
HAL Id: hal-03286135
https://hal.science/hal-03286135v2

Preprint submitted on 6 Jan 2022 (v2), last revised 15 Dec 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Benders by batch algorithm: design and
stabilization of an enhanced algorithm to solve multicut
Benders reformulation of two-stage stochastic programs

Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel
Ruiz

To cite this version:
Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel Ruiz. The Benders
by batch algorithm: design and stabilization of an enhanced algorithm to solve multicut Benders
reformulation of two-stage stochastic programs. 2022. �hal-03286135v2�

https://hal.science/hal-03286135v2
https://hal.archives-ouvertes.fr

The Benders by batch algorithm: design and stabilization of an

enhanced algorithm to solve multicut Benders reformulation of

two-stage stochastic programs

Xavier Blanchot1,2 François Clautiaux1 Boris Detienne1 Aurélien Froger1

Manuel Ruiz2

January 6, 2022

1 Université de Bordeaux, UMR CNRS 5251, Inria Bordeaux Sud-Ouest, Talence,France
2 RTE, Paris La Défense, France

Abstract

This paper introduces a new exact algorithm to solve two-stage stochastic linear programs.

Based on the multicut Benders reformulation of such problems, with one subproblem for each

scenario, this method relies on a partition of the subproblems into batches. By detecting as soon

as possible the non-optimality of a first-stage candidate, it solves only a small proportion of the

subproblems at most iterations. We also propose a general framework to stabilize our algorithm,

and show its finite convergence and exact behavior. We report an extensive computational study on

large-scale instances of stochastic optimization literature that shows the efficiency of the proposed

algorithm compared to six alternative algorithms from the literature. We also obtain significant

additional computational time savings using the primal stabilization schemes.

Keywords— L arge-scale optimization, Benders Decomposition, Stochastic programming, Cut aggrega-

tion

1 Introduction

Large-scale two-stage stochastic linear programs arise in many applications such as network design,

telecommunications network planning, air freight scheduling, power generation planning. In such

problems, first-stage decisions (also called here-and-know decisions) are to be made before knowing

the value taken by random parameters, then second-stage decisions (also called wait and see decisions)

are made after observing the value taken by each random parameter. In practice, many approaches

introduced to solve those problems are based on decomposition techniques (Ruszczyński, 1997).

In this paper, we study two-stage stochastic linear programs. We assume that the probability

distribution is given by a finite set of scenarios and focus on problems with a large number of scenarios.

Email addresses: xavier.blanchot@rte-france.com, xavier.blanchot@u-bordeaux.fr (Xavier Blanchot),
francois.clautiaux@math.u-bordeaux.fr (François Clautiaux), boris.detienne@math.u-bordeaux.fr (Boris Deti-
enne), aurelien.froger@u-bordeaux.fr (Aurélien Froger), manuel.ruiz@rte-france.com (Manuel Ruiz)

1

We consider the following linear program with a scenario block structure:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min cJx`
ÿ

sPS

psg
J
s ys

s.t. : Wsys “ ds ´ Tsx, @s P S

ys P Rn2
` , @s P S

x P X

(1)

where x P Rn1 , c P Rn1 , S is a finite set of scenarios, ps P R` is a positive weight associated

with a scenario s P S (e.g., a probability), gs P Rn2 , Ws P Rmˆn2 , Ts P Rmˆn1 , ds P Rm, X Ă Rn1

is a polyhedral set. Variables x are called first-stage variables and variables ys are called second-

stage variables or recourse variables. Problem (1) is called the extensive formulation of a two-stage

stochastic problem.

When the number of scenarios is large, problem (1) becomes intractable for MIP solvers. Its

reformulation as
$

’

&

’

%

min cJx`
ÿ

sPS

psϕpx, sq

s.t. x P X

(2)

where for every s P S and every x P X,

ϕpx, sq “

$

’

’

’

&

’

’

’

%

min
y

gJ
s y

s.t. Wsy “ ds ´ Tsx

y P Rn2
`

(3)

makes the use of decomposition methods attractive. If we fix the first-stage variables to x̂ P X, then

the resulting problem becomes separable according to the scenarios. We denote by pSP px̂, sqq the

subproblem associated with a scenario s P S and by ϕpx̂, sq its value.

Let Πs “ tπ P Rm|WJ
s π ď gsu be the polyhedron associated with the dual of pSP px̂, sqq, which

does not depend on first-stage variables x. We denote by Rays(Πs) the set of extreme rays of Πs,

and by Vert(Πs) the set of extreme points of Πs. By Farkas’ Lemma, we can write an expression

of the domain of ϕp., sq as dom
´

ϕp., sq
¯

“ tx P Rn1 |rJ
s pds ´ Tsxq ď 0, @rs P RayspΠsqu. Then we

can replace in formulation (2) the polyhedral application x ÞÑ ϕpx, sq by its outer linearization on its

domain. Using an epigraph variable θs for every s P S, we obtain the multicut Benders reformulation

(Birge and Louveaux, 1988) of problem (1):

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
x,θ

cJx`
ÿ

sPS

psθs

s.t. : θs ě πJ
s pds ´ Tsxq, @s P S, @πs P VertpΠsq piq

0 ě rJ
s pds ´ Tsxq, @s P S, @rs P RayspΠsq piiq

x P X, θ P RCardpSq

(4)

Constraints piq are called optimality cuts, and constraints piiq, feasibility cuts.

The classical version of the multicut Benders decomposition algorithm (see Algorithm 1) consists

in the relaxation of constraints piq and piiq and an iterative scheme to add them until convergence is

proven. As the number of extreme rays and vertices of polyhedra Πs is finite, for every s P S, the

2

total number of optimality and feasibility cuts is finite. Then, this algorithm converges in a finite

number of iterations. The relaxation of (4) at iteration k of the algorithm is called the relaxed master

program, denoted by pRMP qpkq and its solution is denoted by px̌pkq, pθ̌
pkq
s qsPSq.

Algorithm 1: Classical version of the multicut Benders decomposition algorithm

Parameters: ϵ ą 0 the selected optimality gap
1 Initialization: k Ð 0, UBp0q Ð `8, LBp0q Ð ´8

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 Solve pRMP qpkq and retrieve px̌pkq, pθ̌
pkq
s qsPSq

5 LBpkq Ð cJx̌pkq `
ř

sPS psθ̌
pkq
s

6 for s P S do

7 Solve pSP px̌pkq, sqq and retrieve πs P VertpΠsq or πs P RayspΠsq

8 if pSP px̌pkq, sqq is feasible then

9 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

10 else

11 Add 0 ě πJ
s pds ´ Tsxq to pRMP qpkq

12 if pSP px̌pkq, sqq is feasible @s P S then

13 UBpkq Ð min
´

UBpk´1q, cJx̌pkq `
ř

sPS psπ
J
s pds ´ Tsx̌

pkqq

¯

14 pRMP qpk`1q Ð pRMP qpkq

15 Return x̌pkq

When the total number of subproblems is large, solving all the subproblems at each iteration, like

in Algorithm 1, can be time-consuming. To overcome this issue, we introduce a new exact algorithm

to solve problem (1), referred to as the Benders by batch algorithm. The term batch refers to a given

fixed partition of all subproblems into separate batches. We propose a new stopping criterion that

allows us to identify a non-optimal solution without necessarily having to solve all the subproblems.

As a result, only few subproblems are generally solved at a first-stage candidate solution. To prevent

introducing too many cuts in the relaxed master program, the algorithm can use cut aggregation,

thus generating a single cut from all subproblems that belong to an identical batch. If the number of

batches is equal to one, the Benders by batch algorithm is equivalent to the classical version of the

Benders decomposition algorithm (multicut or monocut, depending on the use of cut aggregation).

Unlike several existing methods based on similar ideas (Wets, 1983; Dantzig and Infanger, 1991;

Higle and Sen, 1991; Oliveira et al., 2011), our algorithm is valid for any stochastic linear problem

formulated with scenarios, is exact, has finite convergence, and only requires solving linear programs.

We develop a generic framework to stabilize the Benders by batch algorithm and prove the finite

convergence and exact behavior of the stabilized algorithm. We propose two primal stabilization

schemes for the algorithm based on in-out separation strategies (Ben-Ameur and Neto, 2007). Our

method can benefit from advanced cut aggregation schemes and is compatible with classical dual

stabilization techniques (Magnanti and Wong, 1981; Papadakos, 2008; Sherali and Lunday, 2013).

The general concept of oracles with on-demand accuracy (de Oliveira and Sagastizábal, 2014) might

embed the core idea of the Benders by batch algorithm. However, it requires that the oracle gives a

subgradient which belongs to an approximate subdifferential of the objective function at each iteration

which is not required in the Benders by batch algorithm, and may not be satisfied in the general case.

The contributions of the paper can be summarized as follows:

• We propose a new exact algorithm to solve the Benders reformulation of two-stage linear stochas-

3

tic programs with finite probability distributions, without any other assumption on the uncer-

tainty. This algorithm is based on a sequential stopping criterion relying on a partition of the

subproblems. This stopping criterion allows the algorithm to solve only a few subproblems at

most iterations by detecting the non-optimality of a first-stage candidate solution early in the

subproblems resolution process.

• We develop a primal stabilization of the Benders by batch algorithm. We state sufficient con-

ditions for the stabilized algorithm to be exact and have a finite convergence and provide two

effective primal stabilization schemes based on the in-out separation approach.

• We perform an extensive numerical study showing the effectiveness of the developed algorithm on

some classical stochastic instances of the literature compared to classical implementations of the

monocut and multicut Benders decomposition algorithm, with and without in-out stabilization,

and a level bundle method.

The paper is organized as follows. Section 2 reviews the literature on acceleration techniques for

Benders decomposition, with a focus on the stochastic case, and on closely related methods. In section

3, we present the Benders by batch algorithm. Section 4 presents a general framework to stabilize

our algorithm and two stabilization schemes: the first one based on the classical in-out separation

scheme, and the second one based on exponential moving averages. Section 5 presents extensive

computational experiments. Then, section 6 concludes and outlines perspectives.

2 Related work

The classical version of the Benders decomposition algorithm can be slow to converge. Researchers

have proposed several techniques to accelerate its convergence. We first present classical primal and

dual stabilization methods, which are the most widespread and general methods to accelerate the Ben-

ders decomposition algorithm. We then present different methods specific to stochastic programming,

with a focus on methods that avoid the systematic resolution to all the subproblems.

A well-known downside of cutting planes methods, and therefore of the Benders decomposition

algorithm, is the oscillation of the first-stage variables. Because of the relaxation of all the constraints

related to the subproblems, the solutions of the relaxed master programs might be far from the optimal

solution to the initial problem. This might lead to a large amount of time spent in evaluating poor

quality solutions in the early iterations. To our knowledge, successful methods proposed so far are

either inspired by bundle methods (Zverovich et al., 2012; Linderoth and Wright, 2003; Wolf et al.,

2014), or by in-out separation approaches (Ben-Ameur and Neto, 2007). Those methods try to

restrict the search of an optimal solution close to a given first-stage solution. This solution is called

stability center in the case of bundle methods, or in point in the case of in-out stabilization. On

the one hand, many authors proposed quadratic stabilization techniques, such as Ruszczyński (1986),

who added a quadratic proximal term in the objective function of the relaxed master program, or

Zverovich et al. (2012), Wolf et al. (2014) and van Ackooij et al. (2017), who used quadratic level

stabilizations. Linderoth and Wright (2003) used a trust-region bundle method and proposed to

use the infinite norm with an effective asynchronous parallelized framework. On the other hand,

the in-out separation scheme performs a linear search between the in point and the solution to the

relaxed master program, and it can rely on the practical effectiveness of linear programming solvers.

4

The in-out separation approach has been applied successfully in a cutting plane algorithm to solve a

survivable network design problem (Ben-Ameur and Neto, 2007), in column generation (Pessoa et al.,

2013), in a branch-and-cut algorithm based on a Benders decomposition approach to solve facility

location problems (Fischetti et al., 2016), and in a cutting plane algorithm applied to disjunctive

optimization (Fischetti and Salvagnin, 2010).

Another family of acceleration techniques focuses on the quality of the optimality cuts. The

polyhedral structure of the second-stage function implies a degeneracy of the dual subproblem. In

the singular points of this function, many equivalent extreme dual solutions exist for the subproblem,

each one defining a different optimality cut. The choice of a ”good” dual solution can improve

dramatically the convergence of the algorithm. Magnanti and Wong (1981) proposed to solve the

dual of the subproblem twice in order to find the solution which maximizes the objective function at

a fixed core point of the master problem. A different choice of the core point leads to a different cut.

A cut derived in this framework is called a Pareto-optimal cut. Papadakos (2008) proposed a less

restrictive way to choose the core point, and a practical framework to update it. Sherali and Lunday

(2013) improved the method, bypassing the need to solve the subproblem twice.

In the case of stochastic programming, formulations rely either on an epigraph variable for every

subproblem (see formulation (4)) or on a single epigraph variable for all the subproblems, also called

L-shaped method (Van Slyke and Wets, 1969). The former formulation is referred to as the multicut

Benders reformulation, whereas the latter is known as the monocut Benders reformulation. The

multicut Benders reformulation was introduced by Birge and Louveaux (1988). You and Grossmann

(2013) showed dramatic improvement both on computing time and number of iterations due to the

multicut reformulation on two supply chain planning problems. The multicut version provides a

tighter approximation of the second-stage function, and converges in less iterations than the monocut

one. However the master problem might suffer from the large number of cuts added through the

optimization process, and thus might become time consuming to solve. The question of using either

the monocut or multicut version of the algorithm is not straightforward. As far as we know, one

of the major improvements proposed to improve pure multicut Benders decomposition was to use

massive parallelization (Linderoth and Wright, 2003). Trukhanov et al. (2010) proposed a framework

to aggregate some optimality cuts with the aim of finding a compromise between the monocut and

pure multicut versions of the algorithm. Wolf et al. (2014) proposed to maintain both a multicut and

a monocut models. Using the general principle of oracles with on-demand accuracy (de Oliveira and

Sagastizábal, 2014), when both models have a large difference between their objective values, they

add in the monocut model an aggregation of some current active cuts in the multicut one to improve

the relaxation without having to solve the subproblems.

One of the major bottlenecks faced to solve two-stage stochastic programs is the large number

of subproblems to solve at each iteration to compute Benders cuts. Researchers proposed some

methods to avoid the resolution to all the subproblems at each iteration of the Benders decomposition

algorithm. In the case of stochastic problems with fixed recourse (i.e, Ws “ W for every s P S in

problem (1)) where the second-stage objective function does not depend on the uncertainty (i.e,

gs “ g for every s P S in problem (1)), some authors, such as (Wets, 1983; Higle and Sen, 1991;

Dantzig and Infanger, 1991; Infanger, 1992), used the fact that the duals of all the subproblems share

the same constraint polyhedron: Πs “ Π , for every s P S. Given an optimal dual solution πs0 to a

subproblem s0 P S, bunching (Wets, 1983) consists in checking the primal feasibility of this solution

for the other subproblems. This solution is optimal for all the subproblems for which this solution is

5

primal feasible, and there is no need to solve them. Dantzig and Infanger (1991) and Infanger (1992)

proposed to use importance sampling to compute a good approximation of the expected cut in the

monocut formulation with only a few scenarios. Although the resulting algorithm is not exact, they

report results with small confidence intervals on the objective value. Higle and Sen (1991) introduced

stochastic decomposition. The method only solves a few subproblems at each iteration and computes

cuts with all the dual solutions obtained at previous iterations. Finally, Oliveira et al. (2011) proposed

an algorithm which does not restrict to the hypothesis gs “ g , @s P S. It adapts the dual solutions

of a subset of subproblems to generate inexact cuts to the remaining subproblems. The methods

of Oliveira et al. (2011), Dantzig and Infanger (1991) and Higle and Sen (1991) are designed for a

monocut algorithm, but the method of Oliveira et al. (2011) could be adapted to a multicut algorithm.

Finally, among other techniques used to accelerate the resolution to two-stage stochastic programs,

Crainic et al. (2020) proposed the so-called Partial Benders decomposition. Under the hypothesis

gs “ g , @s P S and fixed recourse, they add one of the scenarios, or an artificial scenario computed

as the expectation of the others, to the master problem. They showed major improvements on some

instances, both in computing time and number of iterations, even if the master problem becomes

way larger than the original one, and might be harder to solve at each iteration. Under the same

assumptions (gs “ g, Ws “ W, @s P S), Song and Luedtke (2015) proposed an adaptative partition-

based approach, which does not rely on Benders reformulation. Given a partition of the subproblems,

they compute a relaxation of the initial deterministic reformulation by summing the matrices and

right-hand-sides of the subproblems of each element of the partition. They showed the existence of a

partition with the same optimal value as the initial problem and an iterative algorithm to find it. van

Ackooij et al. (2017) proposed to use level stabilization with the adaptative partition-based approach

and showed numerical experiments where the resulting algorithms largely outperform classical level

bundle or Benders decomposition methods. Table 1 classifies the different methods discussed in this

section.

Paper Randomness hypothesis Solve all SPs Monocut or multicut Exact method Finite convergence Stabilization
(Crainic et al., 2020) gs “ g,Ws “ W @s P S Yes Both Yes Yes No

(Song and Luedtke, 2015) gs “ g,Ws “ W @s P S Yes Not applicable Yes Yes No
(van Ackooij et al., 2017) gs “ g,Ws “ W @s P S No Both Yes Yes Level

(Wets, 1983) gs “ g,Ws “ W @s P S No Both Yes Yes No
(Dantzig and Infanger, 1991) gs “ g,Ws “ W @s P S No Monocut No Yes No

(Higle and Sen, 1991) gs “ g,Ws “ W @s P S No Monocut Yes No No
(Trukhanov et al., 2010) No Yes Multicut Yes Yes No

(Linderoth and Wright, 2003) No Yes Multicut Yes Yes Trust-region
(Wolf et al., 2014) No All or none Monocut and Multicut Yes Yes Level

(Oliveira et al., 2011) No No Monocut Inexact Yes Proximal bundle
This work No No Multicut Yes Yes In-out

Table 1: Comparison of stochastic methods to accelerate Benders decomposition. (SPs: subproblems)

3 The Benders by batch algorithm

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve exactly

the multicut Benders reformulation (4) of a two-stage stochastic linear program. The algorithm

consists in solving the subproblems by batch and stopping solving subproblems at an iteration as

soon as we identify that the current first-stage solution is non-optimal.

Without loss of generality, we assume that the problem has relatively complete recourse (i.e.,

X Ă dom pϕp., sqq for every scenario s P S), meaning that every subproblem is feasible for every

6

x P X. As a result, only optimality cuts are required in the Benders decomposition algorithm, and

every x P X defines an upper bound on the optimal value of the problem. Every two-stage linear

stochastic program can be reformulated in a problem satisfying this hypothesis by introducing slack

variables with large enough coefficients in the objective function.

We first present some notations necessary to formally describe the algorithm. We consider an

ordered set of scenarios S “ ts1, s2, ..., sCardpSqu and a given batch size 1 ď η ď CardpSq. We

define κ “ rCardpSq{ηs as the number of batches of subproblems. For every i P J1, κK, the ith

batch of subproblems Si is defined as Si “ tspi´1qη`1, ..., spi´1qη`ηiu, where ηi is the size of batch i,

η1 “ ¨ ¨ ¨ “ ηκ´1 “ η and ηκ “ pCardpSq mod ηq. Family pSiqiPJ1,κK defines a partition of S. We

restrict ourselves to batches of the same size, but the method remains valid for any partition of S.

We denote by x̌pkq the optimal first-stage solution to pRMP qpkq at iteration k of the algorithm, and

by θ̌
pkq
s the optimal value of the epigraph variable associated with a scenario s P S. A lower bound on

the optimal value of problem (1) is then computed as LBpkq “ cJx̌pkq `
ř

sPS psθ̌
pkq
s . For a first-stage

solution x P X, we denote by UBpxq “ cJx`
ř

sPS psϕpx, sq an upper bound on the optimal value of

problem (1).

Let ϵ ą 0 be the optimality gap of the algorithm. The classical stopping criterion UB´LB ď ϵ of

the Benders decomposition algorithm cannot be directly applied if all the subproblems are not solved.

Specifically, an upper bound on the optimal value of the problem is only known after computing, for a

first-stage solution x P X, the optimal value ϕpx, sq of every subproblem pSP px, sqq. We propose a new

stopping criterion, which detects that a current first-stage solution is non-optimal without necessarily

having to solve all the subproblems. This criterion is based on the concept of ϵi-approximation that

we define below.

Definition 1 (ϵi-approximation). Let ϵ ą 0 be the optimality gap of the algorithm, k P Z` an iteration

and σ a permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is ϵi-approximated by

pRMP qpkq if
ÿ

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵi (5)

with ϵi “ ϵ´
i´1
ř

t“1

ř

sPSσptq

ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

.

We refer to ϵi as the remaining gap of batch Sσpiq according to the permutation σ and the optimality

gap ϵ. For every index i P J2, κK, we have ϵi “ ϵi´1 ´
ř

sPSσpi´1q
ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

, which means

that computing the successive remaining gaps consists in filling the gap ϵ with the differences between

the true values of the subproblems and their epigraph approximations in pRMP qpkq.

The following proposition shows that ϵi-approximation can be used to derive a stopping criterion

for the Benders by batch algorithm.

Proposition 1. Let ϵ ą 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm,

and σ a permutation of J1, κK. The first-stage solution x̌pkq is an optimal solution to problem (1) if

and only if batch Sσpiq is ϵi-approximated by pRMP qpkq for every index i P J1, κK.

Proof of proposition 1. pñq Assume that x̌pkq is an optimal solution to problem (1). We have:

UBpx̌pkqq ´ LBpkq ď ϵ

7

ðñ cJx̌pkq `
ÿ

sPS

psϕpx̌pkq, sq ´

˜

cJx̌pkq `
ÿ

sPS

psθ̌
pkq
s

¸

ď ϵ

ðñ
ÿ

sPS

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

As family
`

Sσp1q, Sσp2q, ..., Sσpκq

˘

defines a partition of S, previous equation gives:

κ
ÿ

t“1

ÿ

sPSσptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵ

ðñ

κ
ÿ

t“i

ÿ

sPSσptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

As ps ě 0, @s P S, and as pRMP qpkq is a relaxation of problem 1, by independence of the batches,

we have:
ř

sPSσptq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ě 0, @t P t1, . . . , κu. We therefore have:

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ď ϵi, @i P t1, . . . , κu

which is the definition of batch Sσpiq being ϵi-approximated by pRMP qpkq.

pðq Assume that for every index i P J1, κK, we have
ř

sPSσpiq
ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi and

therefore:
ÿ

sPSσpκq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ď ϵκ (6)

By definition of ϵκ we have:

ϵκ “ ϵ´

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ðñ ϵκ `

κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

“ ϵ

Then, using equation (6), we have:

κ
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯

ff

ď ϵ

ðñ UBpx̌pkqq ´ LBpkq ď ϵ

which implies that x̌pkq is an optimal solution to problem (1).

Corollary 1. Let ϵ be the optimality gap of the algorithm, k P Z` an iteration, and σ a permutation

of J1, κK. If there exists an index i P J1, κK such that
ř

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ą ϵi, then x̌
pkq is not

an optimal solution to problem (1).

Remark 1. The previous rule provides a criterion which ensures a solution with an absolute gap of

ϵ. In order to compute solutions with a relative gap tolerance of δ, we set ϵ “ maxt10´10, LBδu with

LB the current value of the relaxed master program.

8

Algorithm 2: The Benders by batch algorithm

Parameters: ϵ ą 0, η P J1, CardpSqK the batch size, aggregation P tTrue, Falseu

1 Initialization: i Ð 1, k Ð 0, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do
4 k Ð k ` 1

5 Solve pRMP qpkq and retrieve x̌pkq, pθ̌
pkq
s qsPS

6 i Ð 1, ϵ1 Ð ϵ, stay at x Ð True

7 Choose a permutation σ of J1, κK
8 while stay at x “ True and i ă κ` 1 do
9 for s P Sσpiq do

10 Solve pSP px̌pkq, sqq and retrieve ϕpx̌pkq, sq and πs P VertpΠsq

11 if aggregation then

12 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP qpkq

13 else
14 for s P Sσpiq do

15 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

16 if
ř

sPSσpiq

ps

´

ϕpx̌pkq, sq ´ θ̌
pkq
s

¯

ď ϵi then

17 ϵi`1 Ð ϵi ´
ř

sPSσpiq

ps

´

ϕ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

18 i Ð i` 1

19 else stay at x Ð False

20 pRMP qpk`1q Ð pRMP qpkq

21 Return x̌pkq

We now present the Benders by batch algorithm (Algorithm 2). The while loop from lines 3 to 20

will be referred hereafter as the master loop. Each pass of this loop corresponds to an iteration of the

algorithm. At iteration k, the relaxed master program pRMP qpkq is solved to obtain a new first-stage

solution x̌pkq. A permutation σ of J1, κK is then chosen. This permutation defines the order in which

the batches of subproblems pS1, S2, ..., Sκq will be solved at the current first-stage solution. The while

loop from lines 8 to 19 will be referred as the optimality loop. In each pass in this loop:

• the subproblems of the current batch Sσpiq are solved (lines 9 to 10). This part of the algo-

rithm can be parallelized, as in the classical Benders decomposition algorithm to accelerate the

procedure.

• the cuts defined by the solutions of the subproblems are added to the relaxed master program

(lines 11 to 15). We add a parameter aggregation to the algorithm. If this parameter is set

to False, the cuts of each subproblem are added independently to the relaxed master program,

as it is the case in the classical multicut Benders decomposition algorithm. If this parameter is

set to True, we add only one cut, computed as the weighted sum of all the cuts of the batch

according to the probability distribution.

• the gap between the value of the subproblems and the value of their outer linearization is checked

(line 16 to 19). If the batch is ϵi-approximated by pRMP qpkq, then i is increased by one, and the

boolean stay at x still equals True. The algorithm returns to line 8 and solves a new batch at

the same first-stage solution, as i has been incremented. If it reaches i “ κ` 1, then all batches

are ϵi-approximated by pRMP qpkq according to permutation σ, and x̌pkq is an optimal solution

9

to problem (1). If one of the batches is not ϵi-approximated by pRMP qpkq, then x̌pkq cannot be

an optimal solution to the problem. Then there exists at least one of the cuts which excludes

the solution px̌pkq, θ̌pkqq from the relaxed master program. The algorithm exits the optimality

loop, and goes to line 3 to solve again the relaxed master program.

Remark 2 (Aggregation of the cuts). One of the most important drawback of the multicut Benders

decomposition algorithm is the large number of cuts added to the relaxed master program at each

iteration. As this number of cuts increases, the time needed to solve the master program can increase

dramatically. The Benders by batch algorithm might suffer from the same effect, even if this effect

might be delayed by the method (it adds fewer cuts at each iteration). We propose to aggregate the

cuts of a batch, and add only one cut computed as
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

. As the

subproblems are linearly independent, this cut is the Benders cut associated with the problem created

by concatenation of the subproblems of a batch. The Benders by batch algorithm could also benefit

from the methods proposed by Trukhanov et al. (2010) to find more effective aggregation schemes.

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. The Benders by batch algorithm converges in a finite number of iterations.

Proof of proposition 2. We solve each subproblem at most once for every optimal solution to pRMP qpkq

because pS1, S2, ..., Sκq defines a partition of S. Then if there exists a cut violated by
`

x̌pkq, pθ̌
pkq
s q

˘

,

we find it in at most CardpSq iterations in the optimality loop. Then, as the total number of

optimality cuts is finite and equal to
ř

sPS CardpVertpΠsqq, this algorithm converges in at most

CardpSq ˆ
ř

sPS CardpVertpΠsqq iterations. When the cuts are aggregated, if the cut of a subproblem

separates the solution to the relaxed master program
`

x̌pkq, pθ̌
pkq
s q

˘

, then the aggregated cut of the

batch also separates it, and the result remains true.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume that

there exists an initial and arbitrary ordering of the batches S1, S2, ..., Sκ and σ “ id at the first

iteration. When we choose a new permutation, at the beginning of a master loop, the ordered strategy

consists in starting from the first batch of subproblems that has not been solved at the previous

first-stage solution. We introduce the following cyclic permutation µ of the batches:

µ “

˜

1 2 ... κ´ 1 κ

2 3 ... κ 1

¸

Let N be the number of batches solved at the previous first-stage solution. Then, the ordered strategy

consists in defining the new permutation σ at line 7 of Algorithm (2) as σ Ð µN ˝ σ.

This strategy has a deterministic behavior and maintains the same number of resolutions of all the

subproblems during the optimization process. A pure random strategy, shuffling the set of batches

at the beginning of each master loop, showed a high variance in the total number of iterations. In

preliminary computational experiments, we observed factors up to two between the running times of

the fastest and the longest run on the same instance. As such a behavior is not desirable, we did not

pursue this path.

10

4 Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 2) may suffer, as

every cutting-plane algorithm, from strong oscillations of the first-stage variables, and thus show an

erratic decrease in the value of the upper bound over the iterations. We propose in this section a

general framework to stabilize our algorithm, and show a sufficient condition for the convergence of

the stabilized algorithm.

4.1 The stabilized Benders by batch algorithm

Many effective stabilization methods for cutting-plane algorithms solve at each iteration a separation

problem in a point xpkq that is different from the current optimal solution x̌pkq of the relaxed master

program (Zverovich et al., 2012; Pessoa et al., 2013). We focus on stabilization procedures in which

the separation point is computed from a set a parameters, itself updated at each iteration with a

first-stage solution (e.g., the solution to the relaxed master program). We call such a procedure a

primal stabilization scheme and we formally define it below.

Definition 2 (Primal stabilization scheme). A primal stabilization scheme is characterized by a triplet

pD, ψ1, ψ2q where D is a parameter space and pψ1, ψ2q is a pair of applications

#

ψ1 : X ˆ D Ñ D
ψ2 : D Ñ X

such that ψ2 is surjective.

At each iteration k of the stabilized algorithm, application ψ2 is responsible for generating a first-

stage solution xpkq at which the subproblems are solved, and cuts are generated, from a vector of

parameters d P D. The surjective hypothesis ensures that every first-stage solution can be separated.

Application ψ1 computes the new vector of parameters at each iteration from the precedent vector of

parameters and a first-stage solution, generally the solution to the relaxed master program.

We now present how to adapt the Benders by batch algorithm (Algorithm 2) when such a primal

stabilization scheme is used. We generalize Definition 1 and Proposition 1 taking into account that

the first-stage solutions at which we compute the lower bound and the upper bound may be different.

Definition 3 (ϵipxq-approximation at a first-stage solution x). Let ϵ be the optimality gap of the

algorithm, k P Z` an iteration and σ a permutation of J1, κK. For every i P J1, κK, we say that batch

Sσpiq is ϵipxq-approximated by pRMP qpkq at x P X if

”

ÿ

sPSσpiq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵipxq

with ϵipxq “ ϵ´ cJpx´ x̌pkqq ´

” i´1
ř

t“1

ř

sPSσptq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

and ζ` “ maxtζ, 0u for any ζ P R.

Remark 3. Saying that a batch Sσpiq is ϵipx̌
pkqq-approximated by pRMP qpkq is equivalent to saying

that Sσpiq is ϵi-approximated by pRMP qpkq in Algorithm 2.

The following proposition introduces a valid stopping criterion for our stabilized version of the

Benders by batch algorithm.

11

Proposition 3. Let ϵ be the optimality gap of the algorithm, k P Z` an iteration of the algorithm,

and σ a permutation of J1, κK. If there exists a first-stage solution x P X such that batch Sσpκq is

ϵκpxq-approximated by pRMP qpkq, then x is an optimal solution to problem (1).

Proof of proposition 3. Let x P X be a first-stage solution such that batch Sσpκq is ϵκpxq-approximated

by pRMP qpkq. This means:

”

ÿ

sPSσpκq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵ´ cJpx´ x̌pkqq ´

κ´1
ÿ

t“1

”

ÿ

sPSσptq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPSσpκq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

`

”

κ´1
ÿ

t“1

ÿ

sPSσptq

ps

´

ϕ px, sq ´ θ̌pkq
s

¯ ı`

ď ϵ´ cJpx´ x̌pkqq

As ζ ď ζ` for any ζ P R, we have:

κ
ř

t“1

ř

sPSσptq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯

ď ϵ´ cJpx´ x̌pkqq

ñ
ř

sPS

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯

ď ϵ´ cJpx´ x̌pkqq

ñ

ˆ

cJx`
ř

sPS

psϕ px, sq

˙

´

ˆ

cJx̌pkq `
ř

sPS

psθ̌
pkq
s

˙

ď ϵ

ñ UBpxq ´ LBpkq ď ϵ

and x is an optimal solution to problem (1).

We now present the stabilized Benders by batch algorithm (Algorithm 3).

The algorithm is structured in three nested while loops. The while loop from line 3 to 31 is called

the master loop. In this loop, the relaxed master program is solved in order to define a new first-stage

solution x̌pkq. The while loop from line 5 to 31 is called the separation loop. This loop updates the

current separation point xpkq while the solution to the relaxed master program x̌pkq remains constant.

We increment the iteration counter k each time a new separation point is calculated. The while loop

from line 12 to 29 is called the optimality loop. In the optimality loop, the subproblems of current

batch Sσpiq are solved. There are three possibilities at the end of this loop:

• Case 1: The current batch is ϵipx
pkqq-approximated by pRMP qpkq. It satisfies the condition

of line 20 of Algorithm 3. Then, stay at x still equals True at the end of the loop, and i is

incremented by one. If the algorithm reaches i “ κ` 1, then the algorithm stops, and xpkq is an

optimal solution to the problem. Otherwise, the algorithm solves the next batch of subproblems

at the same first-stage solution.

• Case 2: The current batch Sσpiq is not ϵipx
pkqq-approximated by pRMP qpkq and at least one of

the cuts derived from this batch of subproblems separates the solution px̌pkq, pθ
pkq
s qsPSq to the

relaxed master program [see FIG. 1]. This means that misprice is set to False. The variable

stay at x is set to False and we exit the optimality loop. Since misprice equals False, we

exit the separation loop. We then go to line 3, and solve again the relaxed master program.

• Case 3: The current batch Sσpiq is not ϵipx
pkqq-approximated by pRMP qpkq and there exists no

cut derived from this batch of subproblems, or a previous batch, which separates the solution

12

Algorithm 3: The stabilized Benders by batch algorithm

Parameters: ϵ ą 0, η P J1, CardpSqK the batch size, aggregation P tTrue, Falseu, a primal
stabilization scheme pD, ψ1, ψ2q and an initial vector of parameters dp0q P D.

1 Initialization: i Ð 1, k Ð 0, misprice Ð False, stay at x Ð True

2 Define a partition
`

Si

˘

iPJ1,κK of the subproblems according to batch size η

3 while i ă κ` 1 do

4 Solve pRMP qpk`1q and retrieve x̌pk`1q, pθ̌
pk`1q
s qsPS

5 do
6 k Ð k ` 1

7 dpkq Ð ψ1px̌pkq, dpk´1qq

8 xpkq Ð ψ2pdpkqq

9 i Ð 1, ϵi Ð ϵ´ cJpxpkq ´ x̌pkqq, stay at x Ð True

10 Choose a permutation σ of J1, κK
11 misprice Ð True

12 while stay at x “ True and i ă κ` 1 do
13 for s P Sσpiq do

14 Solve pSP pxpkq, sqq and retrieve ϕpxpkq, sq and πs P VertpΠsq

15 if aggregation then

16 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJ
s pds ´ Tsxq

˘

to pRMP qpkq

17 else
18 for s P Sσpiq do

19 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

20 if
ř

sPSσpiq

”

ps

´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

ď ϵi then

21 ϵi`1 Ð ϵ´ cJpxpkq ´ x̌pkqq ´

” i
ř

t“1

ř

sPSσptq

ps

´

ϕpxpkq, sq ´ θ̌
pkq
s

¯ ı`

22 i Ð i` 1

23 else
24 stay at x Ð False

25 if aggregation then

26 if
ř

sPSσpiq

psθ̌
pkq
s ă

ř

sPSσpiq

ps
`

πJ
s pds ´ Tsx̌

pkqq
˘

then misprice Ð False

27 else
28 for s P Sσpiq do

29 if θ̌
pkq
s ă πJ

s pds ´ Tsx̌
pkqq then misprice Ð False

30 pRMP qpk`1q Ð pRMP qpkq, x̌pk`1q Ð x̌pkq, pθ̌
pk`1q
s qsPS Ð pθ̌

pkq
s qsPS

31 while misprice

32 Return xpkq

px̌pkq, pθ
pkq
s qsPSq to the relaxed master program [see FIG. 2]. The variable misprice still equals

True. This is called a mis-pricing (Pessoa et al., 2013). As the solution to the relaxed master

program has not been cut, it is useless to solve the relaxed master program again, its solution

remains the same. We exit the optimality loop, but stay in the separation loop. We define a

new separation point xpkq, a new permutation of J1, κK, and begin a new optimality loop.

13

Figure 1: The cut derived from first-stage so-

lution xpkq separates the solution to the relaxed

master program px̌pkq, pθ̌
pkq
s qsPSq.

Figure 2: The cut derived from first-stage so-

lution xpkq does not separate the solution to the

relaxed master program px̌pkq, pθ̌
pkq
s qsPSq. The so-

lution to pRMP qpkq remains the same. The sepa-

ration point xpkq induces a mis-pricing.

4.2 A sufficient condition for the convergence of the stabilized Benders by batch

algorithm

In this section we prove that, if the sequence of separation points produced by the primal stabilization

scheme converges to the solution to the relaxed master program when this latter solution remains

constant over the iterations (i.e., during a mis-pricing sequence), then the stabilized Benders by

batch algorithm (Algorithm 3) converges to an optimal solution to problem (1) in a finite number of

iterations.

Definition 4 (Convergence property of a primal stabilization scheme). Let pD, ψ1, ψ2q be a primal

stabilization scheme. For every px, dq P X ˆ D we define pdℓxqℓPN˚ as

dℓx “

#

ψ1px, dℓ´1
x q ℓ ą 1

ψ1px, dq ℓ “ 1
@ℓ P N˚

the parameters vector sequence obtained by application of ψ1 on a constant first-stage solution x P X.

We say that a primal stabilization scheme pD, ψ1, ψ2q satisfies the convergence property if:

@px, dq P X ˆ D, lim
ℓÑ`8

ψ2

`

dℓx
˘

“ x

We first need to prove the following intermediate result.

Proposition 4. Let k P Z` be an iteration of Algorithm 3, and px̌pkq, pθ̌
pkq
s qsPSq an optimal solution

to pRMP qpkq. Let
`

xpk`rq
˘

rPN be a sequence of elements of X converging to x̌pkq and
`

σpk`rq
˘

rPN a

sequence of permutations of J1, κK. There exists t P N such that one of the following assertions is

true:

1. First-stage solution xpk`tq is proven optimal for problem (1) with an optimality gap of ϵ ą 0.

2. There exists a cut generated in xpk`tq which separates the solution to the relaxed master program

px̌pkq, pθ̌
pkq
s qsPSq.

14

Proof of proposition 4. We focus on the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program. There

are two possible cases:

• Case 1. There exists t0 P N such that for all l ě t0 and for each index i P J1, κK, batch Sσpk`lqpiq

is ϵipx̌
pkqq-approximated by pRMP qpkq with an optimality gap of ϵ

4

• Case 2. For all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch Sσpk`lqpiq is

not ϵipx̌
pkqq-approximated by pRMP qpkq with an optimality gap of ϵ

4

Case 1: Assume that there exists t0 P N such that for all l ě t0 and for each index i P J1, κK,
batch Sσpk`lqpiq is ϵipx̌

pkqq-approximated by pRMP qpkq with an initial gap of ϵ
4 . This means that for

every l ě t0 and for every index i P J1, κK,

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ď
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

(7)

As the number of permutations of J1, κK is finite, as for every l ě t0 and for each index i P J1, κK,

the application x ÞÑ

”

ř

sPS
σpk`lqpiq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, and as sequence
`

xpk`rq
˘

rPN

converges to x̌pkq, there exists t1 P N, t1 ě t0 such that, for every l ě t1 and for every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

`
ϵ

4
(8)

Moreover, as for every l ě t0 and for every index i P J1, κK, the application x ÞÑ
” i´1

ř

t“1

ř

sPS
σpk`lqpiq

ps

´

ϕ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, there exists t2 P N, t2 ě t0 such that, for every

l ě t2 and for every index i P J1, κK:

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

´
ϵ

4
ď

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ñ ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ď ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

`
ϵ

4
(9)

And, as pxpk`rqqrPN converges to x̌pkq, there exists t3 P N such that, @l ě t3, 0 ď ϵ
4 ´ cJpxpk`lq ´ x̌pkqq.

Then, by setting t4 “ maxtt1, t2, t3u, and jointly using (7), (8) and (9), we have, for every l ě t4

and for every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď
ϵ

4
`
ϵ

4
`
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď
3ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

ď ϵ´cJpxpk`lq´x̌pkqq´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

xpk`lq, s
¯

´ θ̌pkq
s

¯ ı`

15

And for every index i P J1, κK, batch Sσpk`t4qpiq is ϵipx
pk`t4qq-approximated by pRMP qpkq with an

optimality gap of ϵ, which implies, by Proposition 3, that xpk`t4q is an optimal solution to problem

(1).

Case 2: Now assume that for all t0 P N, there exists l ě t0 and an index i P J1, κK such that

batch Sσpk`lqpiq is not ϵipx̌
pkqq-approximated by pRMP qpkq with an initial optimality gap of ϵ

4 . This

means, that for all t0 P N, there exists l ě t0 and an index i P J1, κK such that:

”

ÿ

sPS
σpk`lqpiq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

ą
ϵ

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

ϕ
´

x̌pkq, s
¯

´ θ̌pkq
s

¯ ı`

(10)

Then, there exists δ ą 0 such that, for all t0 P N, there exists l ě t0 and an index i P J1, κK (the first

index such that (10) occurs) such that:

ÿ

sPS
σpk`lqpiq

ps

´

ϕpx̌pkq, sq ´ θ̌pkq
s

¯

ą δ (11)

Let g
pk`τq

i P Rn1 be a subgradient associated with the function x ÞÑ
ř

sPS
σpk`τqpiq

psϕpxpk`τq, sq at

point xpk`τq. The aggregated cut derived by resolution to batch Sσpk`τqpiq can be written as follows:

g
pk`τqJ

i px´ xpk`τqq `
ÿ

sPS
σpk`τqpiq

psϕpxpk`τq, sq ď
ÿ

sPS
σpk`τqpiq

psθs

By continuity of ϕp., sq for all s P S and as the total number of cuts is finite, there exists L ą 0 such

that for every l P N and for every i P J1, κK, ||g
pk`lq
i ||2 ď L. Then, as sequence

`

xpk`rq
˘

rPN converges

to x̌pkq, there exists t1 P N such that for all l ě t1 and for all i P J1, κK, |g
pk`lqJ

i px̌´ xpk`lqq| ă δ
3 .

Moreover, as sequence
`

xpk`rq
˘

rPN converges to x̌pkq and by continuity of ϕp., sq, there exists t2 P N

such that for all l ě t2 and for each index i P J1, κK:

ÿ

sPS
σpk`lqpiq

psϕpx̌pkq, sq ă
ÿ

sPS
σpk`lqpiq

psϕpxpk`lq, sq `
δ

3

Then, let t3 “ maxtt1, t2u. Let i P J1, κK and l0 ě t3 be the first indices such that (11) occurs. We

have:

g
pk`l0qJ

i px̌pkq ´ xpk`l0qq `
ÿ

sPS
σpk`l0qpiq

psϕpxpk`l0q, sq ´
ÿ

sPS
σpk`l0qpiq

psθ̌
pkq
s ą

δ

3

Then, at xpk`l0q, the aggregated cut of the batch Sσpk`l0qpiq separates the solution to the relaxed

master program, as its value at x̌pkq is strictly larger than the outer linearization given by the relaxed

master program. If aggregation “ False, there exists at least one of the cuts associated with a

subproblem of the batch which separates the solution to the relaxed master program.

Proposition 5. If the primal stabilization scheme satisfies the convergence property, then the stabi-

lized Benders by batch algorithm converges to an optimal solution to problem (1) in a finite number

of iterations.

Proof of proposition 5. Let k P Z` an iteration of the algorithm, σ a permutation of J1, κK, and

xpkq P X the separation point. There are three possible cases:

16

1. @i P J1, κK, batch Sσpiq is ϵipx
pkqq-approximated by pRMP qpkq. Then xpkq is an optimal solution

to problem (1).

2. There exists an index i P J1, κK such that solving the subproblems of batch Sσpiq generates a cut

which separates the solution to pRMP qpkq. As the total number of cuts is finite, we can only

be a finite number of times in this situation.

3. There exists no cut derived at xpkq which separates the solution to pRMP qpkq. Then, xpkq induces

a mis-pricing. The solution to pRMP qpk`1q remains the same. Let suppose that this happens

during an infinite number of consecutive iterations. Then, as the primal stabilization scheme

satisfies the convergence property, the sequence of separation points converges to x̌pkq. Prop. 4

states that in that case, we end up in a finite number of iterations in case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations in

case 1, and finds an optimal solution to problem (1).

Remark: The classical Benders decomposition algorithm is equivalent to the Benders by batch

algorithm with a batch size η “ CardpSq. Therefore, Algorithm 3 describes a valid way to add primal

stabilizations to the classical Benders decomposition algorithm (providing that the primal separation

scheme satisfies the convergence property).

4.3 Two primal stabilization schemes satisfying the convergence property

We introduce in this section two primal stabilization schemes satisfying the convergence property,

based on the in-out stabilization approach (Ben-Ameur and Neto, 2007). In the in-out approach, the

stability center x̂pkq at iteration k is equal to the separation point (among those calculated so far)

with the smallest objective function value: x̂pkq “ argminjPJ0,k´1K tcJxpjq `
ř

sPS psϕpxpjq, squ. The

separation point xpkq is then defined on the segment between x̂pkq (in point) and x̌pkq (out point):

xpkq “ αx̌pkq `p1´αqx̂pkq. The in-out approach creates a sequence of stability centers with decreasing

objective values converging to an optimal solution to the problem. The definition of x̂pkq requires

computing the value ϕpxpjq, sq for every scenario s P S, meaning that all the subproblems need to be

solved at every separation point. As we generally do not solve all the subproblems at a given iteration,

the in-out stabilization approach needs to be adapted for use in the Benders by batch algorithm.

We present below two primal stabilization schemes.

Scheme 1 - Basic stabilization: Let α P p0, 1s be a stabilization parameter. The separation

point at iteration k is computed as follows:

xpkq “ αx̌pkq ` p1 ´ αqxpk´1q

for k ą 1, and xp1q “ x̌p1q.

This basically consists in doing 100α% of the way from the previous separation point to the

solution to the master program. This could be seen as an in-out stabilization, updating the stability

center to the last separation point at each iteration. By convexity of X, xpkq belongs to X for every

k P N. This basic stabilization scheme satisfies the convergence property.

Scheme 2 - Solution memory stabilization: This stabilization uses an exponentially

weighted average of the previous master solutions to compute the separation point. We choose a

17

stabilization parameter α P p0, 1s and a memory parameter β P r0, 1q. We also define the expo-

nentially weighted averaged point x̄pkq on master solutions. The separation point is computed as

follows:
#

x̄pkq “ βx̄pk´1q ` p1 ´ βqx̌pkq

xpkq “ αx̄pkq ` p1 ´ αqxpk´1q

for k ą 1, and xp1q “ x̄p1q “ x̌p1q. By convexity of X, xpkq belongs to X for every k P N. This

stabilization takes inspiration from the stochastic gradient algorithm with momentum (Polyak, 1964)

that has proven its efficiency in solving large-scale stochastic programs in the field of deep learning

(Sutskever et al., 2013). We show in the following lemma that this solution memory stabilization

scheme satisfies the convergence property.

Lemma 1. Let z, xp0q, x̄p0q be three elements of X, α P p0, 1s, β P r0, 1q. The sequence
`

xpkq
˘

kPN

defined by
#

x̄pk`1q “ βx̄pkq ` p1 ´ βqz

xpk`1q “ αx̄pk`1q ` p1 ´ αqxpkq

converges to z.

Proof of lemma 1. See Appendix A of the supplementary material.

To limit the number of successive iterations which induce a mis-pricing, one can accelerate the

convergence of the separation point to an unchanged solution to the relaxed master program for the

two proposed primal stabilization schemes. Let t P N be the number of consecutive mis-pricings

that have occurred before starting iteration k of the algorithm. We compute xpkq replacing α by

mint1, αp1 ` tqu. It is clear that both stabilization schemes still satisfy the convergence property

when this optional procedure is implemented.

5 Experimentations and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the

benchmark we use, and our instance generation method. We then explain the different algorithms we

compare to, and how we implemented them. Finally, we show and analyze the numerical results we

obtained.

5.1 Instances

We use six well studied instances from the literature. The first five, 20term (Mak et al., 1999),

gbd (Dantzig, 1963), LandS (Louveaux and Smeers, 1988), ssn (Sen et al., 1994) and storm (Mul-

vey and Ruszczyński, 1995), are available from the following link: www.cs.wisc.edu/\simswright/

stochastic/sampling/. The problem 20term is taken from (Mak et al., 1999). It is a model of

motor freight carrier’s operations. The problem consists in choosing the position of some vehi-

cles at the beginning of the day, the first-stage variables, and then to use those vehicles to satisfy

some random demands on a network. Instance gbd has been created from chapter 28 of (Dantzig,

1963). It is an aircraft allocation problem. LandS has been created from an electrical investment

planning problem described in (Louveaux and Smeers, 1988). In (Linderoth et al., 2006), the au-

thors modified the problem to obtain an instance with 106 scenarios. Problem ssn is a problem of

18

www.cs.wisc.edu / \sim swright/stochastic/sampling/
www.cs.wisc.edu / \sim swright/stochastic/sampling/

telecommunication network design taken from (Sen et al., 1994) and storm is a cargo flight schedul-

ing problem described by (Mulvey and Ruszczyński, 1995). The last instance, Fleet20 3, was found

at http://www.ie.tsinghua.edu.cn/lzhao/ which was itself taken from https://people.orie.

cornell.edu/huseyin/research/research.html. It is a fleet-sizing problem, close to 20term, with

a two-week horizon planning.

As those instances have a tremendous number of scenarios, see [FIG. 2], we generate instances by

sampling scenarios from the initial ones. We generated instances with sample sizes 1000, 5000, 10000,

and 20000. Three random instances have been generated for each problem and each sample size S,

with random seeds seed “ S ` k, k P t0, 1, 2u so that two instances of different sample size should

not share sub-samples. This leads to a benchmark of 72 different instances.

Table 2: Instances sizes, given in the format lines ˆ columns

instance first-stage second-stage scenarios

LandS 2 ˆ 4 7 ˆ 12 106

gbd 4 ˆ 17 5 ˆ 10 „ 105

20term 3 ˆ 64 124 ˆ 764 „ 1012

ssn 1 ˆ 89 175 ˆ 706 „ 1070

storm 185 ˆ 121 528 ˆ 1259 „ 1081

Fleet20 3 3 ˆ 60 320 ˆ 1920 ą 3200

5.2 Experimentations

In order to evaluate the numerical efficiency of our Benders by batch algorithm (BbB), we compare

it to six different methods: IMB ILOG CPLEX 12.10 with its multicut Benders implementation

(CPLEX hereafter); our implementation of the multicut Benders decomposition algorithm (Classic

multicut); our implementation of the monocut Benders decomposition algorithm (Classic mono-

cut); our implementation of the multicut Benders decomposition algorithm with an in-out stabi-

lization (In-out multicut); our implementation of the monocut Benders decomposition algorithm

with an in-out stabilization (In-out monocut); our implementation of the level bundle method

(Lemaréchal et al., 1995) using aggregated cut as in the monocut Benders decomposition algorithm

(Level Bundle). In-out multicut, In-out monocut, and Level Bundle are described in Ap-

pendix B of the supplementary material.

CPLEX is run with the following parameter values: benders strategy 2 (an annotation file

contains the first-stage variables, and CPLEX decomposes automatically the subproblems), threads

1 (to run CPLEX using one core, as the other methods), timelimit 43200 (time limit of twelve

hours).

Classic multicut follows Algorithm 1. The first-stage variables appear as variables in all the

subproblems, and are fixed to the desired values during the optimization process. The coefficients of

the cuts are computed as the reduced cost of those variables in an optimal solution to the subproblems.

We set the lower bound on the epigraph variables of the subproblems to 0 as it is a valid lower bound

for every studied problem.

We use a dynamic strategy to update the stabilization parameter α in In-out monocut and In-

out multicut. If cJxpkq `
ř

sPS psϕps, xpkqq ă cJx̂pkq `
ř

sPS psϕps, x̂pkqq, then the separation point

has a lower cost than the current stability center. If we had separated farther, we could have found an

19

http://www.ie.tsinghua.edu.cn/lzhao/
https://people.orie.cornell.edu/huseyin/research/research.html
https://people.orie.cornell.edu/huseyin/research/research.html

even better point, so we increase α with the rule α Ð mint1.0, 1.2αu. If cJxpkq `
ř

sPS psϕps, xpkqq ě

cJx̂pkq `
ř

sPS psϕps, x̂pkqq, we did not stabilize enough, and we therefore decrease the stabilization

parameter α with the rule α Ð maxt0.1, 0.8αu. We initialize α to 0.5.

InClassic monocut and In-out monocut, we compute the cuts as
ř

sPS psθs ě
ř

sPS ps

´

πJ
s pds´

Tsxq

¯

. Level Bundle is tested with a level parameter λ “ 0.5 and a stability center tolerance κ “ 0.1

as in (van Ackooij et al., 2017). The value of LBp0q is set equal to 0, as it is a valid bound for our test

instances. In Level Bundle, Classic monocut and In-out monocut, the starting solution xp0q is

obtained by solving the mean-value problem.

The subproblems are solved with the dual simplex algorithm for all methods.

We also evaluate different parameters of the Benders by batch algorithm BbB. We first run BbB

without stabilization, and try different batch sizes with and without cut aggregation. Then, we

evaluate the impact of the two proposed stabilizations, with different stabilization parameters.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold SKL-

6130 processor at 2,1 GHz with 96 Go of RAM with the TURBO boost (up to 3.7 GHz). The time

limit is fixed to twelve hours for every algorithm. The optimality gap is fixed to a relative gap of

10´6 for every algorithm.

5.3 Numerical results

This section shows the numerical results obtained on our 72 instances. When an algorithm is stopped

at its time limit of 12 hours (43 200s), the computing time is denoted `8, and the ratio to the best

time will be denoted ą 43200
best time in the tables, which means that this algorithm is at least this ratio

slower than the best algorithm present in the table. All the tables presented in this section show,

for each method, the average computing time to solve the three instances of each size, and the time

ratio with respect to the best time obtained in this table. Results instance by instance are presented

in Appendix C of the supplementary material. We always present the average time on the three

instances of each size for each problem, rounded to the second.

We present the results with the performance profiles introduced by Dolan and Moré (2002). Let

P be a set of problems, and M a set of methods. For any problem p P P and method m P M, we

denote as tp,m the computing time of method m to solve problem p. We define the performance ratio

of method m P M on problem p P P as:

rp,m “
tp,m

minm1PMttp,m1u

The performance profile of a method m P M is the cumulative distribution on the set of problems

of the performance ratios according to the computing time. It is defined as ρmpτq “ Cardptp P P :

rp,m ď τuq

We first present in Table 3 the results on the six methods we use to benchmark algorithm BbB.

We notice that CPLEX is the less efficient method among the five presented in Table 3, and does

not scale well when the number of subproblems becomes large. It succeeds in solving only 57 out

of 72 instances. Even if CPLEX embeds an in-out stabilization scheme and a multicut strategy

with the option benders strategy 2, it is not competitive with In-out multicut in our tests. We

also remark that In-out monocut and In-out multicut perform almost always better in term of

computing time than their classical counterpart Classic monocut and Classic multicut. It is also

20

Table 3: Results for the algorithms used as a comparison basis
Times (left columns) are in second, ratios (right columns) are computed as the time divided by the
best time to solve the instance by methods present in the table.

Best CPLEX Classic multicut Classic monocut In-out multicut In-out monocut Level Bundle
instance Best time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000 1 1 1.0 1 1.3 2 3.4 1 1.5 1 2.5 1 2.2
LandS-N5000 5 5 1.0 9 1.7 11 2.0 8 1.5 9 1.8 7 1.3
LandS-N10000 14 15 1.1 29 2.1 22 1.5 24 1.7 16 1.1 14 1.0
LandS-N20000 27 43 1.6 105 3.8 45 1.7 62 2.3 41 1.5 27 1.0
gbd-N1000 1 1 1.0 1 1.2 2 2.7 1 1.6 2 2.5 2 2.7
gbd-N5000 10 10 1.0 10 1.1 12 1.2 10 1.0 10 1.1 10 1.0
gbd-N10000 21 34 1.6 33 1.6 23 1.1 23 1.1 21 1.0 24 1.1
gbd-N20000 44 131 3.0 121 2.8 48 1.1 82 1.9 54 1.2 44 1.0
ssn-N1000 6 15 2.7 7 1.2 2408 435.2 6 1.0 137 24.7 90 16.2
ssn-N5000 31 83 2.7 57 1.8 13460 437.4 31 1.0 795 25.8 657 21.3
ssn-N10000 63 180 2.8 188 3.0 25901 408.7 63 1.0 1464 23.1 1501 23.7
ssn-N20000 243 485 2.0 488 2.0 `8 ą177.9 243 1.0 2861 11.8 3109 12.8
storm-N1000 9 28 3.1 11 1.2 24 2.6 9 1.0 14 1.6 15 1.6
storm-N5000 41 187 4.6 106 2.6 114 2.8 41 1.0 62 1.5 76 1.9
storm-N10000 125 508 4.1 496 4.0 224 1.8 125 1.0 201 1.6 145 1.2
storm-N20000 252 1396 5.5 2370 9.4 458 1.8 573 2.3 252 1.0 288 1.1
20term-N1000 36 780 21.6 757 21.0 577 16.0 36 1.0 114 3.2 217 6.0
20term-N5000 482 `8 ą89.6 24429 50.7 3506 7.3 482 1.0 681 1.4 1044 2.2
20term-N10000 1190 `8 ą36.3 `8 ą36.3 6901 5.8 2805 2.4 1190 1.0 2450 2.1
20term-N20000 1754 `8 ą24.6 `8 ą24.6 13687 7.8 10992 6.3 1754 1.0 4843 2.8
Fleet20-N1000 50 148 2.9 225 4.5 533 10.6 50 1.0 93 1.9 107 2.1
Fleet20-N5000 473 15720 33.3 5330 11.3 2757 5.8 719 1.5 473 1.0 500 1.1
Fleet20-N10000 1004 `8 ą43.0 28933 28.8 5710 5.7 3747 3.7 1029 1.0 1004 1.0
Fleet20-N20000 1780 `8 ą24.3 `8 ą24.3 11300 6.3 17000 9.6 1780 1.0 2730 1.5

interesting to remark that Level Bundle shows similar results to In-out monocut, but the latter

performs better on the hardest instances on our benchmark. Finally, we observe that the multicut

algorithms do not scale well when the number of subproblems becomes large (except for ssn instances),

in particular for instances 20term and Fleet20 3. The relaxed master programs tend to be too long

to solve because of the large amount of cuts added. In the remaining tables, we only report the

results for In-out monocut and In-out multicut, since for almost all the instances, one of the two

methods shows the best results.

We now present the results of BbB without stabilization. We analyze the impact of the batch

size, both without (Table 4) and with cut aggregation (Table 5). Each column of Tables 4 and 5

contains the average time in second to solve the instances and the ratio to the best time. We analyze

batch sizes from 1% to 20% of the total number of subproblems (respectively denoted by BbB 1%,

BbB 5%, BbB 10% and BbB 20%). Their aggregated counterparts are respectively denoted by

BbB 1% Aggreg, BbB 5% Aggreg, BbB 10% Aggreg and BbB 20% Aggreg).

We first notice in Table 4 that BbB 1% solves almost all the instances (except for Fleet20 3

with 20000 subproblems where it succeeds to solve only one out of three problems), where Classic

Multicut fails. The saving of subproblem resolutions and cuts added to the relaxed master program

allows to overcome the computing time issues in both the subproblems and the master problem

resolutions. However, BbB is not competitive with In-out monocut, except for ssn instances,

where it can be up to 34.7 times faster.

Table 5 shows that BbB with cut aggregation is almost all the time the best method, and is

almost always faster than In-out monocut with batch sizes of 1% and 5% of the total number of

subproblems (respectively BbB 1% Aggreg and BbB 5% Aggreg). As we aggregate the cuts

over each batch, the size of the relaxed master program remains reasonable, and as the cuts are only

computed on a sample of subproblems, the algorithm avoids many symmetries due to the sum of the

21

cuts over the subproblems.

Table 4: Results for the Benders by batch algorithm without cut aggregation (no stabilization)
Best In-out multicut In-out monocut BbB 1% BbB 5% BbB 10% BbB 20%

instance Best time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 1 1 1.4 1 2.2 2 2.7 1 1.3 1 1.1 1 1.0
LandS-N5000 6 8 1.3 9 1.5 13 2.2 8 1.3 7 1.1 6 1.0
LandS-N10000 16 24 1.5 16 1.0 38 2.4 25 1.6 21 1.4 20 1.3
LandS-N20000 41 62 1.5 41 1.0 130 3.1 89 2.2 80 1.9 72 1.7
gbd-N1000 1 1 1.9 2 3.1 2 3.6 1 1.0 1 1.3 1 1.5
gbd-N5000 6 10 1.6 10 1.7 16 2.5 6 1.0 7 1.1 8 1.3
gbd-N10000 19 23 1.2 21 1.1 47 2.5 19 1.0 22 1.2 25 1.3
gbd-N20000 54 82 1.5 54 1.0 96 1.8 61 1.1 71 1.3 87 1.6
ssn-N1000 4 6 1.4 137 34.7 6 1.5 4 1.0 4 1.1 5 1.2
ssn-N5000 24 31 1.3 795 33.8 32 1.4 24 1.0 28 1.2 32 1.4
ssn-N10000 59 63 1.1 1464 24.9 71 1.2 79 1.3 59 1.0 79 1.3
ssn-N20000 145 243 1.7 2861 19.8 145 1.0 274 1.9 624 4.3 2821 19.5
storm-N1000 6 9 1.4 14 2.2 21 3.2 8 1.3 6 1.0 8 1.3
storm-N5000 41 41 1.0 62 1.5 175 4.3 60 1.5 55 1.3 65 1.6
storm-N10000 125 125 1.0 201 1.6 492 3.9 156 1.3 159 1.3 189 1.5
storm-N20000 252 573 2.3 252 1.0 1390 5.5 580 2.3 672 2.7 588 2.3
20term-N1000 36 36 1.0 114 3.2 38 1.1 82 2.3 49 1.4 74 2.1
20term-N5000 482 482 1.0 681 1.4 634 1.3 2101 4.4 1335 2.8 2247 4.7
20term-N10000 1190 2805 2.4 1190 1.0 2270 1.9 10733 9.0 6199 5.2 10413 8.8
20term-N20000 1754 10992 6.3 1754 1.0 20625 11.8 `8 ą24.6 `8 ą24.6 `8 ą24.6
Fleet20-N1000 50 50 1.0 93 1.9 145 2.9 95 1.9 102 2.0 74 1.5
Fleet20-N5000 473 719 1.5 473 1.0 2417 5.1 1950 4.1 1873 4.0 2097 4.4
Fleet20-N10000 1029 3747 3.6 1029 1.0 9903 9.6 19913 19.3 8537 8.3 21383 20.8
Fleet20-N20000 1780 17000 9.6 1780 1.0 34867 19.6 `8 ą24.3 `8 ą24.3 `8 ą24.3

Table 5: Results for the Benders by batch algorithm with cut aggregation (no stabilization)
In-out multicut In-out monocut BbB 1% BbB 5% BbB 10% BbB 20%

Aggreg Aggreg Aggreg Aggreg
instance Best time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000 1 1 1.1 1 1.8 2 2.1 1 1.1 1 1.0 1 1.1
LandS-N5000 4 8 2.0 9 2.3 9 2.3 5 1.1 4 1.0 4 1.1
LandS-N10000 8 24 2.9 16 1.9 16 1.9 8 1.0 8 1.0 9 1.1
LandS-N20000 17 62 3.6 41 2.4 44 2.5 17 1.0 18 1.0 20 1.1
gbd-N1000 1 1 2.1 2 3.3 2 2.7 1 1.0 1 1.3 1 1.5
gbd-N5000 3 10 3.1 10 3.2 9 2.7 3 1.0 4 1.1 4 1.3
gbd-N10000 6 23 3.7 21 3.3 15 2.3 6 1.0 8 1.3 9 1.5
gbd-N20000 14 82 6.0 54 3.9 41 3.0 14 1.0 15 1.1 19 1.4
ssn-N1000 6 6 1.0 137 24.7 14 2.5 61 11.1 134 24.2 242 43.8
ssn-N5000 31 31 1.0 795 25.8 89 2.9 322 10.5 659 21.4 1322 43.0
ssn-N10000 63 63 1.0 1464 23.1 185 2.9 707 11.2 1423 22.5 2914 46.0
ssn-N20000 243 243 1.0 2861 11.8 441 1.8 1615 6.7 3386 13.9 6757 27.8
storm-N1000 6 9 1.5 14 2.3 12 1.9 6 1.0 7 1.1 9 1.5
storm-N5000 34 41 1.2 62 1.8 52 1.5 34 1.0 36 1.0 55 1.6
storm-N10000 74 125 1.7 201 2.7 110 1.5 74 1.0 82 1.1 104 1.4
storm-N20000 163 573 3.5 252 1.5 226 1.4 163 1.0 169 1.0 238 1.5
20term-N1000 15 36 2.5 114 7.7 15 1.0 37 2.5 68 4.6 141 9.6
20term-N5000 70 482 6.9 681 9.7 70 1.0 193 2.7 395 5.6 839 12.0
20term-N10000 130 2805 21.6 1190 9.2 130 1.0 402 3.1 898 6.9 1978 15.2
20term-N20000 280 10992 39.3 1754 6.3 280 1.0 914 3.3 2051 7.3 18312 65.4
Fleet20-N1000 28 50 1.8 93 3.3 28 1.0 42 1.5 74 2.6 131 4.6
Fleet20-N5000 107 719 6.7 473 4.4 107 1.0 211 2.0 358 3.3 649 6.0
Fleet20-N10000 212 3747 17.7 1029 4.9 212 1.0 440 2.1 721 3.4 1310 6.2
Fleet20-N20000 419 17000 40.6 1780 4.3 419 1.0 876 2.1 1520 3.6 2777 6.6

We summarize the results of Tables 4 and 5 in Figure 3. Figure 3 confirms that BbB 1% Aggreg

and BbB 5% Aggreg are the two best algorithms on our benchmark. They show the best computing

times in respectively 24 out of 72 instances and 33 out of 72. Algorithm BbB 1% Aggreg scales

better as its higher performance ratio is lower than 4.

We now present the results for the two stabilization schemes presented in §4.3. We performed

the tests for the stabilized Benders by batch algorithm with batch sizes of 1% and 5%, and with cut

22

Figure 3: Performance profiles of Classical Benders decomposition with in-out stabilization and Ben-
ders by batch algorithm with and without cut aggregation

aggregation, as these parameters gave the most competitive results for the unstabilized version of the

algorithm. Figures 4 and 5 show the performance profiles of BbB with and without stabilization.

We present the results with basic stabilization for α P t0.1, 0.5, 0.9u and with solution memory stabi-

lization for α P t0.1, 0.5, 0.9u and β P t0.1, 0.5, 0.9u. Each stabilized method is denoted by BbB 1%

Aggreg or BbB 5% Aggreg followed by the values for the parameters.

Figure 4: Performance profiles of the stabilized Benders by batch algorithm with batch size of 1%
and cut aggregation.

Figure 4 shows that the proposed stabilization schemes accelerate BbB 1% Aggreg, and can

be up to 70% faster than the unstabilized algorithm. Four stabilizations are more efficient on the

tested instances and give similar results, namely the basic stabilization with α “ 0.5, and the solution

memory stabilization with pα, βq P tp0.5, 0.1q, p0.5, 0.5q, p0.9, 0.5qu.

Figure 5 shows similar results for BbB 5% Aggreg. The same four methods are the most efficient

and equivalent to each other. The algorithm with a solution memory stabilization parameterized by

23

Figure 5: Performance profiles of the stabilized Benders by batch algorithm with batch size of 5%
and cut aggregation.

pα, βq “ p0.1, 0.9q is less efficient than BbB 5% Aggreg. In this case, a small step size (α “ 0.1)

and a high memory parameter (β “ 0.9) slow down the convergence. For all the other cases, the use

of a primal stabilization scheme accelerates the algorithm.

Finally, results show no clear difference between the two proposed stabilization schemes. It seems

that the solution memory stabilization does efficiently stabilize the algorithm, but the basic stabiliza-

tion might be the method of choice as it is much simpler and provides quite similar computational

results.

As final results, we show in Table 6 the times and ratios of the three best methods in our bench-

mark, In-out monocut, In-out multicut, and Level bundle, with the best versions of BbB (with

and without stabilization). The table shows clearly that the stabilized Benders by batch algorithm

outperforms the other methods on the tested instances, and can be up to more than 20 times faster

than Level Bundle or 15 times faster than In-out monocut. We also show in Figure 6 the perfor-

mance profiles of the first six methods we compare to, presented in Table 3 and BbB 1% Aggreg

with α “ 0.5. The latter is the best algorithm for 62 out of 72 instances and shows up to two orders

of magnitude of acceleration compared to Classic monocut, Classic multicut or CPLEX.

6 Conclusion

We proposed in this paper the Benders by batch algorithm to solve two-stage stochastic linear pro-

grams in which we solve only a few subproblems at most iterations. The algorithm is exact and does

not need any assumptions on the structure of the problem. We showed that solving only a very few

number of subproblems, 1% in our tests, allows us to significantly improve the solution time, and to

solve large instances that classical Benders decomposition algorithms fail to solve in 12 hours.

To avoid strong oscillations of the first-stage variables, we also introduced a stabilized version of

the algorithm. This algorithm is based on a primal stabilization scheme responsible for generating

the points at which the subproblems are solved. We presented a sufficient condition for a primal

stabilization scheme that ensures the convergence of the Benders by batch algorithm and proposed

24

Table 6: Comparison of the stabilized and unstabilized version of the Benders by batch algorithm
with the best other implemented methods

Best In-out multicut In-out monocut Level Bundle BBB 1% BbB 1%
Aggreg Aggreg — α “ 0.5

instance Best time ratio time ratio time ratio time ratio time ratio
LandS-N1000 1 1 1.0 1 1.6 1 1.4 2 1.9 1 1.1
LandS-N5000 5 8 1.6 9 1.9 7 1.3 9 1.8 5 1.0
LandS-N10000 11 24 2.1 16 1.4 14 1.3 16 1.4 11 1.0
LandS-N20000 22 62 2.8 41 1.9 27 1.2 44 2.0 22 1.0
gbd-N1000 1 1 1.5 2 2.3 2 2.5 2 1.9 1 1.0
gbd-N5000 4 10 2.3 10 2.3 10 2.2 9 2.0 4 1.0
gbd-N10000 9 23 2.7 21 2.4 24 2.7 15 1.7 9 1.0
gbd-N20000 17 82 4.9 54 3.2 44 2.6 41 2.4 17 1.0
ssn-N1000 6 6 1.0 137 24.7 90 16.2 14 2.5 8 1.5
ssn-N5000 31 31 1.0 795 25.8 657 21.3 89 2.9 50 1.6
ssn-N10000 63 63 1.0 1464 23.1 1501 23.7 185 2.9 94 1.5
ssn-N20000 195 243 1.2 2861 14.6 3109 15.9 441 2.3 195 1.0
storm-N1000 7 9 1.3 14 2.1 15 2.2 12 1.8 7 1.0
storm-N5000 33 41 1.2 62 1.9 76 2.3 52 1.6 33 1.0
storm-N10000 68 125 1.8 201 2.9 145 2.1 110 1.6 68 1.0
storm-N20000 129 573 4.4 252 1.9 288 2.2 226 1.8 129 1.0
20term-N1000 11 36 3.4 114 10.7 217 20.5 15 1.4 11 1.0
20term-N5000 53 482 9.1 681 12.8 1044 19.6 70 1.3 53 1.0
20term-N10000 105 2805 26.8 1190 11.4 2450 23.4 130 1.2 105 1.0
20term-N20000 231 10992 47.6 1754 7.6 4843 21.0 280 1.2 231 1.0
Fleet20-N1000 17 50 2.9 93 5.4 107 6.2 28 1.6 17 1.0
Fleet20-N5000 76 719 9.5 473 6.2 500 6.6 107 1.4 76 1.0
Fleet20-N10000 152 3747 24.7 1029 6.8 1004 6.6 212 1.4 152 1.0
Fleet20-N20000 311 17000 54.6 1780 5.7 2730 8.8 419 1.3 311 1.0

Figure 6: Performance profile of the best version of the stabilized Benders by batch algorithm and of
the other implemented methods

two schemes satisfying it. The stabilized Benders by batch algorithm with cut aggregation solves in

at most seven minutes some large instances of the literature which were not solved in 12 hours by the

built-in Benders decomposition of CPLEX 12.10 or the Benders decomposition without stabilization.

This algorithm showed speed-up factors of up to 15 over the best methods of the literature that we

compared it to.

Applying dual stabilization (Magnanti and Wong, 1981; Sherali and Lunday, 2013) to the Benders

by batch algorithm is straightforward and could improve the results. The algorithm can also be

parallelized and may benefit from effective parallelized methods, such as the asynchronous method

25

of Linderoth and Wright (2003). Finally, an interesting perspective is to adapt the Benders by batch

algorithm to solve mixed-integer master programs within a Branch&Cut framework.

Acknowledgements

This project has been funded by RTE (Réseau de Transport d’Electricité), french company in charge

of the electricity network management, through the projects Antares and Antares Xpansion: https:

//github.com/AntaresSimulatorTeam/antares-xpansion, which are used for long-term adequacy

studies. Computer time for this study was provided by the computing facilities MCIA (Mésocentre

de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays

de l’Adour.

References

Ben-Ameur, W. and Neto, J. (2007). Acceleration of cutting-plane and column generation algorithms:

Applications to network design. Networks, 49(1):3–17.

Birge, J. R. and Louveaux, F. (1988). A multicut algorithm for two-stage stochastic linear programs.

European Journal of Operational Research, 34(3):384–392.

Crainic, T. G., Hewitt, M., Maggioni, F., and Rei, W. (2020). Partial Benders Decomposition: General

Methodology and Application to Stochastic Network Design. Transportation Science, 55(2):414–

435.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton, New Jersey, princeton

university press edition.

Dantzig, G. B. and Infanger, G. (1991). Large-Scale Stochastic Linear Programs: Importance Sam-

pling and Benders Decomposition:. Technical report, Defense Technical Information Center, Fort

Belvoir, VA.

de Oliveira, W. and Sagastizábal, C. (2014). Level bundle methods for oracles with on-demand

accuracy. Optimization Methods and Software, 29(6):1180–1209.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016). Redesigning Benders Decomposition for Large-Scale

Facility Location. Management Science, 63(7):2146–2162.

Fischetti, M. and Salvagnin, D. (2010). An In-Out Approach to Disjunctive Optimization. In In-

tegration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, volume 6140, pages 136–140. Springer Berlin Heidelberg, Berlin, Heidelberg.

Higle, J. L. and Sen, S. (1991). Stochastic Decomposition : An Algorithm for Two-Stage Linear

Programms with Recours. Mathematics of Operations Research, 16(3):447–669.

Infanger, G. (1992). Monte Carlo (importance) sampling within a benders decomposition algorithm

for stochastic linear programs. Annals of Operations Research, 39(1):69–95.

26

https://github.com/AntaresSimulatorTeam/antares-xpansion
https://github.com/AntaresSimulatorTeam/antares-xpansion

Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. (1995). New variants of bundle methods. Mathe-

matical Programming, 69(1-3):111–147.

Linderoth, J., Shapiro, A., and Wright, S. (2006). The empirical behavior of sampling methods for

stochastic programming. Annals of Operations Research, 142(1):215–241.

Linderoth, J. and Wright, S. (2003). Decomposition Algorithms for Stochastic Programming on a

Computational Grid. Computational Optimization and Applications, 24(2):207–250.

Louveaux, F. and Smeers, Y. (1988). Optimal Investments for Electricity Generation: A Stochastic

Model and a Test-Problem. In Numerical Techniques for Stochastic Optimization, Y. Ermoliev

andR.J.-B. Wets (Eds.), pages 445–454, Berlin. Springer-Verlag,.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders Decomposition: Algorithmic En-

hancement and Model Selection Criteria. Operations Research, 29(3):464–484.

Mak, W.-K., Morton, D. P., and Wood, R. (1999). Monte Carlo bounding techniques for determining

solution quality in stochastic programs. Operations Research Letters, 24(1-2):47–56.

Mulvey, J. M. and Ruszczyński, A. (1995). A New Scenario Decomposition Method for Large-Scale

Stochastic Optimization. Operations Research, 43(3):477–490.

Oliveira, W., Sagastizábal, C., and Scheimberg, S. (2011). Inexact Bundle Methods for Two-Stage

Stochastic Programming. SIAM Journal on Optimization, 21(2):517–544.

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research

Letters, 36(4):444–449.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2013). In-Out Separation and Column

Generation Stabilization by Dual Price Smoothing. In Experimental Algorithms, volume 7933,

pages 354–365. Springer Berlin Heidelberg, Berlin, Heidelberg.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR

Computational Mathematics and Mathematical Physics, 4(5):1–17.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral

functions. Mathematical Programming, 35(3):309–333.

Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical Program-

ming, 79(1):333–353.

Sen, S., Doverspike, R. D., and Cosares, S. (1994). Network planning with random demand. Telecom-

munication Systems, 3(1):11–30.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated Benders cuts. Annals

of Operations Research, 210(1):57–72.

Song, Y. and Luedtke, J. (2015). An Adaptive Partition-Based Approach for Solving Two-Stage

Stochastic Programs with Fixed Recourse. SIAM Journal on Optimization, 25(3):1344–1367.

27

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization

and momentum in deep learning. volume 28 of Proceedings of Machine Learning Research, pages

1139–1147, Atlanta, Georgia, USA. PMLR.

Trukhanov, S., Ntaimo, L., and Schaefer, A. (2010). Adaptive multicut aggregation for two-stage

stochastic linear programs with recourse. European Journal of Operational Research, 206(2):395–

406.

van Ackooij, W., de Oliveira, W., and Song, Y. (2017). Adaptive Partition-Based Level Decomposition

Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse. INFORMS Journal on

Computing, 30(1):57–70.

Van Slyke, R. M. and Wets, R. (1969). L-Shaped Linear Programs with Applications to Optimal

Control and Stochastic Programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Wets, R. (1983). Stochastic Programming: Solution Techniques and Approximation Schemes. In

Mathematical Programming The State of the Art, pages 566–603. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Wolf, C., Fábián, C. I., Koberstein, A., and Suhl, L. (2014). Applying oracles of on-demand accuracy

in two-stage stochastic programming – A computational study. European Journal of Operational

Research, 239(2):437–448.

You, F. and Grossmann, I. E. (2013). Multicut Benders decomposition algorithm for process supply

chain planning under uncertainty. Annals of Operations Research, 210(1):191–211.

Zverovich, V., Fábián, C. I., Ellison, E. F. D., and Mitra, G. (2012). A computational study of

a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition.

Mathematical Programming Computation, 4(3):211–238.

A Proof of Lemma 1

Proof of lemma 1. From the definition of
`

xpkq
˘

kPN,

#

x̄pk`1q ´ z “ βpx̄pkq ´ zq

xpk`1q ´ z “ αβpx̄pkq ´ zq ` p1 ´ αqpxpkq ´ zq

We define upkq “ xpkq ´ z and vpkq “ x̄pkq ´ z , for every k P N˚.

#

vpk`1q “ βvpkq

upk`1q “ αβvpkq ` p1 ´ αqupkq

We define

A “

«

β 0

αβ p1 ´ αq

ff

28

Then we have:

¨

˚

˚

˚

˚

˚

˚

˚

˝

v
pk`1q

1

u
pk`1q

1
...

v
pk`1q
n1

u
pk`1q
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

–

A
. . .

A

fi

ffi

ffi

fl

.

¨

˚

˚

˚

˚

˚

˚

˚

˝

v
pkq

1

u
pkq

1
...

v
pkq
n1

u
pkq
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

–

Ak

. . .

Ak

fi

ffi

ffi

fl

.

¨

˚

˚

˚

˚

˚

˚

˚

˝

v
p1q

1

u
p1q

1
...

v
p1q
n1

u
p1q
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

If p1 ´ αq ‰ β, then the characteristic polynomial of A has two distinct roots, so A is diagonalizable

and SppAq “ t1 ´ α, βu. Since ´1 ă 1 ´ α ă 1 and ´1 ă β ă 1, the sequence pAkqkPN converges to

the null matrix. If p1 ´ αq “ β, then we have:

Ak “

«

p1 ´ αqk 0

kαp1 ´ αqk p1 ´ αqk

ff

Since kαp1 ´ αqk converges to 0 for every α P p0, 1s, the sequence pAkqkPN converges to the null

matrix. This proves that the sequence pupkq, vpkqqkPN converges to p0, 0q. Then the sequence
`

xpkq
˘

kPN

converges to z.

B Detailed benchmark algorithms

Algorithm 4 describes our implementation of In-out monocut (aggregation=True) and In-out

multicut (aggregation=False).

Algorithm 4: The Benders decomposition algorithm with in-out stabilization

Parameters: ϵ ą 0 the selected optimality gap, xp0q P X, aggregation P tTrue, Falseu, α P p0; 1s

1 Initialization: k Ð 0, x̂p1q Ð xp0q, UBp0q Ð cJxp0q `
ř

sPS psπ
J
s pds ´ Tsx

p0qq, LBp0q Ð ´8, α1 Ð α

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 Solve pRMP qpkq and retrieve x̌pkq, pθ̌
pkq
s qsPS

5 LBpkq Ð cJx̌pkq `
ř

sPS psθ̌
pkq

6 xpkq Ð αkx̌
pkq ` p1 ´ αkqx̂pkq

7 for s P S do

8 Solve pSP pxpkq, sqq and retrieve πs an extreme point or an extreme ray of Πs

9 if aggregation then
10 Add

ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

11 else
12 for s P S do

13 Add θs ě πJ
s pds ´ Tsxq to pRMP qpkq

14 if UBpk´1q ą cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq then

15 UBpkq Ð cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq

16 x̂pk`1q Ð xpkq

17 αk`1 Ð mint1.0, 1.2αku

18 else

19 x̂pk`1q Ð x̂pkq, UBpkq Ð UBpk´1q

20 αk`1 Ð maxt0.1, 0.8αku

21 pRMP qpk`1q Ð pRMP qpkq

22 Return x̂pk`1q

29

We now describe the level bundle method. We first define the quadratic master program. Let

λ P p0, 1q denote the level parameter, LB a lower bound on the optimal value of the problem, and

UB an upper bound. We define flev “ p1 ´ λqUB ` λLB and a stability center x̂ as in the in-out

stabilization approach. The quadratic master program pQMP qpx̂, flevq parametrized by x̂ and flev is

the following:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

min
x,θ

1

2
||x´ x̂||22

s.t. :
ÿ

sPS

psθs ě
ÿ

sPS

psπ
J
s pds ´ Tsxq, @s P S, @πs P VertpΠsq

cJx`
ÿ

sPS

psθs ď flev

x P X, θ P RCardpSq

We denote by pRQMP qpkqpx̂, flevq its relaxation at iteration k of the algorithm and by κ P p0, λq

a acceptation tolerance to update the stability center. Algorithm 5 describes our implementation of

Level bundle.

Algorithm 5: Level bundle method

Parameters: ϵ ą 0 the selected optimality gap, xp0q P X, λ P r0, 1q, LBp0q a valid lower bound on
the objective value, κ P p0, λq

1 Initialization: k Ð 0, UBp0q Ð cJxp0q `
ř

sPS psπ
J
s pds ´ Tsx̂

p0qq, x̂p1q Ð xp0q

2 while UBpkq ą LBpkq ` ϵ do
3 k Ð k ` 1

4 f
pkq

lev “ p1 ´ λqUBpk´1q ` λLBpk´1q

5 Solve pRQMP qpkqpx̂pkq, f
pkq

lev q

6 if pRQMP qpkqpx̂pkq, f
pkq

lev q is infeasible then

7 LBpkq Ð flevpkq

8 x̂pk`1q Ð x̂pkq

9 UBpkq Ð UBpk´1q

10 else

11 Retrieve xpkq solution to pRQMP qpkqpx̂pkq, f
pkq

lev q

12 for s P S do

13 Solve pSP pxpkq, sqq and retrieve πs an extreme point or an extreme ray of Πs

14 Add
ř

sPS psθs ě
ř

sPS psπ
J
s pds ´ Tsxq

15 if cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq ă p1 ´ κqUBpk´1q ` κf
pkq

lev then

16 UBpkq Ð cJxpkq `
ř

sPS psπ
J
s pds ´ Tsx

pkqq

17 x̂pk`1q Ð xpkq

18 else

19 x̂pk`1q Ð x̂pkq

20 UBpkq Ð UBpk´1q

21 LBpkq Ð LBpk´1q

22 pRQMP qpk`1q Ð pRQMP qpkq

23 Return x̂pk`1q

30

C Detailed numerical results

This section shows the detailed numerical results.

CPLEX Classic multicut Classic monocut In-out multicut In-out monocut Level bundle

instance Best time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 1 1 1.0 1 1.4 2 3.4 1 1.9 2 3.6 1 2.1
LandS-N1000-s1001 1 1 1.0 1 1.3 2 3.8 1 1.1 1 2.2 1 2.5
LandS-N1000-s1002 1 1 1.0 1 1.1 2 3.1 1 1.6 1 1.7 1 2.0
LandS-N5000-s5000 5 5 1.0 9 1.7 11 2.1 8 1.6 10 2.0 8 1.5
LandS-N5000-s5001 6 6 1.0 10 1.7 10 1.8 8 1.4 6 1.2 7 1.3
LandS-N5000-s5002 5 5 1.0 9 1.7 11 2.1 8 1.6 12 2.2 6 1.1
LandS-N10000-s10000 11 15 1.4 26 2.3 22 2.0 24 2.1 11 1.0 14 1.2
LandS-N10000-s10001 13 15 1.1 30 2.3 22 1.7 24 1.9 13 1.0 13 1.0
LandS-N10000-s10002 14 14 1.0 30 2.1 20 1.4 23 1.6 23 1.6 15 1.0
LandS-N20000-s20000 28 44 1.5 96 3.4 49 1.8 71 2.5 42 1.5 28 1.0
LandS-N20000-s20001 26 43 1.7 119 4.6 43 1.7 67 2.6 40 1.5 26 1.0
LandS-N20000-s20002 29 44 1.5 99 3.5 44 1.5 48 1.7 43 1.5 29 1.0

gbd-N1000-s1000 1 1 1.0 1 1.2 2 2.4 1 1.6 3 3.4 2 2.2
gbd-N1000-s1001 1 1 1.0 1 1.1 2 2.9 1 1.5 2 1.9 2 2.9
gbd-N1000-s1002 1 1 1.0 1 1.2 2 2.7 1 1.6 2 2.1 2 2.9
gbd-N5000-s5000 7 10 1.3 10 1.4 13 1.7 7 1.0 13 1.8 8 1.1
gbd-N5000-s5001 9 10 1.1 10 1.1 11 1.2 11 1.3 9 1.0 11 1.2
gbd-N5000-s5002 9 10 1.1 11 1.2 12 1.3 12 1.4 9 1.0 11 1.2
gbd-N10000-s10000 19 33 1.8 34 1.9 24 1.3 19 1.0 30 1.6 23 1.2
gbd-N10000-s10001 18 34 1.9 32 1.8 24 1.3 32 1.8 18 1.0 26 1.5
gbd-N10000-s10002 15 33 2.2 32 2.1 23 1.5 20 1.3 15 1.0 23 1.5
gbd-N20000-s20000 45 130 2.9 119 2.6 48 1.1 107 2.4 56 1.2 45 1.0
gbd-N20000-s20001 47 131 2.8 120 2.6 51 1.1 72 1.5 55 1.2 47 1.0
gbd-N20000-s20002 39 132 3.4 125 3.2 47 1.2 69 1.7 51 1.3 39 1.0

ssn-N1000-s1000 4 16 3.9 7 1.7 2279 565.1 4 1.0 187 46.4 97 24.0
ssn-N1000-s1001 6 16 2.5 7 1.1 2720 433.0 6 1.0 117 18.7 85 13.6
ssn-N1000-s1002 6 14 2.3 7 1.1 2226 354.0 6 1.0 106 16.9 87 13.8
ssn-N5000-s5000 35 82 2.3 62 1.8 13425 379.6 35 1.0 936 26.5 621 17.6
ssn-N5000-s5001 35 81 2.3 45 1.3 14260 409.5 35 1.0 597 17.1 719 20.6
ssn-N5000-s5002 22 85 3.9 64 2.9 12695 573.7 22 1.0 852 38.5 631 28.5
ssn-N10000-s10000 86 163 1.9 185 2.2 26559 310.5 86 1.0 1937 22.6 1440 16.8
ssn-N10000-s10001 53 190 3.6 193 3.6 26228 491.6 53 1.0 1261 23.6 1613 30.2
ssn-N10000-s10002 51 188 3.7 187 3.6 24916 486.5 51 1.0 1195 23.3 1451 28.3
ssn-N20000-s20000 245 478 1.9 512 2.1 `8 ą176.1 245 1.0 3791 15.5 3232 13.2
ssn-N20000-s20001 237 484 2.0 503 2.1 `8 ą182.0 237 1.0 2460 10.4 2986 12.6
ssn-N20000-s20002 246 494 2.0 450 1.8 `8 ą175.8 246 1.0 2332 9.5 3108 12.6

storm-N1000-s1000 10 28 2.9 10 1.1 23 2.4 10 1.0 11 1.1 14 1.5
storm-N1000-s1001 7 28 4.1 11 1.5 24 3.4 7 1.0 21 3.0 16 2.2
storm-N1000-s1002 11 28 2.6 11 1.0 24 2.2 11 1.0 12 1.1 15 1.4
storm-N5000-s5000 41 191 4.7 100 2.5 110 2.7 41 1.0 63 1.5 74 1.8
storm-N5000-s5001 38 183 4.9 118 3.1 117 3.1 38 1.0 61 1.6 78 2.1
storm-N5000-s5002 43 188 4.3 99 2.3 116 2.7 43 1.0 63 1.5 76 1.8

storm-N10000-s10000 108 525 4.9 468 4.3 215 2.0 108 1.0 212 2.0 140 1.3
storm-N10000-s10001 105 516 4.9 479 4.6 225 2.1 105 1.0 201 1.9 149 1.4
storm-N10000-s10002 147 482 3.3 542 3.7 233 1.6 161 1.1 189 1.3 147 1.0
storm-N20000-s20000 259 1381 5.3 2240 8.6 465 1.8 515 2.0 259 1.0 316 1.2
storm-N20000-s20001 251 1524 6.1 2460 9.8 434 1.7 633 2.5 251 1.0 266 1.1
storm-N20000-s20002 246 1283 5.2 2410 9.8 476 1.9 570 2.3 246 1.0 283 1.2

20term-N1000-s1000 27 817 30.2 749 27.7 544 20.1 27 1.0 128 4.7 197 7.3
20term-N1000-s1001 43 559 13.0 646 15.0 584 13.6 43 1.0 74 1.7 214 5.0
20term-N1000-s1002 38 965 25.4 877 23.0 604 15.9 38 1.0 139 3.7 241 6.3
20term-N5000-s5000 581 `8 ą74.3 29455 50.7 3095 5.3 581 1.0 661 1.1 994 1.7
20term-N5000-s5001 423 `8 ą102.1 22490 53.2 3699 8.7 423 1.0 650 1.5 1059 2.5
20term-N5000-s5002 443 `8 ą97.6 21342 48.2 3725 8.4 443 1.0 732 1.7 1078 2.4

20term-N10000-s10000 863 `8 ą50.1 `8 ą50.1 6803 7.9 2491 2.9 863 1.0 2305 2.7
20term-N10000-s10001 1389 `8 ą31.1 `8 ą31.1 6404 4.6 3382 2.4 1389 1.0 2647 1.9
20term-N10000-s10002 1317 `8 ą32.8 `8 ą32.8 7494 5.7 2543 1.9 1317 1.0 2400 1.8
20term-N20000-s20000 1834 `8 ą23.6 `8 ą23.6 13429 7.3 13423 7.3 1834 1.0 4562 2.5
20term-N20000-s20001 1680 `8 ą25.7 `8 ą25.7 12763 7.6 10267 6.1 1680 1.0 4378 2.6
20term-N20000-s20002 1748 `8 ą24.7 `8 ą24.7 14868 8.5 9286 5.3 1748 1.0 5588 3.2

Fleet20-N1000-s1000 61 147 2.4 224 3.7 513 8.4 61 1.0 71 1.2 104 1.7
Fleet20-N1000-s1001 34 141 4.1 228 6.6 539 15.7 34 1.0 103 3.0 103 3.0
Fleet20-N1000-s1002 55 155 2.8 224 4.0 546 9.9 55 1.0 106 1.9 114 2.1
Fleet20-N5000-s5000 485 14769 30.5 5530 11.4 2780 5.7 933 1.9 552 1.1 485 1.0
Fleet20-N5000-s5001 331 21496 64.9 5090 15.4 2760 8.3 541 1.6 331 1.0 509 1.5
Fleet20-N5000-s5002 506 10894 21.5 5370 10.6 2730 5.4 682 1.3 535 1.1 506 1.0

Fleet20-N10000-s10000 988 `8 ą43.7 29600 30.0 5860 5.9 3540 3.6 1150 1.2 988 1.0
Fleet20-N10000-s10001 1040 `8 ą41.5 28200 27.1 5480 5.3 4750 4.6 1230 1.2 1040 1.0
Fleet20-N10000-s10002 708 `8 ą61.0 29000 41.0 5790 8.2 2950 4.2 708 1.0 984 1.4
Fleet20-N20000-s20000 2470 `8 ą17.5 `8 ą17.5 11400 4.6 14900 6.0 2470 1.0 2630 1.1
Fleet20-N20000-s20001 1490 `8 ą29.0 `8 ą29.0 11500 7.7 14100 9.5 1490 1.0 2910 2.0
Fleet20-N20000-s20002 1380 `8 ą31.3 `8 ą31.3 11000 8.0 22000 15.9 1380 1.0 2650 1.9

Table 7: Detailed results for the algorithms used as comparison basis

31

BbB 1% Aggreg BbB 1% Aggreg α “ 0.1 BbB 1% Aggreg α “ 0.5 BbB 1% Aggreg α “ 0.9

instance Best time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 1.8 2 1.7 1 1.0 1 1.3
LandS-N1000-s1001 1 2 1.5 1 1.4 1 1.0 1 1.1
LandS-N1000-s1002 1 2 1.8 1 1.0 1 1.1 1 1.3
LandS-N5000-s5000 4 10 2.3 7 1.7 4 1.0 8 1.8
LandS-N5000-s5001 5 9 2.0 5 1.0 6 1.2 7 1.5
LandS-N5000-s5002 4 9 1.9 7 1.6 5 1.1 4 1.0

LandS-N10000-s10000 10 17 1.7 14 1.4 10 1.0 19 1.8
LandS-N10000-s10001 9 14 1.5 9 1.0 11 1.2 10 1.1
LandS-N10000-s10002 9 17 2.0 9 1.0 12 1.4 10 1.1
LandS-N20000-s20000 24 45 1.9 30 1.2 25 1.0 24 1.0
LandS-N20000-s20001 18 42 2.4 18 1.0 20 1.1 21 1.2
LandS-N20000-s20002 20 45 2.3 30 1.5 21 1.1 20 1.0

gbd-N1000-s1000 1 2 1.6 2 1.6 1 1.0 1 1.2
gbd-N1000-s1001 1 2 2.0 1 1.9 1 1.0 1 1.2
gbd-N1000-s1002 1 2 2.1 2 1.8 1 1.0 1 1.3
gbd-N5000-s5000 5 10 2.2 8 1.6 5 1.0 5 1.1
gbd-N5000-s5001 4 8 2.2 7 1.9 4 1.2 4 1.0
gbd-N5000-s5002 5 9 2.0 7 1.6 5 1.0 7 1.6

gbd-N10000-s10000 8 18 2.2 14 1.8 8 1.0 12 1.5
gbd-N10000-s10001 9 13 1.4 15 1.7 11 1.2 9 1.0
gbd-N10000-s10002 8 14 1.9 16 2.1 8 1.0 8 1.1
gbd-N20000-s20000 16 50 3.2 16 1.0 16 1.0 20 1.3
gbd-N20000-s20001 14 31 2.2 27 1.9 14 1.0 24 1.7
gbd-N20000-s20002 16 43 2.7 30 1.9 21 1.3 16 1.0

ssn-N1000-s1000 8 14 1.6 9 1.0 8 1.0 11 1.3
ssn-N1000-s1001 8 15 1.8 9 1.0 8 1.0 12 1.4
ssn-N1000-s1002 8 13 1.6 9 1.1 8 1.0 11 1.4
ssn-N5000-s5000 51 88 1.7 51 1.0 51 1.0 76 1.5
ssn-N5000-s5001 50 90 1.8 51 1.0 50 1.0 72 1.4
ssn-N5000-s5002 51 90 1.8 52 1.0 51 1.0 74 1.5

ssn-N10000-s10000 92 175 1.9 106 1.2 92 1.0 135 1.5
ssn-N10000-s10001 96 187 1.9 105 1.1 96 1.0 141 1.5
ssn-N10000-s10002 94 193 2.0 100 1.1 94 1.0 133 1.4
ssn-N20000-s20000 187 457 2.4 212 1.1 187 1.0 297 1.6
ssn-N20000-s20001 202 458 2.3 221 1.1 202 1.0 280 1.4
ssn-N20000-s20002 197 407 2.1 213 1.1 197 1.0 316 1.6

storm-N1000-s1000 6 12 1.9 6 1.0 6 1.0 7 1.1
storm-N1000-s1001 7 12 1.8 7 1.0 7 1.1 8 1.2
storm-N1000-s1002 7 13 1.8 9 1.3 7 1.0 8 1.1
storm-N5000-s5000 32 44 1.3 33 1.0 32 1.0 44 1.4
storm-N5000-s5001 30 54 1.8 50 1.6 30 1.0 40 1.3
storm-N5000-s5002 34 58 1.7 34 1.0 35 1.1 36 1.1
storm-N10000-s10000 64 121 1.9 65 1.0 64 1.0 86 1.3
storm-N10000-s10001 66 90 1.4 66 1.0 72 1.1 69 1.0
storm-N10000-s10002 66 118 1.8 66 1.0 68 1.0 90 1.4
storm-N20000-s20000 128 216 1.7 139 1.1 128 1.0 172 1.3
storm-N20000-s20001 132 245 1.9 138 1.0 132 1.0 143 1.1
storm-N20000-s20002 128 218 1.7 133 1.0 128 1.0 150 1.2

20term-N1000-s1000 11 15 1.3 12 1.1 11 1.0 13 1.2
20term-N1000-s1001 11 15 1.3 11 1.0 11 1.0 13 1.2
20term-N1000-s1002 9 15 1.6 12 1.2 9 1.0 12 1.3
20term-N5000-s5000 53 67 1.3 72 1.4 53 1.0 61 1.1
20term-N5000-s5001 54 78 1.5 60 1.1 54 1.0 61 1.1
20term-N5000-s5002 49 64 1.3 49 1.0 53 1.1 60 1.2
20term-N10000-s10000 95 129 1.4 96 1.0 95 1.0 114 1.2
20term-N10000-s10001 112 122 1.1 165 1.5 112 1.0 127 1.1
20term-N10000-s10002 106 137 1.3 140 1.3 106 1.0 128 1.2
20term-N20000-s20000 227 261 1.1 227 1.0 243 1.1 239 1.1
20term-N20000-s20001 189 296 1.6 189 1.0 220 1.2 253 1.3
20term-N20000-s20002 230 283 1.2 265 1.2 230 1.0 239 1.0

Fleet20-N1000-s1000 17 28 1.7 21 1.2 17 1.0 20 1.2
Fleet20-N1000-s1001 17 27 1.6 18 1.1 17 1.0 20 1.2
Fleet20-N1000-s1002 18 30 1.6 20 1.1 18 1.0 21 1.1
Fleet20-N5000-s5000 78 108 1.4 87 1.1 78 1.0 88 1.1
Fleet20-N5000-s5001 74 104 1.4 98 1.3 74 1.0 85 1.1
Fleet20-N5000-s5002 75 110 1.5 86 1.1 75 1.0 85 1.1

Fleet20-N10000-s10000 151 214 1.4 177 1.2 151 1.0 164 1.1
Fleet20-N10000-s10001 154 209 1.4 175 1.1 154 1.0 171 1.1
Fleet20-N10000-s10002 150 213 1.4 178 1.2 150 1.0 164 1.1
Fleet20-N20000-s20000 312 402 1.3 409 1.3 312 1.0 336 1.1
Fleet20-N20000-s20001 301 429 1.4 396 1.3 301 1.0 337 1.1
Fleet20-N20000-s20002 321 425 1.3 431 1.3 321 1.0 367 1.1

Table 8: Detailed results for the Benders by batch algorithm with a batch size of 1%, cut aggregation,
and basic stabilization or no stabilization

32

BbB 1% Aggreg BbB 5% Aggreg BbB 5% Aggreg α “ 0.1 BbB 5% Aggreg α “ 0.5 BbB 5% Aggreg α “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 2.1 1 1.1 1 1.0 1 1.1 1 1.0
LandS-N1000-s1001 1 2 2.1 1 1.0 1 1.2 1 1.2 1 1.1
LandS-N1000-s1002 1 2 2.0 1 1.2 1 1.0 1 1.0 1 1.0
LandS-N5000-s5000 4 10 2.5 5 1.1 8 2.1 4 1.1 4 1.0
LandS-N5000-s5001 4 9 2.2 5 1.2 5 1.2 4 1.0 4 1.0
LandS-N5000-s5002 4 9 2.2 4 1.0 9 2.3 4 1.1 4 1.1

LandS-N10000-s10000 8 17 2.2 8 1.1 10 1.3 8 1.0 8 1.1
LandS-N10000-s10001 8 14 1.9 8 1.1 18 2.4 9 1.2 8 1.0
LandS-N10000-s10002 8 17 2.2 8 1.1 18 2.4 9 1.2 8 1.0
LandS-N20000-s20000 17 45 2.7 17 1.0 38 2.3 20 1.2 19 1.1
LandS-N20000-s20001 18 42 2.4 18 1.0 38 2.1 19 1.0 18 1.0
LandS-N20000-s20002 17 45 2.7 18 1.0 38 2.2 18 1.1 17 1.0

gbd-N1000-s1000 1 2 2.9 1 1.0 2 3.1 1 1.8 1 1.6
gbd-N1000-s1001 1 2 2.4 1 1.0 2 2.8 1 1.2 1 1.0
gbd-N1000-s1002 1 2 3.0 1 1.0 2 2.7 1 1.3 1 1.0
gbd-N5000-s5000 3 10 3.0 3 1.0 9 2.7 4 1.1 4 1.1
gbd-N5000-s5001 3 8 2.5 3 1.0 9 2.8 4 1.2 3 1.1
gbd-N5000-s5002 3 9 2.6 3 1.0 5 1.3 4 1.1 4 1.0

gbd-N10000-s10000 6 18 2.7 7 1.1 18 2.8 9 1.3 6 1.0
gbd-N10000-s10001 6 13 2.1 6 1.0 17 2.9 8 1.4 7 1.1
gbd-N10000-s10002 6 14 2.4 6 1.0 19 3.1 6 1.0 6 1.0
gbd-N20000-s20000 12 50 4.0 12 1.0 19 1.5 15 1.2 14 1.1
gbd-N20000-s20001 15 31 2.1 15 1.0 36 2.4 17 1.1 17 1.1
gbd-N20000-s20002 14 43 3.2 14 1.0 37 2.7 18 1.3 16 1.2

ssn-N1000-s1000 14 14 1.0 63 4.6 15 1.1 18 1.3 36 2.6
ssn-N1000-s1001 15 15 1.0 63 4.3 15 1.0 20 1.3 42 2.9
ssn-N1000-s1002 13 13 1.0 59 4.6 15 1.2 20 1.5 41 3.2
ssn-N5000-s5000 84 88 1.0 337 4.0 84 1.0 106 1.3 221 2.6
ssn-N5000-s5001 82 90 1.1 322 4.0 82 1.0 114 1.4 225 2.8
ssn-N5000-s5002 90 90 1.0 308 3.4 94 1.0 112 1.2 224 2.5

ssn-N10000-s10000 175 175 1.0 672 3.8 181 1.0 240 1.4 481 2.7
ssn-N10000-s10001 181 187 1.0 760 4.2 181 1.0 246 1.4 493 2.7
ssn-N10000-s10002 179 193 1.1 690 3.9 179 1.0 226 1.3 491 2.7
ssn-N20000-s20000 397 457 1.2 1651 4.2 397 1.0 528 1.3 1069 2.7
ssn-N20000-s20001 418 458 1.1 1651 3.9 418 1.0 559 1.3 1076 2.6
ssn-N20000-s20002 388 407 1.0 1543 4.0 388 1.0 561 1.4 1051 2.7

storm-N1000-s1000 6 12 1.9 6 1.0 7 1.2 6 1.0 6 1.0
storm-N1000-s1001 6 12 2.0 6 1.1 8 1.3 6 1.0 6 1.0
storm-N1000-s1002 6 13 2.2 6 1.1 10 1.7 6 1.0 6 1.0
storm-N5000-s5000 29 44 1.5 33 1.2 38 1.3 32 1.1 29 1.0
storm-N5000-s5001 27 54 2.0 33 1.2 36 1.3 36 1.3 27 1.0
storm-N5000-s5002 30 58 2.0 37 1.3 37 1.3 30 1.0 30 1.0
storm-N10000-s10000 62 121 2.0 73 1.2 78 1.3 66 1.1 62 1.0
storm-N10000-s10001 62 90 1.5 76 1.2 77 1.2 63 1.0 62 1.0
storm-N10000-s10002 62 118 1.9 73 1.2 112 1.8 62 1.0 62 1.0
storm-N20000-s20000 126 216 1.7 167 1.3 180 1.4 126 1.0 126 1.0
storm-N20000-s20001 125 245 2.0 161 1.3 152 1.2 127 1.0 125 1.0
storm-N20000-s20002 125 218 1.7 160 1.3 171 1.4 133 1.1 125 1.0

20term-N1000-s1000 15 15 1.0 36 2.5 15 1.0 21 1.4 28 1.9
20term-N1000-s1001 14 15 1.0 37 2.7 14 1.0 19 1.3 29 2.1
20term-N1000-s1002 14 15 1.0 37 2.6 14 1.0 21 1.5 32 2.3
20term-N5000-s5000 67 67 1.0 199 3.0 92 1.4 104 1.6 148 2.2
20term-N5000-s5001 78 78 1.0 197 2.5 81 1.0 99 1.3 154 2.0
20term-N5000-s5002 64 64 1.0 182 2.8 83 1.3 93 1.4 141 2.2
20term-N10000-s10000 129 129 1.0 411 3.2 148 1.1 238 1.8 305 2.4
20term-N10000-s10001 122 122 1.0 409 3.3 165 1.3 218 1.8 345 2.8
20term-N10000-s10002 137 137 1.0 388 2.8 176 1.3 204 1.5 353 2.6
20term-N20000-s20000 261 261 1.0 860 3.3 398 1.5 483 1.9 768 2.9
20term-N20000-s20001 296 296 1.0 985 3.3 302 1.0 517 1.8 780 2.6
20term-N20000-s20002 283 283 1.0 897 3.2 323 1.1 509 1.8 806 2.8

Fleet20-N1000-s1000 24 28 1.2 42 1.7 24 1.0 24 1.0 32 1.3
Fleet20-N1000-s1001 24 27 1.1 40 1.7 24 1.0 24 1.0 32 1.4
Fleet20-N1000-s1002 21 30 1.4 43 2.0 21 1.0 26 1.2 34 1.6
Fleet20-N5000-s5000 108 108 1.0 218 2.0 114 1.1 125 1.2 160 1.5
Fleet20-N5000-s5001 104 104 1.0 209 2.0 119 1.1 123 1.2 162 1.6
Fleet20-N5000-s5002 110 110 1.0 205 1.9 124 1.1 122 1.1 161 1.5
Fleet20-N10000-s10000 214 214 1.0 426 2.0 253 1.2 249 1.2 333 1.6
Fleet20-N10000-s10001 209 209 1.0 467 2.2 247 1.2 261 1.2 342 1.6
Fleet20-N10000-s10002 213 213 1.0 426 2.0 246 1.2 250 1.2 326 1.5
Fleet20-N20000-s20000 402 402 1.0 886 2.2 557 1.4 545 1.4 677 1.7
Fleet20-N20000-s20001 429 429 1.0 856 2.0 493 1.1 513 1.2 700 1.6
Fleet20-N20000-s20002 425 425 1.0 885 2.1 516 1.2 517 1.2 684 1.6

Table 9: Detailed results for the Benders by batch algorithm with a batch size of 5%, cut aggregation,
and basic stabilization or no stabilization

33

BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg BbB 1% Aggreg
α “ 0.1, β “ 0.1 α “ 0.1, β “ 0.5 α “ 0.1, β “ 0.9 α “ 0.5, β “ 0.1 α “ 0.5, β “ 0.5 α “ 0.5, β “ 0.9 α “ 0.9, β “ 0.1 α “ 0.9, β “ 0.5 α “ 0.9, β “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 2.0 1 1.8 2 1.8 1 1.0 1 1.2 1 1.1 1 1.8 1 1.4 1 1.1 1 1.7
LandS-N1000-s1001 1 2 1.7 2 1.7 2 1.6 2 1.8 1 1.1 1 1.0 2 1.6 1 1.2 1 1.1 2 1.7
LandS-N1000-s1002 1 2 2.1 1 1.0 1 1.0 1 1.1 1 1.0 1 1.1 1 1.1 1 1.5 1 1.1 1 1.1
LandS-N5000-s5000 4 10 2.3 7 1.7 7 1.7 4 1.0 5 1.1 5 1.1 7 1.7 6 1.3 5 1.1 7 1.6
LandS-N5000-s5001 4 9 2.3 4 1.1 4 1.0 5 1.2 5 1.2 5 1.2 4 1.0 6 1.5 5 1.3 4 1.1
LandS-N5000-s5002 4 9 1.9 7 1.7 7 1.6 8 1.7 6 1.2 4 1.0 7 1.7 4 1.0 5 1.2 7 1.7
LandS-N10000-s10000 9 17 1.9 9 1.0 15 1.7 15 1.8 10 1.1 10 1.1 15 1.7 10 1.1 10 1.1 9 1.0
LandS-N10000-s10001 10 14 1.4 15 1.5 16 1.5 16 1.5 11 1.0 16 1.5 15 1.5 10 1.0 11 1.0 16 1.5
LandS-N10000-s10002 9 17 2.0 9 1.0 9 1.1 15 1.7 11 1.3 9 1.1 9 1.1 10 1.2 11 1.3 9 1.0
LandS-N20000-s20000 19 45 2.4 31 1.6 32 1.7 19 1.0 21 1.1 21 1.1 31 1.6 25 1.3 21 1.1 31 1.6
LandS-N20000-s20001 17 42 2.4 31 1.8 33 1.9 17 1.0 20 1.2 23 1.3 32 1.9 24 1.4 20 1.2 31 1.8
LandS-N20000-s20002 17 45 2.7 30 1.8 30 1.8 30 1.8 21 1.2 17 1.0 31 1.8 18 1.1 22 1.3 31 1.8

gbd-N1000-s1000 1 2 1.8 2 1.8 2 1.8 2 2.3 1 1.1 1 1.1 2 1.8 1 1.6 1 1.0 2 1.8
gbd-N1000-s1001 1 2 2.0 2 2.0 2 2.0 2 2.3 1 1.1 1 1.1 2 1.9 1 1.3 1 1.0 2 2.2
gbd-N1000-s1002 1 2 2.3 1 1.9 2 2.0 2 2.4 1 1.0 1 1.0 2 2.0 1 1.3 1 1.0 1 1.9
gbd-N5000-s5000 4 10 2.3 7 1.6 8 1.8 9 2.0 4 1.0 5 1.2 8 1.8 6 1.5 4 1.0 7 1.7
gbd-N5000-s5001 4 8 2.3 7 2.1 8 2.1 8 2.3 5 1.3 4 1.1 8 2.1 4 1.0 5 1.4 7 2.1
gbd-N5000-s5002 4 9 2.6 8 2.4 8 2.4 8 2.3 6 1.6 5 1.5 8 2.3 4 1.0 6 1.6 8 2.4
gbd-N10000-s10000 8 18 2.1 15 1.8 15 1.8 16 2.0 10 1.2 9 1.0 15 1.8 8 1.0 10 1.2 15 1.8
gbd-N10000-s10001 8 13 1.6 13 1.7 14 1.8 17 2.1 11 1.3 8 1.0 14 1.8 10 1.3 10 1.3 14 1.7
gbd-N10000-s10002 7 14 2.0 14 2.0 14 2.0 19 2.7 8 1.2 7 1.1 15 2.1 7 1.0 8 1.2 14 2.0
gbd-N20000-s20000 14 50 3.5 32 2.2 30 2.1 17 1.2 15 1.1 16 1.1 30 2.1 14 1.0 15 1.1 32 2.2
gbd-N20000-s20001 17 31 1.8 28 1.7 29 1.7 30 1.8 18 1.1 19 1.1 30 1.8 17 1.0 18 1.1 29 1.7
gbd-N20000-s20002 16 43 2.6 30 1.8 29 1.8 32 2.0 20 1.2 18 1.1 30 1.8 16 1.0 20 1.2 30 1.8

ssn-N1000-s1000 8 14 1.7 9 1.1 10 1.2 11 1.3 9 1.1 9 1.1 11 1.3 10 1.2 8 1.0 9 1.1
ssn-N1000-s1001 8 15 1.9 12 1.6 9 1.2 11 1.4 9 1.2 8 1.1 10 1.3 12 1.6 8 1.0 10 1.3
ssn-N1000-s1002 8 13 1.6 9 1.1 9 1.1 11 1.4 8 1.0 8 1.0 10 1.2 11 1.3 8 1.0 9 1.1
ssn-N5000-s5000 45 88 2.0 54 1.2 52 1.2 56 1.3 47 1.0 45 1.0 54 1.2 64 1.4 46 1.0 54 1.2
ssn-N5000-s5001 46 90 2.0 49 1.1 52 1.1 60 1.3 47 1.0 46 1.0 53 1.2 62 1.3 46 1.0 49 1.1
ssn-N5000-s5002 46 90 2.0 50 1.1 52 1.1 58 1.3 52 1.1 46 1.0 52 1.1 61 1.3 48 1.1 52 1.1
ssn-N10000-s10000 92 175 1.9 101 1.1 108 1.2 120 1.3 92 1.0 95 1.0 113 1.2 115 1.3 92 1.0 106 1.1
ssn-N10000-s10001 93 187 2.0 112 1.2 111 1.2 128 1.4 93 1.0 105 1.1 106 1.1 119 1.3 93 1.0 106 1.2
ssn-N10000-s10002 86 193 2.2 108 1.3 107 1.2 123 1.4 93 1.1 86 1.0 112 1.3 115 1.3 88 1.0 101 1.2
ssn-N20000-s20000 183 457 2.5 242 1.3 235 1.3 270 1.5 203 1.1 183 1.0 232 1.3 244 1.3 198 1.1 213 1.2
ssn-N20000-s20001 182 458 2.5 232 1.3 228 1.3 265 1.5 182 1.0 186 1.0 230 1.3 259 1.4 186 1.0 221 1.2
ssn-N20000-s20002 190 407 2.1 215 1.1 228 1.2 255 1.3 190 1.0 200 1.1 235 1.2 251 1. 3 193 1.0 226 1.2

storm-N1000-s1000 6 12 1.9 10 1.5 10 1.6 7 1.1 8 1.3 6 1.0 10 1.6 7 1.1 7 1.0 10 1.6
storm-N1000-s1001 6 12 2.0 7 1.1 10 1.6 7 1.2 6 1.0 7 1.2 9 1.6 7 1.2 8 1.3 7 1.1
storm-N1000-s1002 6 13 2.0 10 1.5 10 1.5 7 1.0 7 1.1 8 1.2 10 1.5 7 1.1 6 1.0 10 1.5
storm-N5000-s5000 31 44 1.4 32 1.0 33 1.1 36 1.2 31 1.0 37 1.2 33 1.1 35 1.1 31 1.0 31 1.0
storm-N5000-s5001 32 54 1.7 47 1.5 34 1.1 35 1.1 42 1.3 32 1.0 33 1.0 33 1.0 32 1.0 48 1.5
storm-N5000-s5002 32 58 1.8 34 1.1 32 1.0 33 1.1 32 1.0 33 1.0 32 1.0 37 1.2 32 1.0 34 1.1

storm-N10000-s10000 59 121 2.0 67 1.1 67 1.1 109 1.8 64 1.1 68 1.1 68 1.1 62 1.0 59 1.0 67 1.1
storm-N10000-s10001 65 90 1.4 68 1.1 66 1.0 108 1.7 67 1.0 66 1.0 67 1.0 71 1.1 65 1.0 68 1.0
storm-N10000-s10002 62 118 1.9 67 1.1 101 1.6 70 1.1 69 1.1 64 1.0 100 1.6 62 1.0 66 1.1 67 1.1
storm-N20000-s20000 127 216 1.7 139 1.1 138 1.1 144 1.1 130 1.0 127 1.0 136 1.1 152 1.2 131 1.0 139 1.1
storm-N20000-s20001 123 245 2.0 140 1.1 129 1.0 146 1.2 130 1.1 123 1.0 128 1.0 137 1.1 126 1.0 141 1.1
storm-N20000-s20002 130 218 1.7 130 1.0 135 1.0 143 1.1 141 1.1 135 1.0 133 1.0 192 1.5 152 1.2 131 1.0

20term-N1000-s1000 9 15 1.7 14 1.6 12 1.4 16 1.8 9 1.0 10 1.2 10 1.1 12 1.4 11 1.3 15 1.7
20term-N1000-s1001 10 15 1.5 15 1.6 17 1.7 18 1.9 11 1.2 11 1.2 16 1.7 12 1.3 10 1.0 10 1.0
20term-N1000-s1002 9 15 1.6 18 2.0 12 1.4 22 2.4 11 1.2 11 1.2 14 1.5 12 1.3 9 1.0 16 1.8
20term-N5000-s5000 51 67 1.3 60 1.2 67 1.3 84 1.6 51 1.0 57 1.1 51 1.0 58 1.1 66 1.3 61 1.2
20term-N5000-s5001 46 78 1.7 67 1.5 67 1.5 84 1.8 51 1.1 46 1.0 74 1.6 58 1.3 48 1.1 74 1.6
20term-N5000-s5002 45 64 1.4 70 1.5 69 1.5 117 2.6 56 1.2 45 1.0 65 1.4 55 1.2 53 1.2 68 1.5

20term-N10000-s10000 101 129 1.3 118 1.2 147 1.5 188 1.9 101 1.0 101 1.0 135 1.3 101 1.0 102 1.0 113 1.1
20term-N10000-s10001 91 122 1.3 135 1.5 139 1.5 152 1.7 115 1.3 91 1.0 151 1.7 115 1.3 110 1.2 179 2.0
20term-N10000-s10002 85 137 1.6 126 1.5 126 1.5 169 2.0 87 1.0 85 1.0 102 1.2 136 1.6 101 1.2 176 2.1
20term-N20000-s20000 193 261 1.3 193 1.0 330 1.7 367 1.9 226 1.2 244 1.3 361 1.9 251 1.3 222 1.2 276 1.4
20term-N20000-s20001 224 296 1.3 289 1.3 337 1.5 326 1.5 241 1.1 243 1.1 272 1.2 236 1.1 224 1.0 267 1.2
20term-N20000-s20002 178 283 1.6 237 1.3 178 1.0 361 2.0 233 1.3 212 1.2 288 1.6 254 1.4 230 1.3 337 1.9

Fleet20-N1000-s1000 17 28 1.6 18 1.1 21 1.3 24 1.4 17 1.0 18 1.1 22 1.3 19 1.1 17 1.0 19 1.1
Fleet20-N1000-s1001 17 27 1.6 18 1.1 20 1.1 24 1.4 17 1.0 18 1.0 22 1.3 19 1.1 18 1.0 18 1.1
Fleet20-N1000-s1002 18 30 1.7 21 1.2 21 1.2 27 1.5 19 1.1 18 1.0 22 1.2 20 1.2 18 1.0 18 1.1
Fleet20-N5000-s5000 76 108 1.4 89 1.2 96 1.3 125 1.6 78 1.0 84 1.1 95 1.2 83 1.1 76 1.0 89 1.2
Fleet20-N5000-s5001 76 104 1.4 90 1.2 94 1.2 135 1.8 76 1.0 81 1.1 105 1.4 80 1.1 78 1.0 103 1.4
Fleet20-N5000-s5002 74 110 1.5 93 1.3 101 1.4 137 1.8 74 1.0 79 1.1 107 1.4 82 1.1 77 1.0 101 1.4

Fleet20-N10000-s10000 152 214 1.4 184 1.2 197 1.3 270 1.8 155 1.0 159 1.0 191 1.3 163 1.1 152 1.0 174 1.1
Fleet20-N10000-s10001 155 209 1.3 183 1.2 193 1.2 240 1.5 155 1.0 164 1.1 193 1.2 180 1.2 156 1.0 175 1.1
Fleet20-N10000-s10002 142 213 1.5 206 1.5 220 1.5 275 1.9 154 1.1 163 1.1 213 1.5 163 1.1 142 1.0 181 1.3
Fleet20-N20000-s20000 307 402 1.3 426 1.4 482 1.6 557 1.8 307 1.0 327 1.1 434 1.4 340 1.1 315 1.0 401 1.3
Fleet20-N20000-s20001 301 429 1.4 364 1.2 416 1.4 534 1.8 322 1.1 332 1.1 460 1.5 340 1.1 301 1.0 422 1.4
Fleet20-N20000-s20002 305 425 1.4 385 1.3 462 1.5 564 1.8 311 1.0 333 1.1 460 1.5 337 1.1 305 1.0 389 1.3

Table 10: Detailed results for the Benders by batch algorithm with a batch size of 1%, cut aggregation,
and solution memory stabilization or no stabilization

34

BbB 5% Aggreg BbB 5% Aggreg BbB 5% Aggreg BbB 5% BbB 5% Aggreg BbB 5% Aggreg BbB 5% Aggreg BbB 5% Aggreg BbB 5% Aggreg BbB 5% Aggreg
α “ 0.1, β “ 0.1 α “ 0.1, β “ 0.5 α “ 0.1, β “ 0.9 α “ 0.5, β “ 0.1 α “ 0.5, β “ 0.5 α “ 0.5, β “ 0.9 α “ 0.9, β “ 0.1 α “ 0.9, β “ 0.5 α “ 0.9, β “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 1 1.2 1 1.3 1 1.1 2 2.8 1 1.2 1 1.0 1 1.1 1 1.0 1 1.2 1 1.1
LandS-N1000-s1001 1 1 1.0 2 2.4 1 1.3 2 2.6 1 1.1 1 1.2 1 1.2 1 1.2 1 1.1 2 2.3
LandS-N1000-s1002 1 1 1.4 1 1.4 1 1.3 1 1.7 1 1.1 1 1.0 1 1.3 1 1.1 1 1.0 1 1.3
LandS-N5000-s5000 4 5 1.1 8 2.1 9 2.1 10 2.5 5 1.1 4 1.0 9 2.2 4 1.0 4 1.1 8 2.0
LandS-N5000-s5001 4 5 1.4 5 1.4 5 1.4 7 1.9 4 1.0 4 1.1 5 1.3 4 1.2 4 1.0 5 1.4
LandS-N5000-s5002 4 4 1.0 9 2.3 9 2.2 10 2.7 4 1.1 5 1.2 9 2.2 4 1.0 4 1.1 9 2.3
LandS-N10000-s10000 8 8 1.0 10 1.2 10 1.3 14 1.7 9 1.1 8 1.0 11 1.3 8 1.0 9 1.1 10 1.2
LandS-N10000-s10001 8 8 1.0 18 2.2 18 2.3 15 1.8 9 1.1 10 1.2 18 2.2 9 1.1 8 1.0 18 2.2
LandS-N10000-s10002 8 8 1.0 18 2.2 18 2.3 22 2.7 8 1.0 8 1.0 18 2.3 8 1.0 8 1.0 18 2.2
LandS-N20000-s20000 17 17 1.0 38 2.3 38 2.3 44 2.7 20 1.2 19 1.2 38 2.3 19 1.2 20 1.2 38 2.3
LandS-N20000-s20001 17 18 1.1 36 2.1 20 1.2 42 2.5 19 1.1 17 1.0 20 1.2 18 1.1 19 1.1 35 2.1
LandS-N20000-s20002 18 18 1.0 37 2.1 38 2.1 48 2.7 20 1.1 20 1.1 38 2.1 19 1.1 20 1.1 37 2.1

gbd-N1000-s1000 1 1 1.0 2 3.5 2 3.9 2 4.6 1 1.5 1 1.6 2 3.8 1 1.6 1 1.5 2 3.6
gbd-N1000-s1001 1 1 1.0 2 2.6 2 3.4 2 3.6 1 1.3 1 1.3 2 3.3 1 1.1 1 1.2 2 2.8
gbd-N1000-s1002 1 1 1.0 2 2.8 2 3.0 2 3.7 1 1.5 1 1.5 2 2.9 1 1.1 1 1.5 2 2.8
gbd-N5000-s5000 3 3 1.0 9 2.8 10 2.9 12 3.7 4 1.1 4 1.3 10 2.9 4 1.1 3 1.0 9 2.7
gbd-N5000-s5001 3 3 1.1 9 3.2 13 4.5 7 2.5 5 1.5 3 1.1 13 4.6 3 1.0 5 1.5 9 3.2
gbd-N5000-s5002 3 3 1.1 8 2.5 11 3.2 12 3.7 4 1.3 4 1.3 10 3.2 3 1.0 4 1.2 8 2.5
gbd-N10000-s10000 7 7 1.0 18 2.7 18 2.7 25 3.6 8 1.2 9 1.3 18 2.7 7 1.0 9 1.3 18 2.7
gbd-N10000-s10001 6 6 1.0 17 2.9 19 3.2 24 4.1 7 1.3 9 1.5 19 3.2 7 1.2 7 1.3 17 3.0
gbd-N10000-s10002 6 6 1.0 18 2.9 19 3.2 24 4.0 7 1.2 8 1.3 20 3.3 7 1.2 7 1.2 18 3.0
gbd-N20000-s20000 12 12 1.0 19 1.5 37 3.0 49 3.9 16 1.3 14 1.1 37 3.0 14 1.2 16 1.3 19 1.5
gbd-N20000-s20001 15 15 1.0 37 2.5 46 3.1 49 3.3 17 1.2 20 1.3 45 3.0 15 1.0 17 1.2 37 2.5
gbd-N20000-s20002 14 14 1.0 37 2.7 38 2.8 50 3.7 17 1.2 19 1.4 39 2.8 15 1.1 17 1.2 37 2.7

ssn-N1000-s1000 15 63 4.1 15 1.0 16 1.0 22 1.4 18 1.2 17 1.1 16 1.1 32 2.1 19 1.2 15 1.0
ssn-N1000-s1001 15 63 4.2 16 1.0 16 1.1 22 1.5 18 1.2 16 1.1 17 1.1 35 2.3 19 1.2 15 1.0
ssn-N1000-s1002 15 59 3.9 17 1.1 17 1.1 22 1.5 18 1.2 17 1.2 17 1.1 31 2.1 18 1.2 15 1.0
ssn-N5000-s5000 89 337 3.8 89 1.0 94 1.1 127 1.4 111 1.2 96 1.1 99 1.1 172 1.9 112 1.3 93 1.0
ssn-N5000-s5001 85 322 3.8 85 1.0 100 1.2 126 1.5 108 1.3 100 1.2 101 1.2 182 2.1 112 1.3 85 1.0
ssn-N5000-s5002 90 308 3.4 95 1.1 99 1.1 141 1.6 113 1.3 100 1.1 99 1.1 172 1.9 116 1.3 90 1.0
ssn-N10000-s10000 185 672 3.6 185 1.0 204 1.1 277 1.5 232 1.3 213 1.2 212 1.1 389 2.1 222 1.2 194 1.1
ssn-N10000-s10001 187 760 4.1 209 1.1 231 1.2 301 1.6 235 1.3 217 1.2 211 1.1 439 2.3 244 1.3 187 1.0
ssn-N10000-s10002 184 690 3.7 186 1.0 193 1.0 289 1.6 222 1.2 195 1.1 218 1.2 406 2.2 228 1.2 184 1.0
ssn-N20000-s20000 432 1651 3.8 432 1.0 491 1.1 672 1.6 531 1.2 524 1.2 492 1.1 866 2.0 529 1.2 432 1.0
ssn-N20000-s20001 446 1651 3.7 474 1.1 485 1.1 728 1.6 561 1.3 516 1.2 475 1.1 893 2.0 551 1.2 446 1.0
ssn-N20000-s20002 434 1543 3.6 434 1.0 506 1.2 650 1.5 554 1.3 499 1.2 489 1.1 914 2.1 558 1.3 450 1.0

storm-N1000-s1000 6 6 1.0 10 1.8 12 1.9 11 1.8 6 1.0 7 1.1 12 1.9 6 1.1 6 1.0 10 1.8
storm-N1000-s1001 6 6 1.1 8 1.3 8 1.4 10 1.8 6 1.1 6 1.1 8 1.4 6 1.0 6 1.1 8 1.3
storm-N1000-s1002 6 6 1.1 7 1.2 11 1.8 10 1.7 6 1.1 6 1.0 11 1.9 6 1.0 6 1.1 7 1.2
storm-N5000-s5000 30 33 1.1 40 1.3 40 1.3 56 1.9 30 1.0 33 1.1 41 1.4 30 1.0 30 1.0 40 1.3
storm-N5000-s5001 30 33 1.1 37 1.2 39 1.3 52 1.7 31 1.0 34 1.1 39 1.3 30 1.0 31 1.0 37 1.2
storm-N5000-s5002 29 37 1.3 56 1.9 41 1.4 47 1.6 30 1.0 37 1.3 41 1.4 29 1.0 30 1.0 56 1.9

storm-N10000-s10000 60 73 1.2 78 1.3 127 2.1 114 1.9 65 1.1 65 1.1 127 2.1 60 1.0 64 1.1 79 1.3
storm-N10000-s10001 60 76 1.3 79 1.3 130 2.2 163 2.7 63 1.0 64 1.1 127 2.1 60 1.0 63 1.0 79 1.3
storm-N10000-s10002 59 73 1.2 116 2.0 82 1.4 118 2.0 67 1.1 70 1.2 82 1.4 59 1.0 66 1.1 117 2.0
storm-N20000-s20000 138 167 1.2 148 1.1 173 1.3 256 1.9 138 1.0 140 1.0 172 1.2 139 1.0 138 1.0 147 1.1
storm-N20000-s20001 125 161 1.3 180 1.4 186 1.5 243 1.9 127 1.0 143 1.1 185 1.5 125 1.0 127 1.0 181 1.4
storm-N20000-s20002 127 160 1.3 153 1.2 170 1.3 240 1.9 141 1.1 148 1.2 171 1.3 127 1.0 141 1.1 153 1.2

20term-N1000-s1000 15 36 2.4 15 1.0 21 1.4 30 2.0 22 1.4 20 1.3 18 1.2 27 1.8 20 1.3 16 1.1
20term-N1000-s1001 15 37 2.4 16 1.0 18 1.1 31 2.0 18 1.2 19 1.2 17 1.1 29 1.9 21 1.4 15 1.0
20term-N1000-s1002 12 37 3.0 15 1.2 18 1.4 32 2.6 21 1.7 19 1.5 18 1.4 25 2.0 20 1.6 12 1.0
20term-N5000-s5000 71 199 2.8 71 1.0 89 1.3 157 2.2 94 1.3 91 1.3 94 1.3 134 1.9 104 1.5 87 1.2
20term-N5000-s5001 66 197 3.0 69 1.0 87 1.3 137 2.1 103 1.6 97 1.5 98 1.5 146 2.2 101 1.5 66 1.0
20term-N5000-s5002 73 182 2.5 88 1.2 92 1.3 144 2.0 102 1.4 83 1.1 92 1.3 132 1.8 99 1.4 73 1.0

20term-N10000-s10000 140 411 2.9 145 1.0 192 1.4 285 2.0 208 1.5 201 1.4 158 1.1 302 2.2 217 1.6 140 1.0
20term-N10000-s10001 161 409 2.5 161 1.0 163 1.0 342 2.1 213 1.3 204 1.3 210 1.3 305 1.9 197 1.2 173 1.1
20term-N10000-s10002 147 388 2.6 147 1.0 189 1.3 273 1.9 214 1.5 206 1.4 155 1.1 313 2.1 214 1.5 152 1.0
20term-N20000-s20000 306 860 2.8 306 1.0 339 1.1 635 2.1 488 1.6 444 1.5 449 1.5 685 2.2 490 1.6 309 1.0
20term-N20000-s20001 284 985 3.5 284 1.0 427 1.5 610 2.1 512 1.8 441 1.6 350 1.2 684 2.4 436 1.5 328 1.2
20term-N20000-s20002 298 897 3.0 315 1.1 389 1.3 710 2.4 458 1.5 439 1.5 390 1.3 697 2.3 465 1.6 298 1.0

Fleet20-N1000-s1000 24 42 1.8 24 1.0 27 1.1 36 1.5 24 1.0 26 1.1 24 1.0 30 1.2 24 1.0 24 1.0
Fleet20-N1000-s1001 22 40 1.8 22 1.0 25 1.1 33 1.5 24 1.1 25 1.1 26 1.2 30 1.3 23 1.0 22 1.0
Fleet20-N1000-s1002 24 43 1.8 25 1.0 28 1.2 36 1.5 26 1.1 26 1.1 29 1.2 32 1.3 25 1.0 24 1.0
Fleet20-N5000-s5000 110 218 2.0 110 1.0 130 1.2 179 1.6 126 1.1 127 1.2 128 1.2 152 1.4 129 1.2 122 1.1
Fleet20-N5000-s5001 122 209 1.7 123 1.0 143 1.2 188 1.5 122 1.0 126 1.0 127 1.0 151 1.2 122 1.0 125 1.0
Fleet20-N5000-s5002 122 205 1.7 122 1.0 126 1.0 172 1.4 126 1.0 124 1.0 140 1.1 152 1.2 122 1.0 126 1.0

Fleet20-N10000-s10000 226 426 1.9 226 1.0 253 1.1 367 1.6 254 1.1 273 1.2 261 1.2 315 1.4 255 1.1 248 1.1
Fleet20-N10000-s10001 230 467 2.0 264 1.1 279 1.2 376 1.6 256 1.1 259 1.1 269 1.2 310 1.3 258 1.1 230 1.0
Fleet20-N10000-s10002 226 426 1.9 226 1.0 290 1.3 394 1.7 254 1.1 259 1.1 294 1.3 307 1.4 252 1.1 265 1.2
Fleet20-N20000-s20000 524 886 1.7 586 1.1 612 1.2 885 1.7 543 1.0 525 1.0 639 1.2 635 1.2 524 1.0 577 1.1
Fleet20-N20000-s20001 476 856 1.8 509 1.1 544 1.1 783 1.6 530 1.1 541 1.1 539 1.1 637 1.3 518 1.1 476 1.0
Fleet20-N20000-s20002 528 885 1.7 554 1.0 662 1.3 819 1.6 528 1.0 562 1.1 670 1.3 671 1.3 551 1.0 576 1.1

Table 11: Detailed results for the Benders by batch algorithm with a batch size of 5%, cut aggregation,
and solution memory stabilization or no stabilization

35

	Introduction
	Related work
	The Benders by batch algorithm
	Stabilization of the Benders by batch algorithm
	The stabilized Benders by batch algorithm
	A sufficient condition for the convergence of the stabilized Benders by batch algorithm
	Two primal stabilization schemes satisfying the convergence property

	Experimentations and numerical results
	Instances
	Experimentations
	Numerical results

	Conclusion
	Proof of Lemma 1
	Detailed benchmark algorithms
	Detailed numerical results

