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Sizing distribution equipment of a district heating (DH) network is a complex yet decisive process to target techno-economic optimality for these systems. This paper describes and validates a framework that uses multi-objective optimization to support decisions regarding the sizing of a DH network. A genetic algorithm (NSGA2) is employed to generate optimal pipe diameters with respect to the operational and investment cost. This framework is then validated using an elementary toy problem consisting of a straight horizontal two-tube network, with a set of identical consumers equally distributed in the network and supplied by a unique heat source. We show that the framework, on the aforementioned problem, reaches very good convergence and diversity for the optimal solutions. This sizing method is then compared to typical local sizing method. We demonstrate a significant decrease of global cost by 40% by using DH network system simulation to take into account local interactions inside the DH system.

Introduction

District heating (DH) networks are an efficient way of producing and distribute heat on a territory and are widely used in Europe [START_REF] Werner | International review of district heating and cooling[END_REF]. They have the advantages of increased heat production efficiency and the possibility to distribute heat from various sources such as boilers, renewable energy, or heat recovery in the industry. However, the design of such DH network is a challenge on the production side, and on the distribution side. For example, oversizing the distribution pipes can lead to useless investment cost and under sizing may prevent some customer's demand to be fulfilled. In this domain, engineering guidelines generally rely on a pipe by pipe approach using threshold on either the fluid velocity, the regular pressure loss or both [START_REF] Frederiksen | District Heating and Cooling[END_REF]. Recommendations may vary depending on the local standards but the calculations are often performed on a static sizing point.

Researchers proposed different methods to use optimization in order to generate optimal designs for a distribution network. Most of the proposed methods aim to size the layout of the distribution network while the possible trajectories of potential pipes are already predetermined [START_REF] Egberts | Challenges in heat network design optimization[END_REF]. Multiple studies, referenced in [START_REF] Sameti | Optimization approaches in district heating and cooling thermal network[END_REF], address this problem by simplifying the network, in order to solve the sizing problem as a MILP problem. This approach leads to affordable computational effort only when complex DH system featuring multiple producers or storage units are discarded.

In order to deal with non-linear problems, heuristic methods have been used in recent research. [START_REF] Vesterlund | Design Optimization of a District Heating Network Expansion, a Case Study for the Town of Kiruna[END_REF]) used a Genetic Algorithm (GA) to size the piping and a boiler for an extension of Kiruna's DH network while lowering the CAPEX and OPEX of the network. [START_REF] Li | District Heating Network Design and Configuration Optimization with Genetic Algorithm[END_REF]) used a GA to minimize the net present cost of the distribution of a DH network with 10 consumers by optimizing both the topology and the sizing of the network. Those methods are efficient to deal with non-linearities and non-convexities in the evaluation function, and can deal with discrete decision variable. Thus, it makes them suitable for our problem.

Heuristic methods have been used for the sizing of large water distribution networks with 317 decision variables (pipe diameters) by [START_REF] Monsef | Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network[END_REF], and proved to have a good scalability to tackle problems such as the sizing of a DH network at a city-scale. Nevertheless, the computational cost of these methods can be high as [START_REF] Monsef | Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network[END_REF] had to call 500 000 evaluations of its system for 317 decision variables and [START_REF] Vesterlund | Design Optimization of a District Heating Network Expansion, a Case Study for the Town of Kiruna[END_REF] called 25 000 evaluation for 111 decision variables. There is therefore an interest in the use of multi-objective optimization if the evaluation function is not expensive to calculate. This paper reports on the first steps towards the design and validation of an optimization framework dedicated to the sizing of distribution pipes in a DH network. The main contribution lies in the combination of an efficient DH simulation tool with a multi-objective optimization method and its validation against a case study. The combination of these elements enable to identify the best design choices in a discrete decision space. Used in combination with a scalable thermal-hydraulic simulation engine, this approach allows dealing with the sizing of large-scale DH networks while using meta-heuristic methods. In the present work, we rely on DistrictLab-H, for the simulation of DH network models. More details about this simulation engine are given in the next section and in a paper in preparation [START_REF] Bavière | A step towards predictive simulation of large-scale heating grids: Implementation and validation of the DistrictLab-H platform[END_REF]. This paper is organized as follows. The next section describes the optimization framework with its structure and components. Section 3 introduces a toy problem used for validation purpose. In Section 4, the results of the optimization are presented and compared to a reference solution while section 5 compares the results obtained using a local sizing method widely used. The last section concludes our work.

Framework

The main design goal of our optimization framework is to combine a multi-objective optimization method, with a non-linear evaluation function brought by a DH network simulation engine. This section first describes the specification of the problem; secondly, it presents the choices made in the framework and then explains the global structure of our framework.

Specifications of the optimization problem

The decision variables to optimize are tunable parameters belonging to a DH Network simulation model. In the present work, we only considered the distribution diameters but more parameters will be included in further research, such as the possibility to add new boilers, storage units or booster pumps. The targeted final application for the framework is the optimization of the DH network model for a medium city comprising several hundreds of customers and thousands of distribution pipes. Those parameters are by nature discrete, because not all diameters of distribution pipes exists in the market.

The objective functions presently optimized in the framework are the investment cost (CAPEX) for the proposed modification of the network and the operation cost (OPEX) of the network. However, additional objectives, like CO2 emissions for example, could also be considered.

For the optimization results to be applicable, some constraints have to be accounted for: first of all, a constraint for the satisfaction of all customers is integrated : this constraint is expressed under the form of a user defined satisfaction rate threshold:

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 ∑ 𝐻𝑒𝑎𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝐻𝑒𝑎𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 ≥ 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 2.2.

Evaluation function

The evaluation of a possible design solution is done through the DistrictLab-H DH network simulation tool. The corresponding model and resolution method are described in a paper in preparation [START_REF] Bavière | A step towards predictive simulation of large-scale heating grids: Implementation and validation of the DistrictLab-H platform[END_REF]. This tool allows the dynamic simulation of distribution pipes connected to centralized supply units and to a collection of heat consumers through substations of the indirect type. This solver enables the simulation of large-scale DH networks in a reasonable calculation cost.

Optimization method

The discrete nature of the decision parameters, the possible number of these decision parameters and the nonlinear nature of the evaluation function drive us towards heuristic multi-objective optimization methods. In those methods, GA are widely used for problems with the same characteristics in the literature [START_REF] Sameti | Optimization approaches in district heating and cooling thermal network[END_REF][START_REF] Vesterlund | Design Optimization of a District Heating Network Expansion, a Case Study for the Town of Kiruna[END_REF].

We chose to used NSGA-II genetic algorithm [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] for its robustness and its performance on solving multi-objective optimization problems with a limited amount of objectives. Among the implementation of NSGA-II, the one from python library Deap [START_REF] Fortin | DEAP: Evolutionary Algorithms Made Easy[END_REF] is of interest for its improvement on the calculation of the crowding distance [START_REF] Fortin | Revisiting the NSGA-II crowding-distance computation[END_REF], and is therefore integrated in the framework.

Summary of the structure of the framework

How all of these components are then integrated in the optimization framework and communicate with each other can be described in Figure 1.

Each dash rectangle shows the limits of each component of the framework. The optimization process part contains all the evolutionary procedure of the GA. This optimization process sends an individual of the optimization to the evaluation function which use this individual to modify the DH network model (in our case modify the pipe diameters) and carry out a simulation. Simulation results are post-processed in the evaluation function to calculate the result of the objective function used in the optimization. The result of the objective function is then sent back to the optimization process and is affected to the individual. The evaluation function is a black box for the optimization process: it takes the individual as an argument and returns the value of the objective function. 

Case study

In order to use the optimization framework on complex DH network sizing problems, we wanted to validate it on small-scale test cases first. This section describe the test case, which consist in a simple linear network and the formulation of the optimization problem.

DH network model description

The layout of the test case is displayed on Figure 2 the DH network consists of a straight horizontal two-tube network, with a set of N identical consumers equally distributed in the network. At the production level, we consider an ideal boiler along with a pump regulated to maintain a pressure head difference of 1 bar across each consumer of the network. The main model parameters are given in Table 1. Each consumer is modelled by its substation (SST). The substation model features an exchanger and a control valve regulated with a PID controller to provide the heat needed by the consumer. This toy problem is interesting to consider since, as we will show in section 4, it is possible to obtain an exact solution and to have a close understanding of the physics behind the results of the optimization. As the goal of this paper is to validate the optimization framework against an exact solution and to be able to keep an understanding of the physics, we opted for static simulation. In a preliminary step, we evaluated a naïve solution obtained by systematically considering a DN300 pipe for every sections of the toy problem. The main results of the simulation are provided in Table 2, and the solution is plotted in the next section's Figure 3. Those results show that those diameters are higher than needed to supply the heat into substation and are a consequent oversizing of the network.. 104 k€ For this test case, the optimization problem formulation is described in the following paragraphs.

Optimization formulation

The decision parameters are the pipe diameters of each section. Supply and return line of the same section of the network are supposed to be identical. Thus, the number of decision parameters is equal to the number of consumers, which is equal to 10.

The two objective functions for the optimization are the investment cost (CAPEX) needed for the pipes, and the operational pumping cost (OPEXpumping, as the part of OPEX related to pumping). The CAPEX is calculated by summing the cost for each pipe. The cost of each pipe € 𝑝𝑖𝑝𝑒 depends on its diameter and is calculated as € 𝑝𝑖𝑝𝑒 = 970 * 𝐷 + 30. According to DH Network operator, this linear relation is a fair approximation of piping prices.

As a widely accepted lifetime for the pipes is 20 years, we calculated the OPEX for 20 years of operation as well to make it comparable. According to French technical center CEREMA, DH networks operation during one year corresponds to 2500h at full power in average. Moreover, according to [START_REF] Li | District Heating Network Design and Configuration Optimization with Genetic Algorithm[END_REF], pumping cost can be approximated to 108€/MWh. Consequently, the OPEX on 20 years can be calculated with:

𝑂𝑃𝐸𝑋 20𝑦𝑟𝑠,𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = ∑ 𝑂𝑃𝐸𝑋 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 (1 + 0.05) 𝑦𝑟 20 𝑦𝑟=1
𝑤𝑖𝑡ℎ 𝑂𝑃𝐸𝑋 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = 𝑃 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 * 2500 * 108 2 with 𝑃 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 being the pumping power of the simulated network in MW. Please note that the choice for the values of pumping cost, actualization rate or hours of operation does not change which solution is optimal, but makes it comparable to the CAPEX as it reaches order of magnitude.

Constraints and parameters of the optimization

A single constraint is imposed on the DH network: at least 98% of the heat demand must be satisfied. If this constraint is not satisfied, the individual is eliminated from the optimization.

Parameters for NSGA2 algorithm are population size equal to 100 individual, 250 number of generation and a mutation rate of 0.1.

Decision space for the case study

The decision space consists of a selection of pre-insulated rigid steel pipes issued from a Logstor pipe catalogue. The pipes ranges from DN20 to DN350. Their rugosity height is 45µm; the insulation thermal conductivity is 0.0275 W/m.K. Other properties depends on the selected diameter and are detailed in Table 3. 

Results

First, the process of building a reference Pareto Front used as an exact solution for this optimization problem is detailed. Then the results of the multi-objective optimization are presented and compared to the reference Pareto front.

Generation of a reference Pareto Front

We obtained the reference Pareto Front using a systematic but constrained search within the decision space. Every possible solution of the decision space respecting those constraints was calculated and only optimal solutions in the Pareto sense were kept. The constraint used to limit the computational burden was to only consider diameter sets which decrease with the distant from the supply unit. This simplification is sensible for this particular toy problem since the power to be transported by a section further from the boiler is lower than for the neighbour section closer to the boiler. The evaluation function part of the optimization framework was used to evaluate all of these sets. The reference Pareto front generated this way is plotted in red in Figure 3.

Results of the optimization

The output of the multi-objective optimization using the previously described framework and test case were obtained after a computation time of 16 hours on a regular laptop (Intel Core i7, 1.10GHz, with 8 cores allocated to the optimization). When analyzing the content of the solutions, all of them contain decreasing diameters while no constraints were imposed in the formulation of the optimization. This behavior confirm the relevance of the hypothesis used to generate the reference Pareto front. Diameters for the first pipe (close to the supply unit) range between DN200 and DN350 while diameters for the last pipe (further from the boiler and the pump) range between DN100 and DN200.

On the objective function values, the results of the optimization range from 193 k€ to 4 144 k€ for the pumping part of the OPEX calculated for 20 years of exploitation, and between 3 568 k€ to 6 424 k€ for the CAPEX.

All of the optimal solutions provided by the optimization are plotted in blue "x" on Figure 3 along with the reference Pareto front in red "+". A first qualitative comparison of the solutions provided in this figure is that the solutions seems to have a great diversity (the spread is similar when comparing obtained and reference Pareto set) and a very good convergence (the Pareto curves are close from one another).

The convergence of the optimization can be verified by the evolution of hypervolume indicator [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF], which is available on Figure 4 and is compared on the same Figure to the hypervolume of the reference Pareto set. The stabilization of hypervolume at generation 110 implies that the optimization seems to reach a global optimum, as it does not discover optimum region of the objective space anymore. The global behavior of the search for optimal solution can be broken down into four phases, visible in the optimization thanks to Figure 4 and Figure 5. The first phase from the start to generation 70 is an approach of a local optimum. The second phase, until generation 120 is an increase of the diversity of the front with no major improvement in the convergence (there is still a small gap between the obtained and the reference Pareto front). Then until generation 180, the convergence is slightly improved and a few solutions are improved to the global optimum. No notable improvement are noticeable afterward.

The results of the optimization presented in this section, demonstrate a close correspondence to the reference results, in term of convergence to the same performance and in term of diversity of the solution proposed. Those results demonstrate the validity of the proposed method and framework to find accurate optimal solutions for the sizing of DH networks pipes on this test case and makes it possible to expand the use of the framework on further different problems.

Comparison to a local sizing method

In order to have a better understanding of the reference Pareto front, we propose to compare it to a solution elaborated with a local sizing method that is a solution widely employed in engineering offices. This solution can be computed by searching for the optimal diameter from the available diameters detailed in Table 3, for each section of the network. each section, the optimal diameter is the one that minimize the cost of the section. The global cost is determined by the aggregation the investment cost (CAPEX) and the pumping cost (OPEX) in a single value : we choose to calculate the Net Present Value (NPV) on 20 years. This economic indicator is widely used in the literature and is a key indicator for DH Network operators (Carpenè & Haeusler, 2019;[START_REF] Dufo-López | Multi-objective design of PV-wind-diesel-hydrogen-battery systems[END_REF][START_REF] Li | District Heating Network Design and Configuration Optimization with Genetic Algorithm[END_REF]. The NPV is computed as follows:

𝑁𝑃𝑉 = 𝐶𝐴𝑃𝐸𝑋 + ∑ 𝑂𝑃𝐸𝑋 (1 + 0.05) 𝑦𝑟 20 𝑦𝑟=1 4
The OPEX and the CAPEX are computed with the same procedure as the one detailed in section 3 for the multiobjective optimization..The pumping power of the OPEX is evaluated by calculating the regular pressure loss across the section. This term is computed with the same correlation as in DistrictLab-H, ie. proposed by [START_REF] Swamee | Explicit Equations for Pipe-Flow Problems[END_REF]. In this approach, the problem is simplified to a set of mono-objective, mono-variable minimization problems.

The optimal solution of the local sizing method is compared to the closest solution from the reference Pareto set. This solution is selected by performing the same aggregation of the OPEX and CAPEX in order to pick the optimal solution of the same mono-objective problem. The comparison of the diameters provided by both of those methods is available in Table 4. 125 Proposed diameters are the same for the section 1 to 6, and after those sections, the local sizing method result in diameters smaller than the one present in the reference Pareto set. This suggest that in the optimization framework, the OPEX has more influence on the diameters selected than in the local sizing method, and thus that the pumping power is under estimated in the local sizing method.

DistrictLab-H simulation's results for regular pressure loss in the pipes are in accordance with the values proposed by the local sizing method, but other pressure losses are simulated by DistrictLab-H in other components such as substations and control valve. These components have an effect on the system global operating cost that is not taken into account when sizing each section independently. Indeed, system level effects arise due to dependency of the pumping power to head losses with respect to the global mass flow rate, whereas local sizing only accounts for the mass flow rate effectively circulating in the pipes of interest. Thus we think that the hypothesis of independence of each section of the DH network does not enable an optimal sizing of the pipes.

Even if further research is needed to understand fully the difference between the solutions given in the local sizing method and the optimization framework, those differences suggest that a DH network is a complex system that can benefit from a sizing method as the one proposed by our framework that treats the network as a whole and which accounts for inner interactions.

Conclusion

This paper presented a sizing framework for distribution pipes in DH networks. The framework is based on multi-objective optimization and its components were presented in section 2. A toy problem was used to test and validate the framework on a small scale problem. The results section of this paper suggests that the optimization framework is capable of closely approximating enough the Pareto front of an optimization for our application. It can thus be used for decision support regarding optimal sizing for a DH network distribution, at least for simple network layout. First, the validation against a reference Pareto front enables us to ensure the quality of provided results on a simple test case and in the capacity of the framework to tackle this type of problems. Secondly, the comparison to a local sizing method show an interest to the method of sizing integrated in our optimization framework.

The choices made in the development of this framework lean towards the resolution of more complex problems: the introduction shows us that problems with more than a hundred parameters were solved with similar methodological choices [START_REF] Hohmann | Multi-objective optimization of the design and operation of an energy hub for the EMPA campus[END_REF][START_REF] Li | District Heating Network Design and Configuration Optimization with Genetic Algorithm[END_REF][START_REF] Vesterlund | Design Optimization of a District Heating Network Expansion, a Case Study for the Town of Kiruna[END_REF]. With the small-scale validation, we are confident to tackle such problems, and to use the DistrictLab-H simulation platform for dynamic simulation in these optimization problems while keeping a reasonable calculation cost. Dynamic simulation will make it possible to optimize the sizing of the network while taking into account the possibilities of storage, to include the impact of transient states on the operation cost of the network.

Main limitations of this optimization framework lie in two points. First, the complexity of the evaluation function implies that the real Pareto front is often too costly to find, and that the Pareto front obtained as a results of the optimization is an approximated Pareto Front. Therefore, solutions of the obtained Pareto Front may be used as a good starting point for further studies before the implementation of those solutions on site. The second limitation lies into the assessment of the quality of the results of multi-objective optimization. This issue is tied with the calculation cost of such an optimization: the choice of the number of evaluation has to be made carefully to ensure the convergence while limiting the number of evaluation. Further work will also address the validation of the framework on other toy problems, such as a tree-shaped DH network and a loop shaped DH network before using the framework on a city-scale complex problem.
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Figure 4 :
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Table 1 :

 1 model parameters for test case with 10 consumers

	Sizing total heat demand	50 MW
	Total length of DH network	10km supply line + 10 km return line
	Boundary condition	P=2 bars on return line at boiler
	Temperature setpoint of the boiler	135°C

Table 2 :

 2 main simulation results for the "naïve" solution with DN300 pipes everywhere

	Total heat demand in substations	50 MW
	Total heat injected by heat generator	50,8 MW
	Total heat loss	700 kW
	Total pumping power (𝑃 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 )	69 kW
	CAPEX	6 420 k€
	OPEX20yrs,pumping	

Table 3 :

 3 Decision space : possible pipe specifications

	DN	20	25	32	40	50	65	80
	Insulation thickness (mm) 31	28	34	31	32	32	36
	DN	100	125	150	200	250	300	350
	Insulation thickness (mm) 42	42	41	48	63	63	72

Table 4 :

 4 comparison of diameters for the optimal solution given by the local sizing method and the optimization framework

	Section	1	2	3	4	5	6	7	8	9	10
	Local sizing	250	250	250	250	200	200	150	150	125	80
	Ref Pareto set 250	250	250	250	200	200	200	200	150	
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