
HAL Id: hal-03286135
https://hal.science/hal-03286135v1

Preprint submitted on 13 Jul 2021 (v1), last revised 15 Dec 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Benders by batch algorithm: design and
stabilization of an enhanced algorithm to solve multicut
Benders reformulation of two-stage stochastic programs

Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel
Ruiz

To cite this version:
Xavier Blanchot, François Clautiaux, Boris Detienne, Aurélien Froger, Manuel Ruiz. The Benders
by batch algorithm: design and stabilization of an enhanced algorithm to solve multicut Benders
reformulation of two-stage stochastic programs. 2021. �hal-03286135v1�

https://hal.science/hal-03286135v1
https://hal.archives-ouvertes.fr

The Benders by batch algorithm: design and stabilization of an

enhanced algorithm to solve multicut Benders reformulation of

two-stage stochastic programs

Xavier Blanchot1,2 François Clautiaux1 Boris Detienne1 Aurélien Froger1

Manuel Ruiz2

July 13, 2021

1 Université de Bordeaux, UMR CNRS 5251, Inria Bordeaux Sud-Ouest, Talence,France
2 RTE, Paris La Défense, France

Abstract

This paper introduces a new exact algorithm to solve two-stage stochastic linear programs.

Based on the multicut Benders reformulation of such problems, with one subproblem for each

scenario, this method relies on a partition of the subproblems into batches. By detecting as soon

as possible the non-optimality of a first-stage candidate, it solves only a few subproblems at most

iterations. We also propose two primal stabilization schemes for the algorithm. We report an

extensive computational study on large-scale instances of stochastic optimization literature that

shows the efficiency of the proposed algorithm compared to five classical alternative algorithms

and significant computational time savings brought by the primal stabilization schemes.

Keywords— Benders Decomposition; Large-scale linear programming; Cut aggregation

1 Introduction

Large-scale two-stage stochastic linear programs arise in many applications such as network design, telecom-

munications network planning, air freight scheduling, power generation planning. In such problems, first-stage

decisions (also called here-and-know decisions) are to be made before knowing the value taken by random

parameters, then second-stage decisions (also called wait and see decisions) are made after observing the value

taken by each random parameter. In practice, many approaches introduced to solve those problems are based

on decomposition techniques (Ruszczyński, 1997).

In this paper, we study two-stage stochastic linear programs. We assume that the probability distribution

is given by a finite set of scenarios and focus on problems with a large number of scenarios. We consider the

Email addresses: xavier.blanchot@rte-france.com, xavier.blanchot@u-bordeaux.fr (Xavier Blanchot),
francois.clautiaux@math.u-bordeaux.fr (François Clautiaux), boris.detienne@math.u-bordeaux.fr (Boris Deti-
enne), aurelien.froger@u-bordeaux.fr (Aurélien Froger), manuel.ruiz@rte-france.com (Manuel Ruiz)

1

following linear program with a scenario block structure:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min cJx`
ÿ

sPS

psg
J
s ys

s.t. : Wsys “ ds ´ Tsx, @s P S

ys P Rn2
` , @s P S

x P X

(1)

where x P Rn1 , c P Rn1 , S is the finite set of scenarios, ps P R` is a positive weight associated with a scenario

s P S (e.g., a probability), gs P Rn2 , Ws P Rmˆn2 , Ts P Rmˆn1 , ds P Rm, X Ă Rn1 is a polyhedral set. Variables

x are called first-stage variables and variables ys are called second-stage variables or recourse variables. Problem

(1) is called the extensive formulation of a two-stage stochastic problem.

When the number of scenarios is large, problem (1) becomes intractable for MIP solvers. Its reformulation

as
$

’

&

’

%

min cJx`
ÿ

sPS

psφpx, sq

s.t. x P X

(2)

where for every s P S and every x P X,

φpx, sq “

$

’

’

’

&

’

’

’

%

min
y

gJs y

s.t. Wsy “ ds ´ Tsx

y P Rn2
`

(3)

makes the use of decomposition methods attractive. A state-of-the art method to solve this problem is the

Benders decomposition algorithm (Rahmaniani et al., 2017). If we fix the first-stage variables to x̂ P X, then

the resulting problem becomes separable according to the scenarios. We denote by pSP px̂, sqq the subproblem

associated with a scenario s P S and by φpx̂, sq its value.

Let Πs “ tπ P Rm|WJ
s π ď gsu be the polyhedron associated with the dual of pSP px̂, sqq, which does not

depend on first-stage variables x. We denote by Rays(Πs) the set of extreme rays of Πs, and by Vert(Πs) the

set of extreme points of Πs. By Farkas’ Lemma, we can write an expression of the domain of φp., sq as:

dom
´

φp., sq
¯

“ tx P Rn1 |rJs pds ´ Tsxq ď 0, @rs P RayspΠsqu

Then we can replace in formulation (2) the polyhedral application x ÞÑ φpx, sq by its outer linearization on its

domain. Using an epigraph variable θs for every s P S, we obtain the multicut Benders reformulation (Birge

and Louveaux, 1988) of problem (1):

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
x,θ

cJx`
ÿ

sPS

psθs

s.t. : θs ě πJs pds ´ Tsxq, @s P S, @πs P VertpΠsq piq

0 ě rJs pds ´ Tsxq, @s P S, @rs P RayspΠsq piiq

x P X, θ P RCardpSq

(4)

Constraints piq are called optimality cuts, and constraints piiq, feasibility cuts.

The classical version of the multicut Benders decomposition algorithm (see Algorithm 1) consists in the

relaxation of constraints piq and piiq and an iterative scheme to add them until convergence is proven. As the

number of extreme rays and vertices of polyhedra Πs is finite, for every s P S, the total number of optimality

2

and feasibility cuts is finite. Then, this algorithm converges in a finite number of iterations. The relaxation of

(4) at iteration k of the algorithm is called the relaxed master program, denoted by pRMP qpkq and its solution

is denoted by px̌pkq, pθ̌
pkq
s qsPSq.

Algorithm 1: Classical version of the multicut Benders decomposition algorithm

Parameters: ε ą 0 the selected optimality gap
1 Initialization: k Ð 0, UBp0q Ð `8, LBp0q Ð ´8

2 while UBpkq ą LBpkq ` ε do
3 k Ð k ` 1

4 Solve pRMP qpkq and retrieve x̌pkq, pθ̌
pkq
s qsPS

5 LBpkq Ð cJx̌pkq `
ř

sPS psθ̌
pkq

6 for s P S do

7 Solve pSP px̌pkq, sqq and retrieve πs an extreme point or an extreme ray of Πs

8 if pSP px̌pkq, sqq is feasible then

9 Add θs ě πJs pds ´ Tsxq to pRMP qpkq

10 else

11 Add 0 ě πJs pds ´ Tsxq to pRMP qpkq

12 if pSP px̌pkq, sqq is feasible @s P S then

13 UBpkq Ð min
´

UBpk´1q, cJx̌pkq `
ř

sPS psπ
J
s pds ´ Tsx̌

pkqq

¯

14 pRMP qpk`1q Ð pRMP qpkq

15 Return x̌pkq

When the total number of subproblems is large, solving all the subproblems at each iteration, like in

Algorithm 1, can be time-consuming. To overcome this issue, we introduce a new exact algorithm to solve

problem (1), referred to as the Benders by batch algorithm. The term batch refers to a given fixed partition of

all subproblems into separate batches. We propose a new stopping criterion that allows us to identify a non-

optimal solution without necessarily having to solve all the subproblems. As a result, only few subproblems

are generally solved at a first-stage candidate solution. To prevent introducing too many cuts in the restricted

master program, the algorithm can use cut aggregation, thus generating a single cut from all subproblems that

belong to an identical batch. If the number of batches is equal to one, the Benders by batch algorithm is

equivalent to the classical version of the Benders decomposition algorithm (multicut or monocut, depending on

the use of cut aggregation). Unlike several existing methods based on similar ideas (Wets, 1983; Dantzig and

Infanger, 1991; Higle and Sen, 1991; Oliveira et al., 2011), our algorithm requires no restrictive assumptions

on the uncertainty (e.g., Πs “ Π for every s P S), is exact and has finite convergence. It is relatively easy to

implement and only requires solving linear programs. Our method can benefit from advanced cut aggregation

schemes and is compatible with classical dual stabilization techniques (Magnanti and Wong, 1981; Papadakos,

2008; Sherali and Lunday, 2013). We propose two primal stabilization schemes for the algorithm based on

in-out separation strategies (Ben-Ameur and Neto, 2007) and prove the finite convergence and exact behavior

of the stabilized algorithm.

The contributions of the paper can be summarized as follow :

• We propose a new exact algorithm to solve the Benders reformulation of two-stage linear stochastic

programs based on a sequential stopping criterion relying on a partition of subproblems. The use of this

stopping criterion allows the algorithm to solve only a few subproblems at most iterations by detecting

the non-optimality of a first-stage candidate solution early in the subproblems resolution process.

• We also develop two primal stabilization schemes for our algorithm and provide a proof of finite conver-

gence and exact behavior of the stabilized algorithm.

• We perform an extensive numerical study showing the effectiveness of the developed algorithm on some

3

classical stochastic instances of the literature compared to classical implementation of the monocut and

multicut Benders decomposition algorithm, with and without in-out stabilization.

The paper is organized as follows. Section 2 reviews the literature on acceleration techniques for Benders

decomposition, with a focus on the stochastic case, and on closely related methods. In section 3, we present

the Benders by batch algorithm. Section 4 presents two primal stabilization methods: the first one based on

the classical in-out separation scheme, and the second one based on exponential moving averages. Section 5

presents extensive computational experiments. Then, section 6 concludes and outlines perspectives.

2 Related works

The classical version of the Benders decomposition algorithm can be slow to converge. Researchers have pro-

posed several techniques to accelerate its convergence. We first present classical primal and dual stabilization

methods, which are the most widespread and general methods to accelerate the Benders decomposition algo-

rithm. We then present different methods specific to stochastic programming, with a focus on methods that

avoid the systematic resolution of all the subproblems.

A well-known downside of cutting planes methods, and therefore of the Benders decomposition algorithm,

is the oscillation of the first-stage variables. Because of the relaxation of all the constraints related to the

subproblems, the solutions of the relaxed master programs might be far from the optimal solution to the

initial problem. This might lead to a large amount of time spent in evaluating poor quality solutions in the

early iterations. To our knowledge, successful methods proposed so far are either inspired by bundle methods

(Zaourar and Malick, 2014; Linderoth and Wright, 2003; Wolf et al., 2014), or by in-out separation approaches

(Ben-Ameur and Neto, 2007). Those methods try to restrict the search of an optimal solution close to a

given first-stage solution. This solution is called stability center in the case of bundle methods, or in point in

the case of in-out stabilization. On the one hand, many authors proposed quadratic stabilization techniques,

such as Ruszczyński (1986), who added a quadratic proximal term in the objective function of the relaxed

master program, or Zaourar and Malick (2014) and Wolf et al. (2014), who used quadratic level stabilizations.

Linderoth and Wright (2003) proposed to use the infinite norm and showed also relevant numerical results with

an effective asynchronous parallelized framework. On the other hand, the in-out separation scheme performs a

linear search between the in point and the solution to the relaxed master program, and it can rely on the practical

effectiveness of linear programming solvers. The in-out separation approach has been applied successfully in a

cutting plane algorithm to solve a survivable network design problem (Ben-Ameur and Neto, 2007), in column

generation (Pessoa et al., 2013), in a branch-and-cut algorithm based on a Benders decomposition approach to

solve facility location problems (Fischetti et al., 2016), and in a cutting plane algorithm applied to disjunctive

optimization (Fischetti and Salvagnin, 2010).

Another family of acceleration techniques focuses on the quality of the optimality cuts. The polyhedral

structure of the second-stage function implies a degeneracy of the dual subproblem. In the singular points of

this function, many equivalent extreme dual solutions exist for the subproblem, each one defining a different

optimality cut. The choice of a ”good” dual solution can improve dramatically the convergence of the algorithm.

Magnanti and Wong (1981) proposed to solve the dual of the subproblem twice in order to find the solution

which maximizes the objective function at a fixed core point of the master problem. A different choice of the

core point leads to a different cut. A cut derived in this framework is called a Pareto-optimal cut. Papadakos

(2008) proposed a less restrictive way to choose the core point, and a practical framework to update it. Sherali

and Lunday (2013) improved the method, bypassing the need to solve the subproblem twice.

In the case of stochastic programming, formulations rely either on an epigraph variable for every subproblem

(see formulation (4)) or on a single epigraph variable for all the subproblems, also called L-shaped method

(Van Slyke and Wets, 1969). The former formulation is referred to as the multicut Benders reformulation,

4

whereas the latter is known as the monocut Benders reformulation. The multicut Benders reformulation was

introduced by Birge and Louveaux (1988). You and Grossmann (2013) showed dramatic improvement both

on computing time and number of iterations due to the multicut reformulation on two supply chain planning

problems. The multicut version provides a tighter approximation of the second-stage function, and converges

in less iterations than the monocut one. However the master problem might suffer from the large number of

cuts added through the optimization process, and thus might become time consuming to solve. The question

of using either the monocut or multicut version of the algorithm is not straightforward. As far as we know,

one of the major improvements proposed to improve pure multicut Benders decomposition was to use massive

parallelization (Linderoth and Wright, 2003). Trukhanov et al. (2010) proposed a framework to aggregate some

optimality cuts with the aim of finding a compromise between the monocut and pure multicut versions of the

algorithm.

One of the major bottlenecks faced to solve two-stage stochastic programs is the large number of sub-

problems to solve at each iteration to compute Benders cuts. Researchers proposed some methods to avoid

the resolution of all the subproblems at each iteration of the Benders decomposition algorithm. In the case

of stochastic problems with fixed recourse where the second-stage objective function does not depend on the

uncertainty (i.e, gs “ g for every s P S in problem (3)), some authors, such as (Wets, 1983; Higle and Sen, 1991;

Dantzig and Infanger, 1991; Infanger, 1992), used the fact that the duals of all the subproblems share the same

constraint polyhedron: Πs “ Π , for every s P S. Given an optimal dual solution πs0 to a subproblem s0 P S,

bunching (Wets, 1983) consists in checking the primal feasibility of this solution for the other subproblems.

This solution is optimal for all the subproblems for which this solution is primal feasible, and there is no need to

solve them. Dantzig and Infanger (1991) and Infanger (1992) proposed to use importance sampling to compute

a good approximation of the expected cut in the monocut formulation with only a few scenarios. Although

the resulting algorithm is not exact, they report results with small confidence intervals for the objective value.

Higle and Sen (1991) introduced stochastic decomposition. The standard version of the method only solves a

few subproblems at each iteration and computes cuts with all the dual solutions obtained at previous iterations.

Finally, Oliveira et al. (2011) proposed an algorithm which does not restrict to the hypothesis gs “ g , @s P S.

It adapts the dual solutions of a subset of subproblems to generate inexact cuts to the remaining subproblems.

The methods of Oliveira et al. (2011), Dantzig and Glynn (1990) and Higle and Sen (1991) are designed for a

monocut algorithm, but the method of Oliveira et al. (2011) could be adapted to a multicut algorithm.

Finally, among other techniques used to accelerate the resolution of two-stage stochastic programs, Crainic

et al. (2020) proposed the so-called Partial Benders decomposition. Under the hypothesis gs “ g , @s P S,

they add one of the scenarios, or an artificial scenario computed as the expectation of the others, to the

master problem. They showed major improvements on some instances, both in computing time and number of

iterations, even if the master problem becomes way larger than the original one, and might be harder to solve at

each iteration. Under the same assumptions, Song and Luedtke (2015) proposed an adaptative partition-based

approach, which does not rely on Benders reformulation. Given a partition of the subproblems, they compute

a relaxation of the initial deterministic reformulation by summing the matrices and right-hand-sides of the

subproblems of each element of the partition. They showed the existence of a partition with the same optimal

value as the initial problem and an iterative algorithm to find it. van Ackooij et al. (2017) proposed to use level

stabilization with the adaptative partition-based approach and showed competitive numerical results compared

to a classical Benders decomposition implementation with level stabilization. Table 1 classifies the different

methods discussed in this section.

5

Paper Randomness hypothesis Monocut or multicut Exact method Finite convergence Solve all SPs Stabilization
(Crainic et al., 2020) gs “ g @s P S Both Yes Yes Yes No

(Song and Luedtke, 2015) gs “ g @s P S Not applicable Yes Yes Yes Level*
(Trukhanov et al., 2010) No Multicut Yes Yes Yes No

(Linderoth and Wright, 2003) No Multicut Yes Yes Yes Level
(Wets, 1983) gs “ g @s P S Both Yes Yes No No

(Dantzig and Infanger, 1991) gs “ g @s P S Monocut No Yes No No
(Higle and Sen, 1991) gs “ g @s P S Monocut Yes No No No
(Oliveira et al., 2011) No Monocut Statistical Yes No Bundle

This work No Multicut Yes Yes No In-out

Table 1: Comparison of stochastic methods to accelerate Benders decomposition.
SPs : subproblems
* : with the work of van Ackooij et al. (2017)

3 Benders by batch

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve exactly the

multicut Benders reformulation (4) of a two-stage stochastic linear program. The algorithm consists in solving

the subproblems by batch and stopping solving subproblems at an iteration as soon as we identify that the

current candidate first-stage solution is non-optimal.

Without loss of generality, we assume that the problem has relatively complete recourse (i.e., X Ă dom pφp., sqq

for every scenario s P S), meaning that every subproblem is feasible for every x P X. As a result, only opti-

mality cuts are required in the Benders decomposition algorithm, and every x P X defines an upper bound on

the optimal value of the problem. Every two-stage linear stochastic program can be reformulated in a problem

satisfying this hypothesis by introducing slack variables with large enough coefficients in the objective function.

We first present some notations necessary to formally describe the algorithm. We consider an ordered set

of scenarios S “ ts1, s2, ..., sCardpSqu and a given batch size 1 ď η ď CardpSq. We define κ “ rCardpSq{ηs

as the number of batches of subproblems. For every i P J1, κK, the ith batch of subproblems Si is defined

as Si “ tspi´1qη`1, ..., spi´1qη`ηiu, where ηi is the size of batch i, ηi “ mintη, CardpSq ´ pi ´ 1qηu. Family

pSiqiPJ1,κK defines a partition of S. We restrict ourselves to batches of the same size, but the method remains

valid for any partition of S. We denote by x̌pkq the optimal first-stage solution to pRMP qpkq at iteration k of

the algorithm, and by θ̌
pkq
s the optimal value of the epigraph variable associated with a scenario s P S. A lower

bound on the optimal value of problem (1) is then computed as LBpkq “ cJx̌pkq`
ř

sPS psθ̌
pkq
s . For a first-stage

solution x P X, we denote by UBpxq “ cJx`
ř

sPS psφpx, sq an upper bound on the optimal value of problem

(1).

Let ε ą 0 be the optimality gap of the algorithm. The classical stopping criterion UB ´ LB ď ε of the

Benders decomposition algorithm cannot be directly applied if all the subproblems are not solved. Specifically,

an upper bound on the optimal value of the problem is only known after computing, for a first-stage solution

x P X, the optimal value φpx, sq of every subproblem pSP px, sqq. We propose a new stopping criterion, which

detects that a current first-stage solution is non-optimal without necessarily having to solve all the subproblems.

This criterion is based on the concept of εi-approximation that we define below.

Definition 1. εi-approximation: Let ε ą 0 be the optimality gap of the algorithm, k P Z` an iteration and σ

a permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is εi-approximated by pRMP qpkq if

ÿ

sPSσpiq

ps

´

φpx̌pkq, sq ´ θ̌pkqs

¯

ď εi (5)

with εi “ ε´
i´1
ř

t“1

ř

sPSσptq

ps

´

φ
`

x̌pkq, s
˘

´ θ̌
pkq
s

¯

.

We refer to εi as the remaining gap of batch Sσpiq according to the permutation σ and the optimality gap ε.

6

For every index i P J2, κK, we have

εi “ εi´1 ´
ÿ

sPSσpi´1q

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

, (6)

which means that computing the successive remaining gaps consists in filling the gap ε with the differences

between the true values of the subproblems and their epigraph approximations in pRMP qpkq.

The following proposition shows that εi-approximation can be used to derive a stopping criterion for the

Benders by batch algorithm.

Proposition 1. Let ε ą 0 be the optimality gap of the algorithm, k P Z` an iteration of the algorithm, and σ

a permutation of J1, κK. The first-stage solution x̌pkq is an optimal solution to problem (1) if and only if batch

Sσpiq is εi-approximated by pRMP qpkq for every index i P J1, κK.

Proof. Proof of proposition 1

pñq Assume that x̌pkq is an optimal solution to problem (1). We have:

UBpx̌pkqq ´ LBpkq ď ε

ðñ cJx̌pkq `
ÿ

sPS

psφpx̌
pkq, sq ´

˜

cJx̌pkq `
ÿ

sPS

psθ̌
pkq
s

¸

ď ε

ðñ
ÿ

sPS

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ď ε

As family
`

Sσp1q, Sσp2q, ..., Sσpκq
˘

defines a partition of S, previous equation gives:

κ
ÿ

t“1

ÿ

sPSσptq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ď ε

ðñ

κ
ÿ

t“i

ÿ

sPSσptq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ď εi, @i P t1, . . . , κu

As ps ě 0, @s P S, and as pRMP qpkq is a relaxation of problem 1, by independence of the batches, we have:
ř

sPSσptq

ps

´

φpx̌pkq, sq ´ θ̌
pkq
s

¯

ě 0, @t P t1, . . . , κu. We therefore have:

ÿ

sPSσpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ď εi, @i P t1, . . . , κu

which is the definition of batch Sσpiq being εi-approximated by pRMP qpkq. pðq Assume that for every index

i P J1, κK, we have
ř

sPSσpiq
ps

´

φpx̌pkq, sq ´ θ̌
pkq
s

¯

ď εi and therefore:

ÿ

sPSσpκq

ps

´

φpx̌pkq, sq ´ θ̌pkqs

¯

ď εκ (7)

By definition of εκ we have:

εκ “ ε´
κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ff

ðñ εκ `
κ´1
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ff

“ ε

7

Then, using equation (7), we have:

κ
ÿ

i“1

«

ÿ

sPSσpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯

ff

ď ε

ðñ UBpx̌pkqq ´ LBpkq ď ε

which implies that x̌pkq is an optimal solution to problem (1).

Corollary 1. Let ε be the optimality gap of the algorithm, k P Z` an iteration, and σ a permutation of J1, κK.

If there exists an index i P J1, κK such that
ř

sPSσpiq

ps

´

φpx̌pkq, sq ´ θ̌
pkq
s

¯

ą εi, then x̌pkq is not an optimal solution

to problem (1).

Remark 1. The previous rule provides a criterion which ensures a solution with an absolute gap of ε. In order

to compute solutions with a relative gap tolerance of δ, we set ε “ maxt10´10, LBδu with LB the current value

of the relaxed master program.

Algorithm 2: The Benders by batch algorithm

Parameters: ε ą 0, aggregation P tTrue, Falseu, η P J1, CardpSqK the batch size
1 Initialization: k Ð 0, stay at xÐ True, iÐ 1

2 Define a partition of the subproblems
`

Si
˘

iPJ1,κK according to batch size η

3 while i ă κ` 1 do
4 k Ð k ` 1

5 Solve pRMP qpkq and retrieve x̌pkq, pθ
pkq
s qsPS

6 iÐ 1, ε1 Ð ε, stay at xÐ True

7 Choose a permutation σ of J1, κK
8 while stay at x “ True and i ă κ` 1 do
9 for s P Sσpiq do

10 Solve pSP px̌pkq, sqq and retrieve φpx̌pkq, sq and πs (dual extreme solution)

11 if aggregation then

12 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJs pds ´ Tsxq
˘

to pRMP qpkq

13 else
14 for s P Sσpiq do

15 Add θs ě πJs pds ´ Tsxq to pRMP qpkq

16 if
ř

sPSσpiq

ps

´

φpx̌pkq, sq ´ θ
pkq
s

¯

ď εi then

17 εi`1 Ð εi ´
ř

sPSσpiq

ps

´

φ
`

x̌pkq, s
˘

´ θ
pkq
s

¯

18 iÐ i` 1

19 else stay at xÐ False

20 pRMP qpk`1q Ð pRMP qpkq

21 Return x̌pkq

We now present the Benders by batch algorithm (Algorithm 2). The while loop from lines 3 to 20 will be

referred hereafter as the master loop. Each pass of this loop corresponds to an iteration of the algorithm. At

each iteration k, the relaxed master program pRMP qpkq is solved to obtain a new first-stage solution x̌pkq. A

permutation σ of J1, κK is then chosen. This permutation defines the order in which the batches of subproblems

pS1, S2, ..., Sκq will be solved at the current first-stage solution. The while loop from lines 8 to 19 will be

referred as the optimality loop. In each pass in this loop:

8

1. the subproblems of the current batch Sσpiq are solved (lines 9 to 10). This part of the algorithm can be

parallelized, as in the classical Benders decomposition algorithm to accelerate the procedure.

2. the cuts defined by the solutions of the subproblems are added to the relaxed master program (lines

11 to 15). We add a parameter aggregation to the algorithm. If this parameter is set to False, the

cuts of each subproblem are added independently to the relaxed master program, as it is the case in the

classical multicut Benders decomposition algorithm. If this parameter is set to True, we add only one

cut, computed as the weighted sum of all the cuts of the batch according to the probability distribution.

3. the gap between the value of the subproblems and the value of their outer linearization is checked (line

16 to 19). If the batch is εi-approximated by pRMP qpkq, then i is increased by one, and the boolean

stay at x still equals True. The algorithm returns to line 8 and solves a new batch at the same first-

stage solution, as i has been incremented. If it reaches i “ κ ` 1, then all batches are εi-approximated

by pRMP qpkq according to permutation σ, and x̌pkq is an optimal solution to problem (1). If one of the

batches is not εi-approximated by pRMP qpkq, then x̌pkq cannot be an optimal solution to the problem.

Then there exists at least one of the cuts which excludes the solution px̌pkq, θpkqq from the relaxed master

program. The algorithm exits the optimality loop, and goes to line 3 to solve again the relaxed master

program.

Remark 2. Aggregation of the cuts : One of the most important drawback of the multicut Benders

decomposition algorithm is the large number of cuts added to the relaxed master program at each iteration. As

this number of cuts increases, the time needed to solve the master program can increase dramatically. The

Benders by batch algorithm might suffer from the same effect, even if this effect might be delayed by the method

(it adds fewer cuts at each iteration). We propose to aggregate the cuts of a batch, and add only one cut

computed as:
ÿ

sPSσpiq

psθs ě
ÿ

sPSσpiq

ps
`

πJs pds ´ Tsxq
˘

As the subproblems are linearly independent, this cut is the Benders cut associated with the problem created

by concatenation of the subproblems of a batch. The Benders by batch algorithm could also benefit from the

methods proposed by Trukhanov et al. (2010) to find more effective aggregation schemes.

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. The Benders by batch algorithm converges in a finite number of iterations.

Proof. Proof of proposition 2 We solve each subproblem at most once for every optimal solution to pRMP qpkq

because pS1, S2, ..., Sκq defines a partition of S. Then if there exists a cut violated by
`

x̌pkq, pθ̌sq
˘

, we find it in

at most CardpSq iterations in the optimality loop. Then, as the total number of optimality cuts is finite and

equal to
ř

sPS CardpVertpΠsqq, this algorithm converges in at most CardpSqˆ
ř

sPS CardpVertpΠsqq iterations.

When the cuts are aggregated, if the cut of a subproblem separates the solution to the relaxed master program
`

x̌pkq, pθ̌sq
˘

, then the aggregated cut of the batch also separates it, and the result remains true.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume that there exists

an initial and arbitrary ordering of the batches S1, S2, ..., Sκ and σ “ id at the first iteration. When we choose

a new permutation, at the beginning of a master loop, the ordered strategy consists in starting from the first

batch of subproblems that has not been solved at the previous first-stage solution. We introduce the following

cyclic permutation µ of the batches:

µ “

¨

˝

1 2 ... κ´ 1 κ

2 3 ... κ 1

˛

‚

9

Let N be the number of batches solved at the previous first-stage solution. Then, the ordered strategy consists

in defining the new permutation σ at line 7 of Algorithm (2) as σ Ð µN ˝ σ

This strategy has a deterministic behavior and maintains the same number of resolutions of all the subprob-

lems during the optimization process. A pure random strategy, shuffling the set of batches at the beginning

of each master loop, showed a high variance in the total number of iterations. In preliminary computational

experiments, we observed factors up to two between the running times of the fastest and the longest run on

the same instance. As such a behavior is not desirable, we did not pursue this path.

4 Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 2) may suffer, as every cutting-

plane algorithm, from strong oscillations of the first-stage variables, and thus show an erratic decrease in the

value of the upper bound over the iterations. We present two primal stabilization schemes of the algorithm

based on the in-out separation approach (Ben-Ameur and Neto, 2007). We introduce an adaptation of the

stopping criterion presented in section 3, and detail our stabilized Benders by batch algorithm (Algorithm 3).

We finally prove the finite convergence and exact behavior of our stabilized algorithm.

We first recall the principle of the in-out separation approach. At an iteration k, this method solves the

subproblems at a solution xpkq, referred to as the separation point, that may not be the solution x̌pkq to relaxed

master program pRMP qpkq. We also define x̂pkq the stability center at iteration k, set as the previous separation

point with the lowest objective function value :

x̂pkq “ Arg min
jPJ0,k´1K

tcJxpjq `
ÿ

sPS

psφpx
pjq, squ

The separation point xpkq is defined on the segment between x̂pkq (in point) to x̌pkq (out point) :

xpkq “ αx̌pkq ` p1´ αqx̂pkq

The in-out separation scheme creates a sequence of stability centers with decreasing objective values con-

verging to an optimal solution to the problem. The definition of x̂pkq requires computing the value φpxpjq, sq

for every scenario s P S, meaning that all the subproblems need to be solved at every separation point. In the

Benders by batch algorithm, we generally do not solve all the subproblems at a given iteration. We therefore

need to adapt this approach.

We propose now two separation schemes to stabilize our algorithm. They satisfy the following property:

If the solution to pRMP qpkq is constant over an infinite sequence of iterations, then limkÑ`8 x
pkq “ x̌pkq. We

will refer hereafter to this property as Property P.

Method 1 - Basic stabilization: Let α P p0, 1s be a stabilization parameter. The separation point at

iteration k is computed as follows:

xpkq “ αx̌pkq ` p1´ αqxpk´1q

for k ą 1, and xp1q “ x̌p1q.

This basically consists in doing 100α% of the way from the previous separation point to the solution to

the master program. This could be seen as an in-out stabilization, updating the stability center to the last

separation point at each iteration. By convexity of X, xpkq belongs to X for every k P N. This basic stabilization

scheme satisfies the Property P.

Method 2 - Solution memory stabilization: This stabilization uses an exponentially weighted average

of the previous master solutions to compute the separation point. We choose a stabilization parameter α P r0, 1q

10

and a memory parameter β P r0, 1q. We also define the exponentially weighted averaged point x̄pkq on master

solutions. The separation point is computed as follows:

#

x̄pkq “ βx̄pk´1q ` p1´ βqx̌pkq

xpkq “ αxpk´1q ` p1´ αqx̄pkq

for k ą 1, and xp1q “ x̄p1q “ x̌p1q. By convexity of X, xpkq belongs to X for every k P N. This stabilization can

be associated to the stochastic gradient algorithm with momentum (Polyak, 1964) that has proven its efficiency

in solving large-scale stochastic programs in the field of deep learning (Sutskever et al., 2013). We show in the

following lemma that this solution memory stabilization scheme satisfies the Property P.

Lemma 1. Let z, xp0q, x̄p0q be three elements of X, α P r0, 1q, β P r0, 1q. The sequence
`

xpkq
˘

kPN
defined by

#

x̄pk`1q “ βx̄pkq ` p1´ βqz

xpk`1q “ αxpkq ` p1´ αqx̄pk`1q

converges to z.

Proof. Proof of lemma 1 See Appendix A

When using those stabilization procedures, the subproblems are not solved at the solution to the relaxed

master program. We therefore adapt the stopping criterion proposed in Proposition 1 for our stabilized al-

gorithm. We rewrite the optimality condition taking into account that the first-stage solutions at which we

compute the lower bound and the upper bound are not the same.

Definition 2. εipxq-approximation at a first-stage solution x: Let ε be the optimality gap of the algorithm,

k P Z` an iteration and σ a permutation of J1, κK. For every i P J1, κK, we say that batch Sσpiq is εipxq-

approximated by pRMP qpkq at x P X if

”

ÿ

sPSσpiq

ps

´

φ px, sq ´ θ̌pkqs

¯ ı`

ď εipxq

with εipxq “ ε´ cJpx´ x̌pkqq ´
” i´1
ř

t“1

ř

sPSσptq

ps

´

φ px, sq ´ θ̌
pkq
s

¯ ı`

and ζ` “ maxtζ, 0u for any ζ P R.

Remark 3. Saying that a batch Sσpiq is εipx̌
pkqq-approximated by pRMP qpkq is equivalent to saying that Sσpiq

is εi-approximated by pRMP qpkq in the unstabilized version of the algorithm (see Definition 1).

The following proposition gives a valid stopping criterion for the stabilized Benders by batch algorithm.

Proposition 3. Let ε be the optimality gap of the algorithm, k P Z` an iteration of the algorithm, and σ a

permutation of J1, κK. If there exists a first-stage solution x P X such that batch Sσpκq is εκpxq-approximated

by pRMP qpkq, then x is an optimal solution to problem (1).

Proof. Proof of proposition 3 Let x P X be a first-stage solution such that batch Sσpκq is εκpxq-approximated

by pRMP qpkq. This means:

”

ÿ

sPSσpκq

ps

´

φ px, sq ´ θ̌pkqs

¯ ı`

ď ε´ cJpx´ x̌pkqq ´
κ´1
ÿ

t“1

”

ÿ

sPSσptq

ps

´

φ px, sq ´ θ̌pkqs

¯ ı`

ñ

”

ÿ

sPSσpκq

ps

´

φ px, sq ´ θ̌pkqs

¯ ı`

`

”

κ´1
ÿ

t“1

ÿ

sPSσptq

ps

´

φ px, sq ´ θ̌pkqs

¯ ı`

ď ε´ cJpx´ x̌pkqq

11

As ζ ď ζ` for any ζ P R, we have:

κ
ř

t“1

ř

sPSσptq

ps

´

φ px, sq ´ θ̌
pkq
s

¯

ď ε´ cJpx´ x̌pkqq

ñ
ř

sPS

ps

´

φ px, sq ´ θ̌
pkq
s

¯

ď ε´ cJpx´ x̌pkqq

ñ

ˆ

cJx`
ř

sPS

psφ px, sq

˙

´

ˆ

cJx̌pkq `
ř

sPS

psθ̌
pkq
s

˙

ď ε

ñ UBpxq ´ LBpkq ď ε

and x is an optimal solution to problem (1).

Algorithm 3: Stabilized Benders by batch

Parameters: ε ą 0, aggregation P tTrue, Falseu, η P J1, CardpSqK the batch size, α P p0, 1s,
β P r0, 1q

1 Initialization: k Ð 0, stay at xÐ True, iÐ 1, αpkq Ð α, mispriceÐ False

2 Define a partition of the subproblems
`

Si
˘

iPJ1,κK according to batch size η

3 while i ă κ` 1 do

4 Solve pRMP qpk`1q and retrieve x̌pk`1q, pθ̌
pk`1q
s qsPS

5 misprice cntÐ 0
6 do
7 k Ð k ` 1

8 Compute xpkq according to a separation scheme statisfying Property P

9 iÐ 1, εi Ð ε´ cJpxpkq ´ x̌pkqq, stay at xÐ True

10 Choose a permutation σ of J1, κK
11 mispriceÐ True

12 while stay at x “ True and i ă κ` 1 do
13 for s P Sσpiq do

14 Solve pSP pxpkq, sqq and retrieve φpxpkq, sq and πs (dual extreme solution)

15 if aggregation then

16 Add
ř

sPSσpiq

psθs ě
ř

sPSσpiq

ps
`

πJs pds ´ Tsxq
˘

to pRMP qpkq

17 else
18 for s P Sσpiq do

19 Add θs ě πJs pds ´ Tsxq to pRMP qpkq

20 if
ř

sPSσpiq

”

ps

´

φpxpkq, sq ´ θ̌
pkq
s

¯ ı`

ď εi then

21 εi`1 Ð ε´ cJpxpkq ´ x̌pkqq ´
” i
ř

t“1

ř

sPSσptq

ps

´

φpxpkq, sq ´ θ̌
pkq
s

¯ ı`

22 iÐ i` 1

23 else
24 stay at xÐ False

25 if aggregation then

26 if
ř

sPSσpiq

psθ̌
pkq
s ă

ř

sPSσpiq

ps
`

πJs pds ´ Tsx̌
pkqq

˘

then mispriceÐ False

27 else
28 for s P Sσpiq do

29 if θ̌
pkq
s ă πJs pds ´ Tsx̌

pkqq then mispriceÐ False

30 (Optional) αpkq Ð mispricing procedurepmisprice, α, αpkq, misprice cntq (Algo. 4)

31 pRMP qpk`1q Ð pRMP qpkq, x̌pk`1q Ð x̌pkq, pθ̌
pk`1q
s qsPS Ð pθ̌

pkq
s qsPS

32 while misprice

33 Return xpkq

12

We now present the stabilized Benders by batch algorithm (Algorithm 3). The algorithm is structured in

three nested while loops. The while loop from line 3 to 32 is called the master loop. In this loop, the relaxed

master program is solved in order to define a new first-stage solution x̌pkq. The while loop from line 6 to 32 is

called the separation loop. This loop updates the current separation point xpkq with the solution to the relaxed

master program x̌pkq constant. The while loop from line 12 to 29 is called the optimality loop. In the optimality

loop, the subproblems of current batch Sσpiq are solved. There are three possibilities at the end of this loop:

• Case 1: The current batch is εipx
pkqq-approximated by pRMP qpkq. It satisfies the condition of line 20

of Algorithm 3. Then, stay at x still equals True at the end of the loop, and i is incremented by one. If

the algorithm reaches i “ κ`1, then the algorithm stops, and xpkq is an optimal solution to the problem.

Otherwise, the algorithm solves the next batch of subproblems at the same first-stage solution.

• Case 2: The current batch Sσpiq is not εipx
pkqq-approximated by pRMP qpkq and at least one of the

cuts derived from this batch of subproblems separates the solution px̌pkq, pθ
pkq
s qsPSq of the relaxed master

program [see FIG. 1]. This means that misprice is set to False. The variable stay at x is set to False

and we exit the optimality loop. Since misprice equals False, we exit the separation loop. We then go

to line 3, and solve again the relaxed master program.

• Case 3: The current batch Sσpiq is not εipx
pkqq-approximated by pRMP qpkq and there exists no cuts

derived from this batch of subproblems, or a previous batch, which separates the solution px̌pkq, pθ
pkq
s qsPSq

of the relaxed master program [see FIG. 2]. The variable misprice still equals True. This is called a

mis-pricing (Pessoa et al., 2013). As the solution to the relaxed master program has not been cut, it is

useless to solve the relaxed master program again, its solution remains the same. We exit the optimality

loop, but stay in the separation loop. We define a new separation point xpkq, a new permutation of J1, κK,
and begin a new optimality loop in this point.

If a mis-pricing occurs, we can increase parameter αpkq, such that, after t successive mis-pricings, αpk`tq “

mint1.0, t.αpkqu (see Algorithm 4). This is an acceleration procedure to limit the number of successive iterations

which induce a mis-pricing (Pessoa et al., 2013). This procedure is optional, as the sequence of separation points

xpkq converges to the solution to the relaxed master program for the two proposed separation schemes during

a sequence of mis-pricings, and no mis-pricing is possible at x̌pkq.

13

Figure 1: The cut derived from first-stage so-

lution xpkq separates the solution to the re-

laxed master program px̌pkq, pθ
pkq
s qsPSq.

Figure 2: The cut derived from first-stage so-

lution xpkq does not separate the solution to

the relaxed master program px̌pkq, pθ
pkq
s qsPSq.

The solution to pRMP qpkq remains the same.

The separation point xpkq induces a mis-

pricing.

Algorithm 4: mispricing procedure

Parameter: misprice P tTrue, Falseu, α, αpkq, misprice cnt

1 if misprice then

2 misprice cntÐ misprice cnt` 1

3 αpkq Ð mint1.0,
´

1` 1
misprice cnt

¯

αpk´1qu

4 else

5 αpkq Ð α

6 Return αpkq

With the use of Proposition 4, we now prove in Proposition 5 that the stabilized Benders by batch algorithm

converges to an optimal solution to problem (1) in a finite number of iterations.

Proposition 4. Let k P Z` an iteration of Algorithm 3, and px̌pkq, pθ̌
pkq
s qsPSq an optimal solution to pRMP qpkq.

Let
`

xpk`rq
˘

rPN
be a sequence of elements of X converging to x̌pkq and

`

σpk`rq
˘

rPN
a sequence of permutations

of J1, κK. There exists t P N such that one of the following assertions is true:

1. First-stage solution xpk`tq is proven optimal for problem (1) with an optimality gap of ε ą 0.

2. There exists a cut generated in xpk`tq which separates the solution to the relaxed master program px̌pkq, pθ̌
pkq
s qsPSq.

Proof. Proof of proposition 4 We focus on the solution px̌pkq, pθ̌
pkq
s qsPSq to the relaxed master program. There

are two possible cases:

• Case 1. There exists t0 P N such that for all l ě t0 and for each index i P J1, κK, batch Sσpk`lqpiq is

εipx̌
pkqq-approximated by pRMP qpkq with an optimality gap of ε

4

• Case 2. For all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch Sσpk`lqpiq is not

εipx̌
pkqq-approximated by pRMP qpkq with an optimality gap of ε

4

Case 1: Assume that there exists t0 P N such that for all l ě t0 and for each index i P J1, κK, batch

Sσpk`lqpiq is εipx̌
pkqq-approximated by pRMP qpkq with an initial gap of ε

4 . This means that for every l ě t0 and

14

for every index i P J1, κK,

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

ď
ε

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

(8)

As the number of permutations of J1, κK is finite, as for every l ě t0 and for each index i P J1, κK, the application

x ÞÑ
”

ř

sPS
σpk`lqpiq

ps

´

φ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, and as sequence
`

xpk`rq
˘

rPN
converges to x̌pkq, there

exists t1 P N, t1 ě t0 such that, for every l ě t1 and for every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ď

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

`
ε

4
(9)

Moreover, as for every l ě t0 and for every index i P J1, κK, the application x ÞÑ
” i´1
ř

t“1

ř

sPS
σpk`lqpiq

ps

´

φ px, sq ´ θ̌
pkq
s

¯ ı`

is continuous, there exists t2 P N, t2 ě t0 such that, for every l ě t2 and

for every index i P J1, κK:

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

´
ε

4
ď

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

ñ ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

ď ´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

`
ε

4
(10)

And, as pxpk`rqqrPN converges to x̌pkq, there exists t3 P N such that, @l ě t3, 0 ď ε
4 ´ c

Jpxpk`lq ´ x̌pkqq.

Then, by setting t4 “ maxtt1, t2, t3u, and jointly using (8), (9) and (10), we have, for every l ě t4 and for

every index i P J1, κK:

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ď
ε

4
`
ε

4
`
ε

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ď
3ε

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ñ

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

ď ε´ cJpxpk`lq ´ x̌pkqq ´
”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

xpk`lq, s
¯

´ θ̌pkqs

¯ ı`

And for every index i P J1, κK, batch Sσpk`t4qpiq is εipx
pk`t4qq-approximated by pRMP qpkq with an optimality

gap of ε, which implies, by Proposition 3, that xpk`t4q is an optimal solution to problem (1).

Case 2: Now assume that for all t0 P N, there exists l ě t0 and an index i P J1, κK such that batch

Sσpk`lqpiq is not εipx̌
pkqq-approximated by pRMP qpkq with an initial optimality gap of ε

4 . This means, that for

all t0 P N, there exists l ě t0 and an index i P J1, κK such that:

”

ÿ

sPS
σpk`lqpiq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

ą
ε

4
´

”

i´1
ÿ

t“1

ÿ

sPS
σpk`lqptq

ps

´

φ
´

x̌pkq, s
¯

´ θ̌pkqs

¯ ı`

(11)

Then, there exists δ ą 0 such that, for all t0 P N, there exists l ě t0 and an index i P J1, κK (the first index such

that (11) occurs) such that:
ÿ

sPS
σpk`lqpiq

ps

´

φpx̌pkq, sq ´ θ̌pkqs

¯

ą δ (12)

15

Let g
pk`τq
i P Rn1 be a subgradient associated with the function x ÞÑ

ř

sPS
σpk`τqpiq

psφpx
pk`τq, sq at point xpk`τq.

The aggregated cut derived by resolution of batch Sσpk`τqpiq can be written as follows:

g
pk`τqJ
i px´ xpk`τqq `

ÿ

sPS
σpk`τqpiq

psφpx
pk`τq, sq ď

ÿ

sPS
σpk`τqpiq

psθs

By continuity of φp., sq for all s P S and as the total number of cuts is finite, there exists L ą 0 such that for

every l P N and for every i P J1, κK, ||gpk`lqi ||2 ď L. Then, as sequence
`

xpk`rq
˘

rPN
converges to x̌pkq, there

exists t1 P N such that for all l ě t1 and for all i P J1, κK, |gpk`lqJi px̌´ xpk`lqq| ă δ
3 .

Moreover, as sequence
`

xpk`rq
˘

rPN
converges to x̌pkq and by continuity of φp., sq, there exists t2 P N such that

for all l ě t2 and for each index i P J1, κK:

ÿ

sPS
σpk`lqpiq

psφpx̌
pkq, sq ă

ÿ

sPS
σpk`lqpiq

psφpx
pk`lq, sq `

δ

3

Then, let t3 “ maxtt1, t2u. Let i P J1, κK and l0 ě t3 be the first indices such that (12) occurs. We have:

g
pk`l0qJ
i px̌pkq ´ xpk`l0qq `

ÿ

sPS
σpk`l0qpiq

psφpx
pk`l0q, sq ´

ÿ

sPS
σpk`l0qpiq

psθ̌
pkq
s ą

δ

3

Then, at xpk`l0q, the aggregated cut of the batch Sσpk`l0qpiq separates the solution to the relaxed master

program, as its value at x̌pkq is strictly larger than the outer linearization given by the relaxed master program.

If aggregation “ False, there exists at least one of the cuts associated with a subproblem of the batch which

separates the solution to the relaxed master program.

Proposition 5. The stabilized Benders by batch algorithm converges to an optimal solution to problem (1) in

a finite number of iterations.

Proof. Proof of proposition 5 Let k P Z` an iteration of the algorithm. σ a permutation of J1, κK, and xpkq P X

the separation point. There are three possible cases:

1. @i P J1, κK, batch Sσpiq is εipx
pkqq-approximated by pRMP qpkq. Then xpkq is an optimal solution to

problem (1).

2. There exists an index i P J1, κK such that solving the subproblems of batch Sσpiq generates a cut which

separates the solution to pRMP qpkq. As the total number of cuts is finite, we can only be a finite number

of times in this situation.

3. There exists no cut derived at xpkq which separates the solution to pRMP qpkq. Then, xpkq induces a

mis-pricing. The solution to pRMP qpk`1q remains the same. Let suppose that this happens during

an infinite number of consecutive iterations. Then, as the separation scheme satisfies Property P, the

sequence of separation points converges to x̌pkq. Prop. 4 states that in that case, we end in a finite

number of iterations in case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations in case 1, and

finds an optimal solution to problem (1).

Remark: As the classical Benders decomposition algorithm can be seen as the Benders by batch algorithm

with a batch size η “ CardpSq, then Proposition 5 is still valid for the classical Benders decomposition

algorithm. Every stabilization method producing a sequence of iterates converging asymptotically to the

solution to the relaxed master program induces an algorithm converging in a finite number of iterations to an

optimal solution to the problem.

16

5 Experimentations and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the benchmarks

we use, and our instance generation method. We then explain the different algorithms we compare to, and how

we implemented them. Finally, we show and analyze the numerical results we obtained.

5.1 Instances

We use six well studied instances from the literature. The first five, 20term (Mak et al., 1999), gbd (Dantzig,

1963), LandS (Louveaux and Smeers, 1988), ssn (Sen et al., 1994) and storm (Mulvey and Ruszczyński, 1995),

are available from the following link: www.cs.wisc.edu/\simswright/stochastic/sampling/. The problem

20term is taken from (Mak et al., 1999). It is a model of motor freight carrier’s operations. The problem consists

in choosing the position of some vehicles at the beginning of the day, the first-stage variables, and then to use

those vehicles to satisfy some random demands on a network. Instance gbd has been created from chapter 28

of (Dantzig, 1963). It is an aircraft allocation problem. LandS has been created from an electrical investment

planning problem described in (Louveaux and Smeers, 1988). In (Linderoth et al., 2006), the authors modified

the problem to obtain an instance with 106 scenarios. Problem ssn is a problem of telecommunication network

design taken from (Sen et al., 1994) and storm is a cargo flight scheduling problem described by (Mulvey and

Ruszczyński, 1995). The last instance, Fleet20 3, was found at http://www.ie.tsinghua.edu.cn/lzhao/

which was itself taken from https://people.orie.cornell.edu/huseyin/research/research.html. It is a

fleet-sizing problem, close to 20term, with a two-week horizon planning.

As those instances have a tremendous number of scenarios, see [FIG. 2], we generate instances by sampling

scenarios from the initial ones. We generated instances with sample sizes 1000, 5000, 10000, and 20000.

Three random instances have been generated for each problem and each sample size S, with random seeds

seed “ S ` k, k P t0, 1, 2u so that two instances of different sample size should not share sub-samples. This

leads to a benchmark of 72 different instances.

Table 2: Instances sizes, given in the format lines ˆ columns

instance first-stage second-stage scenarios

LandS 2ˆ 4 7ˆ 12 106

gbd 4ˆ 17 5ˆ 10 „ 105

20term 3ˆ 64 124ˆ 764 „ 1012

ssn 1ˆ 89 175ˆ 706 „ 1070

storm 185ˆ 121 528ˆ 1259 „ 1081

Fleet20 3 3ˆ 60 320ˆ 1920 ą 3200

5.2 Experimentations

In order to evaluate the numerical efficiency of our algorithm, we compare it to five different methods:

1. IMB ILOG CPLEX 12.10 with its multicut Benders implementation

2. Our implementation of the multicut Benders decomposition

3. Our implementation of the monocut Benders decomposition

4. Our implementation of the multicut Benders decomposition with an in-out stabilization

5. Our implementation of the monocut Benders decomposition with an in-out stabilization

17

www.cs.wisc.edu / \sim swright/stochastic/sampling/
http://www.ie.tsinghua.edu.cn/lzhao/
https://people.orie.cornell.edu/huseyin/research/research.html

The Benders decomposition algorithm of IMB ILOG CPLEX 12.10 is run with the following parameter

values: benders strategy 2 (An annotation file contains the first-stage variables, and CPLEX decomposes

automatically the subproblems), threads 1 (to run CPLEX using one core, as the other methods), timelimit

43200 (time limit of twelve hours).

Our implementation of Benders decomposition follows Algorithm 1. The first-stage variables appear as

variables in all the subproblems, and are fixed to the desired values during the optimization process. The

coefficients of the cuts are computed as the reduced cost of those variables in an optimal solution to the

subproblems. We set the lower bound on the epigraph variables of the subproblems to 0 as it is a valid lower

bound for every studied problem. The monocut algorithms consist in computing the cuts as follows:

ÿ

sPS

psθs ě
ÿ

sPS

ps

´

πs.pds ´ Tsxq
¯

We also use a dynamic strategy to update the stabilization parameter in our implementation of in-out

stabilization. We recall that we denote by xpkq the separation point at iteration k of the algorithm, and by x̂pkq

the stability center, which is computed as:

x̂pkq “ Arg min
0ďiďk´1

tcJxpiq `
ÿ

sPS

psφpx
piq, squ

We use the following rule to update parameter α. If cJxpkq `
ř

sPS psφps, x
pkqq ă cJx̂pkq `

ř

sPS psφps, x̂
pkqq,

then our stabilization gave us a better first-stage solution according to the cost than the current stability center.

If we had separated farther, we could have found an even better point, and we therefore increase α with the

rule αÐ mint1.0, 1.2αu. If cJxpkq`
ř

sPS psφps, x
pkqq ě cJx̂pkq`

ř

sPS psφps, x̂
pkqq, we did not stabilize enough,

and we therefore decrease the stabilization parameter α with the rule αÐ maxt0.1, 0.8αu.

We also evaluate different parameters of the Benders by Batch algorithm. We first run the Benders by

Batch algorithm without stabilization, and try different batch sizes with and without aggregation. Then, we

evaluate the impact of the two proposed stabilizations, with different stabilization parameters.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold SKL-6130 pro-

cessor at 2,1 GHz with 96 Go of RAM with the TURBO boost (up to 3.7 GHz). The time limit is fixed to

twelve hours for every algorithm. The optimality gap is fixed to a relative gap of 10´6 for every algorithm.

5.3 Numerical results

This section shows the numerical results obtained on our 72 instances. When an algorithm is stopped at its time

limit of 12 hours (43 200s), the computing time is denoted `inf , and the ratio to the best time will be denoted

ą 43200
best time in the tables, which means that this algorithm is at least this ratio slower than the best algorithm

present in the table. All the tables presented in this section and in Appendix 1 show, for each method, the

average computing time to solve the three instances of each size, and the time ratio with respect to the best

time obtained in this table. The classical multicut Benders algorithm is denoted as Classic multicut and its

monocut version as Classic monocut. Our Benders by batch algorithm is denoted as BbB. Our implementation

of multicut in-out stabilization is denoted as In-out multicut and its monocut version as In-out monocut. The

Benders decomposition implementation of IBM ILOG CPLEX 12.10 is denoted as CPLEX. We always present

the average time on the three instances of each size for each problem, rounded to the second.

We present the results with the performance profiles introduced by Dolan and Moré (2002). Let P be a

set of problems, and M a set of methods. For any problem p P P and method m P M, we denote as tp,m

the computing time of method m to solve problem p. We define the performance ratio of method m PM on

18

problem p P P as:

rp,m “
tp,m

minm1PMttp,m1u

The performance profile of a method m P M is the cumulative distribution on the set of problems of the

performance ratios according to the computing time. It is defined as ρmpτq “ Cardptp P P : rp,m ď τuq

Table 3: Classical Benders decomposition algorithms results
Times (left columns) are in second, ratios (right columns) are computed as the time divided by the
best time to solve the instance by methods present in the table.

Cplex Benders Classic multicut Classic monocut In-out multicut In-Out monocut

instance Best time ratio time ratio time ratio time ratio time ratio

LandS-N1000 1 1 1.0 1 1.3 2 3.4 1 1.2 2 2.7
LandS-N5000 5 5 1.0 9 1.7 11 2.0 7 1.3 9 1.8
LandS-N10000 15 15 1.0 29 1.9 22 1.5 22 1.4 17 1.2
LandS-N20000 31 43 1.4 105 3.4 45 1.5 73 2.4 31 1.0

gbd-N1000 1 1 1.0 1 1.2 2 2.7 1 1.2 2 3.0
gbd-N5000 10 10 1.0 10 1.1 12 1.2 11 1.1 12 1.3
gbd-N10000 23 34 1.4 33 1.4 23 1.0 35 1.5 23 1.0
gbd-N20000 48 131 2.7 121 2.5 48 1.0 128 2.7 48 1.0

ssn-N1000 7 15 2.3 7 1.0 2408 357.7 7 1.0 131 19.4
ssn-N5000 57 83 1.5 57 1.0 13460 236.8 58 1.0 746 13.1
ssn-N10000 174 180 1.0 188 1.1 25901 148.6 174 1.0 1502 8.6
ssn-N20000 485 485 1.0 488 1.0 +inf ą89.0 531 1.1 2747 5.7

storm-N1000 11 28 2.6 11 1.0 24 2.2 11 1.0 18 1.7
storm-N5000 91 187 2.1 106 1.2 114 1.3 117 1.3 91 1.0
storm-N10000 190 508 2.7 496 2.6 224 1.2 455 2.4 190 1.0
storm-N20000 376 1396 3.7 2370 6.3 458 1.2 1753 4.7 376 1.0

20term-N1000 101 780 7.7 757 7.5 577 5.7 265 2.6 101 1.0
20term-N5000 556 +inf ą77.7 24429 43.9 3506 6.3 9240 16.6 556 1.0
20term-N10000 1116 +inf ą38.7 +inf ą38.7 6901 6.2 41461 37.2 1116 1.0
20term-N20000 2160 +inf ą20.0 +inf ą20.0 13687 6.3 +inf ą20.0 2160 1.0

Fleet20-N1000 70 148 2.1 225 3.2 533 7.6 70 1.0 105 1.5
Fleet20-N5000 501 15720 31.4 5330 10.6 2757 5.5 1843 3.7 501 1.0
Fleet20-N10000 1070 +inf ą40.4 28933 27.0 5710 5.3 7807 7.3 1070 1.0
Fleet20-N20000 2260 +inf ą19.1 +inf ą19.1 11300 5.0 +inf ą19.1 2260 1.0

We first present in Table 3 the results on the five methods we use to benchmark the Benders by batch

algorithm. We notice that IBM ILOG CPLEX 12.10 implementation of Benders decomposition is the less

efficient method among the 5 presented in Table 3, and does not scale well when the number of subproblems

becomes large. It succeeds in solving only 57 out of 72 instances. Even if CPLEX implements an in-out

stabilization, and a multicut strategy with the option benders strategy 2, it seems to be not competitive with

our multicut in-out implementation. We also remark that the in-out stabilization performs almost always

better in term of computing time than its classical counterpart (monocut versus monocut or multicut versus

multicut). Finally, we observe that the multicut implementations do not scale well when the number of

subproblems becomes large (except for ssn instances). The restricted master programs tend to be too long to

solve because of the large amount of cuts added. In the remaining tables, we only report the In-out monocut

and multicut results.

We now present the results of the Benders by batch algorithm without stabilization. We analyze the

impact of the batch size, both without (Table 4) and with aggregation (Table 5). Each column of Tables 4 and

5 contains the average time in second to solve the instances and the ratio to the best time. We analyze batch

sizes from 1% to 20% of the total number of subproblems.

We first notice in Table 4 that a batch size of one percent of the subproblems allows the Benders by batch

algorithm to solve almost all the instances without aggregation (except for Fleet20 3 with 20000 subproblems

where it succeeds to solve only one out of three problems), where the classical multicut Benders decomposition

19

fails. The saving of subproblem resolutions and cuts added to the relaxed master program allows to overcome

the computing time issues in both the subproblems and the master problem resolutions. However, the Benders

by batch algorithm without aggregation is not competitive with the in-out monocut Benders decomposition,

except for ssn instances, where it can be up to 3.7 times faster.

Table 5 shows that the aggregated Benders by batch algorithm is almost all the time the best method, and,

with batch sizes of 1% and 5% of the total number of subproblems, is almost always faster than the in-out

monocut Benders decomposition. As we aggregate the cuts over each batch, the size of the relaxed master

program remains reasonable, and as the cuts are only computed on a sample of subproblems, the algorithm

avoids many symmetries due to the sum of the cuts over the subproblems.

Table 4: Benders by batch algorithm without aggregation
In-out multicut In-Out monocut BbB 1% BbB 5% BbB 10% BbB 20%

instance Best time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 1 1 1.1 2 2.4 2 2.7 1 1.3 1 1.1 1 1.0
LandS-N5000 6 7 1.1 9 1.5 13 2.2 8 1.3 7 1.1 6 1.0
LandS-N10000 17 22 1.3 17 1.0 38 2.2 25 1.5 21 1.2 20 1.1
LandS-N20000 31 73 2.4 31 1.0 130 4.2 89 2.9 80 2.6 72 2.3

gbd-N1000 1 1 1.4 2 3.7 2 3.6 1 1.0 1 1.3 1 1.5
gbd-N5000 6 11 1.7 12 2.0 16 2.5 6 1.0 7 1.1 8 1.3
gbd-N10000 19 35 1.8 23 1.2 47 2.5 19 1.0 22 1.2 25 1.3
gbd-N20000 48 128 2.7 48 1.0 96 2.0 61 1.3 71 1.5 87 1.8
ssn-N1000 4 7 1.7 131 33.2 6 1.5 4 1.0 4 1.1 5 1.2
ssn-N5000 24 58 2.5 746 31.7 32 1.4 24 1.0 28 1.2 32 1.4
ssn-N10000 59 174 3.0 1502 25.5 71 1.2 79 1.3 59 1.0 79 1.3
ssn-N20000 145 531 3.7 2747 19.0 145 1.0 274 1.9 624 4.3 2821 19.5

storm-N1000 6 11 1.7 18 2.8 21 3.2 8 1.3 6 1.0 8 1.3
storm-N5000 55 117 2.1 91 1.7 175 3.2 60 1.1 55 1.0 65 1.2
storm-N10000 156 455 2.9 190 1.2 492 3.1 156 1.0 159 1.0 189 1.2
storm-N20000 376 1753 4.7 376 1.0 1390 3.7 580 1.5 672 1.8 588 1.6
20term-N1000 38 265 7.0 101 2.6 38 1.0 82 2.1 49 1.3 74 1.9
20term-N5000 556 9240 16.6 556 1.0 634 1.1 2101 3.8 1335 2.4 2247 4.0
20term-N10000 1116 41461 37.2 1116 1.0 2270 2.0 10733 9.6 6199 5.6 10413 9.3
20term-N20000 2160 +inf ą20.0 2160 1.0 20625 9.6 +inf ą20.0 +inf ą20.0 +inf ą20.0
Fleet20-N1000 70 70 1.0 105 1.5 145 2.1 95 1.4 102 1.5 74 1.1
Fleet20-N5000 501 1843 3.7 501 1.0 2417 4.8 1950 3.9 1873 3.7 2097 4.2
Fleet20-N10000 1070 7807 7.3 1070 1.0 9903 9.3 19913 18.6 8537 8.0 21383 20.0
Fleet20-N20000 2260 +inf ą19.1 2260 1.0 34867 15.4 +inf ą19.1 +inf ą19.1 +inf ą19.1

We summarize the results of Tables 4 and 5 in Figure 3. Figure 3 confirms that the Benders by batch

algorithms with aggregation and batch sizes of 1% and 5% are the two best algorithms on our benchmark.

They show the best computing times in respectively 24 out of 72 instances and 33 out of 72. The Benders

by batch algorithm with aggregation and a batch size of 1% of the number of subproblems scales better as its

higher performance ratio is lower than 4.

We now present the results for the two stabilization schemes presented in Section 4. We performed the

computations for the algorithm with batch sizes of 1% and 5%, and with aggregation, as they were the most

competitive ones in the unstabilized results. Figures 4 and 5 show the performance profiles of the stabilized

methods with their unstabilized equivalent. We present the results of Benders by batch with basic stabi-

lization, for values of α P t0.1, 0.5, 0.9u and with solution memory stabilization with α P t0.1, 0.5, 0.9u and

β P t0.1, 0.5, 0.9u.

Figure 4 shows that all the proposed stabilizations accelerate the Benders by batch algorithm with a

batch size of 1% of the subproblems, and can be up to 70% faster than their unstabilized equivalent. Four

stabilizations are more efficient on the tested instances and rather equivalent, namely the basic stabilization

with α “ 0.5, and the solution memory stabilization with pα, βq P tp0.5, 0.1q, p0.5, 0.5q, p0.9, 0.5qu.

Figure 5 shows similar results for a batch size of 5% of the subproblems. The same four methods are the

most efficient and equivalent to each other. One of the stabilizations, the solution memory stabilization with

pα, βq “ p0.1, 0.9q is less efficient than the unstabilized algorithm. In this case, a small step size (α “ 0.1)

20

Table 5: Benders by batch with aggregation
In-out multicut In-Out monocut BbB 1% BbB 5% BbB 10% BbB 20%

Aggreg Aggreg Aggreg Aggreg
instance Best time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000 1 1 1.0 2 2.2 2 2.3 1 1.2 1 1.1 1 1.2
LandS-N5000 4 7 1.7 9 2.3 9 2.3 5 1.1 4 1.0 4 1.1
LandS-N10000 8 22 2.6 17 2.1 16 1.9 8 1.0 8 1.0 9 1.1
LandS-N20000 17 73 4.2 31 1.8 44 2.5 17 1.0 18 1.0 20 1.1

gbd-N1000 1 1 1.5 2 4.0 2 2.7 1 1.0 1 1.3 1 1.5
gbd-N5000 3 11 3.2 12 3.7 9 2.7 3 1.0 4 1.1 4 1.3
gbd-N10000 6 35 5.5 23 3.7 15 2.3 6 1.0 8 1.3 9 1.5
gbd-N20000 14 128 9.4 48 3.5 41 3.0 14 1.0 15 1.1 19 1.4
ssn-N1000 7 7 1.0 131 19.4 14 2.0 61 9.1 134 19.9 242 36.0
ssn-N5000 58 58 1.0 746 12.8 89 1.5 322 5.5 659 11.3 1322 22.8
ssn-N10000 174 174 1.0 1502 8.6 185 1.1 707 4.1 1423 8.2 2914 16.7
ssn-N20000 441 531 1.2 2747 6.2 441 1.0 1615 3.7 3386 7.7 6757 15.3

storm-N1000 6 11 1.7 18 2.9 12 1.9 6 1.0 7 1.1 9 1.5
storm-N5000 34 117 3.4 91 2.7 52 1.5 34 1.0 36 1.0 55 1.6
storm-N10000 74 455 6.2 190 2.6 110 1.5 74 1.0 82 1.1 104 1.4
storm-N20000 163 1753 10.8 376 2.3 226 1.4 163 1.0 169 1.0 238 1.5
20term-N1000 15 265 18.1 101 6.9 15 1.0 37 2.5 68 4.6 141 9.6
20term-N5000 70 9240 131.9 556 7.9 70 1.0 193 2.7 395 5.6 839 12.0
20term-N10000 130 41461 319.7 1116 8.6 130 1.0 402 3.1 898 6.9 1978 15.2
20term-N20000 280 +inf ą154.4 2160 7.7 280 1.0 914 3.3 2051 7.3 18312 65.4
Fleet20-N1000 28 70 2.5 105 3.7 28 1.0 42 1.5 74 2.6 131 4.6
Fleet20-N5000 107 1843 17.2 501 4.7 107 1.0 211 2.0 358 3.3 649 6.0
Fleet20-N10000 212 7807 36.8 1070 5.0 212 1.0 440 2.1 721 3.4 1310 6.2
Fleet20-N20000 419 +inf ą103.2 2260 5.4 419 1.0 876 2.1 1520 3.6 2777 6.6

Figure 3: Performance profiles of Classical Benders decomposition with in-out stabilization and Ben-
ders by batch algorithm with and without aggregation

and a high memory parameter (β “ 0.9) slow down the convergence. For all the other cases, the stabilization

accelerates the algorithm.

Finally, there is no clear difference between the two stabilizations proposed, according to the results. It

seems that the memory based stabilization does efficiently stabilize the algorithm, but the basic stabilization

might be the method of choice as it is much simpler and provides similar computational results.

As a final result, we show in Figure 6 the performance profiles of the first five methods we compare to,

presented in Table 3 and the Benders by batch algorithm solving 1% of the subproblems at each iteration,

and a basic stabilization with α “ 0.5. The stabilized Benders by batch is the best algorithm for 62 out of 72

instances. We show factors up to 800 times faster than the Benders decomposition of IMB ILOG Cplex 12.10,

21

Figure 4: Performance profiles of Benders by batch with stabilizations and batch size of 1% and
Benders by Batch with batch size of 1% and aggregation. BbB stands for Benders by batch.

Figure 5: Performance profiles of Benders by batch with stabilizations and batch size of 5% and
Benders by Batch with batch size of 5% and aggregation. BbB stands for Benders by batch.

and more than 300 times faster than the classical Benders decompositions without stabilization.

6 Conclusion

We proposed in this article the Benders by batch algorithm to solve two-stage stochastic linear programs. In

this algorithm, we do not solve all the subproblems at each iteration. This idea has been explored in the

literature in a monocut framework (Higle and Sen, 1991; Dantzig and Infanger, 1991), but these algorithms

were not exact or needed some assumptions on the structure of the problem. We showed that solving only a

very few number of subproblems, 1% in our tests, allows us to significantly improve the solution time, and to

22

Figure 6: Performance profile of initial methods and best stabilized Benders by batch algorithm

solve large instances that classical Benders decomposition algorithms fails to solve in 12 hours.

We also proposed two methods to stabilize this algorithm. The monocut adaptation of the Benders by

batch algorithm with those stabilizations allowed us to solve in at most seven minutes some large instances of

the literature which where not solved in 12 hours by the built-in Benders decomposition of CPLEX 12.10, the

Benders decomposition without stabilization, or the multicut Benders decomposition with in-out stabilization.

This algorithm showed acceleration factors from 2 to more than 10 times compared to the best method of the

literature we compared to.

Applying dual stabilization (Magnanti and Wong, 1981; Sherali and Lunday, 2013) to the Benders by batch

algorithm is straightforward and could improve the results. The algorithm can be parallelized, as well as the

classical Benders decomposition, and may benefit from the improvements of parallelized methods, such as the

asynchronous method of Linderoth and Wright (2003). Finally, a major improvement should be to adapt the

Benders by batch algorithm to mixed-integer master programs within a Branch&Cut framework. As there

is no need to solve all the subproblems in a random node of the tree, one could apply this method at each

node in which the solution to the relaxation is not integer. It could also be simply used to solve the Benders

reformulation at the root node of the tree, to initialize the resolution.

Acknowledgments— This project has been funded by RTE (Réseau de Transport d’Electricité), french

company in charge of the electricity network management, through the projects Antares and Antares Xpan-

sion: https://github.com/AntaresSimulatorTeam/antares-xpansion, which are used for long-term ade-

quacy studies. Computer time for this study was provided by the computing facilities MCIA (Mésocentre de

Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays de l’Adour.

23

https://github.com/AntaresSimulatorTeam/antares-xpansion

References

Ben-Ameur, W. and Neto, J. (2007). Acceleration of cutting-plane and column generation algorithms: Appli-

cations to network design. Networks, 49(1):3–17.

Birge, J. R. and Louveaux, F. (1988). A multicut algorithm for two-stage stochastic linear programs. European

Journal of Operational Research, 34(3):384–392.

Crainic, T. G., Hewitt, M., Maggioni, F., and Rei, W. (2020). Partial Benders Decomposition: General

Methodology and Application to Stochastic Network Design. Transportation Science, 55(2):414–435.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton university press edition.

Dantzig, G. B. and Glynn, P. W. (1990). Parallel processors for planning under uncertainty. Annals of

Operations Research, (22):1–21.

Dantzig, G. B. and Infanger, G. (1991). Large-Scale Stochastic Linear Programs: Importance Sampling and

Benders Decomposition:. Technical report, Defense Technical Information Center.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathe-

matical Programming, 91(2):201–213.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016). Redesigning Benders Decomposition for Large-Scale Facility

Location. Management Science, 63(7):2146–2162.

Fischetti, M. and Salvagnin, D. (2010). An In-Out Approach to Disjunctive Optimization. In Integration of

AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, volume 6140,

pages 136–140.

Higle, J. L. and Sen, S. (1991). Stochastic Decomposition : An Algorithm for Two-Stage Linear Programms

with Recourse. Mathematics of Operations Research, 16(3):650–669.

Infanger, G. (1992). Monte Carlo (importance) sampling within a benders decomposition algorithm for stochas-

tic linear programs. Annals of Operations Research, 39(1):69–95.

Linderoth, J., Shapiro, A., and Wright, S. (2006). The empirical behavior of sampling methods for stochastic

programming. Annals of Operations Research, 142(1):215–241.

Linderoth, J. and Wright, S. (2003). Decomposition Algorithms for Stochastic Programming on a Computa-

tional Grid. Computational Optimization and Applications, 24(2):207–250.

Louveaux, F. and Smeers, Y. (1988). Optimal Investments for Electricity Generation: A Stochastic Model and

a Test-Problem. In Numerical Techniques for Stochastic Optimization, Y. Ermoliev andR.J.-B. Wets (eds.),

pages 445– 454.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders Decomposition: Algorithmic Enhancement and

Model Selection Criteria. Operations Research, 29(3):464–484.

Mak, W.-K., Morton, D. P., and Wood, R. (1999). Monte Carlo bounding techniques for determining solution

quality in stochastic programs. Operations Research Letters, 24(1-2):47–56.

Mulvey, J. M. and Ruszczyński, A. (1995). A New Scenario Decomposition Method for Large-Scale Stochastic

Optimization. Operations Research, 43(3):477–490.

24

Oliveira, W., Sagastizábal, C., and Scheimberg, S. (2011). Inexact Bundle Methods for Two-Stage Stochastic

Programming. SIAM Journal on Optimization, 21(2):517–544.

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research Letters,

36(4):444–449.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2013). In-Out Separation and Column Generation

Stabilization by Dual Price Smoothing. In Experimental Algorithms, volume 7933, pages 354–365.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational

Mathematics and Mathematical Physics, 4(5):1–17.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The Benders decomposition algorithm: A

literature review. European Journal of Operational Research, 259(3):801–817.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral functions.

Mathematical Programming, 35(3):309–333.

Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical Programming,

79(1):333–353.

Sen, S., Doverspike, R. D., and Cosares, S. (1994). Network planning with random demand. Telecommunication

Systems, 3(1):11–30.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated Benders cuts. Annals of

Operations Research, 210(1):57–72.

Song, Y. and Luedtke, J. (2015). An Adaptive Partition-Based Approach for Solving Two-Stage Stochastic

Programs with Fixed Recourse. SIAM Journal on Optimization, 25(3):1344–1367.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and momentum

in deep learning. volume 28 of Proceedings of Machine Learning Research, pages 1139–1147.

Trukhanov, S., Ntaimo, L., and Schaefer, A. (2010). Adaptive multicut aggregation for two-stage stochastic

linear programs with recourse. European Journal of Operational Research, 206(2):395–406.

van Ackooij, W., de Oliveira, W., and Song, Y. (2017). Adaptive Partition-Based Level Decomposition Meth-

ods for Solving Two-Stage Stochastic Programs with Fixed Recourse. INFORMS Journal on Computing,

30(1):57–70.

Van Slyke, R. M. and Wets, R. (1969). L-Shaped Linear Programs with Applications to Optimal Control and

Stochastic Programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Wets, R. (1983). Stochastic Programming: Solution Techniques and Approximation Schemes. In Mathematical

Programming The State of the Art, pages 566–603.

Wolf, C., Fábián, C. I., Koberstein, A., and Suhl, L. (2014). Applying oracles of on-demand accuracy in

two-stage stochastic programming – A computational study. European Journal of Operational Research,

239(2):437–448.

You, F. and Grossmann, I. E. (2013). Multicut Benders decomposition algorithm for process supply chain

planning under uncertainty. Annals of Operations Research, 210(1):191–211.

Zaourar, S. and Malick, J. (2014). Quadratic stabilization of Benders decomposition. https://hal.archives-

ouvertes.fr/hal-01181273.

25

Appendix A: Proof of Lemma 1

Proof. Proof of lemma 1 From the definition of
`

xpkq
˘

kPN
,

#

x̄pk`1q ´ z “ βpx̄pkq ´ zq

xpk`1q ´ z “ αpxpkq ´ zq ` p1´ αqβpx̄pkq ´ zq

We define upkq “ xpk`1q ´ z and vpkq “ x̄pk`1q ´ z , for every k P N˚.

#

vpk`1q “ βvpkq

upk`1q “ αupkq ` p1´ αqβvpkq

We define

A “

«

β 0

p1´ αqβ α

ff

Then we have:
¨

˚

˚

˚

˚

˚

˚

˚

˝

v
pk`1q
1

u
pk`1q
1

...

v
pk`1q
n1

u
pk`1q
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

–

A

. . .

A

fi

ffi

ffi

fl

.

¨

˚

˚

˚

˚

˚

˚

˚

˝

v
pkq
1

u
pkq
1

...

v
pkq
n1

u
pkq
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

–

Ak

. . .

Ak

fi

ffi

ffi

fl

.

¨

˚

˚

˚

˚

˚

˚

˚

˝

v
p1q
1

u
p1q
1

...

v
p1q
n1

u
p1q
n1

˛

‹

‹

‹

‹

‹

‹

‹

‚

If α ‰ β, then the characteristic polynomial of A has two distinct roots, so A is diagonalizable and SppAq “

tα, βu. Since ´1 ă α ă 1 and ´1 ă β ă 1, the sequence pAkqkPN converges to the null matrix. If α “ β, then

Ak “

«

αk 0

kαkp1´ αq αk

ff

Since kαkp1´ αq converges to 0, @ 0 ď α ă 1, the sequence pAkqkPN converges to the null matrix. This proves

that the sequence pupkq, vpkqqkPN converges to p0, 0q. Then the sequence
`

xpkq
˘

kPN
converges to z.

Appendix B: Detailed numerical results

This section shows the detailed numerical results.

26

Cplex Benders Classic multicut Classic monocut In-out multicut In-Out monocut

instance Best time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 1 1.0 1 1.4 2 3.4 1 1.1 1 2.5
LandS-N1000-s1001 1 1 1.0 1 1.3 2 3.8 1 1.4 2 3.0
LandS-N1000-s1002 1 1 1.0 1 1.1 2 3.1 1 1.2 2 2.5
LandS-N5000-s5000 5 5 1.0 9 1.7 11 2.1 6 1.2 8 1.6
LandS-N5000-s5001 6 6 1.0 10 1.7 10 1.8 7 1.2 10 1.9
LandS-N5000-s5002 5 5 1.0 9 1.7 11 2.1 7 1.4 9 1.8

LandS-N10000-s10000 15 15 1.0 26 1.7 22 1.5 21 1.3 17 1.1
LandS-N10000-s10001 15 15 1.0 30 2.0 22 1.5 22 1.5 17 1.2
LandS-N10000-s10002 14 14 1.0 30 2.1 20 1.4 21 1.5 18 1.2
LandS-N20000-s20000 30 44 1.4 96 3.2 49 1.6 75 2.5 30 1.0
LandS-N20000-s20001 31 43 1.4 119 3.8 43 1.4 70 2.3 31 1.0
LandS-N20000-s20002 31 44 1.4 99 3.2 44 1.4 74 2.4 31 1.0

gbd-N1000-s1000 1 1 1.0 1 1.2 2 2.4 1 1.2 2 3.1
gbd-N1000-s1001 1 1 1.0 1 1.1 2 2.9 1 1.1 2 2.6
gbd-N1000-s1002 1 1 1.0 1 1.2 2 2.7 1 1.1 3 3.3
gbd-N5000-s5000 10 10 1.0 10 1.1 13 1.3 11 1.1 13 1.3
gbd-N5000-s5001 10 10 1.0 10 1.1 11 1.2 11 1.1 13 1.3
gbd-N5000-s5002 10 10 1.0 11 1.1 12 1.2 10 1.1 11 1.2

gbd-N10000-s10000 23 33 1.4 34 1.5 24 1.0 36 1.5 23 1.0
gbd-N10000-s10001 23 34 1.5 32 1.4 24 1.0 34 1.5 23 1.0
gbd-N10000-s10002 23 33 1.5 32 1.4 23 1.0 35 1.6 24 1.1
gbd-N20000-s20000 46 130 2.8 119 2.6 48 1.0 128 2.8 46 1.0
gbd-N20000-s20001 51 131 2.6 120 2.3 51 1.0 127 2.5 52 1.0
gbd-N20000-s20002 46 132 2.8 125 2.7 47 1.0 130 2.8 46 1.0

ssn-N1000-s1000 7 16 2.4 7 1.0 2279 339.8 7 1.0 134 19.9
ssn-N1000-s1001 7 16 2.3 7 1.0 2720 398.2 7 1.0 135 19.7
ssn-N1000-s1002 7 14 2.1 7 1.0 2226 334.0 7 1.0 124 18.6
ssn-N5000-s5000 57 82 1.5 62 1.1 13425 236.5 57 1.0 796 14.0
ssn-N5000-s5001 45 81 1.8 45 1.0 14260 317.7 54 1.2 769 17.1
ssn-N5000-s5002 63 85 1.4 64 1.0 12695 201.4 63 1.0 672 10.7

ssn-N10000-s10000 163 163 1.0 185 1.1 26559 162.7 206 1.3 1505 9.2
ssn-N10000-s10001 190 190 1.0 193 1.0 26228 137.9 191 1.0 1508 7.9
ssn-N10000-s10002 126 188 1.5 187 1.5 24916 197.7 126 1.0 1492 11.8
ssn-N20000-s20000 462 478 1.0 512 1.1 +inf ą93.4 462 1.0 2807 6.1
ssn-N20000-s20001 484 484 1.0 503 1.0 +inf ą89.3 678 1.4 2736 5.7
ssn-N20000-s20002 450 494 1.1 450 1.0 +inf ą96.0 452 1.0 2697 6.0

storm-N1000-s1000 10 28 2.7 10 1.0 23 2.2 11 1.0 18 1.8
storm-N1000-s1001 11 28 2.7 11 1.0 24 2.2 11 1.0 18 1.7
storm-N1000-s1002 11 28 2.6 11 1.1 24 2.3 11 1.0 18 1.7
storm-N5000-s5000 92 191 2.1 100 1.1 110 1.2 112 1.2 92 1.0
storm-N5000-s5001 85 183 2.2 118 1.4 117 1.4 114 1.3 85 1.0
storm-N5000-s5002 96 188 1.9 99 1.0 116 1.2 124 1.3 96 1.0

storm-N10000-s10000 188 525 2.8 468 2.5 215 1.1 455 2.4 188 1.0
storm-N10000-s10001 201 516 2.6 479 2.4 225 1.1 469 2.3 201 1.0
storm-N10000-s10002 181 482 2.7 542 3.0 233 1.3 441 2.4 181 1.0
storm-N20000-s20000 381 1381 3.6 2240 5.9 465 1.2 1730 4.5 381 1.0
storm-N20000-s20001 351 1524 4.3 2460 7.0 434 1.2 1780 5.1 351 1.0
storm-N20000-s20002 396 1283 3.2 2410 6.1 476 1.2 1750 4.4 396 1.0

20term-N1000-s1000 105 817 7.8 749 7.2 544 5.2 256 2.4 105 1.0
20term-N1000-s1001 98 559 5.7 646 6.6 584 6.0 302 3.1 98 1.0
20term-N1000-s1002 100 965 9.6 877 8.7 604 6.0 238 2.4 100 1.0
20term-N5000-s5000 538 +inf ą80.3 29455 54.8 3095 5.8 9621 17.9 538 1.0
20term-N5000-s5001 541 +inf ą79.8 22490 41.5 3699 6.8 9140 16.9 541 1.0
20term-N5000-s5002 590 +inf ą73.3 21342 36.2 3725 6.3 8960 15.2 590 1.0

20term-N10000-s10000 1087 +inf ą39.7 +inf ą39.7 6803 6.3 +inf ą39.7 1087 1.0
20term-N10000-s10001 1081 +inf ą40.0 +inf ą40.0 6404 5.9 +inf ą40.0 1081 1.0
20term-N10000-s10002 1179 +inf ą36.6 +inf ą36.6 7494 6.4 37982 32.2 1179 1.0
20term-N20000-s20000 2051 +inf ą21.1 +inf ą21.1 13429 6.5 +inf ą21.1 2051 1.0
20term-N20000-s20001 2174 +inf ą19.9 +inf ą19.9 12763 5.9 +inf ą19.9 2174 1.0
20term-N20000-s20002 2254 +inf ą19.2 +inf ą19.2 14868 6.6 +inf ą19.2 2254 1.0

Fleet20-N1000-s1000 48 147 3.0 224 4.6 513 10.6 48 1.0 100 2.1
Fleet20-N1000-s1001 84 141 1.7 228 2.7 539 6.4 84 1.0 107 1.3
Fleet20-N1000-s1002 77 155 2.0 224 2.9 546 7.1 77 1.0 109 1.4
Fleet20-N5000-s5000 476 14769 31.0 5530 11.6 2780 5.8 2150 4.5 476 1.0
Fleet20-N5000-s5001 496 21496 43.3 5090 10.3 2760 5.6 1360 2.7 496 1.0
Fleet20-N5000-s5002 531 10894 20.5 5370 10.1 2730 5.1 2020 3.8 531 1.0

Fleet20-N10000-s10000 1060 +inf ą40.8 29600 27.9 5860 5.5 7540 7.1 1060 1.0
Fleet20-N10000-s10001 1010 +inf ą42.8 28200 27.9 5480 5.4 7580 7.5 1010 1.0
Fleet20-N10000-s10002 1140 +inf ą37.9 29000 25.4 5790 5.1 8300 7.3 1140 1.0
Fleet20-N20000-s20000 2350 +inf ą18.4 +inf ą18.4 11400 4.9 +inf ą18.4 2350 1.0
Fleet20-N20000-s20001 2250 +inf ą19.2 +inf ą19.2 11500 5.1 +inf ą19.2 2250 1.0
Fleet20-N20000-s20002 2180 +inf ą19.8 +inf ą19.8 11000 5.0 +inf ą19.8 2180 1.0

Table 6: Classical Benders decomposition algorithms

27

BbB 1% Ag BbB 1% α “ 0.1 BbB 1% α “ 0.5 BbB 1% α “ 0.9

instance Best time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 1.8 2 1.7 1 1.0 1 1.3
LandS-N1000-s1001 1 2 1.5 1 1.4 1 1.0 1 1.1
LandS-N1000-s1002 1 2 1.8 1 1.0 1 1.1 1 1.3
LandS-N5000-s5000 4 10 2.3 7 1.7 4 1.0 8 1.8
LandS-N5000-s5001 5 9 2.0 5 1.0 6 1.2 7 1.5
LandS-N5000-s5002 4 9 1.9 7 1.6 5 1.1 4 1.0

LandS-N10000-s10000 10 17 1.7 14 1.4 10 1.0 19 1.8
LandS-N10000-s10001 9 14 1.5 9 1.0 11 1.2 10 1.1
LandS-N10000-s10002 9 17 2.0 9 1.0 12 1.4 10 1.1
LandS-N20000-s20000 24 45 1.9 30 1.2 25 1.0 24 1.0
LandS-N20000-s20001 18 42 2.4 18 1.0 20 1.1 21 1.2
LandS-N20000-s20002 20 45 2.3 30 1.5 21 1.1 20 1.0

gbd-N1000-s1000 1 2 1.6 2 1.6 1 1.0 1 1.2
gbd-N1000-s1001 1 2 2.0 1 1.9 1 1.0 1 1.2
gbd-N1000-s1002 1 2 2.1 2 1.8 1 1.0 1 1.3
gbd-N5000-s5000 5 10 2.2 8 1.6 5 1.0 5 1.1
gbd-N5000-s5001 4 8 2.2 7 1.9 4 1.2 4 1.0
gbd-N5000-s5002 5 9 2.0 7 1.6 5 1.0 7 1.6

gbd-N10000-s10000 8 18 2.2 14 1.8 8 1.0 12 1.5
gbd-N10000-s10001 9 13 1.4 15 1.7 11 1.2 9 1.0
gbd-N10000-s10002 8 14 1.9 16 2.1 8 1.0 8 1.1
gbd-N20000-s20000 16 50 3.2 16 1.0 16 1.0 20 1.3
gbd-N20000-s20001 14 31 2.2 27 1.9 14 1.0 24 1.7
gbd-N20000-s20002 16 43 2.7 30 1.9 21 1.3 16 1.0

ssn-N1000-s1000 8 14 1.6 9 1.0 8 1.0 11 1.3
ssn-N1000-s1001 8 15 1.8 9 1.0 8 1.0 12 1.4
ssn-N1000-s1002 8 13 1.6 9 1.1 8 1.0 11 1.4
ssn-N5000-s5000 51 88 1.7 51 1.0 51 1.0 76 1.5
ssn-N5000-s5001 50 90 1.8 51 1.0 50 1.0 72 1.4
ssn-N5000-s5002 51 90 1.8 52 1.0 51 1.0 74 1.5

ssn-N10000-s10000 92 175 1.9 106 1.2 92 1.0 135 1.5
ssn-N10000-s10001 96 187 1.9 105 1.1 96 1.0 141 1.5
ssn-N10000-s10002 94 193 2.0 100 1.1 94 1.0 133 1.4
ssn-N20000-s20000 187 457 2.4 212 1.1 187 1.0 297 1.6
ssn-N20000-s20001 202 458 2.3 221 1.1 202 1.0 280 1.4
ssn-N20000-s20002 197 407 2.1 213 1.1 197 1.0 316 1.6

storm-N1000-s1000 6 12 1.9 6 1.0 6 1.0 7 1.1
storm-N1000-s1001 7 12 1.8 7 1.0 7 1.1 8 1.2
storm-N1000-s1002 7 13 1.8 9 1.3 7 1.0 8 1.1
storm-N5000-s5000 32 44 1.3 33 1.0 32 1.0 44 1.4
storm-N5000-s5001 30 54 1.8 50 1.6 30 1.0 40 1.3
storm-N5000-s5002 34 58 1.7 34 1.0 35 1.1 36 1.1

storm-N10000-s10000 64 121 1.9 65 1.0 64 1.0 86 1.3
storm-N10000-s10001 66 90 1.4 66 1.0 72 1.1 69 1.0
storm-N10000-s10002 66 118 1.8 66 1.0 68 1.0 90 1.4
storm-N20000-s20000 128 216 1.7 139 1.1 128 1.0 172 1.3
storm-N20000-s20001 132 245 1.9 138 1.0 132 1.0 143 1.1
storm-N20000-s20002 128 218 1.7 133 1.0 128 1.0 150 1.2

20term-N1000-s1000 11 15 1.3 12 1.1 11 1.0 13 1.2
20term-N1000-s1001 11 15 1.3 11 1.0 11 1.0 13 1.2
20term-N1000-s1002 9 15 1.6 12 1.2 9 1.0 12 1.3
20term-N5000-s5000 53 67 1.3 72 1.4 53 1.0 61 1.1
20term-N5000-s5001 54 78 1.5 60 1.1 54 1.0 61 1.1
20term-N5000-s5002 49 64 1.3 49 1.0 53 1.1 60 1.2

20term-N10000-s10000 95 129 1.4 96 1.0 95 1.0 114 1.2
20term-N10000-s10001 112 122 1.1 165 1.5 112 1.0 127 1.1
20term-N10000-s10002 106 137 1.3 140 1.3 106 1.0 128 1.2
20term-N20000-s20000 227 261 1.1 227 1.0 243 1.1 239 1.1
20term-N20000-s20001 189 296 1.6 189 1.0 220 1.2 253 1.3
20term-N20000-s20002 230 283 1.2 265 1.2 230 1.0 239 1.0

Fleet20-N1000-s1000 17 28 1.7 21 1.2 17 1.0 20 1.2
Fleet20-N1000-s1001 17 27 1.6 18 1.1 17 1.0 20 1.2
Fleet20-N1000-s1002 18 30 1.6 20 1.1 18 1.0 21 1.1
Fleet20-N5000-s5000 78 108 1.4 87 1.1 78 1.0 88 1.1
Fleet20-N5000-s5001 74 104 1.4 98 1.3 74 1.0 85 1.1
Fleet20-N5000-s5002 75 110 1.5 86 1.1 75 1.0 85 1.1

Fleet20-N10000-s10000 151 214 1.4 177 1.2 151 1.0 164 1.1
Fleet20-N10000-s10001 154 209 1.4 175 1.1 154 1.0 171 1.1
Fleet20-N10000-s10002 150 213 1.4 178 1.2 150 1.0 164 1.1
Fleet20-N20000-s20000 312 402 1.3 409 1.3 312 1.0 336 1.1
Fleet20-N20000-s20001 301 429 1.4 396 1.3 301 1.0 337 1.1
Fleet20-N20000-s20002 321 425 1.3 431 1.3 321 1.0 367 1.1

Table 7: basic stabilization with batch size of 1%
28

BbB 1% Ag BbB 5% Ag BbB 5% α “ 0.1 BbB 5% α “ 0.5 BbB 5% α “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 2.1 1 1.1 1 1.0 1 1.1 1 1.0
LandS-N1000-s1001 1 2 2.1 1 1.0 1 1.2 1 1.2 1 1.1
LandS-N1000-s1002 1 2 2.0 1 1.2 1 1.0 1 1.0 1 1.0
LandS-N5000-s5000 4 10 2.5 5 1.1 8 2.1 4 1.1 4 1.0
LandS-N5000-s5001 4 9 2.2 5 1.2 5 1.2 4 1.0 4 1.0
LandS-N5000-s5002 4 9 2.2 4 1.0 9 2.3 4 1.1 4 1.1

LandS-N10000-s10000 8 17 2.2 8 1.1 10 1.3 8 1.0 8 1.1
LandS-N10000-s10001 8 14 1.9 8 1.1 18 2.4 9 1.2 8 1.0
LandS-N10000-s10002 8 17 2.2 8 1.1 18 2.4 9 1.2 8 1.0
LandS-N20000-s20000 17 45 2.7 17 1.0 38 2.3 20 1.2 19 1.1
LandS-N20000-s20001 18 42 2.4 18 1.0 38 2.1 19 1.0 18 1.0
LandS-N20000-s20002 17 45 2.7 18 1.0 38 2.2 18 1.1 17 1.0

gbd-N1000-s1000 1 2 2.9 1 1.0 2 3.1 1 1.8 1 1.6
gbd-N1000-s1001 1 2 2.4 1 1.0 2 2.8 1 1.2 1 1.0
gbd-N1000-s1002 1 2 3.0 1 1.0 2 2.7 1 1.3 1 1.0
gbd-N5000-s5000 3 10 3.0 3 1.0 9 2.7 4 1.1 4 1.1
gbd-N5000-s5001 3 8 2.5 3 1.0 9 2.8 4 1.2 3 1.1
gbd-N5000-s5002 3 9 2.6 3 1.0 5 1.3 4 1.1 4 1.0

gbd-N10000-s10000 6 18 2.7 7 1.1 18 2.8 9 1.3 6 1.0
gbd-N10000-s10001 6 13 2.1 6 1.0 17 2.9 8 1.4 7 1.1
gbd-N10000-s10002 6 14 2.4 6 1.0 19 3.1 6 1.0 6 1.0
gbd-N20000-s20000 12 50 4.0 12 1.0 19 1.5 15 1.2 14 1.1
gbd-N20000-s20001 15 31 2.1 15 1.0 36 2.4 17 1.1 17 1.1
gbd-N20000-s20002 14 43 3.2 14 1.0 37 2.7 18 1.3 16 1.2

ssn-N1000-s1000 14 14 1.0 63 4.6 15 1.1 18 1.3 36 2.6
ssn-N1000-s1001 15 15 1.0 63 4.3 15 1.0 20 1.3 42 2.9
ssn-N1000-s1002 13 13 1.0 59 4.6 15 1.2 20 1.5 41 3.2
ssn-N5000-s5000 84 88 1.0 337 4.0 84 1.0 106 1.3 221 2.6
ssn-N5000-s5001 82 90 1.1 322 4.0 82 1.0 114 1.4 225 2.8
ssn-N5000-s5002 90 90 1.0 308 3.4 94 1.0 112 1.2 224 2.5

ssn-N10000-s10000 175 175 1.0 672 3.8 181 1.0 240 1.4 481 2.7
ssn-N10000-s10001 181 187 1.0 760 4.2 181 1.0 246 1.4 493 2.7
ssn-N10000-s10002 179 193 1.1 690 3.9 179 1.0 226 1.3 491 2.7
ssn-N20000-s20000 397 457 1.2 1651 4.2 397 1.0 528 1.3 1069 2.7
ssn-N20000-s20001 418 458 1.1 1651 3.9 418 1.0 559 1.3 1076 2.6
ssn-N20000-s20002 388 407 1.0 1543 4.0 388 1.0 561 1.4 1051 2.7

storm-N1000-s1000 6 12 1.9 6 1.0 7 1.2 6 1.0 6 1.0
storm-N1000-s1001 6 12 2.0 6 1.1 8 1.3 6 1.0 6 1.0
storm-N1000-s1002 6 13 2.2 6 1.1 10 1.7 6 1.0 6 1.0
storm-N5000-s5000 29 44 1.5 33 1.2 38 1.3 32 1.1 29 1.0
storm-N5000-s5001 27 54 2.0 33 1.2 36 1.3 36 1.3 27 1.0
storm-N5000-s5002 30 58 2.0 37 1.3 37 1.3 30 1.0 30 1.0

storm-N10000-s10000 62 121 2.0 73 1.2 78 1.3 66 1.1 62 1.0
storm-N10000-s10001 62 90 1.5 76 1.2 77 1.2 63 1.0 62 1.0
storm-N10000-s10002 62 118 1.9 73 1.2 112 1.8 62 1.0 62 1.0
storm-N20000-s20000 126 216 1.7 167 1.3 180 1.4 126 1.0 126 1.0
storm-N20000-s20001 125 245 2.0 161 1.3 152 1.2 127 1.0 125 1.0
storm-N20000-s20002 125 218 1.7 160 1.3 171 1.4 133 1.1 125 1.0

20term-N1000-s1000 15 15 1.0 36 2.5 15 1.0 21 1.4 28 1.9
20term-N1000-s1001 14 15 1.0 37 2.7 14 1.0 19 1.3 29 2.1
20term-N1000-s1002 14 15 1.0 37 2.6 14 1.0 21 1.5 32 2.3
20term-N5000-s5000 67 67 1.0 199 3.0 92 1.4 104 1.6 148 2.2
20term-N5000-s5001 78 78 1.0 197 2.5 81 1.0 99 1.3 154 2.0
20term-N5000-s5002 64 64 1.0 182 2.8 83 1.3 93 1.4 141 2.2

20term-N10000-s10000 129 129 1.0 411 3.2 148 1.1 238 1.8 305 2.4
20term-N10000-s10001 122 122 1.0 409 3.3 165 1.3 218 1.8 345 2.8
20term-N10000-s10002 137 137 1.0 388 2.8 176 1.3 204 1.5 353 2.6
20term-N20000-s20000 261 261 1.0 860 3.3 398 1.5 483 1.9 768 2.9
20term-N20000-s20001 296 296 1.0 985 3.3 302 1.0 517 1.8 780 2.6
20term-N20000-s20002 283 283 1.0 897 3.2 323 1.1 509 1.8 806 2.8

Fleet20-N1000-s1000 24 28 1.2 42 1.7 24 1.0 24 1.0 32 1.3
Fleet20-N1000-s1001 24 27 1.1 40 1.7 24 1.0 24 1.0 32 1.4
Fleet20-N1000-s1002 21 30 1.4 43 2.0 21 1.0 26 1.2 34 1.6
Fleet20-N5000-s5000 108 108 1.0 218 2.0 114 1.1 125 1.2 160 1.5
Fleet20-N5000-s5001 104 104 1.0 209 2.0 119 1.1 123 1.2 162 1.6
Fleet20-N5000-s5002 110 110 1.0 205 1.9 124 1.1 122 1.1 161 1.5

Fleet20-N10000-s10000 214 214 1.0 426 2.0 253 1.2 249 1.2 333 1.6
Fleet20-N10000-s10001 209 209 1.0 467 2.2 247 1.2 261 1.2 342 1.6
Fleet20-N10000-s10002 213 213 1.0 426 2.0 246 1.2 250 1.2 326 1.5
Fleet20-N20000-s20000 402 402 1.0 886 2.2 557 1.4 545 1.4 677 1.7
Fleet20-N20000-s20001 429 429 1.0 856 2.0 493 1.1 513 1.2 700 1.6
Fleet20-N20000-s20002 425 425 1.0 885 2.1 516 1.2 517 1.2 684 1.6

Table 8: basic stabilization with batch size of 5%
29

BbB 1% Ag BbB 1% α “ 0.1 BbB 1% α “ 0.1 BbB 1P α “ 0.1 BbB 1P α “ 0.5 BbB 1P α “ 0.5 BbB 1P α “ 0.5 BbB 1% α “ 0.9 BbB 1% α “ 0.9 BbB 1% α “ 0.9
β “ 0.1 β “ 0.5 β “ 0.9 β “ 0.1 β “ 0.5 β “ 0.9 β “ 0.1 β “ 0.5 β “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 2 2.0 1 1.8 2 1.8 1 1.0 1 1.2 1 1.1 1 1.8 1 1.4 1 1.1 1 1.7
LandS-N1000-s1001 1 2 1.7 2 1.7 2 1.6 2 1.8 1 1.1 1 1.0 2 1.6 1 1.2 1 1.1 2 1.7
LandS-N1000-s1002 1 2 2.1 1 1.0 1 1.0 1 1.1 1 1.0 1 1.1 1 1.1 1 1.5 1 1.1 1 1.1
LandS-N5000-s5000 4 10 2.3 7 1.7 7 1.7 4 1.0 5 1.1 5 1.1 7 1.7 6 1.3 5 1.1 7 1.6
LandS-N5000-s5001 4 9 2.3 4 1.1 4 1.0 5 1.2 5 1.2 5 1.2 4 1.0 6 1.5 5 1.3 4 1.1
LandS-N5000-s5002 4 9 1.9 7 1.7 7 1.6 8 1.7 6 1.2 4 1.0 7 1.7 4 1.0 5 1.2 7 1.7

LandS-N10000-s10000 9 17 1.9 9 1.0 15 1.7 15 1.8 10 1.1 10 1.1 15 1.7 10 1.1 10 1.1 9 1.0
LandS-N10000-s10001 10 14 1.4 15 1.5 16 1.5 16 1.5 11 1.0 16 1.5 15 1.5 10 1.0 11 1.0 16 1.5
LandS-N10000-s10002 9 17 2.0 9 1.0 9 1.1 15 1.7 11 1.3 9 1.1 9 1.1 10 1.2 11 1.3 9 1.0
LandS-N20000-s20000 19 45 2.4 31 1.6 32 1.7 19 1.0 21 1.1 21 1.1 31 1.6 25 1.3 21 1.1 31 1.6
LandS-N20000-s20001 17 42 2.4 31 1.8 33 1.9 17 1.0 20 1.2 23 1.3 32 1.9 24 1.4 20 1.2 31 1.8
LandS-N20000-s20002 17 45 2.7 30 1.8 30 1.8 30 1.8 21 1.2 17 1.0 31 1.8 18 1.1 22 1.3 31 1.8

gbd-N1000-s1000 1 2 1.8 2 1.8 2 1.8 2 2.3 1 1.1 1 1.1 2 1.8 1 1.6 1 1.0 2 1.8
gbd-N1000-s1001 1 2 2.0 2 2.0 2 2.0 2 2.3 1 1.1 1 1.1 2 1.9 1 1.3 1 1.0 2 2.2
gbd-N1000-s1002 1 2 2.3 1 1.9 2 2.0 2 2.4 1 1.0 1 1.0 2 2.0 1 1.3 1 1.0 1 1.9
gbd-N5000-s5000 4 10 2.3 7 1.6 8 1.8 9 2.0 4 1.0 5 1.2 8 1.8 6 1.5 4 1.0 7 1.7
gbd-N5000-s5001 4 8 2.3 7 2.1 8 2.1 8 2.3 5 1.3 4 1.1 8 2.1 4 1.0 5 1.4 7 2.1
gbd-N5000-s5002 4 9 2.6 8 2.4 8 2.4 8 2.3 6 1.6 5 1.5 8 2.3 4 1.0 6 1.6 8 2.4

gbd-N10000-s10000 8 18 2.1 15 1.8 15 1.8 16 2.0 10 1.2 9 1.0 15 1.8 8 1.0 10 1.2 15 1.8
gbd-N10000-s10001 8 13 1.6 13 1.7 14 1.8 17 2.1 11 1.3 8 1.0 14 1.8 10 1.3 10 1.3 14 1.7
gbd-N10000-s10002 7 14 2.0 14 2.0 14 2.0 19 2.7 8 1.2 7 1.1 15 2.1 7 1.0 8 1.2 14 2.0
gbd-N20000-s20000 14 50 3.5 32 2.2 30 2.1 17 1.2 15 1.1 16 1.1 30 2.1 14 1.0 15 1.1 32 2.2
gbd-N20000-s20001 17 31 1.8 28 1.7 29 1.7 30 1.8 18 1.1 19 1.1 30 1.8 17 1.0 18 1.1 29 1.7
gbd-N20000-s20002 16 43 2.6 30 1.8 29 1.8 32 2.0 20 1.2 18 1.1 30 1.8 16 1.0 20 1.2 30 1.8

ssn-N1000-s1000 8 14 1.7 9 1.1 10 1.2 11 1.3 9 1.1 9 1.1 11 1.3 10 1.2 8 1.0 9 1.1
ssn-N1000-s1001 8 15 1.9 12 1.6 9 1.2 11 1.4 9 1.2 8 1.1 10 1.3 12 1.6 8 1.0 10 1.3
ssn-N1000-s1002 8 13 1.6 9 1.1 9 1.1 11 1.4 8 1.0 8 1.0 10 1.2 11 1.3 8 1.0 9 1.1
ssn-N5000-s5000 45 88 2.0 54 1.2 52 1.2 56 1.3 47 1.0 45 1.0 54 1.2 64 1.4 46 1.0 54 1.2
ssn-N5000-s5001 46 90 2.0 49 1.1 52 1.1 60 1.3 47 1.0 46 1.0 53 1.2 62 1.3 46 1.0 49 1.1
ssn-N5000-s5002 46 90 2.0 50 1.1 52 1.1 58 1.3 52 1.1 46 1.0 52 1.1 61 1.3 48 1.1 52 1.1

ssn-N10000-s10000 92 175 1.9 101 1.1 108 1.2 120 1.3 92 1.0 95 1.0 113 1.2 115 1.3 92 1.0 106 1.1
ssn-N10000-s10001 93 187 2.0 112 1.2 111 1.2 128 1.4 93 1.0 105 1.1 106 1.1 119 1.3 93 1.0 106 1.2
ssn-N10000-s10002 86 193 2.2 108 1.3 107 1.2 123 1.4 93 1.1 86 1.0 112 1.3 115 1.3 88 1.0 101 1.2
ssn-N20000-s20000 183 457 2.5 242 1.3 235 1.3 270 1.5 203 1.1 183 1.0 232 1.3 244 1.3 198 1.1 213 1.2
ssn-N20000-s20001 182 458 2.5 232 1.3 228 1.3 265 1.5 182 1.0 186 1.0 230 1.3 259 1.4 186 1.0 221 1.2
ssn-N20000-s20002 190 407 2.1 215 1.1 228 1.2 255 1.3 190 1.0 200 1.1 235 1.2 251 1. 3 193 1.0 226 1.2

storm-N1000-s1000 6 12 1.9 10 1.5 10 1.6 7 1.1 8 1.3 6 1.0 10 1.6 7 1.1 7 1.0 10 1.6
storm-N1000-s1001 6 12 2.0 7 1.1 10 1.6 7 1.2 6 1.0 7 1.2 9 1.6 7 1.2 8 1.3 7 1.1
storm-N1000-s1002 6 13 2.0 10 1.5 10 1.5 7 1.0 7 1.1 8 1.2 10 1.5 7 1.1 6 1.0 10 1.5
storm-N5000-s5000 31 44 1.4 32 1.0 33 1.1 36 1.2 31 1.0 37 1.2 33 1.1 35 1.1 31 1.0 31 1.0
storm-N5000-s5001 32 54 1.7 47 1.5 34 1.1 35 1.1 42 1.3 32 1.0 33 1.0 33 1.0 32 1.0 48 1.5
storm-N5000-s5002 32 58 1.8 34 1.1 32 1.0 33 1.1 32 1.0 33 1.0 32 1.0 37 1.2 32 1.0 34 1.1

storm-N10000-s10000 59 121 2.0 67 1.1 67 1.1 109 1.8 64 1.1 68 1.1 68 1.1 62 1.0 59 1.0 67 1.1
storm-N10000-s10001 65 90 1.4 68 1.1 66 1.0 108 1.7 67 1.0 66 1.0 67 1.0 71 1.1 65 1.0 68 1.0
storm-N10000-s10002 62 118 1.9 67 1.1 101 1.6 70 1.1 69 1.1 64 1.0 100 1.6 62 1.0 66 1.1 67 1.1
storm-N20000-s20000 127 216 1.7 139 1.1 138 1.1 144 1.1 130 1.0 127 1.0 136 1.1 152 1.2 131 1.0 139 1.1
storm-N20000-s20001 123 245 2.0 140 1.1 129 1.0 146 1.2 130 1.1 123 1.0 128 1.0 137 1.1 126 1.0 141 1.1
storm-N20000-s20002 130 218 1.7 130 1.0 135 1.0 143 1.1 141 1.1 135 1.0 133 1.0 192 1.5 152 1.2 131 1.0

20term-N1000-s1000 9 15 1.7 14 1.6 12 1.4 16 1.8 9 1.0 10 1.2 10 1.1 12 1.4 11 1.3 15 1.7
20term-N1000-s1001 10 15 1.5 15 1.6 17 1.7 18 1.9 11 1.2 11 1.2 16 1.7 12 1.3 10 1.0 10 1.0
20term-N1000-s1002 9 15 1.6 18 2.0 12 1.4 22 2.4 11 1.2 11 1.2 14 1.5 12 1.3 9 1.0 16 1.8
20term-N5000-s5000 51 67 1.3 60 1.2 67 1.3 84 1.6 51 1.0 57 1.1 51 1.0 58 1.1 66 1.3 61 1.2
20term-N5000-s5001 46 78 1.7 67 1.5 67 1.5 84 1.8 51 1.1 46 1.0 74 1.6 58 1.3 48 1.1 74 1.6
20term-N5000-s5002 45 64 1.4 70 1.5 69 1.5 117 2.6 56 1.2 45 1.0 65 1.4 55 1.2 53 1.2 68 1.5

20term-N10000-s10000 101 129 1.3 118 1.2 147 1.5 188 1.9 101 1.0 101 1.0 135 1.3 101 1.0 102 1.0 113 1.1
20term-N10000-s10001 91 122 1.3 135 1.5 139 1.5 152 1.7 115 1.3 91 1.0 151 1.7 115 1.3 110 1.2 179 2.0
20term-N10000-s10002 85 137 1.6 126 1.5 126 1.5 169 2.0 87 1.0 85 1.0 102 1.2 136 1.6 101 1.2 176 2.1
20term-N20000-s20000 193 261 1.3 193 1.0 330 1.7 367 1.9 226 1.2 244 1.3 361 1.9 251 1.3 222 1.2 276 1.4
20term-N20000-s20001 224 296 1.3 289 1.3 337 1.5 326 1.5 241 1.1 243 1.1 272 1.2 236 1.1 224 1.0 267 1.2
20term-N20000-s20002 178 283 1.6 237 1.3 178 1.0 361 2.0 233 1.3 212 1.2 288 1.6 254 1.4 230 1.3 337 1.9

Fleet20-N1000-s1000 17 28 1.6 18 1.1 21 1.3 24 1.4 17 1.0 18 1.1 22 1.3 19 1.1 17 1.0 19 1.1
Fleet20-N1000-s1001 17 27 1.6 18 1.1 20 1.1 24 1.4 17 1.0 18 1.0 22 1.3 19 1.1 18 1.0 18 1.1
Fleet20-N1000-s1002 18 30 1.7 21 1.2 21 1.2 27 1.5 19 1.1 18 1.0 22 1.2 20 1.2 18 1.0 18 1.1
Fleet20-N5000-s5000 76 108 1.4 89 1.2 96 1.3 125 1.6 78 1.0 84 1.1 95 1.2 83 1.1 76 1.0 89 1.2
Fleet20-N5000-s5001 76 104 1.4 90 1.2 94 1.2 135 1.8 76 1.0 81 1.1 105 1.4 80 1.1 78 1.0 103 1.4
Fleet20-N5000-s5002 74 110 1.5 93 1.3 101 1.4 137 1.8 74 1.0 79 1.1 107 1.4 82 1.1 77 1.0 101 1.4

Fleet20-N10000-s10000 152 214 1.4 184 1.2 197 1.3 270 1.8 155 1.0 159 1.0 191 1.3 163 1.1 152 1.0 174 1.1
Fleet20-N10000-s10001 155 209 1.3 183 1.2 193 1.2 240 1.5 155 1.0 164 1.1 193 1.2 180 1.2 156 1.0 175 1.1
Fleet20-N10000-s10002 142 213 1.5 206 1.5 220 1.5 275 1.9 154 1.1 163 1.1 213 1.5 163 1.1 142 1.0 181 1.3
Fleet20-N20000-s20000 307 402 1.3 426 1.4 482 1.6 557 1.8 307 1.0 327 1.1 434 1.4 340 1.1 315 1.0 401 1.3
Fleet20-N20000-s20001 301 429 1.4 364 1.2 416 1.4 534 1.8 322 1.1 332 1.1 460 1.5 340 1.1 301 1.0 422 1.4
Fleet20-N20000-s20002 305 425 1.4 385 1.3 462 1.5 564 1.8 311 1.0 333 1.1 460 1.5 337 1.1 305 1.0 389 1.3

Table 9: Solution memory stabilization with batch size of 1%

30

BbB 5% Ag BbB 5% α “ 0.1 BbB 5% α “ 0.1 BbB 5P α “ 0.1 BbB 5P α “ 0.5 BbB 5P α “ 0.5 BbB 5P α “ 0.5 BbB 5% α “ 0.9 BbB 5% α “ 0.9 BbB 5% α “ 0.9
β “ 0.1 β “ 0.5 β “ 0.9 β “ 0.1 β “ 0.5 β “ 0.9 β “ 0.1 β “ 0.5 β “ 0.9

instance Best time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio time ratio

LandS-N1000-s1000 1 1 1.2 1 1.3 1 1.1 2 2.8 1 1.2 1 1.0 1 1.1 1 1.0 1 1.2 1 1.1
LandS-N1000-s1001 1 1 1.0 2 2.4 1 1.3 2 2.6 1 1.1 1 1.2 1 1.2 1 1.2 1 1.1 2 2.3
LandS-N1000-s1002 1 1 1.4 1 1.4 1 1.3 1 1.7 1 1.1 1 1.0 1 1.3 1 1.1 1 1.0 1 1.3
LandS-N5000-s5000 4 5 1.1 8 2.1 9 2.1 10 2.5 5 1.1 4 1.0 9 2.2 4 1.0 4 1.1 8 2.0
LandS-N5000-s5001 4 5 1.4 5 1.4 5 1.4 7 1.9 4 1.0 4 1.1 5 1.3 4 1.2 4 1.0 5 1.4
LandS-N5000-s5002 4 4 1.0 9 2.3 9 2.2 10 2.7 4 1.1 5 1.2 9 2.2 4 1.0 4 1.1 9 2.3

LandS-N10000-s10000 8 8 1.0 10 1.2 10 1.3 14 1.7 9 1.1 8 1.0 11 1.3 8 1.0 9 1.1 10 1.2
LandS-N10000-s10001 8 8 1.0 18 2.2 18 2.3 15 1.8 9 1.1 10 1.2 18 2.2 9 1.1 8 1.0 18 2.2
LandS-N10000-s10002 8 8 1.0 18 2.2 18 2.3 22 2.7 8 1.0 8 1.0 18 2.3 8 1.0 8 1.0 18 2.2
LandS-N20000-s20000 17 17 1.0 38 2.3 38 2.3 44 2.7 20 1.2 19 1.2 38 2.3 19 1.2 20 1.2 38 2.3
LandS-N20000-s20001 17 18 1.1 36 2.1 20 1.2 42 2.5 19 1.1 17 1.0 20 1.2 18 1.1 19 1.1 35 2.1
LandS-N20000-s20002 18 18 1.0 37 2.1 38 2.1 48 2.7 20 1.1 20 1.1 38 2.1 19 1.1 20 1.1 37 2.1

gbd-N1000-s1000 1 1 1.0 2 3.5 2 3.9 2 4.6 1 1.5 1 1.6 2 3.8 1 1.6 1 1.5 2 3.6
gbd-N1000-s1001 1 1 1.0 2 2.6 2 3.4 2 3.6 1 1.3 1 1.3 2 3.3 1 1.1 1 1.2 2 2.8
gbd-N1000-s1002 1 1 1.0 2 2.8 2 3.0 2 3.7 1 1.5 1 1.5 2 2.9 1 1.1 1 1.5 2 2.8
gbd-N5000-s5000 3 3 1.0 9 2.8 10 2.9 12 3.7 4 1.1 4 1.3 10 2.9 4 1.1 3 1.0 9 2.7
gbd-N5000-s5001 3 3 1.1 9 3.2 13 4.5 7 2.5 5 1.5 3 1.1 13 4.6 3 1.0 5 1.5 9 3.2
gbd-N5000-s5002 3 3 1.1 8 2.5 11 3.2 12 3.7 4 1.3 4 1.3 10 3.2 3 1.0 4 1.2 8 2.5

gbd-N10000-s10000 7 7 1.0 18 2.7 18 2.7 25 3.6 8 1.2 9 1.3 18 2.7 7 1.0 9 1.3 18 2.7
gbd-N10000-s10001 6 6 1.0 17 2.9 19 3.2 24 4.1 7 1.3 9 1.5 19 3.2 7 1.2 7 1.3 17 3.0
gbd-N10000-s10002 6 6 1.0 18 2.9 19 3.2 24 4.0 7 1.2 8 1.3 20 3.3 7 1.2 7 1.2 18 3.0
gbd-N20000-s20000 12 12 1.0 19 1.5 37 3.0 49 3.9 16 1.3 14 1.1 37 3.0 14 1.2 16 1.3 19 1.5
gbd-N20000-s20001 15 15 1.0 37 2.5 46 3.1 49 3.3 17 1.2 20 1.3 45 3.0 15 1.0 17 1.2 37 2.5
gbd-N20000-s20002 14 14 1.0 37 2.7 38 2.8 50 3.7 17 1.2 19 1.4 39 2.8 15 1.1 17 1.2 37 2.7

ssn-N1000-s1000 15 63 4.1 15 1.0 16 1.0 22 1.4 18 1.2 17 1.1 16 1.1 32 2.1 19 1.2 15 1.0
ssn-N1000-s1001 15 63 4.2 16 1.0 16 1.1 22 1.5 18 1.2 16 1.1 17 1.1 35 2.3 19 1.2 15 1.0
ssn-N1000-s1002 15 59 3.9 17 1.1 17 1.1 22 1.5 18 1.2 17 1.2 17 1.1 31 2.1 18 1.2 15 1.0
ssn-N5000-s5000 89 337 3.8 89 1.0 94 1.1 127 1.4 111 1.2 96 1.1 99 1.1 172 1.9 112 1.3 93 1.0
ssn-N5000-s5001 85 322 3.8 85 1.0 100 1.2 126 1.5 108 1.3 100 1.2 101 1.2 182 2.1 112 1.3 85 1.0
ssn-N5000-s5002 90 308 3.4 95 1.1 99 1.1 141 1.6 113 1.3 100 1.1 99 1.1 172 1.9 116 1.3 90 1.0

ssn-N10000-s10000 185 672 3.6 185 1.0 204 1.1 277 1.5 232 1.3 213 1.2 212 1.1 389 2.1 222 1.2 194 1.1
ssn-N10000-s10001 187 760 4.1 209 1.1 231 1.2 301 1.6 235 1.3 217 1.2 211 1.1 439 2.3 244 1.3 187 1.0
ssn-N10000-s10002 184 690 3.7 186 1.0 193 1.0 289 1.6 222 1.2 195 1.1 218 1.2 406 2.2 228 1.2 184 1.0
ssn-N20000-s20000 432 1651 3.8 432 1.0 491 1.1 672 1.6 531 1.2 524 1.2 492 1.1 866 2.0 529 1.2 432 1.0
ssn-N20000-s20001 446 1651 3.7 474 1.1 485 1.1 728 1.6 561 1.3 516 1.2 475 1.1 893 2.0 551 1.2 446 1.0
ssn-N20000-s20002 434 1543 3.6 434 1.0 506 1.2 650 1.5 554 1.3 499 1.2 489 1.1 914 2.1 558 1.3 450 1.0

storm-N1000-s1000 6 6 1.0 10 1.8 12 1.9 11 1.8 6 1.0 7 1.1 12 1.9 6 1.1 6 1.0 10 1.8
storm-N1000-s1001 6 6 1.1 8 1.3 8 1.4 10 1.8 6 1.1 6 1.1 8 1.4 6 1.0 6 1.1 8 1.3
storm-N1000-s1002 6 6 1.1 7 1.2 11 1.8 10 1.7 6 1.1 6 1.0 11 1.9 6 1.0 6 1.1 7 1.2
storm-N5000-s5000 30 33 1.1 40 1.3 40 1.3 56 1.9 30 1.0 33 1.1 41 1.4 30 1.0 30 1.0 40 1.3
storm-N5000-s5001 30 33 1.1 37 1.2 39 1.3 52 1.7 31 1.0 34 1.1 39 1.3 30 1.0 31 1.0 37 1.2
storm-N5000-s5002 29 37 1.3 56 1.9 41 1.4 47 1.6 30 1.0 37 1.3 41 1.4 29 1.0 30 1.0 56 1.9

storm-N10000-s10000 60 73 1.2 78 1.3 127 2.1 114 1.9 65 1.1 65 1.1 127 2.1 60 1.0 64 1.1 79 1.3
storm-N10000-s10001 60 76 1.3 79 1.3 130 2.2 163 2.7 63 1.0 64 1.1 127 2.1 60 1.0 63 1.0 79 1.3
storm-N10000-s10002 59 73 1.2 116 2.0 82 1.4 118 2.0 67 1.1 70 1.2 82 1.4 59 1.0 66 1.1 117 2.0
storm-N20000-s20000 138 167 1.2 148 1.1 173 1.3 256 1.9 138 1.0 140 1.0 172 1.2 139 1.0 138 1.0 147 1.1
storm-N20000-s20001 125 161 1.3 180 1.4 186 1.5 243 1.9 127 1.0 143 1.1 185 1.5 125 1.0 127 1.0 181 1.4
storm-N20000-s20002 127 160 1.3 153 1.2 170 1.3 240 1.9 141 1.1 148 1.2 171 1.3 127 1.0 141 1.1 153 1.2

20term-N1000-s1000 15 36 2.4 15 1.0 21 1.4 30 2.0 22 1.4 20 1.3 18 1.2 27 1.8 20 1.3 16 1.1
20term-N1000-s1001 15 37 2.4 16 1.0 18 1.1 31 2.0 18 1.2 19 1.2 17 1.1 29 1.9 21 1.4 15 1.0
20term-N1000-s1002 12 37 3.0 15 1.2 18 1.4 32 2.6 21 1.7 19 1.5 18 1.4 25 2.0 20 1.6 12 1.0
20term-N5000-s5000 71 199 2.8 71 1.0 89 1.3 157 2.2 94 1.3 91 1.3 94 1.3 134 1.9 104 1.5 87 1.2
20term-N5000-s5001 66 197 3.0 69 1.0 87 1.3 137 2.1 103 1.6 97 1.5 98 1.5 146 2.2 101 1.5 66 1.0
20term-N5000-s5002 73 182 2.5 88 1.2 92 1.3 144 2.0 102 1.4 83 1.1 92 1.3 132 1.8 99 1.4 73 1.0

20term-N10000-s10000 140 411 2.9 145 1.0 192 1.4 285 2.0 208 1.5 201 1.4 158 1.1 302 2.2 217 1.6 140 1.0
20term-N10000-s10001 161 409 2.5 161 1.0 163 1.0 342 2.1 213 1.3 204 1.3 210 1.3 305 1.9 197 1.2 173 1.1
20term-N10000-s10002 147 388 2.6 147 1.0 189 1.3 273 1.9 214 1.5 206 1.4 155 1.1 313 2.1 214 1.5 152 1.0
20term-N20000-s20000 306 860 2.8 306 1.0 339 1.1 635 2.1 488 1.6 444 1.5 449 1.5 685 2.2 490 1.6 309 1.0
20term-N20000-s20001 284 985 3.5 284 1.0 427 1.5 610 2.1 512 1.8 441 1.6 350 1.2 684 2.4 436 1.5 328 1.2
20term-N20000-s20002 298 897 3.0 315 1.1 389 1.3 710 2.4 458 1.5 439 1.5 390 1.3 697 2.3 465 1.6 298 1.0

Fleet20-N1000-s1000 24 42 1.8 24 1.0 27 1.1 36 1.5 24 1.0 26 1.1 24 1.0 30 1.2 24 1.0 24 1.0
Fleet20-N1000-s1001 22 40 1.8 22 1.0 25 1.1 33 1.5 24 1.1 25 1.1 26 1.2 30 1.3 23 1.0 22 1.0
Fleet20-N1000-s1002 24 43 1.8 25 1.0 28 1.2 36 1.5 26 1.1 26 1.1 29 1.2 32 1.3 25 1.0 24 1.0
Fleet20-N5000-s5000 110 218 2.0 110 1.0 130 1.2 179 1.6 126 1.1 127 1.2 128 1.2 152 1.4 129 1.2 122 1.1
Fleet20-N5000-s5001 122 209 1.7 123 1.0 143 1.2 188 1.5 122 1.0 126 1.0 127 1.0 151 1.2 122 1.0 125 1.0
Fleet20-N5000-s5002 122 205 1.7 122 1.0 126 1.0 172 1.4 126 1.0 124 1.0 140 1.1 152 1.2 122 1.0 126 1.0

Fleet20-N10000-s10000 226 426 1.9 226 1.0 253 1.1 367 1.6 254 1.1 273 1.2 261 1.2 315 1.4 255 1.1 248 1.1
Fleet20-N10000-s10001 230 467 2.0 264 1.1 279 1.2 376 1.6 256 1.1 259 1.1 269 1.2 310 1.3 258 1.1 230 1.0
Fleet20-N10000-s10002 226 426 1.9 226 1.0 290 1.3 394 1.7 254 1.1 259 1.1 294 1.3 307 1.4 252 1.1 265 1.2
Fleet20-N20000-s20000 524 886 1.7 586 1.1 612 1.2 885 1.7 543 1.0 525 1.0 639 1.2 635 1.2 524 1.0 577 1.1
Fleet20-N20000-s20001 476 856 1.8 509 1.1 544 1.1 783 1.6 530 1.1 541 1.1 539 1.1 637 1.3 518 1.1 476 1.0
Fleet20-N20000-s20002 528 885 1.7 554 1.0 662 1.3 819 1.6 528 1.0 562 1.1 670 1.3 671 1.3 551 1.0 576 1.1

Table 10: Solution memory stabilization with batch size of 5%

31

	Introduction
	Related works
	Benders by batch
	Stabilization of the Benders by batch algorithm
	Experimentations and numerical results
	Instances
	Experimentations
	Numerical results

	Conclusion

