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We consider an Ising and a q-state Potts model on a diamond hierarchical 
lattice. We give pictures of the distribution of zeros of the partition function in 
the complex plane of temperatures for several choices of q. These zeros are just 
the Julia set corresponding to the renormalization group transformation. 
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1. INTRODUCTION 

Recently, hierarchical lattices have motivated a lot of work. (~-9) These 
lattices are constructed in such a way that the bond moving renormaliza- 
tion approximation due to Migdal (l~ and Kadanoff  (11) becomes exact. In 
other words, using the Migdal-Kadanoff  renormalization, one can solve 
exactly a variety of models of statistical mechanics on these hierarchical 
lattices. Although these solutions are usually rather simple, the critical 
behaviors and the phase diagram may be very rich. In particular, the 
critical exponents are nontrivial. Moreover in some cases with frustration, 
the renormalization group transformation may have chaotic trajecto- 
ries. (5-9) In all cases, a large amount of information, like the exact values of 
the exponents or the phase diagram, can be extracted from the knowledge 
of the renormalization group transformation. When the rule of construction 
of the hierarchical lattice is simple enough (see Refs. 2 and 4 for a variety 
of such models) the renormalization group transformation can be written as 
a simple rational map in the space of the parameters which define the 
model. 
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The rational transformations have been studied for a long time (12'13) 
with a renewed interest(14-1S) recently in the theory of bifurcations. A 
particular interest was concentrated on the Julia sets in the complex 
plane. (17-~9) For a rational mapping, the Julia set is the set of points which 
do not belong to any basin of attraction. As shown in Refs. 17 and 18, even 
for very simple rational transformations, the Julia sets have usually a 
fractal structure which is quite decorative. 

The purpose of the present work is to obtain the Julia sets correspond- 
ing to the renormalization group transformations which appear  in the study 
of hierarchical models. The Julia set of a renormalization transformation is 
nothing but the limiting set of all the zeros in the complex plane of the 
partition function. For hierarchical models, one can obtain the complete 
structure of the zeros of the partition function, a problem which has a long 
history since the famous Lee and Yang (2~ theorem. In the complex plane 
of temperatures, (2~) except in a few exactly solvable cases, the location of 
these zeros is a hard prolem. (22'23) One does not know if they are concen- 
trated on curves, on sectors of the plane, or on more complicated regions. 
Therefore, it is interesting to see what are these regions in the case of 
hierarchical lattices. One should keep in mind that sometimes, features 
found on hierarchical lattices are very unusual (3) and so it is very possible 
that the structures which are shown below do not persist on regular lattices. 

The paper  is organized as follows. In Section 2, we recall the construc- 
tion of a simple hierarchical lattice: the diamond one. For q-state Potts 
spins, we write the renormalization transformation and we obtain the 
recursion relation which gives the partition function. In Section 3, we 
explain why the Julia set of the renormalization transformation is the set of 
zeros of the partition function. In Section 4 we present pictures of this Julia 
set for several values of q. 

2. THE DIAMOND HIERARCHICAL MODEL 

In this paper, we shall restrict ourselves to one of the simplest hierar- 
chical lattice: the diamond one. A construction of the diamond hierarchical 
lattice is schematized in Fig. 1. (3) One starts with one bond in Fig. la  and 
the first step is to consider that the bond of Fig. la  is an effective bond 
which represents the effect of the four bonds of Fig. lb. So going from la 
to lb, one has replaced one bond by a set of four bonds. Similarly, one can 
go from lb to lc by replacing each bond of Fig. lb by a set of four bonds. 
If one iterates this procedure an infinite number  of times, one obtains the 
diamond hierarchical lattice. 

If we put a q-state Potts model on this hierarchical lattice, the recursive 
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The recursive construction of the diamond hierarchical model. 
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construction allows us to calculate the free energy exactly. (24'7) The Hamil- 
tonian of a q-state Potts model is 

(U) 

where the sum runs over all pairs of nearest neighbors on the lattice, the o i 
can take q possible values (o i = 1 , 2 , . . . ,  q) and 8 is the usual Kronecker 
symbol. To simplify the notations in the remainder of the paper, everything 
will be expressed as function of y defined by 

y = exp fill (2) 

where t3 is as usual the inverse temperature. The properties of the free 
energy or of the partition function in the complex plane of y, can of course, 
be easily related to what they are in the complex plane of/~. 

Let us consider that Fig. 1 a represents the first step in the construction 
of the lattice, Fig. lb represents the second step, Fig. lc represents the third 
step, and so on. One can calculate the partition function Zn(y )  of a Potts 
model on the finite lattice constructed after the nth step if one knows the 
partition function Z n_ I(Y') for the finite lattice constructed after n -  1 
steps. This relation can be easily established by taking the trace over all the 
spins which are connected to only two other spins in the finite lattice 
constructed after n steps: 

z . ( y )  = z ._  t ( / ) [ A  (y)]2 4n-2 (3) 

where the function A (y) is given by 

A ( y )  = 2y + q -  2 (4) 



562 Derrlda, De Seze, and Itzykson 

and y '  is the image of y by a transformation T: 

( y 2 + q - - 1 )  2 

y ' =  r ( y ) =  2 y + q  2 (5) 

The transformation T is the renormalization transformation of the 
model. The advantage of hierarchical lattices is that one can find T exactly. 
By iterating Eq. (3) n - 1 times, one can calculate Z,,(y) for any value o f y  
since Zl(y  ) is known: 

Z~(y) = q(y  + q - 1) (6) 

Therefore the partition, the free energy, and its derivatives can be easily 
calculated from (3). 

3. THE ZEROS OF THE PARTITION FUNCTION 

Since on the finite lattice constructed after n steps there are 4"-  
bonds, the partition function Zn(y ) is a polynomial of degree 4 n- 1 iny.  The 
term of highest degree is q y  4"-~. Therefore, one can write Zn(y ) in the 
following way: 

4 n -  1 

Z . ( y )  = q I-[ ( y  - xi) (7) 
i = 1  

where the x i are by definition the zeros of Z n (y). 
If we denote by xi with 1 < i < 4 n -2  the zeros of Zn_l(y), one sees 

that Eqs. (3), (4), and (5) give a relation between the x i and the xi: 

q 
i = 1  i 2 y + q  2 

which can be rewritten as 

4 n - I 4 n - -  2 

I I  ( y -  x i )= I-I [(y2 + q - 1 ) z - - ~ i ( 2 y  + q -  2)2] 
i = 1  i = 1  

(9) 

Let us look at one factor (for example, the one with Yl) in the product at 
the right-hand side of (9): 

p ( y )  = (y2 + q _ 1) 2_ Y1(2y + q - 2) 2 (10) 

P(y)  is a polynomial of degree 4 whose four roots are the four preimages of 
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s by T. This is due to the following equivalence: 

e ( y )  = 0r 7"(y) = s (11) 

This fact, together with (9), proves that if one knows the 4 n-2 zeros s of 
Zn_l(y),  then one knows the 4 "-1 zeros xi of Z,(y) .  Thus x i are just the 
preimages of the Yi by the renormalization transformation T. Therefore, 
since one knows Z l ( y  ), which has only one zero a t y  = 1 - q, one knows all 
the zeros of all the Z,,(y). The zeros of Z,  (y)  are just the 4 n- 1 preimages of 
1 - q by the (n - 1)th iterate of the transformation T. 

In the thermodynamic limit n ~ oo, this set of preimages is exactly 
what is called the Julia set of the transformation Z. (13'17-19) Therefore we 
have shown here that the zeros of the partition function Z , (y )  give in the 
thermodynamic limit the Julia set of the renormalization transformation. 

4. T H E  P I C T U R E S  

We have seen that Z,  (y)  has 4"-  l zeros. For large n there is no chance 
to calculate all of them. We have used a Monte Carlo procedure to obtain 
pictures of the set of zeros of Z,  (y)  in the limit n ~ oo. The method is very 
simple. We start with any po in ty  0. It has four preimages by the transforma- 
tion 7". We choose one of them Yl at random. Then we calculate its four 
preimages and we choose again one of them Y2 at random and so on. After 
a few iterations, where at each step we choose randomly one of the four 
preimages of the previous point, we have a point which is extremely close 
from the Julia set. Then we continue the calculation but we can plot the 
points since they are on the Julia set (within the numerical accuracy of the 
computer). 

In other words, we calculate the successive preimages of a given point 
Y0. But as there are at each step four preimages, we choose one of them at 
random. We plot these preimages only after a few steps in order to 
eliminate the first ones which are not close enough to the Julia set. One 
should notice that it is not necessary to choose Y0 = 1 - q because the Julia 
set is independent of the starting point Y0. 

Figure 2 gives the picture obtained by plotting 20,000 points of the 
Julia set. This figure corresponds to the Ising model (q = 2). One sees 
clearly the well-known fractal structure of the Julia set and therefore we 
conclude that the partition function of a hierarchical model has usually a 
fractal set of zeros in the complex plane of temperatures. In Fig. 2, we did 
the calculation by choosing at each step one of the four preimages with 
probability 1/4. Therefore, the points are distributed on Fig. 2 according to 
the true density of zeros. However, even with 20,000 points, one does not 
see clearly the envelope and the whole support of the Julia set. 
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Fig. 2. 20,000 points of the Julia set of the renormalization transformation obtained by the 
Monte Carlo procedure explained in the text. These points are zeros of the partition function 
in the Ising case (q = 2). 

To see better the support of the Julia set, we decided to make the same 
calculation but with a, bias in order to have more points in the low-density 
regions. In other words, we have chosen with a higher probability the 
preimages which are in low-density regions. Doing so we have obtained 
Fig. 3 for the Ising case (q = 2). It is the same as in Fig. 2 but one sees 
more clearly the support of the Julia set. One should not forget that Fig. 3 
gives the support of the set but, because of the bias, the density of points in 
Fig. 3 does not represent the true density of zeros of Z n ( y  ) in the limit 
n ~ m. The physical region is the positive part of the real axis: y > 1 
corresponds to the ferromagnetic model, whereas 0 < y < 1 corresponds to 
the antiferromagnetic model. In the Ising case, the symmetry between the 
ferromagnetic and the antiferromagnetic model makes the figure invariant 
in the change y ~  1 /y .  One sees clearly in Fig. 3 the ferromagnetic 
transition at y F ~- 3.383 and the antiferromagnetic transition at y A ~ 0.2956. 

Figures 4-7  represent again as in Fig. 3 the support of the Julia set, 
i.e., the support of the zeros of the partition function Z n ( y )  for other values 
of q: q = 1.5, 2.5, 3, and 4. One sees also that, for these other values of q, 
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The  same as Fig. 2 bu t  wi th  the b ias  in the M o n t e  Car lo  ca lcu la t ion  to see bet ter  the 

suppor t  of the set of zeros. 
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Fig. 4. The  same  as Fig. 3 for q = 1.5. 
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Fig. 5. The same as Fig. 3 for q = 2.5. 
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Fig. 6. The same as Fig. 3 for q = 3. 
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Fig. 7. The same as Fig. 3 for q = 4. 

the Julia set has a fractal structure. One can easily verify that the anti- 
ferromagnetic transition disappears for q > 3 since YA = 0 for q ---- 3. 

5.  C O N C L U S I O N  

We have shown in this paper  that for a family of hierarchical models, 
the Julia set of the renormalization transformation gives the zeros of the 
partition function in the thermodynamic limit. The Julia set contains all the 
unstable periodic points of the renormalization transformation. In cases 
where, owing to frustration, (5-9) the renormalization group transformation 
has a lot of unstable periodic points (7) on the real axis, the Julia set 
contains much more points on the real axis giving rise to much more 
singularities of the free energy in the physical region. 

As observed by several authors (7'24) the singular behavior of the free 
energy near a critical fixed point Yc is in principle modulated because of the 
discreteness of the renormalization transformation: 

singular pa*tl 'im "2 " logEl~ ,. } 



568 Derrlda, De Seze, and Itzykson 

where H is a periodic function of period 1, 

H ( z )  = H ( z  + 1) 

and 2 - a = log 4/log[ T ' ( yc )  ]. 
In the Ising case, we did observe numerically these modulations near 

the ferromagnetic critical point but these modulations are very small: they 
are of order 10 -5 compared with the mean value of H.  This means that for 
hierarchical models the usual idea of a critical amplitude has to be replaced 
by a periodic function of l o g ( y -  Yc)- Encouraged by a recent work (23) 
which relates the critical amplitudes to the angle of the density of zeros 
near a critical point, we tried to relate the angles of the Julia set with the 
real axis which can be seen in Fig. 3 to the values of H that we calculated 
numerically. In such a naive form our at tempt was unsuccessful. Therefore 
we think that it would be interesting to understand what are the physical 
quantities which could be related to these angles, for instance the relative 
amplitudes of modulations. 

Lastly, the most important question is to know whether the fractal 
structure of the set of zeros which seems to be common to almost all the 
hierarchical models persists at least on some regular lattices. For the Ising 
model in d = 2, this is of course not true. (21) However, one can imagine that 
in cases where the critical behaviors are more complicated than in the 
two-dimensional Ising model, parts of the set of zeros have a fractal 
structure. We think that one way to answer this question would be to 
construct a sequence of hierarchical models which approximate a regular 
lattice better and better and to see if parts of the fractal structure persist 
when the hierarchical models become closer and closer to the regular 
lattice. 
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