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Abstract8

This article presents the integration of phasing (ie. temporal distribution of retrofit actions over time) into9

multi-objective optimization of retrofit. The aim of this method is to get closer to real world practice in10

the construction sites. The case study is carried out on a small building stock with the NSGA-II genetic11

algorithm. The search space of the optimization are vertical and horizontal walls and windows of each12

building; objective functions are heating demand, price of the proposed retrofit and an overheating indicator13

based on adaptive comfort. Overheating and heating demand are evaluated using EnergyPlus simulations.14

Phasing is implemented directly into the optimization formalisation with a separated chromosome describing15

temporality. As a result, different retrofit strategies were obtained by integrating phasing than with a standard16

optimisation with no temporal planning of operations.The main difference lies into the which building is17

selected to be retrofitted first, and in the improved performance of each retrofit material proposed : it led18

to an increase of performance of 10% in the overheating while thermal performance decreased for 2% in the19

retrofit strategies possible in reality when including the phasing. These results highlight the importance of20

formulating the optimization problem as close as possible to the real world constraints in construction in21

order to have accurate retrofit strategies.22
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Highlights23

� Optimal retrofit plans for building stocks are generated using genetic algorithm24

� The phasing of retrofit actions is integrated in the optimisation search space25

� Results show that proposed optimal strategies are different when phasing is integrated26
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1 Introduction29

According to the International Energy Agency [1], buildings are responsible for 30% of the worldwide primary30

energy use. The energy efficiency of buildings is a key to meet the ambitious target of 1.5°C of climate change.31

The Intergovernmental Panel on Climate Change suggests a decrease of building energy demand of 8 to 14%32

by 2030 [2] in order to meet with proposed scenarios.33

In addition, the building stock is renewed in France at a 1% yearly rate [3] and existing buildings are often34

considered architectural heritage [4]: the highest potential for energy savings therefore lies in retrofitting the35

existing building stock. Generally, property managers base their retrofitting decisions on expert knowledge,36

then attempt to balance and optimize these decisions with constraints such as the global cost, including37

public financial assistance, energy efficiency, or comfort of the tenants. Although the solutions proposed by38

experts are generally suitable, they are not necessarily the most efficient.39

A step further could be to automatize the balancing of the constraints with simple methods like weighted40

sum or weighted product. The proposed solution would then be part of the optimal solutions, but would be41

unique [5]. This limits the power of the decision maker: such methods could thus suffer of a low acceptability42

because of the lack of control on the process [6]. The weighted sum method suffers from another drawback,43

which is the difficulty to rank objectives among themselves. This difficulty has also been showed in different44

approaches at building stock level using multi-criteria decision aid methods like REDIS [7]. Consequently,45

multi-objective optimization (MOO) is a promising approach to efficiently propose a set of optimal solutions46

so the experts may focus on selecting one solution among several optimal candidates. Among MOO methods,47
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genetic algorithms has been extensively used to optimize building retrofit, as stated in the review of Costa-48

Carrapiço [8].49

Multi-objective optimization has also been used to set up energy policies at larger scales. Tools have been50

developed to allow the evaluation of energy efficiency measures at city scale such as Stockholm [9]: buildings51

are first broken down into clusters and three energy conservation measures are evaluated regarding CO252

emission, heat demand and economic criteria. A similar approach has been carried out at the region level53

in Italy [10] and assesses energy efficiency measures based on a cost-benefit approach on environmental and54

economic criteria. Such methods help decision makers generate efficient energy policies but do not enable55

planning if and when the measures will be implemented.56

In order to be useful to decision makers, MOO should be as close as possible to the real-life construction57

management workflow. A key point of any building stock management is the phasing plan of the construction58

work. The phasing of a construction work is how each action is broken down and arranged on a timeline59

with respect to construction constraints, site requirements, or time constraints. This timeline can last from60

less than a month on simple construction sites to a few years when dealing with a whole neighbourhood or61

a building stock managed by the same owner.62

Phasing has been extensively studied in civil engineering at the construction site level [11] in order to63

optimize the scheduling of the construction. The prioritization of retrofit between multiple buildings has64

been studied by [12] with the seismic risk as an objective function. This objective function is calculated with65

subjective weights given to each variable of the problem (economy, safety, regulations) in order to come up66

with a mono-objective optimization problem. This is an efficient method if the decision maker is able to67

affect a weight to each objective, but it can only be applied if all objectives may be ranked. Another way to68

deal with the phasing plan of construction is the use of a risk-based approach to carry out decisions about69

the retrofit. Taillandier [13] qualitatively evaluates whether an action should be undertaken or not and aims70

to rank actions. However, each action must be proposed by an expert: the method loses efficiency as the size71

of the building stock increases. Moreover, the choice of action is subjective as the expert is influenced by his72

experience. Finally, Rivallain [14] proposed a method to sequence each retrofit action for optimization. This73

method was applied to two small fictional buildings and was limited to one retrofit action per year.74

The purpose of this paper is to propose a formulation of temporal arrangement of retrofit strategies75

in the multi-objective optimization of a building stock, and then observe whether including this temporal76

dimension has any impact on the strategies proposed by optimization. This approach aims to get closer to77

the real world practice and to enable the planning of efficient retrofit projects for building stocks thanks to78
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multi-objective optimization. In our terminology, the term of ”stock” refers to a set of buildings managed79

by a unique property owner, with shared portfolio for refurbishment funds (e.g. social housing). The paper80

first describes the general framework for the optimization, then details the specifics of the implementation81

of temporal phasing in the optimization. Finally, outputs of the optimization are compared in order to put82

forward the effect of the integration of temporal distribution of construction on optimal retrofit strategies.83

2 Optimization methodology84

In order to allow optimizing different and often contradictory objectives, we use multi-objective optimization.85

The formulation of the problem plays a significant role in the success of the process and in the interpretability86

of the results. Thus the problem should be carefully formulated with regards to which parameters to optimize,87

the decision space including the possible values of parameters, and the objective functions of the model.88

Figure 1: General optimization workflow

Figure 1 illustrates the global optimization process: in our case the aim is to generate optimal retrofit89

strategies for a building stock, which will form a set of candidates for decision (Pareto front). The global90

optimization process can be broken down into 3 main parts:91

� the optimization algorithm which should consistently find optimal solutions;92

� the decision space which is an input of the optimization algorithm;93

� the objective functions in which the building stock performance are evaluated.94

The objective function receives an individual to evaluate, which details the retrofit strategies components.95

This is part of the optimization algorithm which is chosen in section 2.3.96

Each of these components is detailed hereafter.97
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2.1 Objective functions98

Building managers are optimizing retrofit plans on various objectives covering energy, environment, comfort99

of the tenants, costs... As a starting point, we choose to optimize retrofit strategies based on 3 objective100

functions selected in different fields based on the importance of the criteria for building managers in social101

housing. Thus the following objective functions are selected:102

� Heating demand : weighted average of the heating needs in kWh/m2 of all of the buildings for all of103

the years of the retrofit plan104

� Overheating : sum of the °C.hours above the 90% operative temperature comfort zone [15] over all105

years of the retrofit plan106

� Cost : sum of the costs (in ¿) of all retrofit actions (global construction budget)107

Concerning the overheating objective, it should be noted that in France, air conditioning is generally not108

provided in residential buildings. Summer comfort is an increasing concern as heatwaves occurrences become109

more frequent.110

The definition of the time span is important, as it may impact the choice of retrofit actions. Here the111

time span of 20 years has been chosen, matching the average lifetime of retrofit actions. Indeed, datasheets112

for insulation materials show a lifetime of 15-25 years when properly implemented. Windows’ lifetime lies113

between 20 and 25 years according to manufacturers.114

2.2 Decision space115

The decision space is composed of the possibles values for all parameters to be varied through the optimization116

process. In our case, the decision space was designed using the expert knowledge of engineering offices that117

completed multiple energy retrofits as project manager and as on-site management.118

Each of the retrofitting actions is broken down into elementary tasks that deal with one component of119

one building (e.g. Change insulation: 12cm of rockwool on ceiling of building 1 ).120

An example of decision space is available in the section 3.121
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2.3 Optimization algorithm122

The characteristics of our problem guide the choice of the optimization algorithm:123

� The decision space is discrete. For instance, insulation materials are available in a limited number of124

thicknesses, and thus of R-values.125

� It is preferable to keep multiple separate objectives, rather than a single weighted sum of indicators for126

the decision makers to be able to apply preferences later on.127

Thus, genetic programming is a suitable approach to deal with this problem. As shown by Evins [16], other128

optimization methods do not meet our needs on either of the two points listed above while limiting the129

number of evaluations needed. Within genetic programming, the NSGA2 ([17]) algorithm has been widely130

used and its robustness has been validated by multiple studies in building physics [16, 18]. Finally, it is131

applicable to large decision spaces, such as large combinatorial problems that can occur when dealing with132

building stocks.133

Genetic algorithms mimic evolution by reproducing a population of individuals, and adapting them to their134

environment. In the end of the evolutionary process, only optimal individuals to their environment remain135

: they were optimized according their objective of survival in this environment. An individual features its136

chromosome, which is a representation of the set of parameters, and its fitness, which is the performance of137

the individual on each objective function. In each chromosome, one gene represents one parameter of the138

model to optimize. In order to explore the decision space of possible values for the parameters, chromosomes139

may vary through mutation or crossover.140

We chose to use an efficient implementation of NSGA2 available in the DEAP Python library [19]. This141

implementation stands out with its improvement of the calculation of the crowding distance, as detailed in142

Fortin and Parizeau [20].143

2.4 Integration of temporality in optimization144

The main goal of our work is to integrate temporality in the multi-objective optimization algorithm with145

different levels of complexity while being able to compare the outputs of the optimization. We chose to146

implement 2 types of temporality in the optimization: sequencing and phasing. They will be compared147

with a base scenario, excluding temporality issues.148
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Figure 2: Workflow for base and sequenced optimization

In the base scenario, all operations are carried at the beginning of the first year. This is the reference149

scenario, which will be used to compare the outcome of the other scenario. No constraints were imposed on150

the budget either on base or sequenced optimization.151

2.4.1 Implementations of sequencing152

Sequencing is the first step in adding temporality in the retrofitting actions. In this approach, presented in153

Figure 2, one retrofit action is carried out every year on one building (e.g On year 2, insulation is replaced154

with 10cm of rockwool on Ceiling of building 2 ).155

The implementation of sequencing into the optimization algorithm is proposed by adding an extra chro-156

mosome that describes the temporality of actions. Consequently, each individual has now two chromosomes,157

as shown in Figure 3.158

As previously stated, only one retrofit action is carried out at each stage (here, each stage equals one159

year). Consequently, in the case of sequencing, the chromosome that describes the temporality, visible on160

Figure 3, cannot include duplicate values, which means that specific mutation and crossover operators should161

be used. [21] proposed a crossover operator that respects the discrepancy and does not slow down nor reduces162

diversity [22].163
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Figure 3: Chromosomes setup for the optimization

2.4.2 Implementation of phasing164

Phasing is meant here as a generalisation of sequencing. The main difference is that multiple retrofit actions165

may be carried out the same year. Here, the available yearly budget sets the limit to the yearly number of166

possible retrofit actions. Technically, it has been done by adding a phasing chromosome to the sequencing167

chromosome, as shown in Figure 4.168

Figure 4: Creation of phasing chromosome
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For each individual of the optimization, the cost of each retrofit task is evaluated. Next, each retrofit task169

is affected to a phase with respect to their order and the available budget by phase.170

Retrofit actions exceeding the budget are not applied on the building stock, and not evaluated. If an171

individual has a lot of non-applied actions due to budget limits, the convergence speed of the optimization172

may be affected.173

2.5 Summary of the optimization scenarios174

Figure 5: Summary of optimization scenarios

In summary, 3 optimization scenarios, listed on Figure 5, will be compared. The base scenario does175

not include a temporal chromosome and only optimizes the retrofit actions carried out on the building176

stock. The sequenced optimization uses the chromosome for the retrofit actions as well as the sequencing177

chromosome. Finally, phased optimization uses the retrofit actions chromosome and the phasing chromosome178

which elaboration is detailed in Figure 4.179

180

3 Case Study181

3.1 Building stock182

Proposed optimization scenarios are applied here on a social housing stock located close to Paris, France.183

The investigated building stock is composed of 3 apartment blocks, chosen as representative of the whole184
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building stock. The specifications of these buildings have been provided by the property manager.185

Table 1: Initial characteristics of the buildings.

Building 1 Building 2 Building 3
Total floor area 3020 m2 850 m2 6667 m2

Shape Low-rise High-rise Low-rise
Energy label D (151-230kWh/m2/year) E (231-330kWh/m2/year) D

Number of floors 5 9 5
Year of construction <1979 <1979 <1979
Window to wall ratio 27% 24% 14%

R-Value walls (m2.K/W) 1.25 1.25 3.1
U window (W/m2.K) 2.4 2.4 2.6

Buildings were modeled in EnergyPlus using Design Builder for the geometry. Their characteristics are186

listed in Tab. 1. They are initially poorly or not insulated, and have never been renovated before.Building187

models are detailed in the following section.188

3.2 EnergyPlus modeling and settings189

The choice of EnergyPlus algorithm and parameters reflects the needs of the optimization and the need to190

describe accurately the buildings: having comparable values for the overheating and heating needs criteria.191

Consequently the shadowing calculation is kept to the minimum, and no reflections for the radiation were192

computed. Moreover, convection algorithm were kept to simple indoor and outdoor heat transfer coefficients.193

According to the EnergyPlus documentation, these settings have a low impact (less than 1.5% difference) on194

all output criteria. Used timestep is 30min.195

3.2.1 Schedules196

Occupation and heating schedules are selected to allow a practical comparison between retrofit strategies.197

Standard schedules from the French Thermal Regulation are selected ([23]). An example is shown by Tab.198

2.199

Table 2: Temperature heating setpoint from [23]

Mon-Fri
(except Wed)

Wednesday Weekend

00:00-09:00 19°C 19°C 19°C
09:00-14:00 16°C 16°C 19°C
14:00-18:00 16°C 19°C 19°C
18:00-00:00 19°C 19°C 19°C
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Old apartment blocks like those buildings are often naturally ventilated, and although the absence of200

mechanical ventilation is easy to model, past studies showed that in this case the occupant behavior had201

a great impact on the ventilation rate ([24, 25]). Indeed, natural ventilation through the window openings202

has a major influence on the overheating indicator calculated at each evaluation of the model. The model203

for windows opening proposed by [25] accounts for indoor and outdoor temperatures, but adds a large204

computational cost to each evaluation. We have therefore chosen a simple assumption. As all buildings are205

located in a quiet area, the model includes the following natural ventilation rule: If Tindoor > 26°C and206

Tindoor > Toutdoor then tenants are opening windows in order to facilitate natural ventilation.207

Air tightness has been modeled with a constant air flow equal to 0.7 vol/h. This is an observed measure-208

ment in old collective housing buildings [26].209

3.2.2 Zoning210

Zoning of the building is kept to the minimum of zones in order to speed up calculation while having an211

acceptable accuracy on simulation results. On such simple building shapes, it has been shown that a limited212

amount of zones is enough to have accurate results for the heating demand [27]. Consequently we chose to213

split each building in 7 zones:214

� 2 zones for the ground floor: one south, one north215

� 2 zones for the top floor: one south, one north216

� 2 zones for other floors: one north, one south217

� 1 zone for not heated spaces such has stairs and circulations.218

An illustration of this zoning is given Figure 6219

3.2.3 Weather220

The weather file selected in a typical reference year (TRY) of Trappes (France). This TRY files has been221

generated with Meteonorm software with data from the GEBA (Global Energy Balance Archive), from the222

World Meteorological Organization (WMO/OMM) Climato-logical Normals 1961-1990. It is the weather file223

used as reference is the French Thermal Regulation [23]. The weather data are used for all of the 20 years of224

evaluation.225
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Figure 6: Building 1 with its zoning: each color represent a thermal zone. Grey is for unheated spaces such
as stairs an circulation

3.3 Response of the model226

First, annual heating needs and the overheating criteria were computed. They are shown in Table 3. Buildings

Table 3: Simulated characteristics of the buildings before retrofit

Building 1 Building 2 Building 3
Heating needs 146 kWh/m2 228 kWh/m2 191 kWh/m2

Overheating 297 °C.h/m2 180 °C.h/m2 306 °C.h/m2

227

are in accordance with their energy label provided by the property manager(cf. Table 1). Building 2 overheats228

slightly less than the two other buildings. This is due to the difference of building shape: since Building 2 is229

a high-rise building, it has a lower surface south oriented and a lower roof surface, thus less surface directly230

exposed to high solar radiations.231

Then, in order to verify the usability of the model, we plotted the following data over a typical winter232

and a typical summer week:233

� Air temperature of a south oriented zone234

� Air temperature of a north oriented zone235

� Outdoor air temperature236

� Direct horizontal solar radiation237
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As shown in Figure 7a, the south zone reaches more than 35° C. This is due to the fact that during the238

day, the occupants are scheduled to be out of their apartment, therefore they can not open the window to239

ventilate. Moreover, the building has no insulation and a fair amount of windows without solar shadings240

(27%) which ensures a quick rise of temperature on days with high solar radiation. It can be noted that as241

soon as occupants come back home, the temperature drops dramatically because of the windows’ opening,242

modelled as stated in section 3.2.1.243

In winter (Figure 7b), the model reaches the setpoint temperature flawlessly as the heater is modelled as244

an ideal heating system. It is striking to realize that the building has low inertia therefore drops quickly to245

the low temperature setpoints each day. It can also be noted that the building is sensitive to solar gain even246

in winter, thanks to its large windows area.247

The same analysis can be made with the other buildings which share the same typology as this one.248

3.4 Parameters of the model to optimize249

The present case study focuses on the retrofit of the building envelope. For each of the three buildings,250

we optimized vertical walls, ceilings and floors as well as windows. Each of these variables to optimize is251

a parameter of the model. There are three buildings with 4 parameters to optimize on each one, hence 12252

parameters which are listed as parts of the chromosome Type of operation in Figure 3.253

3.5 Decision space254

The decision space is the set of possible parameter values of the model to be optimized. The parameters can255

be broken down into two types:256

� Window properties: genes 4, 8, 12 of the pictured chromosome as shown in Figure 3.257

� Wall properties (vertical walls, floors and ceilings): all other genes.258

For the windows parameters, the decision space is defined by the possible U-values, solar factor and visible259

transmittance that may be applied to all windows of a building.Possible values, taken from a manufacturer260

catalogue, are:261
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Table 4: Description of the decision space for windows

Uw values (W/m2.K) 0.8 1 1.2 1.4 2.0
Solar factor 0.76 0.73 0.67 0.64 0.61

Visible Transmittance 0.81 0.83 0.86 0.88 0.9

For walls, the decision space covers different insulation materials. Each material may replace the current262

insulation of the wall, which is external on all of the three buildings. Possible materials are:263

Table 5: Description of the decision space for walls

Materials Thicknesses (cm)
Glasswool (λ = 0.04 W/m2.K) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Rockwool (λ = 0.042 W/m2.K) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Polystyrene (λ = 0.032 W/m2.K) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Polyurethane (λ = 0.03 W/m2.K) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Each of these materials has its own thermal properties and its price is computed according to expert264

knowledge provided by engineering companies. The price can be split in two parts: the cost of the material265

itself, that depends on the thickness and the type of the material, and the price of the construction that266

depends only on the material.267

3.6 Hyperparameters of the algorithm268

The NSGA2 algorithm has 3 main hyperparameters to be set: the number of individuals, number of gen-269

erations and crossover probability. [28] and [16] state that convergence was reached in genetic algorithm270

optimization on 12 parameters with 30 individuals and 10 generations with a crossover probability in the271

range [0.8;1]. After checking the convergence and the repeatability of the optimisation for multiple hyperpa-272

rameters, the following parameters are chosen:273

Table 6: Hyperparameters of NSGA2 for our case study

Number of individuals 96
Number of generations 100
Crossover probability 0.8
Mutation probability 0.2

The validity of these parameters is checked after the optimization through hypervolume monitoring and274

qualitative evaluation of convergence.275
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4 Results276

First of all, the global behavior of the optimization will be verified. Then we will compare the optimal277

strategies given by the optimization with base, sequencing or phasing.278

4.1 Pareto front at the end of the optimization : overview279

On Figure 8, the Pareto fronts of the optimal retrofit strategies are compared. The first one concerns the base280

optimization, which includes no temporality effect. The second one is the sequenced optimization, where one281

retrofit task is proposed per year. The third one is the phased optimization which enables multiple tasks to282

be carried on the same year.283
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Figure 8: Pareto front comparison of based, sequenced and phased optimization

In each subplot of Figure 8, we can see individuals that are ”dominated” if we take only two objectives284

into account. It can be noticed on Figure 9: as the individuals perform less on the cost and heating needs285

objective, they perform better on the overheating objective. This behavior is expected in a multi-objective286

optimization and enables the verification of the implementation of the algorithm for our problem.287

The three Pareto fronts are different and this difference can be explained by the formulation of the288
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problem. Indeed, in Figure 8, the best performances seem to be achieved by the base optimization, then289

the phasing optimization and finally the sequenced optimization. This is due to the fact that in the base290

scenario, all of the retrofit actions are done at the very beginning, from the first year. In the sequenced291

optimization, the retrofit actions are spread over 12 years and in the phasing optimization over 4 years. As292

the evaluation has been carried out on 20 years, this implies that the amount of years where the building293

has a poor performance is the longest for the sequenced optimization, which explains its lower performance294

compared to the two other scenarios.295

Additional discussions will be proposed in section 4.2.2.296

4.2 Global behavior of the optimization and convergence297

First of all, convergence of the optimization has to be checked, and the hypervolume and its evolution is298

a meaningful criteria to do so [29]. Figure 10 shows the evolution of the hypervolumes along generations299

for base, sequenced and phased optimization. Hypervolume progression shows a convergence of phased and300

sequenced optimisation towards the Pareto front that is obtained with based optimisation. However, the301

gap of hypervolume values at generation 83 for phased optimization could question the convergence of the302

optimization, but small variability of hypervolumes between the 3 fronts at generation 100 increase the303

confidence in the convergence of this optimization. The gap at generation 83 is due to the progression of the304

Pareto front on the overheating objective for solutions that cost between 1100 and 1250¿/m2, the evolution305

on other criterias is not significant.306

4.2.1 Interpretation of the results307

The content of the retrofit strategies shows an overall difference between strategies from the base optimization308

and phased strategies. The main differences lie in the retrofit of the windows and in the thickness of the309

proposed insulation.310

First of all observations, the higher the cost of the retrofit strategies, the more windows are treated:311

cheapest strategies do not retrofit any windows, strategies a bit more costly retrofit windows on one building,312

etc... This can be shown on Tables 7 and 8. Theses tables split the Pareto front in 8 clusters depending on313

how which building gets its windows retrofitted. In the first three columns of this table is detailed whether314

the windows get retrofitted for every building: if the building’s windows are treated, the value in this column315

is ”1”. In the following columns, the mean values and the standard deviation for each objective function are316
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Figure 10: Hypervolume of Pareto front along generations

detailed for each cluster.317

Figures 11 and 12 are using the same coding of Tables 7 and 8 to describe the retrofit of windows, which318

is detailed in the previous paragraph.319

We can see a difference between in which building is treated when not all buildings are retrofitted. In320

the phased optimization, windows from Building 3 are treated first, then Building 1. In base optimization,321

windows from Building 1 are retrofitted first, then windows from Building 3. For bot of the optimization,322

windows from Building 2 are retrofitted in last.323

On Figures 11 and 12, few differences are visible about the distribution of the solutions. However, in the324

phased optimisation, the transition between the solutions that are retrofitting the windows of Building 3 and325

the solutions retrofitting the windows of Building 1 and Building 3 is more clear and occurs at a lower cost326

than in the base optimization. This is confirmed by the datas from Tables 7 and 8. As the only differences327

between both of the optimizations are the integration of the temporality and the integration of a maximal328

cost of retrofit, and the fact that the concerned solutions are costing 600 to 700¿/m2, this observation can329

be accounted on the integration of temporality.330
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Table 7: Mean and standard deviation of solutions function of retrofitted windows: base optimization

Windows Heating needs (kWh/m2.yr) Overheating (°C.h/m2.yr) Cost ¿/m2.yr
Building Building Building Standard Standard Standard

1 2 3 Mean Deviation Mean Deviation Mean Deviation
0 0 0 108.6 1.9 603 45 219 69
0 0 1 102.7 1.6 650 70 600 170
0 1 0 N/A N/A N/A N/A N/A N/A
0 1 1 101 0.1 743 66 1206 113
1 0 0 109 1.3 537 19 361 57
1 0 1 102 1.7 711 192 882 208
1 1 0 111 1.8 495 2.7 828 94
1 1 1 102 1.9 748 196 1400 166

N/A: no retrofit strategies for this case
1: windows retrofitted on this building

0: windows not retrofitted on this building

For both optimizations, it is sensible to retrofit windows Building 1 and Building 3 first as their window-331

to-wall ratio is higher than Building 2 (0,27 for Building 1 and 0,23 for Building 3, only 0,16 for Building332

2)333

Figure 11: Individual from Pareto front function of retrofitted windows: base optimization

Figure 12: Individual from Pareto front function of retrofitted windows: phased optimization
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Table 8: Mean and standard deviation of solutions function of retrofitted windows: phased optimization

Windows Heating needs Overheating Cost
Building Building Building Standard Standard Standard

1 2 3 Moyenne Deviation Mean Deviation Mean Deviation
0 0 0 115 3.4 656 85 249 71
0 0 1 109 1.9 663 86 531 119
0 1 0 N/A N/A N/A N/A N/A N/A
0 1 1 106 0.2 794 56 1257 124
1 0 0 116 1.2 547 12 365 24
1 0 1 107 1.8 778 170 774 164
1 1 0 119 2.6 514 4.2 886 79
1 1 1 107 1.8 775 149 1315 194

N/A: no retrofit strategies for this case
1: windows retrofitted on this building

0: windows not retrofitted on this building

With the same data-exploration methods, we focused the analysis on insulation thickness. Even if thermal334

conductivities of insulations are different, it is a fair approximation of the global behavior of the optimization.335

We noticed that insulation proposed on phased optimization tend to be thicker than proposed insulation on336

base optimization. This is due to the fact that retrofit actions are limited by the budget in the case of337

phased optimization, thus the algorithm proposes solutions where less walls are retrofitted, but with a higher338

insulation.339

For both of the optimization, we can notice that optimal retrofit solutions tend to insulate the largest parts340

of the buildings more. For example, optimal strategies for the high-rise building features a good insulation341

(R > 3 K/W) on vertical walls whereas the thermal resistance of ceilings and floors can be as low as R = 1, 7342

K/W in some optimal strategies. Similarly, optimal strategies for Building 1 tend prioritize the insulation343

of roofs and ceilings over walls. This is due to the fact that this building is low-rise and features a greater344

amount of windows on vertical walls (27% of vertical surface).345

Finally, we can conclude that the content of the optimal retrofit strategies does change with the integration346

of temporality. The same conclusion can be drawn for sequenced and phased optimization, and that increase347

the confidence we have in the result of the optimizations even with the convergence difference shown in348

section 4.2. Moreover, the fact that the differences between optimal strategies proposed for base and phased349

optimization can be explained is increasing our confidence into the results.350
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4.2.2 Utility of the integration of phasing351

Originally, the motivation for the integration of phasing is to get closer to real world practice. The integration352

of phasing was done in the optimization and gave sensible results, in accordance with the base optimization353

and with real world figures. The question is now whether the integration of phasing proposes different354

solutions than the base optimization. In order to compare strategies proposed in the base and phased355

optimization, we plotted the performance of the building on its final state, i.e. on the last year of the 20356

years period considered for the evaluation of the performance. This plot is available on Figure 13.357
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Figure 13: Comparison of final state of optimal retrofit

First of all, Figure 13 show that final states of phased optimal strategies have not the same performance358

than optimal strategies generated in base optimization. Indeed, retrofit strategies on Pareto front for phased359

optimization have in average a better performance on overheating objective and have in average a worse360

performance on the cost and heating needs. Moreover, as stated in Section 4.2.1, strategies differ between361

base and phased optimization mainly concerning the choice of windows to be retrofitted. This implies that362

the implementation of phasing in the optimization results in different optimal strategies than those proposed363

by the base version of the optimization.364
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4.3 Benefits and limitations365

In the literature, sequenced optimization of energy retrofit started to be taken into account [14] but was366

limited to one retrofit action per year. The real world practice in construction is to break down a major367

retrofit operation in small phases containing multiple retrofit actions per year: the method aims to replicate368

this practice.369

The proposed method enables the elaboration of optimized retrofit strategies for a small building stock370

and includes a temporal dimension in each strategy, in order to describe how the retrofit action should371

be planned. Results show a small improvement between the performance of the proposed strategies when372

compared to an optimization without phasing. The main result is that proposed strategies differ when the373

optimization is carried out with phasing.374

The major implication of this finding is that optimal strategies depend on how the problem is formulated375

compared to the reality of retrofit actions: the closer the optimization process to the constraints of the376

property manager, the more relevant the results will be .377

Limitations of the work relates to two main areas. First of all, the cost criteria could be improved by378

accounting inflation, or by optimizing the life-cycle cost of the building, as proposed by Milic et al. [30].379

This would bring a new economy metric to the decision maker, although the construction cost would remain380

a strong constraint for the realization of the retrofit work.381

Secondly, the optimization algorithm, NSGA-II, is suitable for our problem with 12 parameters and 3382

objective functions [31, 32]. Some limitations have however been found on the quality of the Pareto front383

generated which can be improved by NSGA-III [33], especially on constrained optimization.384

5 Conclusion385

A method is proposed for the elaboration of optimal retrofit strategies of building stocks, including the386

planning of retrofit actions over time. We applied this method on a small building stock of three buildings387

as a test case.388

The major finding is that integrating the temporal aspect of operations into the optimization leads to389

different optimal strategies. The major difference between phased and non-phased strategies is illustrated390

with the order of windows retrofit along the buildings of the stock. This difference is illustrated on Figure 9,391
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as we can see that objective function values are improved on the cost but can not be as good on the heating392

needs and overheating objective, as explained in Section 4.1. This highlights the importance of formulating393

the optimization problem as close as possible to the constraints of decision makers, in order to generate394

realistic and useful optimal strategies.395

Once the method proposed in this paper is applied, resulting strategies can then be limited to a few396

strategies through multicriteria decision aid with the decision maker, in order to account for non-measurable397

objectives such as politics, feeling of the tenants... This guarantees that the decision maker is part of the398

process while ensuring that the final decision is optimal.399

Considering the importance of the formulation of the problem on the relevance of optimal strategies,400

further studies can be carried out to evaluate the sensitivity of the problem to different parameters such401

as climate change or occupant behavior. The variability of the weather can also be investigated as more402

frequent heatwaves may influence the overheating objective. Lastly, an additional objective function can be403

optimized as well, such as an environmental objective (CO2 emitted by the building along its life cycle and404

environmental cost of the retrofit).405
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