton

university press edition.

27

https://github.com/AntaresSimulatorTeam/antares-xpansion
https://github.com/AntaresSimulatorTeam/antares-xpansion

Dantzig, G. B. and Infanger, G. (1991). Large-Scale Stochastic Linear Programs: Importance Sam-

pling and Benders Decomposition:. Technical report, Defense Technical Information Center, Fort

Belvoir, VA.

de Oliveira, W. and Sagastizábal, C. (2014). Level bundle methods for oracles with on-demand

accuracy. Optimization Methods and Software, 29(6):1180–1209.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016). Redesigning Benders Decomposition for Large-Scale

Facility Location. Management Science, 63(7):2146–2162.

Fischetti, M. and Salvagnin, D. (2010). An In-Out Approach to Disjunctive Optimization. In In-

tegration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, volume 6140, pages 136–140. Springer Berlin Heidelberg, Berlin, Heidelberg.

Higle, J. L. and Sen, S. (1991). Stochastic Decomposition : An Algorithm for Two-Stage Linear

Programms with Recours. Mathematics of Operations Research, 16(3):447–669.

IBM (2019). IBM ILOG CPLEX 12.10 User’s Manual (IBM ILOG CPLEX Division, Incline Village,

NV).

Infanger, G. (1992). Monte Carlo (importance) sampling within a benders decomposition algorithm

for stochastic linear programs. Annals of Operations Research, 39(1):69–95.

Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. (1995). New variants of bundle methods. Mathe-

matical Programming, 69(1-3):111–147.

Linderoth, J., Shapiro, A., and Wright, S. (2006). The empirical behavior of sampling methods for

stochastic programming. Annals of Operations Research, 142(1):215–241.

Linderoth, J. and Wright, S. (2003). Decomposition Algorithms for Stochastic Programming on a

Computational Grid. Computational Optimization and Applications, 24(2):207–250.

Louveaux, F. and Smeers, Y. (1988). Optimal Investments for Electricity Generation: A Stochastic

Model and a Test-Problem. In Numerical Techniques for Stochastic Optimization, Y. Ermoliev

andR.J.-B. Wets (Eds.), pages 445–454, Berlin. Springer-Verlag,.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders Decomposition: Algorithmic En-

hancement and Model Selection Criteria. Operations Research, 29(3):464–484.

Mak, W.-K., Morton, D. P., and Wood, R. (1999). Monte Carlo bounding techniques for determining

solution quality in stochastic programs. Operations Research Letters, 24(1-2):47–56.

Mulvey, J. M. and Ruszczyński, A. (1995). A New Scenario Decomposition Method for Large-Scale

Stochastic Optimization. Operations Research, 43(3):477–490.

Nesterov, Y. (2004). Nonsmooth Convex Optimization. In Nesterov, Y., editor, Introductory Lectures

on Convex Optimization: A Basic Course, pages 111–170. Springer US, Boston, MA.

28

Oliveira, W., Sagastizábal, C., and Scheimberg, S. (2011). Inexact Bundle Methods for Two-Stage

Stochastic Programming. SIAM Journal on Optimization, 21(2):517–544.

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research

Letters, 36(4):444–449.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2013). In-Out Separation and Column

Generation Stabilization by Dual Price Smoothing. In Experimental Algorithms, volume 7933,

pages 354–365. Springer Berlin Heidelberg, Berlin, Heidelberg.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR

Computational Mathematics and Mathematical Physics, 4(5):1–17.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral

functions. Mathematical Programming, 35(3):309–333.

Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical Program-

ming, 79(1):333–353.

Sen, S., Doverspike, R. D., and Cosares, S. (1994). Network planning with random demand. Telecom-

munication Systems, 3(1):11–30.

Shapiro, A. and Nemirovski, A. (2005). On Complexity of Stochastic Programming Problems. In

Jeyakumar, V. and Rubinov, A., editors, Continuous Optimization: Current Trends and Modern

Applications, Applied Optimization, pages 111–146. Springer US, Boston, MA.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated Benders cuts. Annals

of Operations Research, 210(1):57–72.

Song, Y. and Luedtke, J. (2015). An Adaptive Partition-Based Approach for Solving Two-Stage

Stochastic Programs with Fixed Recourse. SIAM Journal on Optimization, 25(3):1344–1367.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization

and momentum in deep learning. volume 28 of Proceedings of Machine Learning Research, pages

1139–1147, Atlanta, Georgia, USA. PMLR.

Trukhanov, S., Ntaimo, L., and Schaefer, A. (2010). Adaptive multicut aggregation for two-stage

stochastic linear programs with recourse. European Journal of Operational Research, 206(2):395–

406.

van Ackooij, W., de Oliveira, W., and Song, Y. (2017). Adaptive Partition-Based Level Decomposition

Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse. INFORMS Journal on

Computing, 30(1):57–70.

Van Slyke, R. M. and Wets, R. (1969). L-Shaped Linear Programs with Applications to Optimal

Control and Stochastic Programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Vanderbeck, F. (2005). Implementing Mixed Integer Column Generation. In Desaulniers, G.,

Desrosiers, J., and Solomon, M. M., editors, Column Generation, pages 331–358. Springer US,

Boston, MA.

29

Wets, R. (1983). Stochastic Programming: Solution Techniques and Approximation Schemes. In

Mathematical Programming The State of the Art, pages 566–603. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Wolf, C., Fábián, C. I., Koberstein, A., and Suhl, L. (2014). Applying oracles of on-demand accuracy

in two-stage stochastic programming – A computational study. European Journal of Operational

Research, 239(2):437–448.

You, F. and Grossmann, I. E. (2013). Multicut Benders decomposition algorithm for process supply

chain planning under uncertainty. Annals of Operations Research, 210(1):191–211.

Zverovich, V., Fábián, C. I., Ellison, E. F. D., and Mitra, G. (2012). A computational study of

a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition.

Mathematical Programming Computation, 4(3):211–238.

A Proofs of Section 3 - The Benders by batch algorithm

A.1 Proof of Proposition 1

Proof. pñq Assume that x̌pkq is an optimal solution to problem 1. We have:

UBpx̌pkqq ´ LBpkq ď ϵ

ðñ cJx̌pkq `
ÿ

sPS

psϕpx̌pkq, sq ´

˜

cJx̌pkq `
ÿ

sPS

psθ̌
pkq
s

¸

ď ϵ

ðñ
ÿ

sPS

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

As family
`

Sσp1q, Sσp2q, ..., Sσpκq

˘

defines a partition of S, the previous equation gives:

κ
ÿ

t“1

ÿ

sPSσptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

ðñ

κ
ÿ

t“i

ÿ

sPSσptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

As ps ě 0, @s P S, and as pRMP qpkq is a relaxation of problem 1, by independence of the batches,

we have:
ř

sPSσptq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ě 0, @t P t1, . . . , κu. We therefore have:

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

which is the definition of batch Sσpiq being ϵi-approximated by pRMP qpkq.

pðq Assume that for every index i P J1, κK, we have
ř

sPSσpiq
ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi and

therefore:
ÿ

sPSσpκq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵκ (6)

30

By definition of ϵκ we have:

ϵκ “ ϵ´

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ðñ ϵκ `

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

“ ϵ

Then, using equation (6), we have:

κ
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ď ϵ

ðñ UBpx̌pkqq ´ LBpkq ď ϵ

which implies that x̌pkq is an optimal solution to problem 1.

A.2 Proof of Proposition 2

Proof. We solve each subproblem at most once for every optimal solution to pRMP qpkq because

pS1, S2, ..., Sκq defines a partition of S. Then if there exists a cut violated by
`

x̌pkq, pθ̌
pkq
s qsPS

˘

,

we find it in at most cardpSq iterations in the optimality loop. Then, as the total number of

optimality cuts is finite and equal to
ř

sPS cardpVertpΠsqq, this algorithm converges in at most

cardpSq ˆ
ř

sPS cardpVertpΠsqq iterations. When the cuts are aggregated, if the cut of a subproblem

separates the solution to the relaxed master program
`

x̌pkq, pθ̌
pkq
s qsPS

˘

, then the aggregated cut of the

batch also separates it, and the result remains true.

31

B Proofs of Section 4 - Stabilization of the Benders by batch algo-

rithm

B.1 Proof of Proposition 3

Proof. Let x P X be a first-stage solution such that batch Sσpiq is ϵipxq-approximated by pRMP qpkq,

for all i P J1, κK. Then, Sσpκq is ϵκpxq-approximated by pRMP qpkq. This means:

”

ÿ

sPSσpκq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵ´ cJpx´ x̌pkqq ´

κ´1
ÿ

t“1

”

ÿ

sPSσptq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPSσpκq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

`

”

κ´1
ÿ

t“1

ÿ

sPSσptq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵ´ cJpx´ x̌pkqq

As ζ ď ζ` for any ζ P R, we have:

κ
ř

t“1

ř

sPSσptq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯

ď ϵ´ cJpx´ x̌pkqq

ñ
ř

sPS

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯

ď ϵ´ cJpx´ x̌pkqq

ñ

ˆ

cJx`
ř

sPS

psϕ px, sq

˙

´

ˆ

cJx̌pkq `
ř

sPS

psθ̌
pkq
s

˙

ď ϵ

ñ UBpxq ´ LBpkq ď ϵ

and x is an optimal solution to problem (1).

B.2 Proof of Proposition 4

Proof. The proof consists of two cases:

1. ϵ ą 0 and
`

xpk`rq
˘

rPN converges to x̌pkq

2. ϵ ě 0 and
`

xpk`rq
˘

rPN converges to x̌pkq in a finite number of iterations

• Case 1: Let ϵ ą 0 be the optimality gap and
`

xpk`rq
˘

rPN be a sequence of elements of X

converging to x̌pkq. We focus on the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program.

There are two possible sub-cases:

– Sub-case 1.1 There exists t0 P N such that for all l ě t0 and for each index i P J1, κK,
batch Sσpk`lqpiq is ϵipx̌

pkqq-approximated by pRMP qpkq with an optimality gap of ϵ
4

– Sub-case 1.2 For all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch

Sσpk`lqpiq is not ϵipx̌
pkqq-approximated by pRMP qpkq with an optimality gap of ϵ

4

Sub-case 1.1: Assume that there exists t0 P N such that for all l ě t0 and for each index

i P J1, κK, batch Sσpk`lqpiq is ϵipx̌
pkqq-approximated by pRMP qpkq with an initial gap of ϵ

4 . This means

that for every l ě t0 and for every index i P J1, κK,

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ď
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

(7)

32

As the number of permutations of J1, κK is finite, as for every l ě t0 and for each index i P J1, κK,

the application x ÞÑ

”

ř

sPS
σpk`lqpiq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, and as sequence
`

xpk`rq
˘

rPN

converges to x̌pkq, there exists t1 P N, t1 ě t0 such that, for every l ě t1 and for every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

`
ϵ

4
(8)

Moreover, as for every l ě t0 and for every index i P J1, κK, the application x ÞÑ
” i´1

ř

t“1

ř

sPS
σpk`lqpiq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, there exists t2 P N, t2 ě t0 such that, for every

l ě t2 and for every index i P J1, κK:

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

´
ϵ

4
ď

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ñ ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ď ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

`
ϵ

4
(9)

And, as pxpk`rqqrPN converges to x̌pkq, there exists t3 P N such that, @l ě t3, 0 ď ϵ
4 ´ cJpxpk`lq ´ x̌pkqq.

Then, by setting t4 “ maxtt1, t2, t3u, and jointly using (7), (8) and (9), we have, for every l ě t4

and for every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď
ϵ

4
`
ϵ

4
`
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď
3ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď ϵ´cJpxpk`lq´x̌pkqq´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

And for every index i P J1, κK, batch Sσpk`t4qpiq is ϵipx
pk`t4qq-approximated by pRMP qpkq with an

optimality gap of ϵ, which implies, by Proposition 3, that xpk`t4q is an optimal solution to problem

(1).

Sub-case 1.2: Now assume that for all t0 P N, there exists l ě t0 and an index i P J1, κK such

that batch Sσpk`lqpiq is not ϵipx̌
pkqq-approximated by pRMP qpkq with an initial optimality gap of ϵ

4 .

This means, that for all t0 P N, there exists l ě t0 and an index i P J1, κK such that:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ą
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

(10)

Then, there exists δ ą 0 such that, for all t0 P N, there exists l ě t0 and an index i P J1, κK (the first

33

index such that (10) occurs) such that:

ÿ

sPS
σpk`lqpiq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ą δ (11)

Let g
pk`τq

i P Rn1 be a subgradient associated with the function x ÞÑ
ř

sPS
σpk`τqpiq

psϕpxpk`τq, sq at

point xpk`τq. The aggregated cut obtained after solving batch Sσpk`τqpiq can be written as follows:

g
pk`τqJ

i px´ xpk`τqq `
ÿ

sPS
σpk`τqpiq

psϕpxpk`τq, sq ď
ÿ

sPS
σpk`τqpiq

psθs

By continuity of ϕp., sq for all s P S and as the total number of cuts is finite, there exists L ą 0 such

that for every l P N and for every i P J1, κK, ||g
pk`lq
i ||2 ď L. Then, as sequence

`

xpk`rq
˘

rPN converges

to x̌pkq, there exists t1 P N such that for all l ě t1 and for all i P J1, κK,

|g
pk`lqJ

i px̌´ xpk`lqq| ă
δ

3
(12)

Moreover, as sequence
`

xpk`rq
˘

rPN converges to x̌pkq and by continuity of ϕp., sq, there exists t2 P N

such that for all l ě t2 and for each index i P J1, κK:

ÿ

sPS
σpk`lqpiq

psϕpx̌pkq, sq ă
ÿ

sPS
σpk`lqpiq

psϕpxpk`lq, sq `
δ

3
(13)

Then, let t3 “ maxtt1, t2u. Let i P J1, κK and l0 ě t3 be the first indices such that (11) occurs. We

have, by combining (11), (12) and (13):

g
pk`l0qJ

i px̌pkq ´ xpk`l0qq `
ÿ

sPS
σpk`l0qpiq

psϕpxpk`l0q, sq ´
ÿ

sPS
σpk`l0qpiq

psθ̌
pkq
s ą

δ

3

Then, at xpk`l0q, the aggregated cut of the batch Sσpk`l0qpiq separates the solution to the relaxed master

program, as its value at x̌pkq is strictly larger than the outer linearization given by the relaxed master

program. If cutAggr “ False, there exists at least one of the cuts associated with a subproblem of

the batch which separates the solution to the relaxed master program.

• Case 2: Let ϵ ě 0 be the optimality gap and
`

xpk`rq
˘

rPN be a sequence of elements of X

converging to x̌pkq in a finite number of iterations.

As
`

xpk`rq
˘

rPN converges to x̌pkq, the proof of case 1 holds also in this case for every ϵ ą 0.

We need to prove that the proposition is true if ϵ “ 0. Let t0 be the first iteration such that

xpk`t0q “ x̌pkq. Either, for each index i P J1, κK, batch Sσpk`t0qpiq is ϵipx̌
pkqq-approximated by

pRMP qpkq with an optimality gap of 0, and by proposition 3, xpk`t0q is an optimal solution

to problem (1) with an optimality gap ϵ “ 0, or there exists a batch which is not ϵipx̌
pkqq-

approximated by pRMP qpkq, and the aggregated cut derived from this batch separates the

solution to the relaxed master program.

34

B.3 Proof of Proposition 6

Proof. Let px, py, zqq P X ˆ D. We have:

d1x “
`

x, αy ` p1 ´ αqz
˘

d2x “
`

x, αx` p1 ´ αqαy ` p1 ´ αq2z
˘

Let u “ αy ` p1 ´ αqz ´ x, we have d2x “
`

x, x` p1 ´ αqu
˘

. Then, by induction,

@ℓ ě 2, dℓx “
`

x, x` p1 ´ αqℓ´1u
˘

And @ℓ ě 2, Ψ2pdℓxq “ x` p1 ´ αqℓu. Finally, lim
ℓÑ`8

ψ2

`

dℓx
˘

“ x.

B.4 Proof of Proposition 7

Proof. Let px, py, zqq P X ˆ D. We have:

d1x “
`

x` βpy ´ xq, αy ` p1 ´ αqz
˘

d2x “
`

x` β2py ´ xq, x´ p1 ´ αqx` αβpy ´ xq ` p1 ´ αqαy ` p1 ´ αq2z
˘

We define u “ y ´ x and v “ αy ` p1 ´ αqz ´ x. Then

d2x “
`

x` β2u, x` αβu` p1 ´ αqv
˘

d3x “
`

x` β3u, x` αpβ2 ` βp1 ´ αqqu` p1 ´ αq2v
˘

By induction, we have

dℓx “
`

x` βℓu, x` α
`

řℓ´1
i“1 β

ip1 ´ αqℓ´i´1
˘

u` p1 ´ αqℓ´1v
˘

, @l ě 2

We define δ “ maxtβ, p1 ´ αqu. For all i ě 0 and for all l ě 2, βi ď δi and p1 ´ αql´i´1 ď δl´i´1.

Then
ℓ´1
ÿ

i“1

βip1 ´ αqℓ´i´1 ď pℓ´ 1qδℓ´1

Then, lim
ℓÑ`8

řℓ´1
i“1 β

ip1 ´ αqℓ´i´1 “ 0 and lim
ℓÑ`8

dℓx “ px, xq. Finally, lim
ℓÑ`8

ψ2

`

dℓx
˘

“ x.

35

C Detailed benchmark algorithms

Algorithm 4 describes our implementation of In-out monocut (cutAggr=True) and In-out mul-

ticut (cutAggr=False).

Algorithm 4: The Benders decomposition algorithm with in-out stabilization

Parameters: ϵ ě 0, xp0q P X, cutAggr P tTrue, Falseu, α P p0; 1s

1 Initialization: k Ð 0, x̂p1q Ð xp0q, UBp0q Ð cJxp0q `
ř

sPS psπ
J
s pds ´ Tsx

p0qq, LBp0q Ð ´8, α1 Ð α

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 Solve pRMP qpkq and retrieve x̌pkq, pθ̌
pkq
s qsPS

5 LBpkq Ð cJx̌pkq `
ř

sPS psθ̌
pkq

6 xpkq Ð αkx̌
pkq ` p1 ´ αkqx̂pkq

7 for s P S do

8 Solve pSP pxpkq, sqq and retrieve πs an extreme point of Πs

9 if cutAggr then
10 Add

ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

11 else
12 for s P S do

13 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

14 if UBpk´1q ą cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq then

15 UBpkq Ð cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq

16 x̂pk`1q Ð xpkq

17 αk`1 Ð mint1.0, 1.2αku

18 else

19 x̂pk`1q Ð x̂pkq, UBpkq Ð UBpk´1q

20 αk`1 Ð maxt0.1, 0.8αku

21 pRMP qpk`1q Ð pRMP qpkq

22 Return x̂pk`1q

We now describe the level bundle method. We first define the quadratic master program. Let

λ P p0, 1q denote the level parameter, LB a lower bound on the optimal value of the problem, and

UB an upper bound. We define flev “ p1 ´ λqUB ` λLB and a stability center x̂ as in the in-out

stabilization approach. The quadratic master program pQMP qpx̂, flevq parametrized by x̂ and flev is

the following:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

min
x,θ

1

2
||x´ x̂||22

s.t. :
ÿ

sPS

psθs ě
ÿ

sPS

psπ
J
s pds ´ Tsxq, @s P S, @πs P VertpΠsq

cJx`
ÿ

sPS

psθs ď flev

x P X, θ P RCardpSq

We denote by pRQMP qpkqpx̂, flevq its relaxation at iteration k of the algorithm and by κ P p0, λq

a acceptation tolerance to update the stability center. Algorithm 5 describes our implementation of

Level bundle.

36

Algorithm 5: Level bundle method

Parameters: ϵ ě 0, xp0q P X, λ P r0, 1q, LBp0q a valid lower bound on the objective value, κ P p0, λq

1 Initialization: k Ð 0, UBp0q Ð cJxp0q `
ř

sPS psπ
J
s pds ´ Tsx̂

p0qq, x̂p1q Ð xp0q

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 f
pkq

lev “ p1 ´ λqUBpk´1q ` λLBpk´1q

5 Solve pRQMP qpkqpx̂pkq, f
pkq

lev q

6 if pRQMP qpkqpx̂pkq, f
pkq

lev q is infeasible then

7 LBpkq Ð flevpkq

8 x̂pk`1q Ð x̂pkq

9 UBpkq Ð UBpk´1q

10 else

11 Retrieve xpkq solution to pRQMP qpkqpx̂pkq, f
pkq

lev q

12 for s P S do

13 Solve pSP pxpkq, sqq and retrieve πs an extreme point of Πs

14 Add
ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

15 if cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq ă p1 ´ κqUBpk´1q ` κf
pkq

lev then

16 UBpkq Ð cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq

17 x̂pk`1q Ð xpkq

18 else

19 x̂pk`1q Ð x̂pkq

20 UBpkq Ð UBpk´1q

21 LBpkq Ð LBpk´1q

22 pRQMP qpk`1q Ð pRQMP qpkq

23 Return x̂pk`1q

37

D Detailed numerical results

This section show the detailed numerical results.

38

Table 7: Results for the Benders by batch algorithm without aggregation, with batch sizes from 1%
to 20% of the total number of subproblems.

Classic Classic BbB BbB BbB BbB
multicut monocut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 3.2 0.81 1.3 2 2.8 0.91 1.5 0.75 1.2 0.62 1.0
LandS-N1000-s1001 2 2.9 0.72 1.0 2 2.4 0.86 1.2 0.74 1.1 0.70 1.0
LandS-N1000-s1002 2 3.0 0.72 1.1 2 2.9 0.71 1.1 0.65 1.0 0.66 1.0
LandS-N5000-s5000 11 1.6 9 1.3 12 1.9 8 1.2 7 1.1 7 1.0
LandS-N5000-s5001 10 1.6 10 1.6 15 2.5 8 1.3 6 1.1 6 1.0
LandS-N5000-s5002 11 1.9 9 1.5 13 2.2 8 1.3 7 1.2 6 1.0
LandS-N10000-s10000 22 1.1 26 1.3 41 2.0 25 1.2 20 1.0 21 1.0
LandS-N10000-s10001 22 1.1 30 1.5 36 1.8 25 1.2 22 1.1 20 1.0
LandS-N10000-s10002 20 1.1 30 1.7 37 2.0 25 1.4 22 1.2 18 1.0
LandS-N20000-s20000 49 1.0 96 1.9 134 2.7 86 1.7 78 1.6 71 1.4
LandS-N20000-s20001 43 1.0 119 2.8 130 3.0 92 2.1 77 1.8 71 1.7
LandS-N20000-s20002 44 1.0 99 2.2 125 2.8 90 2.0 85 1.9 73 1.7
gbd-N1000-s1000 2 2.7 0.95 1.4 2 3.3 0.68 1.0 0.78 1.1 0.95 1.4
gbd-N1000-s1001 2 3.7 0.90 1.4 2 3.8 0.65 1.0 0.90 1.4 0.94 1.5
gbd-N1000-s1002 2 3.6 0.96 1.6 2 3.7 0.62 1.0 0.83 1.3 0.99 1.6
gbd-N5000-s5000 13 2.0 10 1.7 18 2.9 6 1.0 7 1.2 8 1.4
gbd-N5000-s5001 11 1.9 10 1.7 14 2.3 6 1.0 7 1.1 8 1.3
gbd-N5000-s5002 12 1.8 11 1.6 15 2.4 6 1.0 7 1.1 9 1.3
gbd-N10000-s10000 24 1.2 34 1.8 54 2.8 19 1.0 21 1.1 26 1.4
gbd-N10000-s10001 24 1.3 32 1.7 41 2.2 19 1.0 24 1.3 26 1.4
gbd-N10000-s10002 23 1.2 32 1.7 46 2.4 19 1.0 22 1.1 24 1.2
gbd-N20000-s20000 48 1.0 119 2.5 97 2.0 63 1.3 71 1.5 86 1.8
gbd-N20000-s20001 51 1.0 120 2.3 100 2.0 64 1.2 73 1.4 90 1.8
gbd-N20000-s20002 47 1.0 125 2.7 92 2.0 57 1.2 70 1.5 85 1.8
ssn-N1000-s1000 2279 552.2 7 1.7 6 1.3 4 1.0 5 1.1 5 1.2
ssn-N1000-s1001 2720 679.7 7 1.8 6 1.6 4 1.0 4 1.0 5 1.2
ssn-N1000-s1002 2226 602.8 7 1.8 6 1.8 4 1.0 4 1.1 5 1.3
ssn-N5000-s5000 13425 580.9 62 2.7 31 1.3 23 1.0 33 1.4 33 1.4
ssn-N5000-s5001 14260 631.1 45 2.0 33 1.5 23 1.0 27 1.2 31 1.4
ssn-N5000-s5002 12695 558.4 64 2.8 31 1.4 25 1.1 23 1.0 31 1.4
ssn-N10000-s10000 26559 420.0 185 2.9 63 1.0 123 2.0 64 1.0 79 1.3
ssn-N10000-s10001 26228 449.1 193 3.3 72 1.2 58 1.0 59 1.0 78 1.3
ssn-N10000-s10002 24916 463.1 187 3.5 80 1.5 56 1.0 54 1.0 79 1.5
ssn-N20000-s20000 `8 ą382.6 512 4.5 152 1.3 113 1.0 120 1.1 8143 72.1
ssn-N20000-s20001 `8 ą355.0 503 4.1 122 1.0 588 4.8 128 1.1 167 1.4
ssn-N20000-s20002 `8 ą356.6 450 3.7 160 1.3 121 1.0 1624 13.4 154 1.3
storm-N1000-s1000 23 3.6 10 1.6 19 3.0 8 1.3 6 1.0 8 1.3
storm-N1000-s1001 24 3.7 11 1.6 23 3.5 8 1.3 7 1.0 8 1.3
storm-N1000-s1002 24 3.8 11 1.7 21 3.3 8 1.3 6 1.0 8 1.3
storm-N5000-s5000 110 2.0 100 1.8 159 2.9 58 1.1 54 1.0 65 1.2
storm-N5000-s5001 117 2.2 118 2.2 184 3.4 59 1.1 54 1.0 65 1.2
storm-N5000-s5002 116 2.1 99 1.8 181 3.3 63 1.1 55 1.0 65 1.2
storm-N10000-s10000 215 1.4 468 3.0 508 3.2 162 1.0 159 1.0 191 1.2
storm-N10000-s10001 225 1.5 479 3.1 494 3.2 154 1.0 161 1.1 188 1.2
storm-N10000-s10002 233 1.5 542 3.5 474 3.1 153 1.0 157 1.0 189 1.2
storm-N20000-s20000 465 1.0 2240 4.8 1470 3.2 581 1.2 704 1.5 574 1.2
storm-N20000-s20001 434 1.0 2460 5.7 1300 3.0 585 1.3 669 1.5 603 1.4
storm-N20000-s20002 476 1.0 2410 5.1 1400 2.9 574 1.2 642 1.3 587 1.2
20term-N1000-s1000 544 13.5 749 18.6 40 1.0 82 2.0 46 1.1 74 1.8
20term-N1000-s1001 584 16.1 646 17.8 36 1.0 82 2.3 47 1.3 72 2.0
20term-N1000-s1002 604 16.0 877 23.2 38 1.0 82 2.2 53 1.4 76 2.0
20term-N5000-s5000 3095 4.7 29455 44.6 660 1.0 2059 3.1 1497 2.3 1951 3.0
20term-N5000-s5001 3699 5.4 22490 33.0 681 1.0 2066 3.0 1333 2.0 2302 3.4
20term-N5000-s5002 3725 6.6 21342 38.0 561 1.0 2178 3.9 1176 2.1 2486 4.4
20term-N10000-s10000 6803 3.1 `8 ą20.4 2193 1.0 9654 4.4 5526 2.5 11592 5.3
20term-N10000-s10001 6404 2.7 `8 ą19.5 2330 1.0 11062 4.7 7874 3.4 9436 4.1
20term-N10000-s10002 7494 3.3 `8 ą19.6 2288 1.0 11483 5.0 5196 2.3 10212 4.5
20term-N20000-s20000 13429 1.0 `8 ą5.7 `8 ą3.2 `8 ą3.2 `8 ą3.2 `8 ą3.2
20term-N20000-s20001 12763 1.4 `8 ą5.0 9062 1.0 `8 ą4.8 `8 ą4.8 `8 ą4.8
20term-N20000-s20002 14868 1.5 `8 ą8.1 9613 1.0 `8 ą4.5 `8 ą4.6 `8 ą4.6
Fleet20-N1000-s1000 513 9.4 224 4.1 143 2.6 105 1.9 102 1.9 55 1.0
Fleet20-N1000-s1001 539 10.1 228 4.3 139 2.6 110 2.1 100 1.9 53 1.0
Fleet20-N1000-s1002 546 7.7 224 3.2 154 2.2 70 1.0 103 1.5 115 1.6
Fleet20-N5000-s5000 2780 1.5 5530 2.9 2380 1.3 2050 1.1 1880 1.0 2110 1.1
Fleet20-N5000-s5001 2760 1.5 5090 2.8 2260 1.2 1850 1.0 1870 1.0 2070 1.1
Fleet20-N5000-s5002 2730 1.5 5370 2.9 2610 1.4 1950 1.0 1870 1.0 2110 1.1
Fleet20-N10000-s10000 5860 1.0 29600 5.1 10400 1.8 `8 ą7.4 8780 1.5 11000 1.9
Fleet20-N10000-s10001 5480 1.0 28200 5.1 8310 1.5 8350 1.5 8560 1.6 9950 1.8
Fleet20-N10000-s10002 5790 1.0 29000 5.0 11000 1.9 8190 1.4 8270 1.4 `8 ą7.5
Fleet20-N20000-s20000 11400 1.0 `8 ą4.0 `8 ą3.8 `8 ą3.8 `8 ą3.8 `8 ą3.9
Fleet20-N20000-s20001 11500 1.0 `8 ą3.8 18200 1.6 `8 ą3.8 `8 ą3.8 `8 ą3.8
Fleet20-N20000-s20002 11000 1.0 `8 ą4.6 `8 ą3.9 `8 ą3.9 `8 ą3.9 `8 ą4.0
product-N1000-s1000 1920 17.9 184 1.7 259 2.4 123 1.1 109 1.0 107 1.0
product-N1000-s1001 2070 19.9 197 1.9 302 2.9 125 1.2 109 1.0 104 1.0
product-N1000-s1002 1850 19.1 178 1.8 249 2.6 120 1.2 97 1.0 97 1.0
product-N5000-s5000 10500 8.0 3220 2.5 3630 2.8 1830 1.4 1390 1.1 1310 1.0
product-N5000-s5001 10100 7.4 3440 2.5 3830 2.8 1700 1.2 1480 1.1 1360 1.0
product-N5000-s5002 10800 7.4 3830 2.6 3730 2.6 2090 1.4 1580 1.1 1460 1.0
product-N10000-s10000 20200 3.6 15300 2.7 14000 2.5 7330 1.3 5820 1.0 5580 1.0
product-N10000-s10001 19100 3.7 13300 2.5 11800 2.3 6580 1.3 5560 1.1 5230 1.0
product-N10000-s10002 21300 4.0 17000 3.2 14100 2.6 6770 1.3 5370 1.0 5380 1.0
product-N20000-s20000 `8 ą1.7 `8 ą2.0 `8 ą1.7 32700 1.3 26000 1.0 25200 1.0
product-N20000-s20001 42600 2.1 `8 ą2.2 `8 ą2.2 26600 1.3 24100 1.2 20000 1.0
product-N20000-s20002 `8 ą1.8 `8 ą1.8 `8 ą1.8 29800 1.2 24100 1.0 24000 1.0

39

Table 8: Results for the Benders by batch algorithm with aggregation, with batch sizes from 1% to
20% of the total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 2.6 0.94 1.2 1 1.6 2 2.2 0.89 1.2 0.77 1.0 0.86 1.1
LandS-N1000-s1001 2 2.7 1.00 1.3 1 1.8 2 2.1 0.75 1.0 0.75 1.0 0.90 1.2
LandS-N1000-s1002 2 2.3 1 1.3 1 1.7 2 2.0 0.99 1.2 0.84 1.0 0.91 1.1
LandS-N5000-s5000 11 2.7 7 1.8 8 2.0 10 2.6 5 1.2 4 1.0 4 1.1
LandS-N5000-s5001 10 2.3 7 1.6 9 2.0 9 2.1 5 1.2 4 1.0 4 1.0
LandS-N5000-s5002 11 2.9 7 1.9 8 2.1 9 2.2 4 1.0 4 1.0 4 1.1
LandS-N10000-s10000 22 2.7 16 1.9 18 2.2 17 2.0 8 1.0 9 1.1 9 1.1
LandS-N10000-s10001 22 2.8 16 2.0 20 2.5 14 1.8 8 1.0 8 1.0 9 1.2
LandS-N10000-s10002 20 2.6 16 2.0 18 2.2 17 2.1 8 1.0 8 1.0 9 1.2
LandS-N20000-s20000 49 3.0 34 2.0 39 2.3 45 2.7 17 1.0 18 1.1 19 1.2
LandS-N20000-s20001 43 2.4 35 1.9 39 2.2 42 2.4 18 1.0 18 1.0 21 1.2
LandS-N20000-s20002 44 2.6 32 1.9 40 2.3 45 2.6 18 1.0 17 1.0 19 1.1
gbd-N1000-s1000 2 3.5 1 2.4 2 3.1 2 2.9 0.53 1.0 0.68 1.3 0.89 1.7
gbd-N1000-s1001 2 3.6 1 1.6 2 2.5 2 2.4 0.67 1.0 0.99 1.5 1 1.5
gbd-N1000-s1002 2 3.6 1 1.9 2 2.5 2 3.0 0.61 1.0 0.68 1.1 0.88 1.4
gbd-N5000-s5000 13 3.8 8 2.4 11 3.2 10 3.0 3 1.0 4 1.1 4 1.3
gbd-N5000-s5001 11 3.6 9 2.8 10 3.2 8 2.5 3 1.0 4 1.1 4 1.4
gbd-N5000-s5002 12 3.4 9 2.6 9 2.7 9 2.6 3 1.0 4 1.1 5 1.3
gbd-N10000-s10000 24 3.4 18 2.5 21 2.9 18 2.5 7 1.0 8 1.1 9 1.2
gbd-N10000-s10001 24 4.0 19 3.3 19 3.2 13 2.1 6 1.0 8 1.4 9 1.5
gbd-N10000-s10002 23 3.8 20 3.4 23 3.9 14 2.3 6 1.0 8 1.4 11 1.8
gbd-N20000-s20000 48 3.8 39 3.2 47 3.7 50 4.0 12 1.0 16 1.3 20 1.6
gbd-N20000-s20001 51 3.6 42 3.0 45 3.2 31 2.2 15 1.1 14 1.0 19 1.4
gbd-N20000-s20002 47 3.4 41 3.0 45 3.3 43 3.2 14 1.0 14 1.0 19 1.4
ssn-N1000-s1000 2279 168.5 25 1.9 146 10.8 14 1.0 63 4.6 129 9.5 235 17.4
ssn-N1000-s1001 2720 185.6 24 1.7 135 9.2 15 1.0 63 4.3 130 8.8 253 17.3
ssn-N1000-s1002 2226 173.3 23 1.8 146 11.4 13 1.0 59 4.6 144 11.2 238 18.5
ssn-N5000-s5000 13425 152.4 371 4.2 1685 19.1 88 1.0 337 3.8 630 7.2 1342 15.2
ssn-N5000-s5001 14260 158.7 411 4.6 1536 17.1 90 1.0 322 3.6 672 7.5 1343 15.0
ssn-N5000-s5002 12695 140.6 416 4.6 1524 16.9 90 1.0 308 3.4 674 7.5 1280 14.2
ssn-N10000-s10000 26559 151.5 1212 6.9 3343 19.1 175 1.0 672 3.8 1396 8.0 2771 15.8
ssn-N10000-s10001 26228 140.6 1378 7.4 6126 32.8 187 1.0 760 4.1 1477 7.9 3143 16.8
ssn-N10000-s10002 24916 129.1 1147 5.9 5105 26.4 193 1.0 690 3.6 1397 7.2 2827 14.6
ssn-N20000-s20000 `8 ą94.6 7066 15.5 18068 39.6 457 1.0 1651 3.6 3463 7.6 6588 14.4
ssn-N20000-s20001 `8 ą94.3 5558 12.1 40319 88.0 458 1.0 1651 3.6 3065 6.7 6749 14.7
ssn-N20000-s20002 `8 ą106.2 13186 32.4 19979 49.1 407 1.0 1543 3.8 3630 8.9 6934 17.0
storm-N1000-s1000 23 3.7 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 10 1.6
storm-N1000-s1001 24 3.8 12 1.9 16 2.5 12 1.9 6 1.0 7 1.1 9 1.4
storm-N1000-s1002 24 3.7 13 2.0 15 2.3 13 2.0 6 1.0 7 1.1 9 1.4
storm-N5000-s5000 110 3.3 73 2.2 92 2.8 44 1.3 33 1.0 35 1.1 54 1.6
storm-N5000-s5001 117 3.6 72 2.2 97 3.0 54 1.6 33 1.0 36 1.1 56 1.7
storm-N5000-s5002 116 3.2 72 2.0 93 2.6 58 1.6 37 1.0 36 1.0 55 1.5
storm-N10000-s10000 215 3.0 157 2.2 202 2.8 121 1.7 73 1.0 82 1.1 105 1.4
storm-N10000-s10001 225 3.0 169 2.2 198 2.6 90 1.2 76 1.0 83 1.1 101 1.3
storm-N10000-s10002 233 3.2 166 2.3 194 2.7 118 1.6 73 1.0 80 1.1 107 1.5
storm-N20000-s20000 465 2.9 370 2.3 434 2.7 216 1.3 167 1.0 161 1.0 232 1.4
storm-N20000-s20001 434 2.7 380 2.4 413 2.6 245 1.5 161 1.0 179 1.1 246 1.5
storm-N20000-s20002 476 3.0 356 2.2 422 2.6 218 1.4 160 1.0 167 1.0 236 1.5
20term-N1000-s1000 544 36.7 272 18.4 310 20.9 15 1.0 36 2.5 71 4.8 140 9.5
20term-N1000-s1001 584 40.0 239 16.4 266 18.2 15 1.0 37 2.5 67 4.6 135 9.3
20term-N1000-s1002 604 41.4 305 20.9 364 25.0 15 1.0 37 2.5 65 4.5 148 10.2
20term-N5000-s5000 3095 46.0 1627 24.2 2026 30.1 67 1.0 199 3.0 401 6.0 830 12.4
20term-N5000-s5001 3699 47.2 1453 18.5 1911 24.4 78 1.0 197 2.5 381 4.9 794 10.1
20term-N5000-s5002 3725 57.8 1733 26.9 1898 29.5 64 1.0 182 2.8 404 6.3 893 13.9
20term-N10000-s10000 6803 52.5 3885 30.0 4741 36.6 129 1.0 411 3.2 892 6.9 1874 14.5
20term-N10000-s10001 6404 52.5 3193 26.2 4915 40.3 122 1.0 409 3.3 914 7.5 1970 16.1
20term-N10000-s10002 7494 54.5 3015 21.9 4864 35.4 137 1.0 388 2.8 886 6.4 2089 15.2
20term-N20000-s20000 13429 51.5 7375 28.3 10772 41.3 261 1.0 860 3.3 1913 7.3 7032 27.0
20term-N20000-s20001 12763 43.2 7433 25.1 26284 88.9 296 1.0 985 3.3 2139 7.2 4704 15.9
20term-N20000-s20002 14868 52.5 6287 22.2 11803 41.7 283 1.0 897 3.2 2101 7.4 `8 ą152.6
Fleet20-N1000-s1000 513 18.6 123 4.5 221 8.0 28 1.0 42 1.5 71 2.6 127 4.6
Fleet20-N1000-s1001 539 20.0 126 4.7 219 8.1 27 1.0 40 1.5 73 2.7 131 4.9
Fleet20-N1000-s1002 546 18.2 126 4.2 225 7.5 30 1.0 43 1.4 77 2.6 135 4.5
Fleet20-N5000-s5000 2780 25.7 905 8.4 1570 14.5 108 1.0 218 2.0 354 3.3 675 6.2
Fleet20-N5000-s5001 2760 26.5 930 8.9 1500 14.4 104 1.0 209 2.0 363 3.5 645 6.2
Fleet20-N5000-s5002 2730 24.8 873 7.9 1520 13.8 110 1.0 205 1.9 356 3.2 628 5.7
Fleet20-N10000-s10000 5860 27.4 2030 9.5 3430 16.0 214 1.0 426 2.0 725 3.4 1290 6.0
Fleet20-N10000-s10001 5480 26.2 1960 9.4 3520 16.8 209 1.0 467 2.2 721 3.4 1290 6.2
Fleet20-N10000-s10002 5790 27.2 2010 9.4 3430 16.1 213 1.0 426 2.0 716 3.4 1350 6.3
Fleet20-N20000-s20000 11400 28.4 5200 12.9 8040 20.0 402 1.0 886 2.2 1510 3.8 2810 7.0
Fleet20-N20000-s20001 11500 26.8 4820 11.2 7690 17.9 429 1.0 856 2.0 1490 3.5 2750 6.4
Fleet20-N20000-s20002 11000 25.9 5140 12.1 7850 18.5 425 1.0 885 2.1 1560 3.7 2770 6.5
product-N1000-s1000 1920 18.5 191 1.8 415 4.0 104 1.0 140 1.3 246 2.4 471 4.5
product-N1000-s1001 2070 21.3 197 2.0 452 4.7 97 1.0 149 1.5 266 2.7 528 5.4
product-N1000-s1002 1850 20.2 182 2.0 425 4.6 91 1.0 135 1.5 247 2.7 515 5.6
product-N5000-s5000 10500 29.8 1530 4.3 3290 9.3 352 1.0 734 2.1 1550 4.4 3180 9.0
product-N5000-s5001 10100 29.3 1460 4.2 3250 9.4 345 1.0 787 2.3 1420 4.1 2580 7.5
product-N5000-s5002 10800 27.7 1580 4.1 3430 8.8 390 1.0 797 2.0 1730 4.4 2860 7.3
product-N10000-s10000 20200 28.7 3830 5.4 8170 11.6 704 1.0 1620 2.3 2980 4.2 5670 8.1
product-N10000-s10001 19100 25.3 3910 5.2 7480 9.9 756 1.0 1400 1.9 2980 3.9 5140 6.8
product-N10000-s10002 21300 21.1 3740 3.7 7620 7.5 1010 1.0 1550 1.5 3200 3.2 5780 5.7
product-N20000-s20000 `8 ą24.1 9820 5.5 19300 10.8 1790 1.0 3330 1.9 6740 3.8 13500 7.5
product-N20000-s20001 42600 23.3 9670 5.3 19200 10.5 1830 1.0 3230 1.8 5950 3.3 11500 6.3
product-N20000-s20002 `8 ą29.6 10400 7.1 19600 13.4 1460 1.0 3540 2.4 6270 4.3 12500 8.6

40

Table 9: Detailed results for the Benders by batch algorithm, with a batch size of 1%, cut aggregation,
and stabilization (basic or solution memory) compared to without stabilization

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

B
b
B

1
%

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

α
“

0
.1

α
“

0
.5

α
“

0
.9

α
“

0
.1

α
“

0
.1

α
“

0
.1

α
“

0
.5

α
“

0
.5

α
“

0
.5

α
“

0
.9

α
“

0
.9

α
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

in
st
a
n
ce

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
0

2
2
.0

1
1
.6

1
.0
0

1
.2

1
1
.3

1
1
.8

2
1
.8

0
.8
5

1
.0

0
.9
8

1
.2

0
.9
5

1
.1

1
1
.8

1
1
.4

0
.9
5

1
.1

1
1
.7

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
1

2
1
.7

2
1
.8

1
1
.1

1
1
.4

2
1
.7

2
1
.6

2
1
.8

0
.9
7

1
.1

0
.9
2

1
.0

2
1
.6

1
1
.2

1
1
.1

2
1
.7

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
2

2
2
.1

0
.9
2

1
.1

0
.8
8

1
.1

1
1
.4

0
.8
3

1
.0

0
.8
3

1
.0

0
.9
0

1
.1

0
.8
5

1
.0

0
.8
8

1
.1

0
.9
2

1
.1

1
1
.5

0
.9
2

1
.1

0
.9
0

1
.1

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
0

1
0

2
.3

7
1
.7

4
1
.0

5
1
.2

7
1
.7

7
1
.7

4
1
.0

5
1
.1

5
1
.1

7
1
.7

6
1
.3

5
1
.1

7
1
.6

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
1

9
2
.3

5
1
.1

5
1
.3

6
1
.6

4
1
.1

4
1
.0

5
1
.2

5
1
.2

5
1
.2

4
1
.0

6
1
.5

5
1
.3

4
1
.1

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
2

9
1
.9

7
1
.6

5
1
.1

5
1
.1

7
1
.7

7
1
.6

8
1
.7

6
1
.2

4
1
.0

7
1
.7

4
1
.0

5
1
.2

7
1
.7

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
0

1
7

2
.0

9
1
.0

9
1
.1

1
2

1
.4

9
1
.0

1
5

1
.8

1
5

1
.8

1
0

1
.2

1
0

1
.2

1
5

1
.8

1
0

1
.2

1
0

1
.2

9
1
.0

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
1

1
4

1
.5

1
5

1
.6

9
1
.0

1
3

1
.3

1
5

1
.6

1
6

1
.6

1
6

1
.7

1
1

1
.1

1
6

1
.7

1
5

1
.6

1
0

1
.1

1
1

1
.1

1
6

1
.6

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
2

1
7

2
.0

9
1
.0

9
1
.0

1
0

1
.1

9
1
.0

9
1
.1

1
5

1
.7

1
1

1
.3

9
1
.1

9
1
.1

1
0

1
.2

1
1

1
.3

9
1
.0

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
0

4
5

2
.4

3
0

1
.6

2
1

1
.1

2
1

1
.1

3
1

1
.6

3
2

1
.7

1
9

1
.0

2
1

1
.1

2
1

1
.1

3
1

1
.6

2
5

1
.3

2
1

1
.1

3
1

1
.6

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
1

4
2

2
.4

3
1

1
.8

2
1

1
.2

2
1

1
.2

3
1

1
.8

3
3

1
.9

1
7

1
.0

2
0

1
.2

2
3

1
.3

3
2

1
.9

2
4

1
.4

2
0

1
.2

3
1

1
.8

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
2

4
5

2
.7

2
9

1
.7

2
0

1
.2

2
9

1
.7

3
0

1
.8

3
0

1
.8

3
0

1
.8

2
1

1
.2

1
7

1
.0

3
1

1
.8

1
8

1
.1

2
2

1
.3

3
1

1
.8

g
b
d
-N

1
0
0
0
-s
1
0
0
0

2
1
.9

1
1
.8

0
.8
1

1
.0

0
.9
9

1
.2

2
1
.9

2
1
.9

2
2
.4

0
.9
0

1
.1

0
.9
6

1
.2

2
1
.9

1
1
.7

0
.8
5

1
.0

2
1
.9

g
b
d
-N

1
0
0
0
-s
1
0
0
1

2
2
.0

2
2
.2

1
1
.3

1
1
.8

2
2
.0

2
2
.0

2
2
.3

0
.8
8

1
.1

0
.8
3

1
.1

2
1
.9

1
1
.3

0
.7
9

1
.0

2
2
.2

g
b
d
-N

1
0
0
0
-s
1
0
0
2

2
2
.3

1
1
.9

0
.8
2

1
.0

1
1
.6

1
1
.9

2
2
.0

2
2
.4

0
.8
1

1
.0

0
.8
0

1
.0

2
2
.0

1
1
.3

0
.7
9

1
.0

1
1
.9

g
b
d
-N

5
0
0
0
-s
5
0
0
0

1
0

2
.7

7
2
.0

4
1
.0

6
1
.7

7
1
.9

8
2
.1

9
2
.4

4
1
.2

5
1
.4

8
2
.1

6
1
.7

4
1
.2

7
1
.9

g
b
d
-N

5
0
0
0
-s
5
0
0
1

8
2
.3

8
2
.2

4
1
.1

3
1
.0

7
2
.2

8
2
.2

8
2
.4

5
1
.4

4
1
.1

8
2
.2

4
1
.0

5
1
.4

7
2
.2

g
b
d
-N

5
0
0
0
-s
5
0
0
2

9
2
.6

9
2
.4

5
1
.4

4
1
.2

8
2
.4

8
2
.4

8
2
.3

6
1
.6

5
1
.5

8
2
.3

4
1
.0

6
1
.6

8
2
.4

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
0

1
8

2
.4

1
4

1
.8

7
1
.0

1
0

1
.3

1
5

2
.0

1
5

2
.0

1
6

2
.2

1
0

1
.4

9
1
.2

1
5

2
.0

8
1
.1

1
0

1
.4

1
5

2
.0

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
1

1
3

1
.7

1
4

1
.9

7
1
.0

9
1
.2

1
3

1
.8

1
4

2
.0

1
7

2
.3

1
1

1
.4

8
1
.1

1
4

2
.0

1
0

1
.4

1
0

1
.4

1
4

1
.9

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
2

1
4

2
.0

1
4

2
.1

8
1
.2

7
1
.1

1
4

2
.0

1
4

2
.0

1
9

2
.7

8
1
.2

7
1
.1

1
5

2
.1

7
1
.0

8
1
.2

1
4

2
.0

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
0

5
0

3
.5

5
2

3
.6

1
9

1
.3

1
9

1
.3

3
2

2
.2

3
0

2
.1

1
7

1
.2

1
5

1
.1

1
6

1
.1

3
0

2
.1

1
4

1
.0

1
5

1
.1

3
2

2
.2

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
1

3
1

1
.9

2
6

1
.6

1
7

1
.0

2
2

1
.3

2
8

1
.7

2
9

1
.7

3
0

1
.8

1
8

1
.1

1
9

1
.1

3
0

1
.8

1
7

1
.0

1
8

1
.1

2
9

1
.7

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
2

4
3

3
.0

2
7

1
.9

1
5

1
.0

1
4

1
.0

3
0

2
.1

2
9

2
.0

3
2

2
.3

2
0

1
.4

1
8

1
.2

3
0

2
.1

1
6

1
.1

2
0

1
.4

3
0

2
.1

ss
n
-N

1
0
0
0
-s
1
0
0
0

1
4

1
.8

1
0

1
.4

8
1
.0

1
1

1
.4

9
1
.2

1
0

1
.3

1
1

1
.4

9
1
.2

9
1
.2

1
1

1
.4

1
0

1
.3

8
1
.1

9
1
.2

ss
n
-N

1
0
0
0
-s
1
0
0
1

1
5

1
.9

9
1
.2

8
1
.1

1
3

1
.6

1
2

1
.6

9
1
.2

1
1

1
.4

9
1
.2

8
1
.1

1
0

1
.3

1
2

1
.6

8
1
.0

1
0

1
.3

ss
n
-N

1
0
0
0
-s
1
0
0
2

1
3

1
.6

8
1
.0

8
1
.0

1
1

1
.3

9
1
.1

9
1
.1

1
1

1
.4

8
1
.0

8
1
.0

1
0

1
.2

1
1

1
.3

8
1
.0

9
1
.1

ss
n
-N

5
0
0
0
-s
5
0
0
0

8
8

2
.0

5
1

1
.1

4
7

1
.1

7
0

1
.6

5
4

1
.2

5
2

1
.2

5
6

1
.3

4
7

1
.0

4
5

1
.0

5
4

1
.2

6
4

1
.4

4
6

1
.0

5
4

1
.2

ss
n
-N

5
0
0
0
-s
5
0
0
1

9
0

2
.0

4
8

1
.0

4
6

1
.0

6
5

1
.4

4
9

1
.1

5
2

1
.1

6
0

1
.3

4
7

1
.0

4
6

1
.0

5
3

1
.2

6
2

1
.4

4
6

1
.0

4
9

1
.1

ss
n
-N

5
0
0
0
-s
5
0
0
2

9
0

2
.0

5
1

1
.1

4
9

1
.1

6
8

1
.5

5
0

1
.1

5
2

1
.1

5
8

1
.3

5
2

1
.1

4
6

1
.0

5
2

1
.1

6
1

1
.3

4
8

1
.1

5
2

1
.1

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
0

1
7
5

2
.1

1
1
7

1
.4

8
4

1
.0

1
2
6

1
.5

1
0
1

1
.2

1
0
8

1
.3

1
2
0

1
.4

9
2

1
.1

9
5

1
.1

1
1
3

1
.3

1
1
5

1
.4

9
2

1
.1

1
0
6

1
.3

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
1

1
8
7

2
.0

1
1
2

1
.2

9
8

1
.1

1
2
9

1
.4

1
1
2

1
.2

1
1
1

1
.2

1
2
8

1
.4

9
3

1
.0

1
0
5

1
.1

1
0
6

1
.1

1
1
9

1
.3

9
3

1
.0

1
0
6

1
.2

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
2

1
9
3

2
.2

1
0
1

1
.2

9
0

1
.0

1
3
4

1
.6

1
0
8

1
.3

1
0
7

1
.2

1
2
3

1
.4

9
3

1
.1

8
6

1
.0

1
1
2

1
.3

1
1
5

1
.3

8
8

1
.0

1
0
1

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
0

4
5
7

2
.5

2
2
1

1
.2

1
8
1

1
.0

2
7
9

1
.5

2
4
2

1
.3

2
3
5

1
.3

2
7
0

1
.5

2
0
3

1
.1

1
8
3

1
.0

2
3
2

1
.3

2
4
4

1
.3

1
9
8

1
.1

2
1
3

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
1

4
5
8

2
.5

2
0
7

1
.1

1
9
0

1
.0

2
8
4

1
.6

2
3
2

1
.3

2
2
8

1
.3

2
6
5

1
.5

1
8
2

1
.0

1
8
6

1
.0

2
3
0

1
.3

2
5
9

1
.4

1
8
6

1
.0

2
2
1

1
.2

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
2

4
0
7

2
.1

2
1
5

1
.1

2
0
1

1
.1

3
0
5

1
.6

2
1
5

1
.1

2
2
8

1
.2

2
5
5

1
.3

1
9
0

1
.0

2
0
0

1
.1

2
3
5

1
.2

2
5
1

1
.3

1
9
3

1
.0

2
2
6

1
.2

st
o
rm

-N
1
0
0
0
-s
1
0
0
0

1
2

1
.9

9
1
.5

8
1
.2

7
1
.2

1
0

1
.5

1
0

1
.6

7
1
.1

8
1
.3

6
1
.0

1
0

1
.6

7
1
.1

7
1
.0

1
0

1
.6

st
o
rm

-N
1
0
0
0
-s
1
0
0
1

1
2

2
.0

7
1
.1

7
1
.2

8
1
.4

7
1
.1

1
0

1
.6

7
1
.2

6
1
.0

7
1
.2

9
1
.6

7
1
.2

8
1
.3

7
1
.1

st
o
rm

-N
1
0
0
0
-s
1
0
0
2

1
3

2
.0

9
1
.5

7
1
.0

8
1
.2

1
0

1
.5

1
0

1
.5

7
1
.0

7
1
.1

8
1
.2

1
0

1
.5

7
1
.1

6
1
.0

1
0

1
.5

st
o
rm

-N
5
0
0
0
-s
5
0
0
0

4
4

1
.4

3
3

1
.1

3
2

1
.1

3
7

1
.2

3
2

1
.0

3
3

1
.1

3
6

1
.2

3
1

1
.0

3
7

1
.2

3
3

1
.1

3
5

1
.1

3
1

1
.0

3
1

1
.0

st
o
rm

-N
5
0
0
0
-s
5
0
0
1

5
4

1
.7

4
7

1
.5

3
5

1
.1

3
7

1
.2

4
7

1
.5

3
4

1
.1

3
5

1
.1

4
2

1
.3

3
2

1
.0

3
3

1
.0

3
3

1
.0

3
2

1
.0

4
8

1
.5

st
o
rm

-N
5
0
0
0
-s
5
0
0
2

5
8

1
.9

3
3

1
.1

3
0

1
.0

3
2

1
.1

3
4

1
.1

3
2

1
.1

3
3

1
.1

3
2

1
.0

3
3

1
.1

3
2

1
.1

3
7

1
.2

3
2

1
.1

3
4

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

1
2
1

2
.0

6
5

1
.1

6
4

1
.1

8
1

1
.4

6
7

1
.1

6
7

1
.1

1
0
9

1
.8

6
4

1
.1

6
8

1
.1

6
8

1
.1

6
2

1
.0

5
9

1
.0

6
7

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

9
0

1
.4

6
8

1
.1

6
4

1
.0

6
8

1
.1

6
8

1
.1

6
6

1
.0

1
0
8

1
.7

6
7

1
.1

6
6

1
.0

6
7

1
.0

7
1

1
.1

6
5

1
.0

6
8

1
.1

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

1
1
8

1
.9

6
6

1
.1

6
6

1
.1

9
8

1
.6

6
7

1
.1

1
0
1

1
.6

7
0

1
.1

6
9

1
.1

6
4

1
.0

1
0
0

1
.6

6
2

1
.0

6
6

1
.1

6
7

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

2
1
6

1
.7

1
4
1

1
.1

1
3
9

1
.1

1
6
2

1
.3

1
3
9

1
.1

1
3
8

1
.1

1
4
4

1
.1

1
3
0

1
.0

1
2
7

1
.0

1
3
6

1
.1

1
5
2

1
.2

1
3
1

1
.0

1
3
9

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

2
4
5

2
.0

1
3
4

1
.1

1
3
7

1
.1

1
2
7

1
.0

1
4
0

1
.1

1
2
9

1
.0

1
4
6

1
.2

1
3
0

1
.1

1
2
3

1
.0

1
2
8

1
.0

1
3
7

1
.1

1
2
6

1
.0

1
4
1

1
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

2
1
8

1
.7

1
4
5

1
.1

1
3
5

1
.0

1
3
7

1
.1

1
3
0

1
.0

1
3
5

1
.0

1
4
3

1
.1

1
4
1

1
.1

1
3
5

1
.0

1
3
3

1
.0

1
9
2

1
.5

1
5
2

1
.2

1
3
1

1
.0

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
0

1
5

1
.7

1
3

1
.5

1
1

1
.3

1
4

1
.6

1
4

1
.6

1
2

1
.4

1
6

1
.8

9
1
.0

1
0

1
.2

1
0

1
.1

1
2

1
.4

1
1

1
.3

1
5

1
.7

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
1

1
5

1
.5

1
0

1
.1

1
0

1
.0

1
3

1
.4

1
5

1
.6

1
7

1
.7

1
8

1
.9

1
1

1
.2

1
1

1
.2

1
6

1
.7

1
2

1
.3

1
0

1
.0

1
0

1
.0

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
2

1
5

1
.6

1
1

1
.3

1
0

1
.2

1
4

1
.6

1
8

2
.0

1
2

1
.4

2
2

2
.4

1
1

1
.2

1
1

1
.2

1
4

1
.5

1
2

1
.3

9
1
.0

1
6

1
.8

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
0

6
7

1
.3

6
0

1
.2

5
2

1
.0

6
4

1
.3

6
0

1
.2

6
7

1
.3

8
4

1
.6

5
1

1
.0

5
7

1
.1

5
1

1
.0

5
8

1
.1

6
6

1
.3

6
1

1
.2

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
1

7
8

1
.8

6
4

1
.5

4
3

1
.0

5
7

1
.3

6
7

1
.5

6
7

1
.5

8
4

1
.9

5
1

1
.2

4
6

1
.1

7
4

1
.7

5
8

1
.3

4
8

1
.1

7
4

1
.7

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
2

6
4

1
.4

5
4

1
.2

5
4

1
.2

5
8

1
.3

7
0

1
.5

6
9

1
.5

1
1
7

2
.6

5
6

1
.2

4
5

1
.0

6
5

1
.4

5
5

1
.2

5
3

1
.2

6
8

1
.5

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

1
2
9

1
.3

1
1
4

1
.1

1
0
1

1
.0

1
1
6

1
.2

1
1
8

1
.2

1
4
7

1
.5

1
8
8

1
.9

1
0
1

1
.0

1
0
1

1
.0

1
3
5

1
.3

1
0
1

1
.0

1
0
2

1
.0

1
1
3

1
.1

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

1
2
2

1
.3

1
4
8

1
.6

1
0
1

1
.1

1
1
4

1
.3

1
3
5

1
.5

1
3
9

1
.5

1
5
2

1
.7

1
1
5

1
.3

9
1

1
.0

1
5
1

1
.7

1
1
5

1
.3

1
1
0

1
.2

1
7
9

2
.0

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

1
3
7

1
.6

1
3
8

1
.6

1
0
0

1
.2

1
2
5

1
.5

1
2
6

1
.5

1
2
6

1
.5

1
6
9

2
.0

8
7

1
.0

8
5

1
.0

1
0
2

1
.2

1
3
6

1
.6

1
0
1

1
.2

1
7
6

2
.1

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

2
6
1

1
.4

2
7
9

1
.5

1
9
1

1
.0

2
5
8

1
.4

1
9
3

1
.0

3
3
0

1
.7

3
6
7

1
.9

2
2
6

1
.2

2
4
4

1
.3

3
6
1

1
.9

2
5
1

1
.3

2
2
2

1
.2

2
7
6

1
.4

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

2
9
6

1
.4

3
1
1

1
.5

2
1
0

1
.0

2
5
6

1
.2

2
8
9

1
.4

3
3
7

1
.6

3
2
6

1
.6

2
4
1

1
.2

2
4
3

1
.2

2
7
2

1
.3

2
3
6

1
.1

2
2
4

1
.1

2
6
7

1
.3

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

2
8
3

1
.8

1
5
9

1
.0

1
9
1

1
.2

2
7
0

1
.7

2
3
7

1
.5

1
7
8

1
.1

3
6
1

2
.3

2
3
3

1
.5

2
1
2

1
.3

2
8
8

1
.8

2
5
4

1
.6

2
3
0

1
.4

3
3
7

2
.1

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
0

2
8

1
.7

2
0

1
.2

1
7

1
.0

1
9

1
.1

1
8

1
.1

2
1

1
.3

2
4

1
.4

1
7

1
.0

1
8

1
.1

2
2

1
.3

1
9

1
.1

1
7

1
.0

1
9

1
.1

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
1

2
7

1
.6

1
7

1
.0

1
7

1
.0

2
0

1
.2

1
8

1
.1

2
0

1
.2

2
4

1
.4

1
7

1
.0

1
8

1
.0

2
2

1
.3

1
9

1
.1

1
8

1
.1

1
8

1
.1

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
2

3
0

1
.7

2
0

1
.2

1
8

1
.0

2
1

1
.2

2
1

1
.2

2
1

1
.2

2
7

1
.5

1
9

1
.1

1
8

1
.0

2
2

1
.2

2
0

1
.2

1
8

1
.0

1
8

1
.1

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
0

1
0
8

1
.4

8
6

1
.2

7
5

1
.0

8
3

1
.1

8
9

1
.2

9
6

1
.3

1
2
5

1
.7

7
8

1
.0

8
4

1
.1

9
5

1
.3

8
3

1
.1

7
6

1
.0

8
9

1
.2

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
1

1
0
4

1
.4

9
5

1
.3

7
7

1
.0

8
4

1
.1

9
0

1
.2

9
4

1
.2

1
3
5

1
.8

7
6

1
.0

8
1

1
.1

1
0
5

1
.4

8
0

1
.1

7
8

1
.0

1
0
3

1
.4

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
2

1
1
0

1
.5

9
6

1
.3

7
4

1
.0

8
4

1
.1

9
3

1
.3

1
0
1

1
.4

1
3
7

1
.9

7
4

1
.0

7
9

1
.1

1
0
7

1
.4

8
2

1
.1

7
7

1
.0

1
0
1

1
.4

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
0

2
1
4

1
.5

1
7
2

1
.2

1
4
7

1
.0

1
6
3

1
.1

1
8
4

1
.3

1
9
7

1
.3

2
7
0

1
.8

1
5
5

1
.1

1
5
9

1
.1

1
9
1

1
.3

1
6
3

1
.1

1
5
2

1
.0

1
7
4

1
.2

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
1

2
0
9

1
.4

1
9
6

1
.3

1
4
8

1
.0

1
6
7

1
.1

1
8
3

1
.2

1
9
3

1
.3

2
4
0

1
.6

1
5
5

1
.0

1
6
4

1
.1

1
9
3

1
.3

1
8
0

1
.2

1
5
6

1
.1

1
7
5

1
.2

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
2

2
1
3

1
.5

1
9
2

1
.4

1
4
4

1
.0

1
6
1

1
.1

2
0
6

1
.5

2
2
0

1
.5

2
7
5

1
.9

1
5
4

1
.1

1
6
3

1
.1

2
1
3

1
.5

1
6
3

1
.1

1
4
2

1
.0

1
8
1

1
.3

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
0

4
0
2

1
.3

3
5
8

1
.2

3
0
2

1
.0

3
4
7

1
.1

4
2
6

1
.4

4
8
2

1
.6

5
5
7

1
.8

3
0
7

1
.0

3
2
7

1
.1

4
3
4

1
.4

3
4
0

1
.1

3
1
5

1
.0

4
0
1

1
.3

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
1

4
2
9

1
.4

3
9
1

1
.3

3
1
0

1
.0

3
3
3

1
.1

3
6
4

1
.2

4
1
6

1
.4

5
3
4

1
.8

3
2
2

1
.1

3
3
2

1
.1

4
6
0

1
.5

3
4
0

1
.1

3
0
1

1
.0

4
2
2

1
.4

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
2

4
2
5

1
.4

4
2
4

1
.4

3
1
7

1
.0

3
5
5

1
.2

3
8
5

1
.3

4
6
2

1
.5

5
6
4

1
.8

3
1
1

1
.0

3
3
3

1
.1

4
6
0

1
.5

3
3
7

1
.1

3
0
5

1
.0

3
8
9

1
.3

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
0

1
0
4

1
.4

8
7

1
.2

7
6

1
.0

8
9

1
.2

9
6

1
.3

9
1

1
.2

1
2
4

1
.6

8
5

1
.1

7
6

1
.0

9
2

1
.2

8
8

1
.2

8
0

1
.1

9
5

1
.3

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
1

9
7

1
.2

8
8

1
.1

7
8

1
.0

7
9

1
.0

8
3

1
.1

8
1

1
.0

1
4
5

1
.9

8
9

1
.1

8
2

1
.1

7
9

1
.0

8
5

1
.1

8
8

1
.1

8
3

1
.1

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
2

9
1

1
.2

8
4

1
.1

7
5

1
.0

8
3

1
.1

8
2

1
.1

7
5

1
.0

1
1
0

1
.5

7
6

1
.0

7
7

1
.0

7
5

1
.0

7
9

1
.1

7
6

1
.0

8
1

1
.1

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
0

3
5
2

1
.3

2
6
4

1
.0

3
0
5

1
.2

3
1
2

1
.2

2
6
6

1
.0

3
0
6

1
.2

3
8
2

1
.4

2
9
0

1
.1

2
9
6

1
.1

2
9
4

1
.1

3
3
1

1
.3

2
9
1

1
.1

2
8
8

1
.1

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
1

3
4
5

1
.3

2
6
9

1
.0

3
3
5

1
.2

3
0
3

1
.1

2
9
0

1
.1

2
9
3

1
.1

3
9
6

1
.5

3
0
3

1
.1

2
8
6

1
.1

2
9
3

1
.1

3
1
5

1
.2

2
8
1

1
.0

2
8
8

1
.1

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
2

3
9
0

1
.4

2
8
5

1
.0

2
9
5

1
.0

3
0
1

1
.1

2
9
8

1
.1

3
0
8

1
.1

4
0
0

1
.4

2
8
7

1
.0

2
8
3

1
.0

3
0
5

1
.1

3
0
6

1
.1

2
8
6

1
.0

2
9
8

1
.1

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
0

7
0
4

1
.3

5
2
2

1
.0

5
6
5

1
.1

6
3
0

1
.2

5
4
9

1
.1

6
3
6

1
.2

8
2
4

1
.6

5
7
9

1
.1

5
9
0

1
.1

6
3
8

1
.2

5
9
4

1
.1

5
8
1

1
.1

5
4
4

1
.0

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
1

7
5
6

1
.4

5
6
3

1
.1

5
3
4

1
.0

5
6
7

1
.1

5
4
0

1
.0

6
2
0

1
.2

7
3
5

1
.4

5
5
4

1
.0

5
4
3

1
.0

6
2
6

1
.2

5
7
9

1
.1

5
5
3

1
.0

5
4
2

1
.0

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
2

1
0
1
0

1
.8

5
5
5

1
.0

5
5
6

1
.0

5
9
3

1
.1

6
1
0

1
.1

5
8
3

1
.1

7
4
9

1
.3

5
6
1

1
.0

5
6
2

1
.0

5
8
8

1
.1

6
1
4

1
.1

5
6
2

1
.0

6
1
0

1
.1

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
0

1
7
9
0

1
.6

1
3
0
0

1
.1

1
1
4
0

1
.0

1
2
8
0

1
.1

1
3
0
0

1
.1

1
3
7
0

1
.2

1
8
3
0

1
.6

1
1
7
0

1
.0

1
3
3
0

1
.2

1
3
7
0

1
.2

1
2
4
0

1
.1

1
1
5
0

1
.0

1
3
0
0

1
.1

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
1

1
8
3
0

1
.6

1
2
6
0

1
.1

1
1
4
0

1
.0

1
3
6
0

1
.2

1
1
7
0

1
.1

1
1
6
0

1
.0

1
6
1
0

1
.5

1
1
2
0

1
.0

1
2
2
0

1
.1

1
2
3
0

1
.1

1
1
6
0

1
.0

1
1
1
0

1
.0

1
1
8
0

1
.1

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
2

1
4
6
0

1
.3

1
2
3
0

1
.1

1
1
4
0

1
.0

1
2
3
0

1
.1

1
2
6
0

1
.1

1
2
6
0

1
.1

1
6
9
0

1
.5

1
1
9
0

1
.1

1
3
0
0

1
.2

1
2
5
0

1
.1

1
2
4
0

1
.1

1
1
1
0

1
.0

1
2
5
0

1
.1

41

Table 10: Detailed results for the Benders by batch algorithm, with a batch size of 5%, cut aggregation,
and stabilization (basic or solution memory) compared to without stabilization

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

B
b
B

5
%

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

C
u
tA

g
g
r

α
“

0
.1

α
“

0
.5

α
“

0
.9

α
“

0
.1

α
“

0
.1

α
“

0
.1

α
“

0
.5

α
“

0
.5

α
“

0
.5

α
“

0
.9

α
“

0
.9

α
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

β
“

0
.1

β
“

0
.5

β
“

0
.9

in
st
a
n
ce

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
0

0
.8
9

1
.2

0
.7
9

1
.1

0
.8
0

1
.1

0
.8
1

1
.1

0
.9
6

1
.3

0
.8
4

1
.1

2
2
.8

0
.9
1

1
.2

0
.7
4

1
.0

0
.8
4

1
.1

0
.7
5

1
.0

0
.8
6

1
.2

0
.8
5

1
.1

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
1

0
.7
5

1
.0

0
.8
7

1
.2

0
.9
3

1
.2

0
.9
7

1
.3

2
2
.4

0
.9
6

1
.3

2
2
.6

0
.8
4

1
.1

0
.9
0

1
.2

0
.8
8

1
.2

0
.8
9

1
.2

0
.8
4

1
.1

2
2
.3

L
a
n
d
S
-N

1
0
0
0
-s
1
0
0
2

0
.9
9

1
.4

0
.9
9

1
.4

0
.7
1

1
.0

0
.7
5

1
.1

0
.9
9

1
.4

0
.8
9

1
.3

1
1
.7

0
.7
8

1
.1

0
.7
2

1
.0

0
.8
9

1
.3

0
.7
8

1
.1

0
.7
0

1
.0

0
.9
2

1
.3

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
0

5
1
.2

8
2
.1

4
1
.0

4
1
.1

8
2
.3

9
2
.4

1
0

2
.8

5
1
.2

4
1
.1

9
2
.4

4
1
.1

4
1
.2

8
2
.2

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
1

5
1
.4

4
1
.2

5
1
.2

4
1
.2

5
1
.4

5
1
.4

7
1
.9

4
1
.0

4
1
.1

5
1
.3

4
1
.2

4
1
.0

5
1
.4

L
a
n
d
S
-N

5
0
0
0
-s
5
0
0
2

4
1
.0

8
2
.2

5
1
.3

4
1
.0

9
2
.3

9
2
.3

1
0

2
.9

4
1
.2

5
1
.3

9
2
.3

4
1
.1

4
1
.2

9
2
.4

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
0

8
1
.1

1
6

2
.1

7
1
.0

9
1
.1

1
0

1
.3

1
0

1
.4

1
4

1
.8

9
1
.2

8
1
.1

1
1

1
.4

8
1
.1

9
1
.2

1
0

1
.3

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
1

8
1
.0

1
7

2
.1

1
0

1
.2

8
1
.0

1
8

2
.3

1
8

2
.3

1
5

1
.8

9
1
.1

1
0

1
.3

1
8

2
.3

9
1
.1

8
1
.1

1
8

2
.2

L
a
n
d
S
-N

1
0
0
0
0
-s
1
0
0
0
2

8
1
.1

9
1
.2

7
1
.0

8
1
.0

1
8

2
.4

1
8

2
.5

2
2

2
.9

8
1
.1

8
1
.1

1
8

2
.5

8
1
.1

8
1
.1

1
8

2
.4

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
0

1
7

1
.0

3
6

2
.1

1
8

1
.1

1
7

1
.1

3
8

2
.3

3
8

2
.3

4
4

2
.7

2
0

1
.2

1
9

1
.2

3
8

2
.3

1
9

1
.2

2
0

1
.2

3
8

2
.3

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
1

1
8

1
.1

3
6

2
.2

1
8

1
.1

1
7

1
.0

3
6

2
.2

2
0

1
.2

4
2

2
.5

1
9

1
.1

1
7

1
.0

2
0

1
.2

1
8

1
.1

1
9

1
.1

3
5

2
.1

L
a
n
d
S
-N

2
0
0
0
0
-s
2
0
0
0
2

1
8

1
.1

3
5

2
.2

1
8

1
.1

1
6

1
.0

3
7

2
.3

3
8

2
.4

4
8

3
.0

2
0

1
.2

2
0

1
.2

3
8

2
.4

1
9

1
.2

2
0

1
.2

3
7

2
.3

g
b
d
-N

1
0
0
0
-s
1
0
0
0

0
.5
3

1
.0

2
3
.2

1
1
.9

0
.6
1

1
.1

2
3
.5

2
3
.9

2
4
.6

0
.8
1

1
.5

0
.8
7

1
.6

2
3
.8

0
.8
2

1
.6

0
.8
1

1
.5

2
3
.6

g
b
d
-N

1
0
0
0
-s
1
0
0
1

0
.6
7

1
.2

2
3
.1

0
.8
9

1
.5

0
.5
8

1
.0

2
3
.1

2
4
.0

2
4
.2

0
.8
9

1
.5

0
.9
0

1
.6

2
3
.9

0
.7
5

1
.3

0
.8
0

1
.4

2
3
.2

g
b
d
-N

1
0
0
0
-s
1
0
0
2

0
.6
1

1
.0

2
2
.7

0
.6
1

1
.0

0
.6
1

1
.0

2
2
.8

2
3
.0

2
3
.7

0
.9
3

1
.5

0
.9
2

1
.5

2
3
.0

0
.6
5

1
.1

0
.8
9

1
.5

2
2
.8

g
b
d
-N

5
0
0
0
-s
5
0
0
0

3
1
.0

9
2
.6

4
1
.1

3
1
.0

9
2
.8

1
0

3
.0

1
2

3
.8

4
1
.1

4
1
.3

1
0

2
.9

4
1
.1

3
1
.1

9
2
.8

g
b
d
-N

5
0
0
0
-s
5
0
0
1

3
1
.1

9
3
.1

3
1
.0

3
1
.0

9
3
.2

1
3

4
.5

7
2
.5

5
1
.5

3
1
.1

1
3

4
.6

3
1
.0

5
1
.5

9
3
.2

g
b
d
-N

5
0
0
0
-s
5
0
0
2

3
1
.1

1
0

3
.2

4
1
.2

3
1
.0

8
2
.5

1
1

3
.2

1
2

3
.7

4
1
.3

4
1
.3

1
0

3
.2

3
1
.0

4
1
.2

8
2
.6

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
0

7
1
.0

1
7

2
.5

7
1
.1

7
1
.0

1
8

2
.7

1
8

2
.7

2
5

3
.6

8
1
.2

9
1
.3

1
8

2
.7

7
1
.0

9
1
.3

1
8

2
.7

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
1

6
1
.0

1
7

2
.9

9
1
.5

7
1
.2

1
7

2
.9

1
9

3
.2

2
4

4
.1

7
1
.3

9
1
.5

1
9

3
.2

7
1
.2

7
1
.3

1
7

3
.0

g
b
d
-N

1
0
0
0
0
-s
1
0
0
0
2

6
1
.0

1
8

3
.0

7
1
.2

6
1
.1

1
8

2
.9

1
9

3
.2

2
4

4
.0

7
1
.2

8
1
.3

2
0

3
.3

7
1
.2

7
1
.2

1
8

3
.0

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
0

1
2

1
.1

3
5

3
.0

1
3

1
.1

1
2

1
.0

1
9

1
.6

3
7

3
.2

4
9

4
.1

1
6

1
.4

1
4

1
.2

3
7

3
.1

1
4

1
.2

1
6

1
.4

1
9

1
.6

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
1

1
5

1
.2

3
6

2
.7

1
4

1
.1

1
3

1
.0

3
7

2
.8

4
6

3
.5

4
9

3
.8

1
7

1
.3

2
0

1
.5

4
5

3
.5

1
5

1
.1

1
7

1
.3

3
7

2
.8

g
b
d
-N

2
0
0
0
0
-s
2
0
0
0
2

1
4

1
.0

3
7

2
.7

1
6

1
.2

1
4

1
.0

3
7

2
.7

3
8

2
.8

5
0

3
.7

1
7

1
.2

1
9

1
.4

3
9

2
.8

1
5

1
.1

1
7

1
.2

3
7

2
.7

ss
n
-N

1
0
0
0
-s
1
0
0
0

6
3

4
.3

1
4

1
.0

1
7

1
.2

3
8

2
.6

1
5

1
.1

1
6

1
.1

2
2

1
.5

1
8

1
.3

1
7

1
.2

1
6

1
.1

3
2

2
.2

1
9

1
.3

1
5

1
.1

ss
n
-N

1
0
0
0
-s
1
0
0
1

6
3

4
.2

1
5

1
.0

1
9

1
.3

4
1

2
.8

1
6

1
.0

1
6

1
.1

2
2

1
.5

1
8

1
.2

1
6

1
.1

1
7

1
.1

3
5

2
.3

1
9

1
.2

1
5

1
.0

ss
n
-N

1
0
0
0
-s
1
0
0
2

5
9

3
.9

1
5

1
.0

1
9

1
.3

4
3

2
.9

1
7

1
.1

1
7

1
.1

2
2

1
.5

1
8

1
.2

1
7

1
.2

1
7

1
.1

3
1

2
.1

1
8

1
.2

1
5

1
.0

ss
n
-N

5
0
0
0
-s
5
0
0
0

3
3
7

4
.1

8
1

1
.0

1
1
1

1
.4

1
9
7

2
.4

8
9

1
.1

9
4

1
.2

1
2
7

1
.6

1
1
1

1
.4

9
6

1
.2

9
9

1
.2

1
7
2

2
.1

1
1
2

1
.4

9
3

1
.1

ss
n
-N

5
0
0
0
-s
5
0
0
1

3
2
2

3
.8

8
5

1
.0

1
0
6

1
.3

2
0
5

2
.4

8
5

1
.0

1
0
0

1
.2

1
2
6

1
.5

1
0
8

1
.3

1
0
0

1
.2

1
0
1

1
.2

1
8
2

2
.1

1
1
2

1
.3

8
5

1
.0

ss
n
-N

5
0
0
0
-s
5
0
0
2

3
0
8

3
.8

8
1

1
.0

1
1
0

1
.4

2
0
9

2
.6

9
5

1
.2

9
9

1
.2

1
4
1

1
.8

1
1
3

1
.4

1
0
0

1
.2

9
9

1
.2

1
7
2

2
.1

1
1
6

1
.4

9
0

1
.1

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
0

6
7
2

3
.6

1
9
6

1
.1

2
3
3

1
.3

4
7
1

2
.5

1
8
5

1
.0

2
0
4

1
.1

2
7
7

1
.5

2
3
2

1
.3

2
1
3

1
.2

2
1
2

1
.1

3
8
9

2
.1

2
2
2

1
.2

1
9
4

1
.1

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
1

7
6
0

4
.2

1
8
0

1
.0

2
3
6

1
.3

5
1
2

2
.8

2
0
9

1
.2

2
3
1

1
.3

3
0
1

1
.7

2
3
5

1
.3

2
1
7

1
.2

2
1
1

1
.2

4
3
9

2
.4

2
4
4

1
.4

1
8
7

1
.0

ss
n
-N

1
0
0
0
0
-s
1
0
0
0
2

6
9
0

3
.7

1
8
5

1
.0

2
3
1

1
.3

4
6
9

2
.5

1
8
6

1
.0

1
9
3

1
.0

2
8
9

1
.6

2
2
2

1
.2

1
9
5

1
.1

2
1
8

1
.2

4
0
6

2
.2

2
2
8

1
.2

1
8
4

1
.0

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
0

1
6
5
1

4
.1

4
0
5

1
.0

5
2
4

1
.3

1
0
2
7

2
.5

4
3
2

1
.1

4
9
1

1
.2

6
7
2

1
.7

5
3
1

1
.3

5
2
4

1
.3

4
9
2

1
.2

8
6
6

2
.1

5
2
9

1
.3

4
3
2

1
.1

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
1

1
6
5
1

3
.8

4
3
6

1
.0

5
4
9

1
.3

1
0
4
3

2
.4

4
7
4

1
.1

4
8
5

1
.1

7
2
8

1
.7

5
6
1

1
.3

5
1
6

1
.2

4
7
5

1
.1

8
9
3

2
.0

5
5
1

1
.3

4
4
6

1
.0

ss
n
-N

2
0
0
0
0
-s
2
0
0
0
2

1
5
4
3

3
.8

4
0
6

1
.0

5
5
0

1
.4

1
0
5
2

2
.6

4
3
4

1
.1

5
0
6

1
.2

6
5
0

1
.6

5
5
4

1
.4

4
9
9

1
.2

4
8
9

1
.2

9
1
4

2
.3

5
5
8

1
.4

4
5
0

1
.1

st
o
rm

-N
1
0
0
0
-s
1
0
0
0

6
1
.1

7
1
.3

6
1
.0

6
1
.1

1
0

1
.8

1
2

2
.0

1
1

1
.9

6
1
.0

7
1
.2

1
2

2
.0

6
1
.1

6
1
.1

1
0

1
.8

st
o
rm

-N
1
0
0
0
-s
1
0
0
1

6
1
.2

8
1
.4

5
1
.0

6
1
.1

8
1
.4

8
1
.4

1
0

1
.8

6
1
.1

6
1
.2

8
1
.4

6
1
.0

6
1
.1

8
1
.4

st
o
rm

-N
1
0
0
0
-s
1
0
0
2

6
1
.1

1
1

1
.8

6
1
.0

6
1
.0

7
1
.2

1
1

1
.9

1
0

1
.8

6
1
.1

6
1
.1

1
1

1
.9

6
1
.0

6
1
.1

7
1
.2

st
o
rm

-N
5
0
0
0
-s
5
0
0
0

3
3

1
.1

5
4

1
.9

2
9

1
.0

3
2

1
.1

4
0

1
.4

4
0

1
.4

5
6

1
.9

3
0

1
.1

3
3

1
.1

4
1

1
.4

3
0

1
.0

3
0

1
.1

4
0

1
.4

st
o
rm

-N
5
0
0
0
-s
5
0
0
1

3
3

1
.1

5
4

1
.9

2
9

1
.0

2
9

1
.0

3
7

1
.3

3
9

1
.3

5
2

1
.8

3
1

1
.1

3
4

1
.2

3
9

1
.3

3
0

1
.1

3
1

1
.1

3
7

1
.3

st
o
rm

-N
5
0
0
0
-s
5
0
0
2

3
7

1
.3

3
8

1
.3

3
0

1
.0

3
0

1
.0

5
6

1
.9

4
1

1
.4

4
7

1
.6

3
0

1
.0

3
7

1
.3

4
1

1
.4

2
9

1
.0

3
0

1
.0

5
6

1
.9

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

7
3

1
.3

7
9

1
.4

6
2

1
.1

5
8

1
.0

7
8

1
.4

1
2
7

2
.2

1
1
4

2
.0

6
5

1
.1

6
5

1
.1

1
2
7

2
.2

6
0

1
.0

6
4

1
.1

7
9

1
.4

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

7
6

1
.3

7
5

1
.2

6
0

1
.0

6
0

1
.0

7
9

1
.3

1
3
0

2
.2

1
6
3

2
.7

6
3

1
.0

6
4

1
.1

1
2
7

2
.1

6
0

1
.0

6
3

1
.0

7
9

1
.3

st
o
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

7
3

1
.3

7
5

1
.3

6
1

1
.1

5
6

1
.0

1
1
6

2
.1

8
2

1
.5

1
1
8

2
.1

6
7

1
.2

7
0

1
.2

8
2

1
.5

5
9

1
.0

6
6

1
.2

1
1
7

2
.1

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

1
6
7

1
.4

1
4
7

1
.2

1
3
2

1
.1

1
2
0

1
.0

1
4
8

1
.2

1
7
3

1
.4

2
5
6

2
.1

1
3
8

1
.1

1
4
0

1
.2

1
7
2

1
.4

1
3
9

1
.2

1
3
8

1
.1

1
4
7

1
.2

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

1
6
1

1
.3

1
5
7

1
.3

1
2
1

1
.0

1
2
2

1
.0

1
8
0

1
.5

1
8
6

1
.5

2
4
3

2
.0

1
2
7

1
.0

1
4
3

1
.2

1
8
5

1
.5

1
2
5

1
.0

1
2
7

1
.0

1
8
1

1
.5

st
o
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

1
6
0

1
.3

1
6
9

1
.4

1
3
0

1
.1

1
2
0

1
.0

1
5
3

1
.3

1
7
0

1
.4

2
4
0

2
.0

1
4
1

1
.2

1
4
8

1
.2

1
7
1

1
.4

1
2
7

1
.1

1
4
1

1
.2

1
5
3

1
.3

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
0

3
6

2
.5

1
5

1
.0

2
1

1
.4

3
3

2
.2

1
5

1
.0

2
1

1
.4

3
0

2
.1

2
2

1
.5

2
0

1
.4

1
8

1
.3

2
7

1
.8

2
0

1
.3

1
6

1
.1

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
1

3
7

2
.6

1
4

1
.0

1
9

1
.3

3
2

2
.2

1
6

1
.1

1
8

1
.2

3
1

2
.2

1
8

1
.3

1
9

1
.3

1
7

1
.2

2
9

2
.0

2
1

1
.5

1
5

1
.1

2
0
te
rm

-N
1
0
0
0
-s
1
0
0
2

3
7

3
.0

1
5

1
.2

2
1

1
.7

3
3

2
.7

1
5

1
.2

1
8

1
.4

3
2

2
.6

2
1

1
.7

1
9

1
.5

1
8

1
.4

2
5

2
.0

2
0

1
.6

1
2

1
.0

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
0

1
9
9

2
.8

8
1

1
.1

1
0
6

1
.5

1
5
6

2
.2

7
1

1
.0

8
9

1
.3

1
5
7

2
.2

9
4

1
.3

9
1

1
.3

9
4

1
.3

1
3
4

1
.9

1
0
4

1
.5

8
7

1
.2

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
1

1
9
7

3
.0

7
8

1
.2

1
0
6

1
.6

1
5
8

2
.4

6
9

1
.0

8
7

1
.3

1
3
7

2
.1

1
0
3

1
.6

9
7

1
.5

9
8

1
.5

1
4
6

2
.2

1
0
1

1
.5

6
6

1
.0

2
0
te
rm

-N
5
0
0
0
-s
5
0
0
2

1
8
2

2
.5

8
3

1
.1

1
0
1

1
.4

1
6
1

2
.2

8
8

1
.2

9
2

1
.3

1
4
4

2
.0

1
0
2

1
.4

8
3

1
.1

9
2

1
.3

1
3
2

1
.8

9
9

1
.4

7
3

1
.0

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
0

4
1
1

3
.0

1
3
6

1
.0

2
0
6

1
.5

3
5
2

2
.6

1
4
5

1
.1

1
9
2

1
.4

2
8
5

2
.1

2
0
8

1
.5

2
0
1

1
.5

1
5
8

1
.2

3
0
2

2
.2

2
1
7

1
.6

1
4
0

1
.0

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
1

4
0
9

2
.5

1
6
6

1
.0

2
1
8

1
.4

3
8
1

2
.4

1
6
1

1
.0

1
6
3

1
.0

3
4
2

2
.1

2
1
3

1
.3

2
0
4

1
.3

2
1
0

1
.3

3
0
5

1
.9

1
9
7

1
.2

1
7
3

1
.1

2
0
te
rm

-N
1
0
0
0
0
-s
1
0
0
0
2

3
8
8

2
.6

1
5
9

1
.1

2
3
1

1
.6

3
0
9

2
.1

1
4
7

1
.0

1
8
9

1
.3

2
7
3

1
.9

2
1
4

1
.5

2
0
6

1
.4

1
5
5

1
.1

3
1
3

2
.1

2
1
4

1
.5

1
5
2

1
.0

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
0

8
6
0

3
.3

2
5
7

1
.0

5
0
1

1
.9

8
0
2

3
.1

3
0
6

1
.2

3
3
9

1
.3

6
3
5

2
.5

4
8
8

1
.9

4
4
4

1
.7

4
4
9

1
.7

6
8
5

2
.7

4
9
0

1
.9

3
0
9

1
.2

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
1

9
8
5

3
.5

3
1
1

1
.1

4
7
6

1
.7

7
9
5

2
.8

2
8
4

1
.0

4
2
7

1
.5

6
1
0

2
.1

5
1
2

1
.8

4
4
1

1
.6

3
5
0

1
.2

6
8
4

2
.4

4
3
6

1
.5

3
2
8

1
.2

2
0
te
rm

-N
2
0
0
0
0
-s
2
0
0
0
2

8
9
7

3
.2

2
8
1

1
.0

4
6
6

1
.7

7
4
3

2
.6

3
1
5

1
.1

3
8
9

1
.4

7
1
0

2
.5

4
5
8

1
.6

4
3
9

1
.6

3
9
0

1
.4

6
9
7

2
.5

4
6
5

1
.7

2
9
8

1
.1

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
0

4
2

1
.9

2
2

1
.0

2
5

1
.1

3
2

1
.5

2
4

1
.1

2
7

1
.3

3
6

1
.7

2
4

1
.1

2
6

1
.2

2
4

1
.1

3
0

1
.4

2
4

1
.1

2
4

1
.1

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
1

4
0

1
.9

2
2

1
.0

2
5

1
.2

3
2

1
.5

2
2

1
.0

2
5

1
.2

3
3

1
.5

2
4

1
.1

2
5

1
.2

2
6

1
.2

3
0

1
.4

2
3

1
.1

2
2

1
.0

F
le
et
2
0
-N

1
0
0
0
-s
1
0
0
2

4
3

1
.9

2
3

1
.0

2
5

1
.1

3
3

1
.4

2
5

1
.1

2
8

1
.2

3
6

1
.5

2
6

1
.1

2
6

1
.1

2
9

1
.2

3
2

1
.3

2
5

1
.1

2
4

1
.0

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
0

2
1
8

2
.0

1
1
4

1
.0

1
2
6

1
.1

1
6
5

1
.5

1
1
0

1
.0

1
3
0

1
.2

1
7
9

1
.6

1
2
6

1
.1

1
2
7

1
.2

1
2
8

1
.2

1
5
2

1
.4

1
2
9

1
.2

1
2
2

1
.1

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
1

2
0
9

1
.7

1
2
1

1
.0

1
2
5

1
.0

1
6
0

1
.3

1
2
3

1
.0

1
4
3

1
.2

1
8
8

1
.6

1
2
2

1
.0

1
2
6

1
.0

1
2
7

1
.0

1
5
1

1
.2

1
2
2

1
.0

1
2
5

1
.0

F
le
et
2
0
-N

5
0
0
0
-s
5
0
0
2

2
0
5

1
.7

1
2
5

1
.0

1
2
6

1
.0

1
6
3

1
.3

1
2
2

1
.0

1
2
6

1
.0

1
7
2

1
.4

1
2
6

1
.0

1
2
4

1
.0

1
4
0

1
.1

1
5
2

1
.2

1
2
2

1
.0

1
2
6

1
.0

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
0

4
2
6

1
.9

2
3
2

1
.0

2
6
4

1
.2

3
4
3

1
.5

2
2
6

1
.0

2
5
3

1
.1

3
6
7

1
.6

2
5
4

1
.1

2
7
3

1
.2

2
6
1

1
.2

3
1
5

1
.4

2
5
5

1
.1

2
4
8

1
.1

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
1

4
6
7

2
.0

2
4
9

1
.1

2
5
0

1
.1

3
4
5

1
.5

2
6
4

1
.1

2
7
9

1
.2

3
7
6

1
.6

2
5
6

1
.1

2
5
9

1
.1

2
6
9

1
.2

3
1
0

1
.3

2
5
8

1
.1

2
3
0

1
.0

F
le
et
2
0
-N

1
0
0
0
0
-s
1
0
0
0
2

4
2
6

1
.9

2
2
8

1
.0

2
5
8

1
.1

3
2
4

1
.4

2
2
6

1
.0

2
9
0

1
.3

3
9
4

1
.7

2
5
4

1
.1

2
5
9

1
.1

2
9
4

1
.3

3
0
7

1
.4

2
5
2

1
.1

2
6
5

1
.2

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
0

8
8
6

1
.7

5
5
6

1
.1

5
2
0

1
.0

6
9
5

1
.3

5
8
6

1
.1

6
1
2

1
.2

8
8
5

1
.7

5
4
3

1
.0

5
2
5

1
.0

6
3
9

1
.2

6
3
5

1
.2

5
2
4

1
.0

5
7
7

1
.1

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
1

8
5
6

1
.8

4
8
8

1
.0

5
2
3

1
.1

6
7
1

1
.4

5
0
9

1
.1

5
4
4

1
.1

7
8
3

1
.6

5
3
0

1
.1

5
4
1

1
.1

5
3
9

1
.1

6
3
7

1
.3

5
1
8

1
.1

4
7
6

1
.0

F
le
et
2
0
-N

2
0
0
0
0
-s
2
0
0
0
2

8
8
5

1
.7

5
4
5

1
.0

5
4
6

1
.0

6
8
1

1
.3

5
5
4

1
.0

6
6
2

1
.3

8
1
9

1
.6

5
2
8

1
.0

5
6
2

1
.1

6
7
0

1
.3

6
7
1

1
.3

5
5
1

1
.0

5
7
6

1
.1

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
0

1
4
0

1
.9

8
0

1
.1

8
3

1
.1

1
1
5

1
.5

7
5

1
.0

7
9

1
.1

1
2
2

1
.6

8
5

1
.1

8
6

1
.1

7
9

1
.1

1
0
8

1
.4

8
4

1
.1

7
5

1
.0

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
1

1
4
9

2
.0

7
6

1
.0

9
2

1
.2

1
1
9

1
.6

7
9

1
.0

9
2

1
.2

1
6
8

2
.2

9
2

1
.2

9
0

1
.2

9
2

1
.2

1
1
4

1
.5

9
2

1
.2

7
9

1
.0

p
ro
d
u
ct
-N

1
0
0
0
-s
1
0
0
2

1
3
5

2
.0

6
8

1
.0

8
2

1
.2

1
2
7

1
.9

1
0
8

1
.6

8
4

1
.2

1
4
6

2
.1

9
3

1
.4

8
0

1
.2

8
5

1
.2

1
0
6

1
.6

9
3

1
.4

1
0
9

1
.6

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
0

7
3
4

1
.9

3
8
0

1
.0

4
5
4

1
.2

6
0
7

1
.6

3
8
2

1
.0

4
5
8

1
.2

8
3
5

2
.2

4
3
2

1
.1

4
5
9

1
.2

4
4
8

1
.2

5
5
4

1
.5

4
3
9

1
.2

3
8
2

1
.0

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
1

7
8
7

2
.0

3
8
7

1
.0

4
3
8

1
.1

5
8
0

1
.5

4
2
1

1
.1

4
6
8

1
.2

8
8
0

2
.3

4
4
9

1
.2

4
4
8

1
.2

4
8
8

1
.3

5
7
4

1
.5

4
4
9

1
.2

3
9
2

1
.0

p
ro
d
u
ct
-N

5
0
0
0
-s
5
0
0
2

7
9
7

2
.1

3
8
3

1
.0

4
7
4

1
.2

6
2
7

1
.6

4
1
1

1
.1

4
5
4

1
.2

7
3
7

1
.9

4
6
3

1
.2

4
8
3

1
.3

4
3
7

1
.1

5
8
5

1
.5

4
7
8

1
.2

4
0
5

1
.1

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
0

1
6
2
0

2
.3

7
1
6

1
.0

9
5
5

1
.3

1
2
8
0

1
.8

7
4
0

1
.0

9
2
6

1
.3

1
5
1
0

2
.1

8
6
6

1
.2

8
7
5

1
.2

9
1
0

1
.3

1
1
6
0

1
.6

8
6
3

1
.2

7
4
0

1
.0

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
1

1
4
0
0

2
.0

6
9
6

1
.0

9
2
1

1
.3

1
1
6
0

1
.7

7
7
1

1
.1

8
8
9

1
.3

1
6
2
0

2
.3

9
1
3

1
.3

9
0
1

1
.3

8
9
7

1
.3

1
1
3
0

1
.6

8
9
4

1
.3

7
7
2

1
.1

p
ro
d
u
ct
-N

1
0
0
0
0
-s
1
0
0
0
2

1
5
5
0

2
.2

6
9
7

1
.0

8
8
0

1
.3

1
1
8
0

1
.7

7
4
3

1
.1

9
4
8

1
.4

1
4
7
0

2
.1

8
6
2

1
.2

8
9
2

1
.3

9
0
9

1
.3

1
1
6
0

1
.7

8
6
8

1
.2

8
0
2

1
.2

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
0

3
3
3
0

1
.9

1
7
5
0

1
.0

2
0
7
0

1
.2

2
6
7
0

1
.5

1
8
2
0

1
.0

2
1
2
0

1
.2

3
6
1
0

2
.1

2
1
2
0

1
.2

2
2
0
0

1
.3

2
1
3
0

1
.2

2
6
0
0

1
.5

2
1
5
0

1
.2

1
7
9
0

1
.0

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
1

3
2
3
0

2
.0

1
6
2
0

1
.0

1
8
8
0

1
.2

2
5
5
0

1
.6

1
6
4
0

1
.0

1
9
3
0

1
.2

3
0
4
0

1
.9

1
8
6
0

1
.1

1
8
4
0

1
.1

1
9
2
0

1
.2

2
4
3
0

1
.5

1
8
7
0

1
.2

1
7
4
0

1
.1

p
ro
d
u
ct
-N

2
0
0
0
0
-s
2
0
0
0
2

3
5
4
0

2
.2

1
6
4
0

1
.0

1
9
3
0

1
.2

2
7
3
0

1
.7

1
6
2
0

1
.0

1
9
9
0

1
.2

3
4
8
0

2
.1

1
9
6
0

1
.2

2
0
6
0

1
.3

2
1
1
0

1
.3

2
4
1
0

1
.5

2
0
6
0

1
.3

1
6
2
0

1
.0

42

Table 11: Final results, the best stabilized Benders by batch algorithm compared to all stabilized
benchmark methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle monocut multicut 1% CutAggr 5% CutAggr CutAggr α “ 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 0.07 1.0 1 17.3 1 15.6 2 29.4 0.71 10.1 1 14.4 1.00 14.2
LandS-N1000-s1001 0.08 1.0 1 17.0 0.59 7.4 1 15.0 0.74 9.3 1 12.7 1 12.8
LandS-N1000-s1002 0.07 1.0 1 17.8 0.99 14.1 1 15.6 0.69 9.9 0.91 13.0 0.88 12.5
LandS-N5000-s5000 1 1.0 8 5.7 8 6.3 10 7.6 5 3.5 5 3.9 4 3.3
LandS-N5000-s5001 0.41 1.0 7 17.2 8 19.4 6 15.5 5 11.2 6 13.5 5 13.2
LandS-N5000-s5002 1 1.0 6 4.2 8 5.8 12 8.4 4 3.2 6 4.3 5 3.5
LandS-N10000-s10000 0.96 1.0 14 14.5 24 24.8 11 11.6 9 9.4 12 12.4 9 9.4
LandS-N10000-s10001 1 1.0 13 12.1 24 22.1 13 11.9 10 9.4 10 9.3 9 8.7
LandS-N10000-s10002 0.97 1.0 15 15.5 23 23.8 23 23.4 10 10.3 11 11.7 9 9.0
LandS-N20000-s20000 7 1.0 28 4.1 71 10.4 42 6.1 22 3.2 26 3.8 21 3.1
LandS-N20000-s20001 2 1.0 26 12.4 67 32.4 40 19.0 22 10.5 21 9.9 21 10.3
LandS-N20000-s20002 7 1.0 29 4.0 48 6.7 43 6.0 22 3.1 21 2.9 20 2.7
gbd-N1000-s1000 0.03 1.0 2 58.1 1 42.2 3 88.7 0.97 32.2 2 57.0 0.81 26.9
gbd-N1000-s1001 0.03 1.0 2 78.4 1 42.0 2 53.0 1 46.8 2 50.9 1 33.6
gbd-N1000-s1002 0.05 1.0 2 46.9 1 25.4 2 34.6 1 21.8 1 26.5 0.82 16.4
gbd-N5000-s5000 0.15 1.0 8 55.7 7 48.5 13 89.3 7 48.3 9 58.5 4 24.4
gbd-N5000-s5001 0.18 1.0 11 61.4 11 63.7 9 50.5 7 37.2 7 41.3 4 20.1
gbd-N5000-s5002 0.17 1.0 11 63.1 12 70.5 9 52.0 7 39.8 7 41.5 5 29.8
gbd-N10000-s10000 0.32 1.0 23 70.9 19 57.9 30 93.1 17 54.5 18 54.8 7 23.0
gbd-N10000-s10001 0.35 1.0 26 74.3 32 91.1 18 50.5 14 39.2 17 47.6 7 21.0
gbd-N10000-s10002 0.37 1.0 23 63.4 20 53.5 15 41.5 16 43.4 18 48.6 8 22.4
gbd-N20000-s20000 1 1.0 45 40.1 107 94.6 56 49.7 30 26.5 34 30.1 19 16.5
gbd-N20000-s20001 0.86 1.0 47 54.1 72 83.4 55 64.5 30 34.7 31 35.9 17 19.4
gbd-N20000-s20002 0.75 1.0 39 52.3 69 91.4 51 67.6 31 41.8 38 51.3 15 19.6
ssn-N1000-s1000 32 7.9 97 24.0 4 1.0 187 46.4 9 2.3 19 4.8 8 1.9
ssn-N1000-s1001 32 5.2 85 13.6 6 1.0 117 18.7 10 1.5 19 3.1 8 1.3
ssn-N1000-s1002 31 4.9 87 13.8 6 1.0 106 16.9 10 1.6 19 3.0 8 1.3
ssn-N5000-s5000 293 8.3 621 17.6 35 1.0 936 26.5 67 1.9 139 3.9 47 1.3
ssn-N5000-s5001 327 9.4 719 20.6 35 1.0 597 17.1 69 2.0 128 3.7 46 1.3
ssn-N5000-s5002 311 14.1 631 28.5 22 1.0 852 38.5 74 3.4 133 6.0 49 2.2
ssn-N10000-s10000 1271 15.1 1440 17.1 86 1.0 1937 23.0 167 2.0 319 3.8 84 1.0
ssn-N10000-s10001 1332 25.0 1613 30.2 53 1.0 1261 23.6 185 3.5 318 6.0 98 1.8
ssn-N10000-s10002 1064 20.8 1451 28.3 51 1.0 1195 23.3 161 3.1 298 5.8 90 1.8
ssn-N20000-s20000 2592 14.3 3232 17.9 245 1.4 3791 21.0 441 2.4 729 4.0 181 1.0
ssn-N20000-s20001 2070 10.9 2986 15.7 237 1.2 2460 12.9 365 1.9 743 3.9 190 1.0
ssn-N20000-s20002 3195 15.9 3108 15.4 246 1.2 2332 11.6 395 2.0 735 3.6 201 1.0
storm-N1000-s1000 41 5.4 14 1.9 10 1.3 11 1.4 8 1.0 10 1.3 8 1.0
storm-N1000-s1001 41 6.0 16 2.2 7 1.0 21 3.0 7 1.0 10 1.4 7 1.1
storm-N1000-s1002 41 6.2 15 2.3 11 1.7 12 1.8 7 1.1 9 1.4 7 1.0
storm-N5000-s5000 348 10.7 74 2.3 41 1.3 63 1.9 52 1.6 53 1.6 32 1.0
storm-N5000-s5001 294 8.4 78 2.2 38 1.1 61 1.7 51 1.5 53 1.5 35 1.0
storm-N5000-s5002 305 10.1 76 2.5 43 1.4 63 2.1 45 1.5 51 1.7 30 1.0
storm-N10000-s10000 808 12.7 140 2.2 108 1.7 212 3.3 94 1.5 100 1.6 64 1.0
storm-N10000-s10001 732 11.5 149 2.3 105 1.6 201 3.2 104 1.6 117 1.8 64 1.0
storm-N10000-s10002 751 11.3 147 2.2 161 2.4 189 2.8 99 1.5 114 1.7 66 1.0
storm-N20000-s20000 2510 18.1 316 2.3 515 3.7 259 1.9 218 1.6 237 1.7 139 1.0
storm-N20000-s20001 2362 17.2 266 1.9 633 4.6 251 1.8 202 1.5 230 1.7 137 1.0
storm-N20000-s20002 2297 17.0 283 2.1 570 4.2 246 1.8 214 1.6 228 1.7 135 1.0
20term-N1000-s1000 14 1.2 197 17.3 27 2.4 128 11.3 24 2.1 41 3.6 11 1.0
20term-N1000-s1001 14 1.4 214 22.1 43 4.5 74 7.6 26 2.7 46 4.8 10 1.0
20term-N1000-s1002 14 1.3 241 23.2 38 3.7 139 13.4 31 3.0 45 4.4 10 1.0
20term-N5000-s5000 83 1.6 994 19.1 581 11.2 661 12.7 188 3.6 271 5.2 52 1.0
20term-N5000-s5001 80 1.8 1059 24.4 423 9.7 650 14.9 206 4.7 277 6.4 43 1.0
20term-N5000-s5002 84 1.6 1078 20.1 443 8.3 732 13.7 198 3.7 257 4.8 54 1.0
20term-N10000-s10000 205 2.0 2305 22.8 2491 24.7 863 8.5 465 4.6 649 6.4 101 1.0
20term-N10000-s10001 199 2.0 2647 26.3 3382 33.6 1389 13.8 491 4.9 560 5.6 101 1.0
20term-N10000-s10002 194 1.9 2400 24.1 2543 25.5 1317 13.2 467 4.7 569 5.7 100 1.0
20term-N20000-s20000 457 2.4 4562 23.9 13423 70.4 1834 9.6 1007 5.3 1412 7.4 191 1.0
20term-N20000-s20001 457 2.2 4378 20.9 10267 49.0 1680 8.0 980 4.7 1407 6.7 210 1.0
20term-N20000-s20002 451 2.4 5588 29.3 9286 48.7 1748 9.2 1043 5.5 1295 6.8 191 1.0
Fleet20-N1000-s1000 24 1.5 104 6.2 61 3.7 71 4.3 27 1.6 42 2.5 17 1.0
Fleet20-N1000-s1001 23 1.3 103 6.0 34 2.0 103 6.0 26 1.5 39 2.3 17 1.0
Fleet20-N1000-s1002 22 1.2 114 6.3 55 3.1 106 5.9 25 1.4 43 2.4 18 1.0
Fleet20-N5000-s5000 266 3.6 485 6.5 933 12.5 552 7.4 181 2.4 239 3.2 75 1.0
Fleet20-N5000-s5001 273 3.6 509 6.6 541 7.1 331 4.3 172 2.2 264 3.4 77 1.0
Fleet20-N5000-s5002 267 3.6 506 6.8 682 9.2 535 7.2 198 2.7 248 3.4 74 1.0
Fleet20-N10000-s10000 784 5.3 988 6.7 3540 24.1 1150 7.8 435 3.0 598 4.1 147 1.0
Fleet20-N10000-s10001 816 5.5 1040 7.0 4750 32.1 1230 8.3 422 2.9 550 3.7 148 1.0
Fleet20-N10000-s10002 826 5.7 984 6.8 2950 20.5 708 4.9 448 3.1 623 4.3 144 1.0
Fleet20-N20000-s20000 2488 8.2 2630 8.7 14900 49.3 2470 8.2 1070 3.5 1270 4.2 302 1.0
Fleet20-N20000-s20001 2469 8.0 2910 9.4 14100 45.5 1490 4.8 945 3.0 1240 4.0 310 1.0
Fleet20-N20000-s20002 2381 7.5 2650 8.4 22000 69.4 1380 4.4 1040 3.3 1430 4.5 317 1.0
productLarge-N1000-s1000 185 2.5 479 6.4 75 1.0 480 6.4 108 1.4 180 2.4 76 1.0
productLarge-N1000-s1001 186 2.4 718 9.2 83 1.1 539 6.9 124 1.6 179 2.3 78 1.0
productLarge-N1000-s1002 165 2.2 677 9.0 84 1.1 519 6.9 108 1.4 189 2.5 75 1.0
productLarge-N5000-s5000 1374 4.5 3290 10.8 1070 3.5 2840 9.3 820 2.7 1460 4.8 305 1.0
productLarge-N5000-s5001 3073 9.2 3150 9.4 1100 3.3 2550 7.6 724 2.2 1330 4.0 335 1.0
productLarge-N5000-s5002 1916 6.5 3160 10.7 1210 4.1 2680 9.1 817 2.8 1350 4.6 295 1.0
productLarge-N10000-s10000 4991 8.8 6910 12.2 4940 8.7 5750 10.2 2030 3.6 3130 5.5 565 1.0
productLarge-N10000-s10001 3850 7.2 6670 12.5 6860 12.8 5920 11.1 2000 3.7 2810 5.3 534 1.0
productLarge-N10000-s10002 4351 7.8 7940 14.3 4270 7.7 5520 9.9 1880 3.4 3460 6.2 556 1.0
productLarge-N20000-s20000 14757 12.9 13200 11.6 `8 ą43.5 12700 11.1 4700 4.1 8300 7.3 1140 1.0
productLarge-N20000-s20001 14346 12.6 13900 12.2 `8 ą46.7 11700 10.3 4690 4.1 7580 6.6 1140 1.0
productLarge-N20000-s20002 17287 15.2 15800 13.9 35600 31.2 12600 11.1 5270 4.6 8070 7.1 1140 1.0

43

	Introduction
	Related work
	The Benders by batch algorithm
	Stabilization of the Benders by batch algorithm
	The stabilized Benders by batch algorithm
	A sufficient condition for the convergence of the stabilized Benders by batch algorithm
	Two primal stabilization schemes satisfying the convergence property

	Experimental design and numerical results
	Instances
	Experimental Design
	Numerical results
	Performance of BbB without stabilization
	Impact of the stabilization on BbB
	Comparison with state-of-the-art methods
	Sensitivity of BbB to parameters

	Conclusion
	Proofs of Section 3 - The Benders by batch algorithm
	Proof of Proposition 1
	Proof of Proposition 2

	Proofs of Section 4 - Stabilization of the Benders by batch algorithm
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 6
	Proof of Proposition 7

	Detailed benchmark algorithms
	Detailed numerical results

