
HAL Id: hal-03286127
https://hal.science/hal-03286127v1

Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Interplay of Compile-time and Run-time Options
for Performance Prediction

Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc
Jézéquel

To cite this version:
Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel. The Interplay
of Compile-time and Run-time Options for Performance Prediction. SPLC 2021 - 25th ACM Inter-
national Systems and Software Product Line Conference - Volume A, Sep 2021, Leicester, United
Kingdom. pp.1-12, �10.1145/3461001.3471149�. �hal-03286127�

https://hal.science/hal-03286127v1
https://hal.archives-ouvertes.fr


The Interplay of Compile-time and Run-time Options for
Performance Prediction

Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel
Univ Rennes, INSA Rennes, CNRS, Inria, IRISA

Rennes, France
firstname.last@irisa.fr

ABSTRACT
Many software projects are configurable through compile-time op-
tions (e.g., using ./configure) and also through run-time options (e.g.,
command-line parameters, fed to the software at execution time).
Several works have shown how to predict the effect of run-time
options on performance. However it is yet to be studied how these
prediction models behave when the software is built with different
compile-time options. For instance, is the best run-time configu-
ration always the best w.r.t. the chosen compilation options? In
this paper, we investigate the effect of compile-time options on the
performance distributions of 4 software systems. There are cases
where the compiler layer effect is linear which is an opportunity
to generalize performance models or to tune and measure runtime
performance at lower cost. We also prove there can exist an inter-
play by exhibiting a case where compile-time options significantly
alter the performance distributions of a configurable system.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware product lines; Software performance; •Computingmethod-
ologies →Machine learning.

1 INTRODUCTION
An ideal software system is expected to deliver the right function-
ality on time, using as few resources as possible, in every possible
circumstances whatever the hardware, the operating system, the
compiler, or the data fed as input. For fitting such a diversity of
needs, it is increasingly common that software comes in many
variants and is highly configurable through configuration options.

Numerous works have studied the effects of configuration op-
tions on performance. The outcome is a performance model that
can be used to predict the performance of any configuration, to find
an optimal configuration, or to identify, debug, and reason about in-
fluential options of a system [19, 23, 28, 29, 38–40, 44, 49, 53, 56, 63].

There are however numerous mechanisms to implement and de-
liver options: configuration files, command-line parameters, feature
toggles or flags, plugins, etc.A useful distinction to make is between
compile-time and run-time options. On the one hand, compile-time
options can be used to build a custom system that can then be
executed for a variety of usages. The widely used "./configure &&
make" is a prominent example for configuring a software project
at compile-time. On the other hand, run-time options are used to
parameterize the behavior of the system at load-time or during the
execution. For instance, users can set some values to command-line
arguments for choosing a specific algorithm or tuning the execu-
tion time based on the particularities of a given input to process.

Both compile-time and run-time options can be configured to reach
specific functional and performance goals.

Existing studies consider either compile-time or run-time op-
tions, but not both and the possible interplay between them. For in-
stance, all run-time configurations are measured using a unique ex-
ecutable of the system, typically compiled with the default compile-
time configuration (i.e., using ./configurewithout overriding compile-
time options’ values). Owing to the cost of measuring configura-
tions, this is perfectly understandable but it is also a threat to valid-
ity. In particular, we can question the generality of these models if
we change the compile-time options when building the software
system: Do compile-time options change the performance distribu-
tion of run-time configurations? If yes, to what extent? Is the best
run-time configuration always the best? Are the most influential
run-time options always the same whatever the compile-time op-
tions used? Can we reuse a prediction model whatever the build
has been? In short: (RQ1) Do compile-time options change the
performance distributions of configurable systems?

In this paper we investigate the effect of compile-time options
together with runtime options on the performance distributions
of 4 software systems. For each of these systems, we measure a
relevant performance metrics for a combination of 𝑛𝑏𝑐 compile
time options and 𝑛𝑏𝑟 run-time options (yielding 2𝑛𝑏𝑐+𝑛𝑏𝑟 possi-
ble configurations) over a number of different inputs. We show
that the compile-time options can alter the run-time performance
distributions of software systems, and that it is worth tuning the
compile-time options to improve their performances. We thus ad-
dress a second research question: (RQ2) How to tune software
performances at the compile-time level?

Our contributions are as follows :
• We construct a protocol and carry out an empirical study
investigating the effects of compile-time options on run-time
performances, for 4 software systems, various workloads,
and non-functional properties;

• We provide a Docker image, a dataset of measurements, as
well as analysis scripts1;

• We exhibit a case (namely nodeJS and its operation rate) for
which the compile-time options interact with the run-time
options. We also present and implement a simple case of
cross-layer tuning, providing a set of configuration options
(run-time & compile-time) improving the operation rate of
the default configuration of nodeJS.

Remainder. Section 2 discusses the motivation of this paper;
Section 3 presents the experimental protocol; Section 4 evaluates
and analyses the results w.r.t. this protocol; Section 5 discusses

1Companion repository; Zenodo data: https://zenodo.org/record/4706963; Docker:
https://hub.docker.com/r/anonymicse2021/splc21

https://github.com/llesoil/ctime_opt
https://zenodo.org/record/4706963
https://hub.docker.com/r/anonymicse2021/splc21


Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

the results, their limitations and future work; Section 6 describes
research works related to the topic of this paper; Section 7 details
the threats to validity; Section 8 concludes our paper.

2 BACKGROUND AND MOTIVATION
2.1 Compile-time and run-time options
Many software systems are highly-configurable both at compile
time and at run time. For instance, the "./configure && make" is
widely used to build a custom system i.e., an executable binary.
Considering the x264 video encoder (see Figure 1), the compile-
time option –disable-asm can be used to disable "platform-specific
assembly optimizations". There are compile-time options to activate
the needed functionality (e.g., –disable-avs), to fit requirements
related to the hardware or operating system, etc. Some of these
options have a suggested impact on performance. For the same
subject system x264, it is also possible to use run-time options
such as me, mbtree and cabac with possible effects on the size
and encoding time. Run-time options are used to parameterize the
behavior of the system at load time or during the execution.

This paper investigates how compile-time options can affect software
performances and how compile-time options interact with run-time options.

Figure 1: Cross-layer variability of x264

Both compile-time and run-time options can be configured to
reach specific functional and performance goals. Beyond x264,
many projects propose these two kinds of options. A configuration
option, being compile-time or run-time, can take different possible
values. Boolean options have two possible values: "–activate" or
"–deactivate" are typical examples of Boolean compile-time options.
There are also numerical options with a range of integer or float
values. Options with string values also exist and the set of possible
values is usually predefined.

From a terminology point of view, we consider that a compile-
time (resp. run-time) configuration is an assignment of values to
compile-time options (resp. run-time options). It is possible to use
"./configure" without setting explicit values. In this case, default
values are assigned and form a default configuration. Similarly,
when x264 is called, default run-time options’ values are internally
used and constitute a default run-time configuration.

2.2 Performance prediction
Performance model. Given a software system with a set of run-

time configurations, a performance model maps each run-time
configuration to the performance of the system. A performance

model has many applications and use-cases [4, 19, 22–24, 28, 29, 38–
40, 44, 49, 53, 56, 60, 63, 65]: optimization (tuning) and finding of
the best configuration, specialization of the configuration space, un-
derstanding and debugging of the effects of configuration options,
verification (e.g., non-regression testing), etc. The performance of a
system, such as execution time, is usually measured using the same
compiled executable (binary). In our case, we consider that the
way the software is compiled is subject to variability; there
are two configuration spaces. Formally, given a software sys-
tem with a compile-time configuration space C and a run-time
configuration space R, a performance model is a black-box func-
tion 𝑓 : C × R → R that maps each run-time configuration 𝑟 ∈ R
to the performance of the system compiled with a compile-time
configuration 𝑐 ∈ C. The construction of a performance model con-
sists in running the system in a fixed compile-time setting 𝑐 ∈ C on
various configurations 𝑟 ∈ R, and record the resulting performance
values 𝑝 = 𝑓 (𝑐, 𝑟 ).

Learning performance models. Measuring all configurations of
a configurable system is the most obvious path to, for example,
find a well-suited configuration. It is however too costly or infea-
sible in practice. Machine-learning techniques address this issue
by measuring only a subset of configurations (known as sample)
and then using these configurations’ measurements to build a per-
formance model capable of predicting the performance of other
configurations (i.e., configurations not measured before). Research
work thus follow a "sampling, measuring, learning" process [19, 22–
24, 29, 38–40, 44, 49, 53, 60, 63, 65]. The training data for learning
a performance model of a system compiled with a configuration
𝑐 ∈ C is then 𝐷𝑐 = {(R#𝑖,P#𝑖) | 𝑖 ∈ J1 : 𝑛K} where 𝑛 is the number
of measurements. Statistical learning techniques, such as linear
regression [51], decision trees [48], or random forests [42], use this
training set to build prediction models.

Generalization and transfer. Performance prediction models pur-
sue the goal of generalizing beyond the training distribution. A first
degree of generalization is that the prediction model is accurate
for unmeasured and unobserved run-time configurations – it is the
focus of most of previous works. However, it is not sufficient since
the performance model may not generalize to the compile-time
configuration space. Considering Figure 1, one can question the
generalization of a performance prediction model learned
with a default compile-time configuration: will this model
transfer well when the software is compiled differently?

2.3 Research questions
The use of different compile-time configurations may change the
raw and absolute performance values, but it can also change the
overall distribution of configuration measurements. Given the vast
variety of possible compile-time configurations that may be consid-
ered and actually used in practice, the generalization of run-time
performance should be carefully studied. We aim to address two
main research questions, each coming with their hypothesis.

(RQ1) Do compile-time options change the performance
distributions of configurable systems? An hypothesis is that
two performance models 𝑓1 and 𝑓2 over two compile-time con-
figurations 𝑐1 ∈ C (resp. 𝑐2) are somehow related and close. In its
simplest form, there is a linear mapping: 𝑓1 = 𝛽× 𝑓2+𝛼 . In this case,



The Interplay of Compile-time and Run-time Options for Performance Prediction

System CS Commit Compile-time #C Runtime #R Inputs #I # Measurements Docker Performances P
nodeJS 78343bb 50 30 10 15000 Link operation rate (ops)
poppler 42dde68 15 16 10 2400 Link output size, time
x264 b86ae3c 50 201 8 80400 Link output size, time, fps, kbs
xz e7da44d 30 30 12 10800 Link output size, time

Table 1: Table of considered configurable systems (see Algorithm 1 for the notations)

the performance of the whole run-time configurations increases
or decreases; we aim to quantify this gain or lose. More complex
mappings can exist since the underlying performance distributions
differ. Such differences can impact the ranking of configurations
and the statistical influence of options on performance. Owing to
the cost of compiling and measuring configurations, we aim to char-
acterize what configuration knowledge generalizes and whether
the transfer of performance models is immediate or requires further
investment.

A follow up research question is: (RQ2) How to tune software
performances at the compile-time level? There are certainly
compile-time options with negative or positive impacts on per-
formance (e.g., debugging options). Hence an idea is to tune the
right compile-time options to eventually select optimal run-time
configurations. An hypothesis is that compile-time options interact
with run-time options, which can further challenges the tuning.
Depending on the relationship between performance distributions
(RQ1), the tuning strategy of compile-time options may differ.

3 EXPERIMENTAL PROTOCOL
To answer these research questions, we built the following ex-
perimental protocol. All the materials are freely available in the
companion repository.

3.1 Selecting the subject systems
The objects of this experiment are a set of software systems that
respect the following criteria: 1. The system must be open-source,
so we can download the source code, compile and execute it; 2. The
systemmust provide at least 5 compile- and run-time options; 3. Ide-
ally, the software system should have been considered by research
papers on software variability. The selected software systems must
cover various application domains to make our conclusions gener-
alizable. As a baseline for searching for software systems, we used:
1/ research papers on performance and/or variability; 2/ the website
openbenchmarking2 that conducts a large panel of benchmarks on
open-source software systems; 3/ our own knowledge in popular
open-source projects.
We selected 4 open-source software systems listed in Table 1.
In addition, we have made sure that the software processes input
data I (e.g., a performance test suite), so we can experiment the
options in different and realistic scenarios.

3.1.1 nodeJS. nodeJS3 is a widely-used JavaScript execution en-
vironment (78k stars on Github) [9, 10, 21]. Inputs I. We execute
different JavaScript programs extracted from the nodeJS bench-
mark test suite. Configurations C and R.We manually selected
2openbenchmarking.org
3https://nodejs.org/en/

compile-time options (e.g., v8-lite-mode or enable-lto) that could
change the way the executable behaves. We also selected run-time
options that were supposed to impact the performances according to
the documentation4, like jitless or node-memory-debug. Additionally,
we added experimental features (e.g., experimental-wasm-modules
or experimental-vm-modules). Performances P. We measured the
rate of operations (measured in operations per seconds) performed
by the selected test suite.

3.1.2 poppler. poppler5 is a library for rendering PDF files [27,
34]. We focus on the poppler tool pdfimages that extracts images
from PDF files6. Inputs I.We tested pdfimages on a series of ten
PDF files containing ten books on computer science. These books
also have different: number of pages; illustration-text ratio; image
resolutions; numbers of images; sizes (from 0.8MB to 40.3MB).
Configurations C and R.We selected the compile-time options
that select the compression algorithm to be used at run time (e.g.,
libjpeg vs openjpeg): those different compression algorithms may
be sensitive to the selected run-time options. The run-time options
we selected are related to compression formats to maximize the
potential variation impacts on performance. Performances P.We
systematically measured: the user time; the time needed to extract
the pictures (with the tool time) in seconds; the size of the output
pictures, in bytes.

3.1.3 x264. x2647 (version 0.161.3048) is a video encoder that uses
the H264 format [1, 35]. Inputs I. As input data, we selected eight
videos extracted from the Youtube UGC Dataset [68], having dif-
ferent categories (Animation video, Gaming video, etc.), different
resolutions (e.g., 360p, 420p) and different sizes. This dataset is
intended for the study of the performances of compression soft-
ware, which is adapted to our case. Configurations C and R. For
x264, we selected compile-time options related to performance
(e.g., enable-asm) or to libraries related to hardware capacities (e.g.,
disable-opencl). Those compile-time options may interact with run-
time options, linked to the different stages of video compression.
Performances P.Wemeasured five different non-functional prop-
erties of x264: the time needed to encode the video (with time);
the size (in bytes) of the encoded video; the bitrate (in bytes per
second); the number of frames encoded per seconds.

3.1.4 xz. xz8 (version 5.3.1alpha) is a data compression tool that
uses the xz and lzma formats [6, 7, 37]. Inputs I. As input data we
use the Silesia corpus [12], that provides different types of file (e.g.,

4https://nodejs.org/api/cli.html
5https://poppler.freedesktop.org
6https://manpages.debian.org/testing/poppler-utils/pdfimages.1.en.html
7https://www.videolan.org/developers/x264.html
8https://tukaani.org/xz/

https://github.com/nodejs/node
https://hub.docker.com/r/anonymicse2021/compile_nodejs
https://github.com/freedesktop/poppler
https://hub.docker.com/r/anonymicse2021/compile_poppler
https://github.com/mirror/x264
https://hub.docker.com/r/anonymicse2021/compile_x264
https://git.tukaani.org/
https://hub.docker.com/r/anonymicse2021/compile_xz
openbenchmarking.org
https://nodejs.org/en/
https://nodejs.org/api/cli.html
https://poppler.freedesktop.org
https://manpages.debian.org/testing/poppler-utils/pdfimages.1.en.html
https://www.videolan.org/developers/x264.html
https://tukaani.org/xz/


Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

binary files, text files) with various sizes w.r.t. memory. Configu-
rations C and R.We manually selected compile-time options that
can slow down the execution of the program (e.g., disable-threads
or enable-debug), to state whether these options interact with run-
time options. We selected specific run-time options related to the
compression level, the format of the compression (e.g., xz or lzma),
and the hardware capabilities (e.g., -memory=50 %). Performances
P. Like with poppler, we measured the time needed to compress
the file (in seconds) and the size of the encoded files (in bytes).

3.2 Measuring performances
3.2.1 Protocol. For each of these systems we measured their per-
formances by applying the protocol detailed in Algorithm 1.

Algorithm 1 - Measuring performances of the chosen systems
1: Input S a configurable system
2: Input C compile-time configurations
3: Input R run-time configurations
4: Input I system inputs
5: // The inputs choices for each system are listed in Table 1
6: Init P performance measurements of S
7: Download the source code of S
8: for each compile-time configuration 𝑐 ∈ C do
9: Compile source code of S with 𝑐 arguments
10: for each input 𝑖 ∈ I do
11: for each run-time configuration 𝑟 ∈ R do
12: Execute the compiled code with 𝑟 on the input 𝑖
13: Assign P[𝑐, 𝑟, 𝑖] the performance of the execution
14: end for
15: end for
16: end for
17: Output 𝑃

Lines 1-4. First, we define the different inputs fed to the al-
gorithm, the first one being the configurable system S we study.
Then, we provide a set of compile-time configurations C, as well
as a set of run-time configurations R related to the configurable
system S. Finally, we consider a set of input data I, processed
by the configurable system S. Lines 5-6. Then, we initialize the
matrix of performances 𝑃 . Line 7.We download the source code of
S (via the command line ’git clone’), w.r.t. the link and the commits
referenced in Table 1. We keep the same version of the system
for all our experiments. If needed, we ran the scripts (e.g., auto-
gen.sh for xz) generating the compilation files, thus enabling the
manual configuration of the compilation. Lines 8-16. We apply
the following process to all the compile-time configurations of C:
based on a compile-time configuration 𝑐 , we compile the software
S (de-)activating the set of options of 𝑐 . Then, we measured the
performances of the compiled 𝑆 when executing it on all inputs
of I with the different run-time configurations of R. Line 17.We
store the results in the matrix of performances P (in CSV files). We
then use these measurements to generate the results for answering
the research questions (see Section 4).
3.2.2 Replication. To allow researchers to easily reproduce our
experiments, we provide docker containers for each configurable
system. The links are listed in Table 1 in the "Docker" column.

3.2.3 Hardware. To avoid introducing a bias in the experiment, we
measure all performances sequentially on the same server (model
Intel(R) Xeon(R) CPU D-1520 @ 2.20GHz, running Ubuntu 20.04
LTS). This server was dedicated to this task, so we can ensure there
is no interaction with any other processes running at the same time.

3.3 Analyzing run-time performances
We split RQ1. Do compile-time options change the perfor-
mance distributions of configurable systems? into two sub-
questions.

RQ1.1. Do the run-time performances of configurable sys-
tems vary with compile-time options? A first goal of this paper
is to determine whether the compile-time options affect the run-
time performances of configurable systems. To do so, we compute
and analyze the distribution of all the different compile-time con-
figurations for each run-time execution of the software system (i.e.,
given a input 𝑖 and a run-time configuration 𝑟 , the distribution of
P[𝑐, 𝑟, 𝑖] for all the compile-time configurations 𝑐 of S). All else
being equal, if the compile-time options have no influence over
the different executions of the system, these distributions should
keep similar values. In other words, the bigger the variation of
these distributions, the greater the effect of the compile-time op-
tions on run-time performances. To visualize these variations, we
first display the boxplots of several run-time performances and few
systems in Figure 2. Note that for x264 (Figures 2a and 2c), only
an excerpt of 30 configurations is depicted. We then comment the
values of the InterQuartile Range (i.e., IQR, the difference between
the third and the first quartile of a distribution) for each couple
of system S and performance P. In order to state whether these
variations are consistent across compile-time configurations, we
then apply Wilcoxon signed-rank tests [52] (significance level of
0.05) to distributions of run-time performances, and report on the
performance leading to significant differences. This test is suited
to our case since our performance distributions are quantitative,
paired, not normally distributed and have unequal variances.

RQ1.2. Howmanyperformance canwe gain/losewhen chang-
ing the default compile-time configuration? As an outcome of
RQ1.1, we isolate a few couples (system, performance) for which
the way we compile the system significantly changes its run-time
performances. But how much performance can we expect to gain
or lose when switching the default configuration (i.e., the compila-
tion processed without argument, with the simple command line
./configure) to another fancy configuration? In other words, RQ1.2
states if it is worth changing the default compile-time configura-
tion in terms of run-time performances. Moreover, RQ1.2 tries to
estimate the benefit of manually tuning the compile-time options
to increase software performances. To quantify this gain (or loss),
we compute the ratios between the run-time performances of each
compile-time configuration and the run-time performances of the
default compile-time configuration. A ratio of 1 for a compile-time
option suggests that the run-time performances of this compile-
time option are always equals to the run-time performances of the
default compile-time configuration. Intuitively, if the ratio is close
to 1, the effect of compile-time options is not important. An average
performance ratio of 2 corresponds to a compile-time option whose



The Interplay of Compile-time and Run-time Options for Performance Prediction

run-time performances are in average twice the default compile-
time option’s performances. Section 4 details the average values
and the standard deviations of these ratios for each input (row) and
each couple of system and performance (column) kept in RQ1.1. We
add the standard deviation of run-time performance distributions
to estimate the overall variations of run-time performances due to
the change of compile-time options.

To complete this analysis, and as an extreme case, we also com-
puted the best ratio values in Section 4. By best ratio, we refer to
the minimal ratio for the time (e.g., reduction of encoding time for
x264 or the compression time for xz) and the maximal ratio for the
operation rate (i.e., increase of the number of operation executed
per second for nodeJS) and the number of encoded fps (x264). As
for Section 4, the best ratios are displayed for each input.

3.4 Studying the interplay of compile- and
run-time options

RQ1 highlights few systems and performances for which we can
increase the performances by tuning their compile-time options.
Now, how to achieve this tuning process, and choose the right val-
ues to tune the performances of a software system is a problem
to address. In short: RQ2. How to tune software performances
at the compile-time level? Again, we split this question into
two parts. RQ2.1. Do compile-time options interact with the
run-time options? Before tuning the software, we have to deeply
understand how the different levels (here the run-time level and the
compile-time level) interact with each other. The protocol of RQ1
states whether the compile-time options change the performances,
but the compilation could just change the scale of the distribution,
i.e.,without really interactingwith the run-time options. To discover
such interactions, we compute the Spearman correlations [26] be-
tween the run-time performance distributions of software systems
compiled with different configurations. The Spearman correlation
allows us to measure if the way we compile the system change the
rankings of the run-time performances. All else being equal, find-
ing that two performance distributions, having the same run-time
configurations but different compile-time configurations, are uncor-
related proves the existence of an interplay between the compile-
and the run-time options. We depict a correlogram in Figure 3a.
Each square(𝑖, 𝑗) represents the Spearman correlation between the
run-time performances of the compile-time configurations C#i and
C#j. The color of this square respects the top-left scale: high posi-
tive correlations are red; low in white; negative in blue. Because
we cannot describe each correlation individually, we added a table
describing the distribution of the correlations (diagonal excluded).
We apply the Evans rule [13] when interpreting these correlations.
In absolute value, we refer to correlations by the following labels;
very low: 0-0.19, low: 0.2-0.39, moderate: 0.4-0.59, strong: 0.6-0.79,
very strong: 0.8-1.00.

To complete this analysis, we train a Random Forest Regres-
sor [42] on our measurements so it predicts the operation rate of
nodeJS for a given input I. We fed this ensemble of trees with
all the configuration options i.e., all the compile-time options C
and the run-time options R related to the performances P are
used as predicting variables in this model. We then report the fea-
ture importances [8, 36, 43] for the different options (run-time or

compile-time) in Figure 3b. Intuitively, a feature is important if
shuffling its values increases the prediction error. Note that each
Random Forest only predicts the performances P for a given input
I. The idea of this graph is to show the relative importances of the
compile-time options, compared to the run-time options.

RQ2.2. How to use these interactions to find a set of good
compile-time options and tune the configurable system? RQ2.1.
exhibits interactions between the compile-time options and the run-
time options. Now, the goal is to be able to use these interactions
to find a good configuration in order to optimize the performances.
As in RQ2.1., we used a Random Forest Regressor [42] to predict
the operation rate of nodeJS. For this research question, we split
our dataset of measurements in two parts, one training part and
one test part. The goal is then to use the Random Forest Regres-
sor to predict the performance of the configurations of the test
set, and then keep the one leading to the best performances. In
order to estimate how many measurements we need to predict a
good configuration, we vary the training size (with 1 %, 5 % and
10 % of the data). We also compute the best configuration of our
dataset, that would be predicted by an oracle. We then compare the
obtained configuration with the default configuration of nodeJS
(i.e., the mostly used command-line, without argument, using a
compiled version of nodeJSwithout argument). We plot the perfor-
mance ratios between the predicted configuration and the default
configuration of node for each input in Section 4. A performance
ratio of 1.5 suggests that we found a configuration increasing the
performance of default configuration by 1.5 − 1 =50 %.

4 EVALUATION
Let us answer RQ1.1. Do the run-time performances of config-
urable systems vary with compile-time options? by distinguish-
ing performance properties.

First, the size is an extreme case of a stable performance that does
not vary at all with the different compile-time options. As shown
for the size of the encoded sports video in Figure 2a (boxplots), it
stays the same for all compile-time configurations, leading to an
average IQR of 2.3kB, negligible in comparison to the average size
(3.02MB). This conclusion applies for all the sizes we measured
over the 4; the size of the compressed file for xz (e.g., 2.6B of IQR for
I#8 having an average size of 2.85MB) and the size of the image
folder for poppler (e.g., IQR = 16B, avg = 2.36MB for I#2). For the
size of x264, 46 % of the Wilcoxon tests do not compute because the
run-time distributions were equals (i.e., same values for all sizes).

The variation of the time depends on the considered system.
Overall, for the execution time of poppler, it is stable (e.g., 29ms,
for a execution of 2.6 s). For xz, and as depicted in Figure 2b, it seems
to also depend on the run-time configurations. For instance, the
distribution of the first run-time configuration (i.e., R#1) executed
on I#5 has an IQR of 40ms but this number increases to 0.37 s
for the distribution of R#9. For the encoding time of x264 and
the I#4, we can draw the same conclusion ; suddenly, for a given
run-time configuration (e.g., from R#102 to R#103) the execution
times increases not only in average (from 0.9 s to 133 s), but also in
terms of variations w.r.t. the compile-time options (IQR from 1.0 s
to 223 s). Since the number of frames for a given video is fixed, these
conclusion are also valid for the number of encoded fps (x264).



Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

(a) x264, I#8 (sports video), size (b) xz, I#5 (reymont file), compression time

(c) x264, I#4 (lyric video), encoding time (d) nodeJS, I#3 (fs script), operation rate

Figure 2: Boxplots of runtime performance distributions for different compile-time configurations. Each boxplot (S, I, P) is
related to a system S, an input I and a performance P.

For the number of operations executed per second (nodeJS), the
IQR values of performance distribution are high : e.g., for I#3 as
shown in Figure 2d in average 19 per second, for an average of
83 operations per second. However, unlike x264, these variations
are quite stable across the different run-time configurations. A
Wilcoxon test confirms a significant difference between run-time
distributions of C#1 and C#11 (𝑝 = 4.28 ∗ 10−6) or C#4 and C#7
(𝑝 = 1.24 ∗ 10−5).

Key findings for RQ1.1. The sizes of software systems do not
depend on the compile-time options for our 3 cases. However, other
performance properties such as the time or the number of opera-
tions per second can vary with different compile-time options.

RQ1.2. Howmanyperformance canwe gain/losewhen chang-
ing the default compile-time configuration?

As a follow-up of RQ1.1., we computed the gain/lose ratios for the
sizes of poppler, x264, xz. They are all around 1.00 in average, and
less than 0.01 in terms of standard deviations, whatever the input
is. The same applies with poppler or with xz and their execution
times, as shown in Section 4. There are few variations, less than
3 % for the standard deviation of all inputs for poppler. For xz
and time, we can observe the same trend. But we can observe
an input sensitivity effect: for some inputs, like I#2 or I#11, the
performances vary in comparison to the default one (stds at 0.48
and 0.23). Maybe the combination of an input and a compile-time
option can alter the software performances.

Overall, there is room for improvement when changing the de-
fault compile-time options. For an example, with the operation
rate of nodeJS, the average performance ratio is under 1 (e.g., 0.86
for I#3, 0.8 for I#1 and I#10). Compared to the default compile-
time configuration of nodeJS, our choices of compilation options
decrease the performances, by about 20 %. Besides, the standard
variations are relatively high : we can expect the run-time perfor-
mance ratios to vary from 41 % between different compile-time
options for I#5, or 11 % for I#4. So it can be worse than losing
only 20 % of operation per second. However, for I#8, there exists
a run-time configuration for which we can double (i.e., multiply
by 2.28) the number of operation per second) just by changing the
compile-time options of nodeJS. We can draw the same conclusions
for the execution time of x264: our compile-time configurations are
not effective : it takes more than three times as long as the default
configuration for all the inputs. But in this case, the best we can
get is a decrease of 10 % of the execution time, which will not have
a great impact on the overall performances. We can formulate an
hypothesis with Figure 2c to explain these bad results: maybe few
run-time configurations (e.g., R#103 to R#109) take a lot of time to
execute, thus increasing the overall average of performance ratios.
Here, it would be an interaction between the run-time options and
the compile-time options.

Key findings for RQ1.2. Depending on the performance we
consider, it is worth to change the compile-time options or not.
For nodeJS, it can increase the operation rate up to 128 % when



The Interplay of Compile-time and Run-time Options for Performance Prediction

S nodeJS poppler x264 xz

P ops time fps time time
I#1 0.8 ± 0.34 1.0 ± 0.02 0.59 ± 0.4 3.33 ± 2.4 1.01 ± 0.03
I#2 0.79 ± 0.36 1.0 ± 0.01 0.59 ± 0.39 3.5 ± 2.53 1.16 ± 0.48
I#3 0.86 ± 0.2 1.0 ± 0.01 0.59 ± 0.4 3.5 ± 2.57 1.11 ± 0.32
I#4 1.01 ± 0.11 1.0 ± 0.01 0.6 ± 0.39 3.26 ± 2.37 1.01 ± 0.02
I#5 0.73 ± 0.41 1.0 ± 0.01 0.59 ± 0.4 3.53 ± 2.62 1.02 ± 0.03
I#6 1.05 ± 0.21 1.0 ± 0.02 0.6 ± 0.4 3.35 ± 2.49 1.01 ± 0.02
I#7 0.98 ± 0.01 1.0 ± 0.07 0.58 ± 0.4 3.75 ± 2.8 1.01 ± 0.03
I#8 0.84 ± 0.38 1.0 ± 0.01 0.59 ± 0.39 3.32 ± 2.37 1.01 ± 0.03
I#9 1.01 ± 0.02 1.0 ± 0.02 1.01 ± 0.02
I#10 0.8 ± 0.34 0.99 ± 0.03 1.04 ± 0.11
I#11 1.08 ± 0.23
I#12 1.02 ± 0.04

(a) Average ± standard deviation

S nodeJS poppler x264 xz

P ops time fps time time
I#1 1.06 0.95 1.12 0.94 0.95
I#2 1.08 0.98 1.14 0.93 0.98
I#3 1.48 0.98 1.12 0.95 0.97
I#4 1.68 0.97 1.27 0.83 0.96
I#5 1.18 0.97 1.1 0.94 0.96
I#6 2.3 0.95 1.68 0.51 0.97
I#7 1.01 0.84 1.35 0.94 0.94
I#8 2.28 0.97 1.12 0.93 0.97
I#9 1.04 0.95 0.97
I#10 1.09 0.92 0.97
I#11 0.97
I#12 0.91

(b) Best (min for time, max for ops & fps)
Table 2: Table of run-time performance ratios (compile-time option/default) per input. An average performance ratio of 1.4
suggests that the run-time performances of a compile-time option are in average 1.4 times greater than the run-time perfor-
mance of the default compile-time configuration.

changing the default configuration. For x264, we can gain about
10 % of execution time with the tuning of compile-time options.

RQ1. Do compile-time options change the perfor-
mance distributions of configurable systems? Proper-
ties like size are extremely stablewhen changing the compile-
time options. Performance models predicting the sizes can
be generalized over different compile-time configurations.
However, we found other performances, like the operation
rate for nodeJS, or the execution time for x264, that are
sensitive to compile-time options. It is worth to tune the
compile-time options to optimize these performances.

RQ2.1. Do compile-time options interact with the run-time
options?

For x264 and xz, there are few differences between the run-time
distributions. As an illustration of this claim, for all the execution
time distributions of x264, and all the input videos, the worst corre-
lation is greater than 0.97 (>0.999 for x264 and encoded size, 0.55
for xz and time). This result proves that, if the compile-time options
of these systems change the scale of the distribution, they do not
change the rankings of run-time configurations (i.e., they do not
truly interact with the run-time options).

Then, we study the rankings of the run-time operation rate for
nodeJS for different compile-time configurations, and details the
Figure 3a. The first results are also positive. There is a large amount
of compile-time configurations (top-left part of the correlogram)
for which the run-time performances are moderately, strongly or
even very strongly correlated. For instance, the compile-time op-
tion C#16 is very strongly (0.91) correlated with C#24 in terms
of run-time performances. Similarly, compile-time options C#40
and C#23 are strongly correlated (0.73). There are less favorable
cases when looking at the middle and right parts of the correlogram.
For an example, C#27 and C#13 are uncorrelated (i.e., a very low
correlation of 0.01). Worse, switching from compile-time option
C#8 to C#29 changes the rankings to such an extent that their run-
time performances are negatively correlated (−0.35). In between,
poppler’s performance distributions are overall not sensitive to

the change of compile-time options, except for the input I#3 (for
which the correlations can be negative).

To complete this analysis, we discuss Figure 3b. The feature
importances for predicting the operation rate of nodeJS for I#3
are distributed among the different options, both the run-time and
compile-time options. If it does not prove any interaction, it sig-
nifies that to efficiently predict the operation, the algorithm has
to somehow combine the different levels of options. For the input
I#10, it is a bit different, since the only influential run-time option
(i.e., the one that has a great importance) is jitless. When looking at
a decision tree (see additional results in the companion repository),
the first split of the tree uses in fact this run-time option jitless,
and then split the other branches with the compile-time options
–v8-lite-mode and –fully-static.

Key findings for RQ2.1. xz, poppler and x264’s performances
rankings are not sensitive to the change of compile-time options.
On the other hand, nodeJS’s performances changes at run time
with different the compile-options, i.e., nodeJS run-time options
interact with nodeJS’s compile-time options.

Training Size
Inputs 0.01 0.05 0.1 Oracle
I#1 0.94 1.039 1.045 1.06
I#2 1.051 1.086 1.085 1.099
I#3 1.167 1.37 1.386 1.505
I#4 1.123 1.226 1.232 1.251
I#5 0.96 1.004 1.005 1.007
I#6 1.005 1.069 1.09 1.104
I#7 0.986 0.987 0.987 0.988
I#8 1.035 1.047 1.05 1.054
I#9 1.034 1.037 1.038 1.039
I#10 1.003 1.021 1.021 1.044

Table 3: Performance ratios between the best predicted con-
figuration and the default configuration for nodeJS and the
operation rate, for different training sizes and inputs

RQ2.2. How to use these interactions to find a set of good
compile-time options and tune the configurable system?



Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

(a) Correlogram (Spearman) of the same run-time performance dis-
tributions for different compile-time configurations for I#10

(b) Random forest importances (top I#3, bottom I#10) for predict-
ing P - both compile- C (red) and run-time R (green) optionsmatter

Figure 3: Illustration of the interplay between the runtime and the compile-time configurations (S = nodeJS, P=operation rate)
Our results on x264, xz, and poppler show that their perfor-

mance distributions are remarkably stable whatever their compile-
time options. That is, interactions between the two kinds of options
are easy to manage. This is a very good news for all approaches that
try to build performance models using machine learning: if 𝑛𝑏𝑐 and
𝑛𝑏𝑟 are the number of boolean options present in R and C, it makes
it possible to reduce the learning space to something proportional
to 2𝑛𝑏𝑐 + 2𝑛𝑏𝑟 instead of 2𝑛𝑏𝑐+𝑛𝑏𝑟 = 2𝑛𝑏𝑐 × 2𝑛𝑏𝑟 . There are three
practical opportunities (that apply to x264, xz, and poppler):
Reuse of configuration knowledge: transfer learning of predic-
tion models boils down to apply a linear transformation among
distributions. Users can also trust the documentation of run-time
options, consistent whatever the compile-time configuration is.
Tuning at lower cost: finding the best compile-time configura-
tion among all the possible ones allows one to immediately find
the best configuration at run time. It is no longer necessary to mea-
sure many configurations at run time: the best one is transferred
because of the linear relationship between compile-time configu-
ration. Finding the best compile-time configuration is like solving
a one-dimensional optimization problem: we simply compare the
performances of a compilation operating on a fixed set of run-time
configurations. Intuitively, it is enough to determine whether a
compilation improves the performance of a limited set of run-time
configurations. Theoretically, it is possible to compare the compila-
tions’ performance on a single run-time configuration. In practice,
we expect to measure 𝑟 ′ run-time configurations with 𝑟 ′ ≪ 2𝑛𝑏𝑟

Measuring at lower cost: a common practice to measure run-
time configurations is to use a default compile-time configuration.
However, RQ1 results showed that it is possible to accelerate the
execution time and thus drastically reduce the computational cost
of measurements. That is, instead of using a default ./configure,
we can use a compile-time configuration that is optimal w.r.t. cost.
Then, owing to the results of RQ2.1, the measurements will transfer
to any compile-time configuration and are representative of the
run-time configuration space. The minimisation of the time is an
example of a cost criteria; other properties such as memory or
energy consumption can well be considered. It is even possible to
use two compile-time configurations and executable binaries: (1) a
first one to measure at lower cost and gather training samples; (2)
a second one that is optimal for tuning a performance.

However, for nodeJS, it requires additional (as shown in Sec-
tion 4). If we had access to an oracle, we could search for the best
configuration of our dataset (in terms of performance), and replace
the default configuration by this one. Depending on the input script,
it will improve (or not) the performances. For instance, with the
input I#2, we can expect to gain about 10 % of performance, while
for I#9 and I#10, it would be only 4 %. The worst case is without
contest I#7, for which we lose about 1 % of operation rate. But for
inputs I#3 and I#4, it increases the performances by respectively
50 % and 25 %. We see these cases as proofs of concept; we can use
the variability induced by the compile-time options to increase the
overall performances of the default configuration. And if we do
not have much data, it is possible to learn from it: with only 1 % of



The Interplay of Compile-time and Run-time Options for Performance Prediction

the measurements, we can expect to gain 16 % of performance on
I#3. It steps up to 1.37 % for 5 % of the measurements used in the
training. The same applies for the input I#4 : 12 % of gain for 1 %
of the measurements and 23 % for 5 %.

Key findings for RQ2.2. We can use the interactions between
the compile-time and the run-time options to increase the default
configuration’s operation rate of nodeJS (up to 50 % for I#3).

RQ2. How to tune software performances at the
compile-time level? Two types of systems are emerging:
if the run-time options of a software system are not sensitive
to compile-time options (e.g., for x264, xz, and most of the
time poppler), there is an opportunity to tune "once and for
all" the compilation layer for both improving the runtime
performances and reducing the cost of measuring. However,
for nodeJS and one specific input of poppler, we found in-
teractions between the run-time and compile-time options,
changing the rankings of their run-time performances dis-
tributions. We prove we can overcome this problem with a
simple performance model using these interactions to out-
perform the default configuration of nodeJS.

5 DISCUSSION
Impacts for practitioners and researchers. For the benefit of
software variability practitioners and researchers, we give an esti-
mate of the potential impact of tuning software during compilation.
We also provide hints to choose the right values of options before
compiling software systems (see RQ2.2). This may be of particu-
lar interest to developers responsible for compiling software into
packages (i.e., apt, dnf, etc.). For engineers who build performance
models or test the performance of software systems, we show there
are opportunities to decrease the underlying cost of tuning or mea-
suring runtime configurations. We also warn that performance
models may not generalize, depending on the software and the
performance studied (as shown in our study). At this step of the
research, it is hard to anticipate such situations. However we rec-
ommend that practitioners verify the sensitivity of performance
models w.r.t. compile-time options. Our results are also good news
for researchers who build performance models using machine learn-
ing. Many works have experiments with x264 [3, 19, 53] and we
show that for this system the performance is remarkably stable.
xz considered in [37] also enters in this category. That is, there is
no threat to validity w.r.t. compile-time options. To the best of our
knowledge, other systems (nodeJS and poppler) have not been
considered in the literature of configurable systems [44]. Hence we
warn researchers there can be cases for which this threat applies.

Understanding the interplay.Our results suggest that compile-
time options affect specific non-functional properties of software
systems. The cause of this interplay between compile-time and
run-time options is unclear and remains shallow for the authors of
this paper. The results could be related to the system domain, or
the way it processes input data; trying to characterize the software
systems sensitive to compile-time options (i.e., without measuring
their performances) is challenging, but worth looking at. We are
looking forward discussing with developers to know more about
why it appears in these cases, and not for the other software systems
(left as future work).

Other variability factors. Compile-time options are a possible
layer that can affect performance, but not the only one. Could we in
the same way prove the existence of the effect of the operating sys-
tem on software performances? On the hardware level? This paper
is also a way for us to alert researchers to other factors of variabil-
ity beyond software, which may interact with their performance.
We encourage researchers to highlight these factors in their work.
Similarly, the 4 software systems are evolving, with constantly new
commits and features. Then, a question arises naturally: will this
interplay evolve with the software? And if it changes with time
and versions, how to automate the update of our understanding of
these interactions? This is another challenging layer and direction
to explore. In our study design we consider compile-time options
and not the compiler flags. Though there is an overlap, there are
many compile-time options specific to a domain and system. As
future work, we plan to investigate how compiler flags (e.g., −02
and −03 for gcc) relate to run-time configurations. More generally,
the variability of interpreters and virtual machines [25, 32, 55] can
be considered as yet another variability layer [33] on which we
encourage researchers to perform experiments.

6 RELATEDWORK
Machine learning and configurable systems. Machine learning

techniques have been widely considered in the literature to learn
software configuration spaces and non-functional properties of
software product lines [15, 22, 23, 30, 38, 39, 41, 44, 47, 66, 67].
Several works have proposed to predict performance of configu-
rations, with several use-cases in mind for developers and users
of configurable systems: the maintenance and interpretability of
configuration spaces [54], the selection of an optimal configura-
tion [15, 39, 41], the automated specialization of configurable sys-
tems [59], etc. Studies usually support learning models restrictive
to specific static settings (e.g., inputs, hardware, and version) such
that a new prediction model may have to be learned from scratch
or adapted once the environment change. The studies of Valov
et al. [64, 66] suggest that changing the hardware has reasonable
impacts since linear functions are highly accurate when reusing
prediction models. Netflix conducts a large-scale study for compar-
ing the compression performance of x264, x265, and libvpx over
different inputs [1]. However, only two run-time configurations
were considered on a fixed compile-time configuration. Alterations
in software version [16] and changes in operating system [18] have
both shown to cause variation in the results of a neuroimaging
study. Jamshidi et al. [22] conducted an empirical study on four
configurable systems (including x264), varying software configura-
tions and environmental conditions, such as hardware, input, and
software versions. Pereiraet al. [2] and Lesoil et al. [33] empirically
report that inputs can change the performance distributions of a
configurable system (x264). In our study, we purposely fix the hard-
ware and the version in order to isolate the effects of compile-time
options on run time. To the best of our knowledge, our large-scale
study is the first to systematically investigate the effects of compile-
time options on performance of run-time configurations. The use
of transfer learning techniques [23, 30, 38, 66] can be envisioned
to adapt prediction models w.r.t. compile-time options. A key con-
tribution of our study is to show that compile-time options can



Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

change the rankings of run-time options, thus preventing the reuse
of a model predicting the best run-time configuration.

Input sensitivity. There are works addressing the performance
analysis of software systems [11, 14, 17, 31, 46, 56] depending on dif-
ferent inputs (also called workloads). In our study, we also consider
different inputs when measuring performances. In contrast to our
work, existing studies either consider a limited set of compile-time
and run-time configurations (e.g., only default configurations). It is
also a threat to validity since compile-time options may change the
performance distribution. In response, we perform an in-depth, con-
trolled study of different systems to make it vary in the large, both
in terms of compile-time and run-time configurations as well as
inputs. In our study, we show a huge effect of inputs in the interplay
of compile- and run-time options; for few inputs, the interactions of
the compilation and the execution layers will not change anything,
while for others, it would be a disaster to ignore them.

Compiler optimizations. The problem of choosing which opti-
mizations of a compiler to apply has a long tradition [50]. Since
the mid-1990s, machine-learning-based or evolutionary approaches
have been investigated to explore the configuration space of com-
piler [5, 20, 45, 57, 58, 61, 62]. Such works usually consider a limited
set of run-time configurations in favor of a broad consideration of
inputs (programs). The goal is to understand the cost-effectiveness
of compiler optimizations or to find tuning techniques for specific
inputs and architectures. In contrast, our goal is to understand the
interplay between compile-time options and run-time options, with
possible consequences on the generalization of the configuration
knowledge. As discussed in Section 5, compiler flags are worth
considering in future work in addition to compile-time options.

7 THREATS
Construct validity. While constructing the experimental pro-

tocol and measuring the performances of software systems, we only
kept a subset of all their compile-time and run-time options. The
study we conducted focuses on performance measurements. The
risk was to handle options that have no impact on performance,
letting the results irrelevant. So we drove our selection on options
which documentation gives indications about potential impacts on
performance. The relevance of the input data provided to software
systems during the experiment is crucial. To mitigate this threat we
rely on: performance tests (and the input data they use) developed
and used by nodeJS; widely-used input data sets (xz and x264); a
large and heterogeneous data set of PDF files (poppler).

Internal Validity. Measuring non-functional properties is a
complex process. During this process, the dependencies of the op-
erating system can interact with the software system. For instance,
the version of gcc could alter the way the source code is compiled,
and change our conclusion. To mitigate this threat, we provided
one docker container and fixed the configuration of the operating
system for each subject system. However, and due to the measure-
ment cost, we did not repeat the measurements several times. To
gather measurements, we use the same dedicated server for the
different subject systems. Thus, we can guarantee it was the only
process running. The performances of the software systems can
depend on the hardware they are executed on. To mitigate this
threat we use the same hardware and provided its specifications
for comparison during replications. Another threat to validity is

related to the performances measured per second (e.g., the number
of fps for x264). For fast run-time executions, tiny variations of the
time can induce high variations of the ratio over time. To alleviate
this threat, we make sure the average execution time stays always
greater than one second for all the input. To learn a performance
model and predict which configuration was optimal, we used a ma-
chine learning algorithm in RQ2.2, namely Random Forest. These
algorithms can produce unstable results from one run to the next,
which could be a problem for the results related to this research
question. In order to mitigate this threat, we have kept the average
value over 10 throws.
8 CONCLUSION
Is there an interplay between compile-time and run-time options
when it comes to performance? Our empirical study over 4 config-
urable software showed that two types of systems exist.

In the most favorable case, compile-time options have a linear
effect on the run-time configuration space. We have observed this
phenomenon for two systems and several non-functional properties
(e.g., execution time). There are then opportunities: the configura-
tion knowledge generalizes no matter how the system is compiled;
the performance can be further tuned through the optimisation
of compile-time options and without thinking about the run-time
layer; the selection of a custom compile-time configuration can
reduce the cost of measuring run-time configurations. We have
shown we can improve the run-time performance of these two
systems, at compile-time and at lower cost.

However, our study also showed that there is a subject system for
which there are interactions between run-time and compile-time
options. This challenging case changes the rankings of run-time
performances configurations and the performance distributions.
We have shown we can overcome this problem with a simple per-
formance model using these interactions to outperform the default
compile-time configuration. The fourth subject of our study is in-
between: the compile-time layer strongly interacts with run-time
options only when processing a specific input. For the 9 other inputs
of our experiment, we can take advantage of the linear interplay.
Hence it is possible but rare that there is an interplay between
compile-time options, run-time options, and inputs fed to a system.

Our work calls to further investigate how variability layers inter-
act. We encourage researchers to replicate our study for different
subject systems and application domains.

Acknowledgments. This research was funded by the ANR-17-
CE25-0010-01 VaryVary project.

REFERENCES
[1] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A Large-

Scale Comparison of x264, x265, and libvpx – a Sneak Peek. netflix-study-link.
[2] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. 2020.

Sampling Effect on Performance Prediction of Configurable Systems: A Case
Study. (Feb. 2020). https://hal.inria.fr/hal-02356290 working paper or preprint.

[3] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2019. Learning Software Configuration
Spaces: A Systematic Literature Review (submitted). Research Report. Univ Rennes,
Inria, CNRS, IRISA. https://doi.org/10.1145/nnnnnnn.nnnnnnn

[4] Benoit Amand, Maxime Cordy, Patrick Heymans, Mathieu Acher, Paul Temple,
and Jean-Marc Jézéquel. 2019. Towards Learning-Aided Configuration in 3D
Printing: Feasibility Study and Application to Defect Prediction. In Proceedings
of the 13th International Workshop on Variability Modelling of Software-Intensive
Systems (Leuven, Belgium) (VAMOS ’19). Association for Computing Machinery,
New York, NY, USA, Article 7, 9 pages. https://doi.org/10.1145/3302333.3302338

https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://hal.inria.fr/hal-02356290
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/3302333.3302338


The Interplay of Compile-time and Run-time Options for Performance Prediction

[5] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. 2018. A Survey on Compiler Autotuning Using Machine Learning. ACM
Comput. Surv. 51, 5, Article 96 (Sept. 2018), 42 pages. https://doi.org/10.1145/
3197978

[6] Dominic Berz, Marco Engstler, Moritz Heindl, and Florian Waibel. 2015. Compari-
son of lossless data compressionmethods. TECHNICAL REPORTS IN COMPUTING
SCIENCE 1, 1 (2015), 1–13.

[7] Born de Oliveira, Augusto. 2015. Measuring and Predicting Computer Software
Performance: Tools and Approaches. http://hdl.handle.net/10012/9259

[8] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[9] Steven Bucaille. 2020. Gadolinium: Monitoring Non-Functional Properties of

REST APIs.
[10] Agustina Buccella, Matias Pol’la, Esteban Ruiz de Galarreta, and Alejandra

Cechich. 2018. Combining Automatic Variability Analysis Tools: An SPL Ap-
proach for Building a Framework for Composition. In Computational Science and
Its Applications – ICCSA 2018, Osvaldo Gervasi, Beniamino Murgante, Sanjay
Misra, Elena Stankova, Carmelo M. Torre, Ana Maria A.C. Rocha, David Taniar,
Bernady O. Apduhan, Eufemia Tarantino, and Yeonseung Ryu (Eds.). Springer
International Publishing, Cham, 435–451.

[11] Emilio Coppa, Camil Demetrescu, Irene Finocchi, and Romolo Marotta. 2014.
Estimating the Empirical Cost Function of Routines with Dynamic Workloads. In
Proceedings of Annual IEEE/ACM International Symposium on Code Generation and
Optimization (Orlando, FL, USA) (CGO ’14). ACM, New York, NY, USA, Article
230, 10 pages. https://doi.org/10.1145/2581122.2544143

[12] Sebastian Deorowicz. 2014. Silesia compression corpus.
[13] James D Evans. 1996. Straightforward statistics for the behavioral sciences. Thom-

son Brooks/Cole Publishing Co, Book News, Inc. Portland, Or.
[14] Hany FathyAtlam, Gamal Attiya, and Nawal El-Fishawy. 2013. Comparative Study

on CBIR based on Color Feature. International Journal of Computer Applications
78, 16 (Sept. 2013), 9–15. https://doi.org/10.5120/13605-1387

[15] Wei Fu and Tim Menzies. 2017. Easy over Hard: A Case Study on Deep Learning.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 49–60. https://doi.org/10.1145/3106237.3106256

[16] Tristan Glatard, Lindsay B Lewis, Rafael Ferreira da Silva, Reza Adalat, Natacha
Beck, Claude Lepage, Pierre Rioux, Marc-Etienne Rousseau, Tarek Sherif, Ewa
Deelman, et al. 2015. Reproducibility of neuroimaging analyses across operating
systems. Frontiers in neuroinformatics 9 (2015), 12.

[17] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. 2007. Measuring
Empirical Computational Complexity. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07).
Association for Computing Machinery, New York, NY, USA, 395–404. https:
//doi.org/10.1145/1287624.1287681

[18] Ed HBM Gronenschild, Petra Habets, Heidi IL Jacobs, Ron Mengelers, Nico
Rozendaal, Jim Van Os, and Machteld Marcelis. 2012. The effects of FreeSurfer
version, workstation type, andMacintosh operating system version on anatomical
volume and cortical thickness measurements. PloS one 7, 6 (2012), e38234.

[19] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-Aware Performance Prediction: A Statistical Learn-
ing Approach. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE’13). IEEE Press, Silicon Valley, CA, USA,
301–311. https://doi.org/10.1109/ASE.2013.6693089

[20] Kenneth Hoste and Lieven Eeckhout. 2008. Cole: Compiler Optimization Level
Exploration. In Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (Boston, MA, USA) (CGO ’08). Association
for Computing Machinery, New York, NY, USA, 165–174. https://doi.org/10.
1145/1356058.1356080

[21] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2017. Software performance
self-adaptation through efficient model predictive control. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, Urbana-
Champaign IL USA, 485–496. https://doi.org/10.1109/ASE.2017.8115660

[22] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer Learning for Performance Modeling
of Configurable Systems: An Exploratory Analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2017). IEEE Press, Urbana-Champaign, IL, USA, 497–508.

[23] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to Sample: Exploiting Similarities across Environments to Learn Per-
formance Models for Configurable Systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ES-
EC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 71–82.
https://doi.org/10.1145/3236024.3236074

[24] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad
Kawthekar. 2017. Transfer Learning for Improving Model Predictions in Highly
Configurable Software. In Proceedings of the 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS) (Buenos

Aires). IEEE Computer Society, Los Alamitos, CA, 31–41. https://doi.org/10.1109/
SEAMS.2017.11

[25] Sanath Jayasena, Milinda Fernando, Tharindu Rusira, Chalitha Perera, and
Chamara Philips. 2015. Auto-tuning the java virtual machine. In 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop. IEEE, Hy-
derabad,India, 1261–1270.

[26] Maurice George Kendall. 1948. Rank correlation methods. Griffin, Michigan.
[27] Mark J. Kilgard. 2020. Anecdotal Survey of Variations in Path Stroking among

Real-world Implementations. arXiv:2007.12254 [cs.GR]
[28] Alexander Knüppel, Thomas Thüm, Carsten Immanuel Pardylla, and Ina Schaefer.

2019. Understanding Parameters of Deductive Verification: An Empirical Investi-
gation of KeY. In Software Engineering and Software Management, SE/SWM 2019,
Stuttgart, Germany, February 18-22, 2019 (LNI, Vol. P-292), Steffen Becker, Ivan
Bogicevic, Georg Herzwurm, and Stefan Wagner (Eds.). GI, Stuttgart, Germany,
165–166. https://doi.org/10.18420/se2019-51

[29] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. 2019. Tradeoffs in Modeling Performance of Highly Configurable
Software Systems. Software & Systems Modeling 18, 3 (01 Jun 2019), 2265–2283.
https://doi.org/10.1007/s10270-018-0662-9

[30] Rahul Krishna, Vivek Nair, Pooyan Jamshidi, and Tim Menzies. 2019. Whence to
Learn? Transferring Knowledge in Configurable Systems using BEETLE. CoRR
abs/1911.01817 (2019), 1–16. arXiv:1911.01817 http://arxiv.org/abs/1911.01817

[31] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos—A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3, Article 15 (April 2016), 23 pages. https://doi.org/10.1145/2885497

[32] Philipp Lengauer and Hanspeter Mössenböck. 2014. The Taming of the Shrew:
Increasing Performance by Automatic Parameter Tuning for Java Garbage Collec-
tors. In Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (Dublin, Ireland) (ICPE ’14). Association for Computing Machinery,
New York, NY, USA, 111–122. https://doi.org/10.1145/2568088.2568091

[33] Luc Lesoil, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel. 2021. Deep
Software Variability: Towards Handling Cross-Layer Configuration. In 15th In-
ternational Working Conference on Variability Modelling of Software-Intensive
Systems (Krems, Austria) (VaMoS’21). Association for Computing Machinery,
New York, NY, USA, Article 10, 8 pages. https://doi.org/10.1145/3442391.3442402

[34] D. Maiorca and B. Biggio. 2019. Digital Investigation of PDF Files: Unveiling
Traces of Embedded Malware. IEEE Security Privacy 17, 1 (2019), 63–71. https:
//doi.org/10.1109/MSEC.2018.2875879

[35] A. Maxiaguine, Yanhong Liu, S. Chakraborty, and Wei Tsang Ooi. 2004. Iden-
tifying "representative" workloads in designing MpSoC platforms for media
processing. In 2nd Workshop onEmbedded Systems for Real-Time Multimedia, 2004.
ESTImedia 2004. IEEE, Stockholm, Sweden, 41–46. https://ieeexplore.ieee.org/
document/1359702

[36] Christoph Molnar. 2020. Interpretable Machine Learning. Lulu.com, Munich.
[37] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2020. Identifying Software

Performance Changes Across Variants and Versions. In 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, Melbourne,
Australia, 611–622.

[38] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. ACM, Paderborn, Germany, 257–267. https://doi.org/10.
1145/3106237.3106238

[39] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel. 2020. Finding Faster
Configurations Using FLASH. IEEE Transactions on Software Engineering 46, 7
(2020), 794–811. https://doi.org/10.1109/TSE.2018.2870895

[40] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding Near-
Optimal Configurations in Product Lines by Random Sampling. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 61–71. https://doi.org/10.1145/3106237.3106273

[41] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding Near-
Optimal Configurations in Product Lines by Random Sampling. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 61–71. https://doi.org/10.1145/3106237.3106273

[42] Thais Mayumi Oshiro, Pedro Santoro Perez, and Jose Augusto Baranauskas. 2012.
How Many Trees in a Random Forest?. In Machine Learning and Data Mining
in Pattern Recognition, Petra Perner (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 154–168.

[43] Terence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard. 2018.
Beware Default Random Forest Importances. last access: july 2019.

[44] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2019. Learning Software Configuration
Spaces: A Systematic Literature Review. ArXiv abs/1906.03018 (2019), 1–44.
https://arxiv.org/abs/1906.03018

https://doi.org/10.1145/3197978
https://doi.org/10.1145/3197978
http://hdl.handle.net/10012/9259
https://doi.org/10.1145/2581122.2544143
https://doi.org/10.5120/13605-1387
https://doi.org/10.1145/3106237.3106256
https://doi.org/10.1145/1287624.1287681
https://doi.org/10.1145/1287624.1287681
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1109/ASE.2017.8115660
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/SEAMS.2017.11
https://arxiv.org/abs/2007.12254
https://doi.org/10.18420/se2019-51
https://doi.org/10.1007/s10270-018-0662-9
https://arxiv.org/abs/1911.01817
http://arxiv.org/abs/1911.01817
https://doi.org/10.1145/2885497
https://doi.org/10.1145/2568088.2568091
https://doi.org/10.1145/3442391.3442402
https://doi.org/10.1109/MSEC.2018.2875879
https://doi.org/10.1109/MSEC.2018.2875879
https://ieeexplore.ieee.org/document/1359702
https://ieeexplore.ieee.org/document/1359702
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://arxiv.org/abs/1906.03018


Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel

[45] Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan, Ruben Buchatskiy, Ro-
man Zhuykov, and Je-Hyung Lee. 2013. Automatic Tuning of Compiler Opti-
mizations and Analysis of their Impact. Procedia Computer Science 18 (2013),
1312–1321. https://doi.org/10.1016/j.procs.2013.05.298

[46] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Tha-
jchayapong. 2017. Performance Analysis of Private Blockchain Platforms in
Varying Workloads. In 2017 26th International Conference on Computer Com-
munication and Networks (ICCCN). IEEE, Vancouver, Canada, 1–7. https:
//doi.org/10.1109/icccn.2017.8038517

[47] Clément Quinton, Michael Vierhauser, Rick Rabiser, Luciano Baresi, Paul Grün-
bacher, and Christian Schuhmayer. 2020. Evolution in dynamic software product
lines. Journal of Software: Evolution and Process 33 (2020), e2293.

[48] S Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier
methodology. IEEE transactions on systems, man, and cybernetics 21, 3 (1991),
660–674.

[49] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-
necki. 2015. Cost-Efficient Sampling for Performance Prediction of Configurable
Systems. In Proceedings of the 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE ’15). IEEE Press, Lincoln, Nebraska, 342–352.
https://doi.org/10.1109/ASE.2015.45

[50] Paul B. Schneck. 1973. A Survey of Compiler Optimization Techniques. In
Proceedings of the ACM Annual Conference (Atlanta, Georgia, USA) (ACM ’73).
Association for Computing Machinery, New York, NY, USA, 106–113. https:
//doi.org/10.1145/800192.805690

[51] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons, North America.

[52] Sidney Siegel. 1956. Nonparametric statistics for the behavioral sciences. The
Journal of Nervous and Mental Disease 125 (1956), 497.

[53] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 284–294. https://doi.org/10.1145/2786805.2786845

[54] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 284–294. https://doi.org/10.1145/2786805.2786845

[55] Jeremy Singer, Gavin Brown, Ian Watson, and John Cavazos. 2007. Intelligent
Selection of Application-Specific Garbage Collectors. In Proceedings of the 6th
International Symposium on Memory Management (Montreal, Quebec, Canada)
(ISMM ’07). Association for Computing Machinery, New York, NY, USA, 91–102.
https://doi.org/10.1145/1296907.1296920

[56] Urjoshi Sinha, Mikaela Cashman, and Myra B. Cohen. 2020. Using a Genetic
Algorithm to Optimize Configurations in a Data-Driven Application. In Search-
Based Software Engineering - 12th International Symposium, SSBSE 2020, Bari,
Italy, October 7-8, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12420),
Aldeida Aleti and Annibale Panichella (Eds.). Springer, Bari, Italy, 137–152. https:
//doi.org/10.1007/978-3-030-59762-7_10

[57] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly.
2003. Meta optimization: Improving compiler heuristics with machine learning.
ACM sigplan notices 38, 5 (2003), 77–90.

[58] Suprapto and Retantyo Wardoyo. 2013. Algorithms of the Combination of Com-
piler Optimization Options for Automatic Performance Tuning. In Information
and Communication Technology, Khabib Mustofa, Erich J. Neuhold, A. Min Tjoa,
EdgarWeippl, and Ilsun You (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
91–100.

[59] Paul Temple, Mathieu Acher, Jean-Marc Jezequel, and Olivier Barais. 2017. Learn-
ing Contextual-Variability Models. IEEE Software 34, 6 (Nov. 2017), 64–70.
https://doi.org/10.1109/ms.2017.4121211

[60] Paul Temple, José A. Galindo, Mathieu Acher, and Jean-Marc Jézéquel. 2016.
Using Machine Learning to Infer Constraints for Product Lines. In Proceedings
of the 20th International Systems and Software Product Line Conference (Beijing,
China) (SPLC ’16). Association for Computing Machinery, New York, NY, USA,
209–218. https://doi.org/10.1145/2934466.2934472

[61] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K.
Hollingsworth. 2009. A Scalable Auto-Tuning Framework for Compiler Op-
timization. In Proceedings of the 2009 IEEE International Symposium on Paral-
lel and Distributed Processing (IPDPS ’09). IEEE Computer Society, USA, 1–12.
https://doi.org/10.1109/IPDPS.2009.5161054

[62] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I. August. 2003. Compiler
optimization-space exploration. In International Symposium on Code Generation
and Optimization, 2003. CGO 2003. IEEE, San Francisco California USA, 204–215.
https://doi.org/10.1109/CGO.2003.1191546

[63] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2015. Empirical Comparison
of Regression Methods for Variability-Aware Performance Prediction. In Pro-
ceedings of the 19th International Conference on Software Product Line (Nashville,
Tennessee) (SPLC ’15). Association for Computing Machinery, New York, NY,

USA, 186–190. https://doi.org/10.1145/2791060.2791069
[64] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2020. Transferring Pareto

Frontiers across Heterogeneous Hardware Environments. In Proceedings of the
ACM/SPEC International Conference on Performance Engineering (Edmonton AB,
Canada) (ICPE ’20). Association for Computing Machinery, New York, NY, USA,
12–23. https://doi.org/10.1145/3358960.3379127

[65] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister,
and Krzysztof Czarnecki. 2017. Transferring Performance Prediction Models
Across Different Hardware Platforms. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering (L’Aquila, Italy) (ICPE ’17).
Association for Computing Machinery, New York, NY, USA, 39–50. https://doi.
org/10.1145/3030207.3030216

[66] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister,
and Krzysztof Czarnecki. 2017. Transferring Performance Prediction Models
Across Different Hardware Platforms. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering (L’Aquila, Italy) (ICPE ’17).
Association for Computing Machinery, New York, NY, USA, 39–50. https://doi.
org/10.1145/3030207.3030216

[67] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Käst-
ner. 2021. White-Box Analysis over Machine Learning: Modeling Performance
of Configurable Systems. arXiv:2101.05362 [cs.SE]

[68] Yilin Wang, Sasi Inguva, and Balu Adsumilli. 2019. YouTube UGC Dataset
for Video Compression Research. In 2019 IEEE 21st International Workshop
on Multimedia Signal Processing (MMSP). IEEE, Kuala Lumpur, Malaysia, 1–5.
https://doi.org/10.1109/mmsp.2019.8901772

https://doi.org/10.1016/j.procs.2013.05.298
https://doi.org/10.1109/icccn.2017.8038517
https://doi.org/10.1109/icccn.2017.8038517
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1145/800192.805690
https://doi.org/10.1145/800192.805690
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1145/1296907.1296920
https://doi.org/10.1007/978-3-030-59762-7_10
https://doi.org/10.1007/978-3-030-59762-7_10
https://doi.org/10.1109/ms.2017.4121211
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1109/IPDPS.2009.5161054
https://doi.org/10.1109/CGO.2003.1191546
https://doi.org/10.1145/2791060.2791069
https://doi.org/10.1145/3358960.3379127
https://doi.org/10.1145/3030207.3030216
https://doi.org/10.1145/3030207.3030216
https://doi.org/10.1145/3030207.3030216
https://doi.org/10.1145/3030207.3030216
https://arxiv.org/abs/2101.05362
https://doi.org/10.1109/mmsp.2019.8901772

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Compile-time and run-time options
	2.2 Performance prediction
	2.3 Research questions

	3 Experimental Protocol
	3.1 Selecting the subject systems
	3.2 Measuring performances
	3.3 Analyzing run-time performances
	3.4 Studying the interplay of compile- and run-time options

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Threats
	8 Conclusion
	References

