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Decoupling multivariate fractions

François Lemaire1 and Adrien Poteaux1
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Abstract. We present a new algorithm for computing compact forms
of multivariate fractions. Given a fraction presented as a quotient of
two polynomials, our algorithm builds a tree where internal nodes are
operators, and leaves are fractions depending on pairwise disjoint sets
of variables. The motivation of this work is to obtain compact forms of
fractions, which are more readable and meaningful for the user or the
modeler, and better suited for interval arithmetic.
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1 Introduction

This article presents a new algorithm decouple for computing compact forms
of multivariate fractions. Informally, given a multivariate fraction given as a
quotient P/Q, Algorithm decouple computes a (usually) more compact repre-
sentative of P/Q in the form of a tree where internal nodes are operators +, ×
and ÷, and where leaves are fractions depending on pairwise disjoint sets of vari-
ables. As a consequence, the fraction P/Q is usually written as a sum, product
or quotient of expressions which may also contain fractions. As an example, our
algorithm rewrites the fraction a0b1a3+a0b1b2+a0a2+a1a3+a1b2

b1a3+b1b2+a2
as a0 + a1

− a2
−a3−b2

+b1
,

and rewrites the fraction −x(d x2+dxk1+dxk2+dk1k2+V1x+V2x+V1k2+V2k1)
(k1+x)(k2+x) as −dx−

V1x
k1+x −

V2x
k2+x . Our algorithm also works with polynomials, and in that case the

expressions returned are free of quotients. For example, our algorithm rewrites
ab+ ax+ bx+ cd+ cx+ dx+ 2x2 as (x+ b) (x+ a) + (x+ c) (x+ d).

This work was mainly motivated by the following reasons. A compact expres-
sion is usually easier to read and understand for a user/modeler. Moreover, if the
variables appear in the least places (ideally only once), the interval arithmetic
should yield sharper results.

Computer algebra software are usually focused on polynomials rather than
fractions. Extracting the numerator of a fraction can produce some expression
swell, especially if the fraction is given as a sum of different fractions with differ-
ent denominators. When fractions are reobtained after applying a polynomial-
based method, our algorithm can help to recover different fractions with different
denominators again.

In order to decompose a fraction into several terms, our method uses a de-
coupling technique on the variables. Roughly speaking, as the term decoupling
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suggests, our method tries to split a fraction into different terms involving dis-
joint sets of variables. As a consequence, our method does nothing on a univari-
ate fraction, even if the fraction can be written in a compact way using nested
fractions.

Simplification of multivariate fractions has already been considered. The
Lĕınartas decomposition is presented in [4] (see [8, Theorem 2.1] for an english
presentation). It decomposes a fraction into a sum of fractions, using compu-
tations on the varieties associated to the irreducible factors of the fraction de-
nominator. Also, [10] presents a partial decomposition for multivariate fractions,
based on successive univariate partial decompositions. In both cases, multivari-
ate fractions are rewritten in a more compact way, as a sum of several fractions
(thus nested fractions are never produced).

Our method does not work the same way, and produces a different output.
Our method can produce nested fractions such as a0+ a1

− a2
−a3−b2

+b1
mentioned ear-

lier in the introduction. However, our method does no simplification on fractions
which cannot be decoupled. For example, our algorithm performs no simplifica-

tion on the fraction F = x2y+xy2+xy+x+y
xy(xy+1) taken from [8, Example 2.5], whereas

[4, 8] computes F = 1
xy+1 + x+y

xy , and [10] computes F = 1
x + 1

xy+1 + 1
y .

It is also worth mentioning [11] which provides “Ten commandments” around
expression simplifications, especially Sections 3 and 4 which discuss some tech-
niques for partially factoring the numerators and denominators of a fraction.
Also, a method for computing Horner’s schemes for multivariate polynomials is
given in [3]. Finally, [9] presents a choice of nice functionalities a computer alge-
bra software should provide for helping the user with expression manipulations.

We implemented our algorithm decouple in Maple 2020. All examples pre-
sented in the paper run under ten seconds (on a i7-8650U CPU 1.90GHz running
Linux), and the memory footprint in under 180 Mbytes.

Organization of the paper. Section 2 defines the decouplings of fractions and
the splittable fractions. Theorem 1 which characterizes the splittable fractions is
presented, and the existence and uniqueness of the so-called finest partition (of
variables) is proven. Section 3 presents our algorithm decouple, with elements
of proofs. Section 4 presents some examples. Finally, Section 5 presents some
complexity results and implementation remarks.

Notations. In this article, K denotes any field of characteristic zero1. Take a frac-
tion F in K(X), where X contains n variables. For brevity, the partial derivatives
∂F
∂x , ∂2F

∂x∂y and ∂j+kF
∂xj∂yk are also written Fx, Fx,y and Fxj ,yk . We denote by Supp(F )

the set {x ∈ X|Fx 6= 0}; it is simply the variables on which F really depends.
We denote by Def(F ) the domain of definition of F , which is the set of values
of Kn which does not cancel the denominator of F .

1 Fields of characteristic nonzero have not been considered by the authors, as they
raise some difficulties. Indeed, most results and algorithms presented here rely on
evaluation and differentiation, which are difficult to handle in nonzero characteristic.
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For any subset Y ⊆ X of size m, and any Y 0 ∈ Km, F (Y = Y 0) designates
the partial evaluation of F for the variables Y at Y 0. This partial evaluation
is only defined if the denominator of F does not identically vanish at Y = Y 0.
Partitions of a set X will usually be denoted (Xi)1≤i≤p and (Yi)1≤i≤q, or simply
(Xi) and (Yi).

2 Decoupled and splittable fractions

2.1 Definitions

Definition 1 (Expression Tree). An Expression Tree in a1, . . . , ap over a
field K is a finite tree satisfying:

– each internal node is a binary operator: either +, ×, or ÷,
– each leaf is either a variable ai, or an element of K,
– if the tree contains two or more nodes, then any subtree encodes a nonzero

fraction in the variables a1, . . . , ap.

Proposition 1 (Expression Tree and associated fraction). The third item
of Definition 1 ensures that no division by zero can occur. As a consequence, any
Expression Tree encodes a fraction in the ai variables. Moreover, any fraction
can be encoded by an Expression Tree (note the Expression Tree is not unique).
If A is an Expression Tree in a1, . . . , ap, we simply denote its associated fraction
by A(a1, . . . , ap). Please note that zero can still be encoded by the tree with only

one root node equal to zero. Finally, the tree
+

−6 6 is not an Expression Tree
since it violates the third item of Definition 1.

Definition 2 (Decoupled Expression Tree (DET)). A Decoupled Expres-
sion Tree in the variables a1, . . . , ap is an Expression Tree where each ai appears
exactly once.

+

×
+

3 8

a2

÷
5 a1

is a DET encoding 11a2 + 5/a1.

Proposition 2 (Interval arithmetic). Assume K is Q or R. Consider a frac-
tion F (a1, . . . , ap) which can be represented as a DET A. If each ai lies in some
interval Ii, and if evaluating the tree A using interval arithmetic never inverses
intervals containing zero, then the evaluation computes F (I1, . . . , Ip).

Proof. We prove it by induction on the number of nodes. The base case with
one node is immediate. If the number of nodes is higher than 2, the induction
hypothesis can be applied on both left and right subtrees, yielding two intervals
I and J . The evaluation of the complete tree consists in evaluating either I + J ,
I × J , or I ÷ J . In all these cases, interval arithmetic gives an exact interval
image (i.e. not overestimated), since both subtrees involve distinct variables (A
is a DET), and because (by assumption) no interval containing zero is inverted.
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Remark 1. When inverting an interval containing zero occurs during the evalua-
tion of a DET, difficulties arise, as the following example shows. Take F = x

1+x ,
whose image on the interval I = [0, 1] is F (I) = [0, 1/2]. The fraction F can be
written as the DET 1

1+ 1
x

whose evaluation is delicate because 1
x is not defined

at x = 0. However, if F is written as the DET 1− 1
1+x , Proposition 2 applies.

In order to generalize Proposition 2 for tackling intervals containing zero,
multi-intervals and handling intervals containing infinity may be required.

Definition 3 (Decoupling of a fraction). Let F a fraction of K(X). We call
decoupling of F a triple (A, (Fi)1≤i≤p, (Xi)1≤i≤p) where:

– A is a DET in the variables a1, . . . , ap over K,
– (Xi)1≤i≤p is a partition of Supp(F ),
– each Fi is a fraction of K(Xi) with Supp(Fi) = Xi,
– F = A(F1, . . . , Fp) where A(F1, . . . , Fp) designates the fraction associated to
A evaluated on the Fi.

In that case, we say that the partition (Xi) decouples the fraction F .

Remark 2. Any constant fraction F admits the decoupling (F, ∅, ∅). Any non
constant fraction F ∈ K(X) admits the (trivial) decoupling (a1, (F ), (Supp(F ))).

Definition 4 (Splittable fraction). A fraction F of K(X) is said splittable
if there exists a partition (Xi)1≤i≤p of Supp(F ) with p ≥ 2, such that (Xi)
decouples F . Otherwise, the fraction is said nonsplittable.

Remark 3. Constant and univariate fractions are nonsplittable.

2.2 Characterization of splittable fractions

Theorem 1 below gives a characterization of splittable fractions. It is central
for the decouple algorithm (Algorithm 1). Indeed the decouple algorithm checks
the four different cases and either calls itself recursively if one case succeeds or
concludes that the fraction is nonsplittable.

Lemma 1. Take a splittable fraction F of K(X). Then for any nonzero constant
c, the fractions c+ F , c× F , c/F , and F/c are splittable.

Proof. For each fraction c+F , c×F , c/F , and F/c, it suffices to adjust the tree
A of a decoupling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F .

Theorem 1 (Splittable characterization). A fraction F of K(X) is split-
table if and only if the fraction F can be written in one of the following forms:

C1 G+H C2 c+GH

C3 c+
1

G+H
C4 c+

d

1 +GH

where
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– c and d are in K, and d 6= 0,
– (Y,Z) is a partition of Supp(F ),
– G ∈ K(Y ) and H ∈ K(Z), with Supp(G) = Y and Supp(H) = Z.

Proof. The right to left implication is immediate.
Let us prove the left to right implication. Assume F is splittable, and consider

a decoupling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F with p ≥ 2. Since the fraction is
splittable, it is necessarily non constant, and the root of the tree A is necessarily

an operator. As a consequence, the tree A has the shape

o

L R . Substituting
the Fi’s in the L and R trees, one gets two fractions FL and FR. There are two
cases:

Case 1. Both fractions FL and FR are nonconstant. They have by construction
some disjoint supports. If the operator o is +, then F can be written as FL +FR

as in the case C1. If the operator is × (resp. ÷), then F can be written as in
the case C2, with c = 0, G = FL, and H = FR (resp. 1/FR).

Case 2. Among the fractions FR and FR, one is constant, and the other one is
nonconstant. The nonconstant fraction is splittable by Lemma 1. We consider
the following scenario by induction: either the splittable fraction satisfies Case
1, concluding the induction, either we are once again in the Case 2. This process
can only happen a finite number of times (since the tree A is finite). We can
thus assume that the splittable fraction can be written in one of the four cases.

Assume first that FR is constant and that the operator is +. If FL has the
form C1 G+H, then F = G+ (H + FR). If FL has form C2, C3 or C4, then
F has the same form as FL (by replacing c by c+ FR). By a similar argument,
F has the same form as FL is the operator is × or ÷.

Assume now that FL is constant. It is easy to show that F has the same form
as FR is the operator is + or ×. If the operator is ÷, some more computations
are needed. If FR has form C1, then FL/FR has form C3 (with c = 0). If FR

has form C2 with FR = c + GH, then FL/FR has form C2 if c = 0, and form
C4 otherwise. If FR has form C3 with FR = c+ 1

G+H , then FL/FR has form C1

if c = 0, and form C3 otherwise. If FR has form C4 with FR = c+ d
1+GH , then

FL/FR has form C2 if either c = 0 or c+ d = 0, and form C4 otherwise. ut

Remark 4. Anticipating Propositions 8 and 9, the constant c of Theorem 1 is
unique for the cases C2 and C3. Anticipating Proposition 10, the values of c and

d in the case C4 of Theorem 1 are not unique, because a fraction c +
d

1 +GH

can also be written as (c+ d) +
−d

1 + 1
G

1
H

, which is also of the form C4.

2.3 Basic lemmas around fractions

This section gives some lemmas around the evaluation of fractions for some
variables. Those lemmas would be quite obvious to prove for polynomials, but
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fractions deserve special treatment because of the possible cancellations of the
denominators at some evaluation points.

Lemma 2. Consider a fraction F of K(X). If the fraction F cancels at any
point X0 ∈ Def(F ), then the fraction F is the zero fraction.

Proof. Write F as P/Q where P and Q are polynomials of K[X]. Denote X =
{x1, . . . , xn}. Using a Kronecker substitution (see [5, exercise 8.4, page 247] and
references therein), there exists a substitution φ of the form x1 7→ ua1 , . . . ,
xn 7→ uan , where u is a new variable and the ai are positive integers, such that
φ is injective on the sets of monomials occurring in P and Q.

The polynomial φ(Q) is nonzero and univariate, so there exists an integer
u0 such that φ(Q)(u) 6= 0 for any integer u ≥ u0. As a consequence, the set of
points S = {(ua1 , . . . , uan)|u ∈ N, u ≥ u0} is included in Def(F ).

Since F cancels on Def(F ) by assumption, P cancels on the set S, implying
that φ(P )(u) cancels for any integer u ≥ u0. Since φ(P ) is univariate, φ(P ) is
the zero polynomial. Since the transformation φ is injective on the monomials,
P is also the zero polynomial, hence F = 0. ut

Lemma 3. Consider a nonzero fraction F of K(X) and a variable x ∈ X. There
exists a finite subset S of K such that for any x0 ∈ K \ S, the partial evaluation
F (x = x0) is well-defined and nonzero, and Supp(F (x = x0)) = Supp(F ) \ {x}.

Proof. The lemma is immediate if x does not belong to the support of F . Now
assume x ∈ Supp(F ). Consider the fraction H = F

∏
y∈Supp(F ) Fy, which by

construction is nonzero since F is nonzero. The fraction can be seen as a uni-
variate fraction H of K̄(x), where K̄ = K(X \ {x}). Consider the set S̄ ⊆ K̄
of elements x̄0 ∈ K̄ either canceling the numerator or the denominator of H.
This set S̄ is finite. Take S = S̄ ∩ K, which is also finite. Then for any element
x0 ∈ K \ S, the fraction H(x = x0) is well-defined and nonzero. This ends the
proof since H(x = x0) 6= 0 implies F (x = x0) 6= 0, and Fy(x = x0) 6= 0 for any
y ∈ Supp(X). ut

The following lemma is a generalization of Lemma 3 for evaluating two dif-
ferent fractions simultaneously.

Lemma 4. Consider two nonzero fractions F and G of K(X). For any variable
x ∈ X, there exists a finite subset S of K such that for any x0 ∈ K \ S, the
partial evaluations F (x = x0) and G(x = x0) are well-defined and nonzero,
Supp(F (x = x0)) = Supp(F ) \ {x}, and Supp(G(x = x0)) = Supp(G) \ {x}.

Proof. The proof is similar to that of Lemma 3, simply replace the fraction H
by F (

∏
y∈Supp(F ) Fy)G(

∏
y∈Supp(G)Gy). ut

Lemma 5. Consider a nonconstant univariate fraction F of K(x). For any fi-
nite set of values S ⊆ K, there exists a value x0 ∈ K such that F (x0) is well-
defined and F (x0) /∈ S.
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Proof. Let us assume that the image of the fraction F is included in S. We prove
that this leads to a contradiction. Since F is univariate, there exists an integer
u0 such that the denominator Q does not cancel on the set D = {u ∈ N|u ≥ u0}.
Since F is defined on D, and D is infinite, and S is finite, there exists a value v
of S such that F (u) = v for an infinite number of integers u ≥ u0. This implies
that the numerator of F − v cancels on an infinite number of integers, hence
F − v is the zero fraction. Contradiction since F is nonconstant. ut

2.4 Finest decoupling partition

We prove in this section that for any fraction F , there exists a unique most
refined partition decoupling F . The following definition is classical.

Definition 5 (Finer partition). A partition (X1, . . . , Xp) of some set X is
finer than a partition (Y1, . . . , Yq) of X if each Xi is included in some Yj. The
finer-than relation is a partial order.

Definition 6 (Partition deprived of one element). Consider a partition
(Xi)1≤i≤p of some set X, and a variable x ∈ X. Up to a renaming of the Xi,
assume that x ∈ Xp.

Build a partition (Yi) of X \ {x} in the following way: if Xp is equal to {x},
then take the partition (Yi)1≤i≤p−1 where Yi = Xi for 1 ≤ i ≤ p− 1. Otherwise
take the partition (Yi)1≤i≤p where Yi = Xi for 1 ≤ i ≤ p−1, and Yp = Xp \{x}.

The partition (Yi) is called the partition (Xi) deprived of x.

The following proposition shows how to specialize a variable in a decoupling.

Proposition 3 (Specialization of a decoupling). Let us consider a de-
coupling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of some fraction F of K(X) and a variable
x ∈ Supp(F ). Denote (Yi) the partition (Xi) deprived of x.

Then there exists an x0 ∈ K such that the partition (Yi) decouples F (x = x0).

Proof. Up to a renaming of the Xi, assume that x ∈ Xp. Assume that the set
Xp equals {x}. Assigning a value a0 to the variable ap in the DET A may not
yield a DET because of the third condition of Definition 1. However, there only
exists a finite set S of “unlucky” values a0 which break the third condition of
Definition 1. By Lemma 5 on the univariate fraction Fp(x) and S, there exists
an x0 such that (A(ap = Fp(x0)), (Fi)1≤i≤p−1, (Xi)1≤i≤p−1) is a decoupling of
F (x = x0).

Now assume that the {x} is strictly included in Xp. By Lemma 3, there
exists a value x0 such that Fp(x = x0) is well-defined, and Supp(Fp(x = x0)) =
Xp\{x}. Thus, replacing Fp by Fp(x = x0) and Xp by Xp\{x} in the decoupling
(A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F yield a decoupling for F (x = x0). ut

The following proposition is a generalization of Proposition 3 for specializing
two different decouplings of the same fraction F .
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Proposition 4 (Simultaneous specialization of two decouplings). Con-
sider two decouplings (A, (Gi)1≤i≤p, (Xi)1≤i≤p) and (B, (Hi)1≤i≤q, (Ui)1≤i≤q) of
the same fraction F of K(X), and a variable x ∈ Supp(F ). Denote (Yi) the par-
tition (Xi) deprived of x, and (Vi) the partition (Ui) deprived of x.

Then there exists a value x0 ∈ K such that both partitions (Yi) and (Vi)
decouples F (x = x0).

Proof. The proof is similar to that of Proposition 3. The only difficulty is the
choice of an x0 which is suitable for both decouplings. Up to a renaming of the
Xi and Ui, assume that x ∈ Xp and x ∈ Uq. If both Xp and Uq are equal to {x},
then there is a finite number of values for x0 to avoid, hence Lemma 5 concludes.
Assume Xp is the singleton {x} and Uq strictly contains x. By Lemmas 3 and 5,
there is also a finite number of values for x0 to avoid, which ends the proof. By
symmetry, we need not consider the case where Xp strictly contains x and Uq

is the singleton {x}. Finally, if x is strictly included in Xp and in Uq, Lemma 4
concludes. ut

Lemma 6. Consider a fraction F ∈ K(X), and a DET C in one variable a1.
Denote C(F ) the fraction obtained by evaluating C on a1 = F . If the fraction
C(F ) is splittable, then F is also splittable.

Proof. Consider a DET C in one variable a1. It can be shown by induction that

the fraction C(a1) associated to C is an homography, i.e. C(a1) =
u0 + v0 a1
u1 + v1a1

where the u0, v0, u1 and v1 are in K, and satisfy u0v1 − u1v0 6= 0. Indeed,
the variable a1 is an homography, and adding a constant to an homography,
multiplying an homography by a nonzero constant, or taking the inverse of an
homography yield an homography. Since an homography is invertible, and its
inverse is also an homography, C(a1) is invertible and its inverse D(a1) is an
homography, which can easily be encoded by a DET in one variable.

Since C(F ) is splittable, adding D to the top of the tree of the decoupling of
F yields a decoupling of D(C(F )) which is equal to F , hence F is splittable. ut

Proposition 5 (Finest partition). Consider a fraction F ∈ K(X). There
exists a unique finest partition (Xi) of Supp(F ) decoupling F . A decoupling
(A, (Fi), (Xi)) of F is said finest if (Xi) is the finest partition decoupling F .

Proof. The set S of partitions decoupling F is not empty by Remark 2, and is also
finite. Since the finer-than relation is a partial order (Definition 5), the existence
of finest partitions is guaranteed. We now prove that all finest partitions are in
fact equal, which is the difficult part of the proof.

The proposition is immediate for constant fractions. Consider a non constant
fraction F ∈ K(X), and two different finest partitions (Xi)1≤i≤p and (Yi)1≤i≤q
decoupling F , along with some corresponding decouplings (A, (Gi), (Xi)) and
(B, (Hi), (Yi)).

Since the two partitions (Xi) and (Yi) are different, there exists a Xk inter-
secting at least two different sets of the (Yi) partition. Without loss of generality,
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let us assume that the set X1 intersects the sets Y1, Y2, . . . , Yr with r ≥ 2, and
does not intersect the remaining sets Yr+1, . . . , Yq. See figure 1 for an illustra-
tion. We prove below that the set X1 can be further refined into X1 ∩ Y1, . . . ,
X1 ∩ Yr, leading to a contradiction since (Xi) is finest.

Let us apply successively Proposition 4 on all variables of X2 ∪ X3 ∪ · · · ∪
Xp, thus obtaining some values X0

2 , . . . , X0
p . We obtain two different decou-

plings for F̄ = F (X2 = X0
2 , X3 = X0

3 , . . . , Xp = X0
p). The first one (obtained

from (A, (Gi), (Xi)) is (C, (G1), (X1)) where C is the (univariate) tree A(a2 =
G2(X0

2 ), . . . , ap = Gp(X0
p)). The second one (obtained from (B, (Hi), (Yi))) is

(D, (Ri)1≤i≤r, (Ui)1≤i≤r) where (Ui) is the partition (X1 ∩ Y1, . . . , X1 ∩ Yr)
of X1. As a consequence, the fraction F̄ is splittable. Since F̄ = C(G1) is split-
table, the fraction G1 is also splittable by Lemma 6. This contradicts the fact
that (Xi) is finest, since G1 could be split in the decoupling (A, (Gi), (Xi)) of
F . ut

Y1

Y2

Y3

X1 X2 X3

Fig. 1. Two partitions (Xi) and (Yi) of X. The sets X1, X2 and X3 are the rectangles
in dark gray, gray and light gray. The set X1 intersects the sets Y1 and Y2, but not Y3.

2.5 Decomposition into a sum and product

In this section, we give necessary and sufficient conditions for decomposing a
fraction F ∈ K(X) with Supp(F ) = X, into a sum G + H or a product GH,
where G ∈ K(Y ), H ∈ K(Z), and (Y,Z) is a partition of X.

Over the reals or the complexes, the conditions are immediate to show using
converging Taylor expansions for example. However, we show them in a more gen-
eral context for any field K of characteristic zero, such as for example Q(a, b, c).
We avoid here the use of converging Taylor expansions, which would require us
to equip K with a norm. By the way, the authors of [1] required a normed vector
space, which was in fact not required by using techniques presented here.

Proposition 6 (Decomposition into sum). Let F ∈ K(X) with Supp(F ) =
X, and (Y, Z) a partition of X. Then there exist two fractions G ∈ K(Y ) and
H ∈ K(Z) such that F = G+H if and only if Fy,z = 0 for any (y, z) ∈ (Y,Z).

Proof. The left to right implication is immediate. To prove the right to left
implication, we assume for simplicity that X only contains two elements y and z.
Consider a point X0 = (y0, z0) ∈ Def(F ). Without loss of generality, using a
shift on variables y and z, let us assume that X0 = (0, 0).

Take G = F (z = 0) and H = F (y = 0)−F (0, 0), and take U = F − (G+H).
Then Uy,z = Fy,z is also the zero fraction. Moreover, U cancels on the varieties
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y = 0 and z = 0, whenever U is well-defined. We now show that the fraction U
is the zero fraction, which proves that F = G+H as required.

Write U as P/Q with P and Q polynomials. Since P = QU and using a
classical Taylor expansion on P , one gets

P =
∑

j≥0,k≥0

1

j!k!
(QU)yj ,zk(0, 0)yjzk (1)

where only a finite terms are non zero since P is a polynomial (hence no conver-
gence arguments are needed here).

Since Uy,z is the zero fraction, then all terms with j ≥ 1 and k ≥ 1 in
Equation (1) are zero. We finish the proof by showing (using the symmetry on
y and z) that any term (QU)yj (0, 0) is zero, which proves that P is the zero
polynomial.

By Lemma 2, the fraction U(z = 0) is the zero fraction, hence the (QU)(z =
0) is the zero polynomial. Using the fact that evaluating at z = 0 and differen-
tiating w.r.t. y commute, (QU)yj (0, 0) = ((QU)(z = 0))yj (y = 0) = 0. ut

Remark 5. Proposition 6 can be interpreted using a graph. Indeed, with nota-
tions of Proposition 6, and writing X = {x1, . . . , xn}, consider the undirected
graph with nodes xi and with edges the (xi, xj) such that Gxi,xj

6= 0. Then the
fraction F can be written as a sum if and only if the graph admits at least two
connected components.

The next proposition is the equivalent of Proposition 6 for decomposition
a fraction as a product instead of a sum. From an analytical point of view,
decomposing a fraction F as a product GH corresponds to decomposing lnF as
the sum of lnG and lnH. The differentiation conditions of Proposition 6 applied

on lnF , yield (lnF )y,z =
(

Fy

F

)
z

= 0. This condition, which does not involve a

logarithm, is used in the following Proposition.

Proposition 7 (Decomposition into product). Consider F ∈ K(X) with
Supp(F ) = X, and (Y,Z) a partition of X. Then there exist two fractions G ∈
K(Y ) and H ∈ K(Z) such that F = GH if and only if

(
Fy

F

)
z

= 0 for any

(y, z) ∈ (Y,Z).

Proof. The left to right implication is immediate. To prove the right to left impli-
cation, we assume for simplicity that X only contains two elements y and z. The
fraction F is not constant since its support X is not empty. By contraposition of
Lemma 2, there exists a point X0 ∈ Def(F ) such that F (X0) 6= 0. Without loss
of generality, using a shift on variables y and z, let us assume that X0 = (0, 0).

Take G = F (z = 0) and H = F (y = 0)/F (0, 0) and consider U = F/(GH)−
1. We prove below that the fraction U is equal to 0, thus showing that F = GH.

Write U as P
Q with P and Q polynomials. Since U is zero on z = 0, then by

Lemma 2, the fraction U(z = 0) is the zero fraction. Using the commutativity
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argument at the end of Proposition 6 proof, Uyj (0, 0) = 0 for any nonnegative
integer j. By symmetry on y and z, Uzk(0, 0) = 0 for any nonnegative integer k.

The condition
(

Fy

F

)
z

= 0 can be rewritten as Fy,z =
FyFz

F . This implies

that Uyz =
UyUz

U+1 . By an inductive argument on k + l, and using the fact that
Uyj (0, 0) = 0 and Uzk(0, 0) = 0 for any nonnegative integers j and k, one proves
that Uyj ,zk(0, 0) = 0 for any nonnegative integers j and k. Using Equation (1),
the polynomial P is zero, hence U = 0 which ends the proof. ut

3 Algorithm decouple

Algorithm 1: decouple(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: A finest decoupling (A, [F1, . . . , Fp], [X1, . . . , Xp]) of F

1 if F is constant then return (F, [ ], [ ]) ;
2 else if F does not depend on x1 then return decouple(F, [x2, . . . , xn]) ;
3 else if F only depends on x1 then return (a1, [F ], [{x1}]) ;
4 else if checkC1(F,X) returns G, Y,H,Z then
5 (AG, Ḡ, Ȳ ) := decouple(G, Y ) ;
6 (AH , H̄, Z̄) := decouple(H,Z) ;
7 let r be the length of Ḡ
8 shift the variables of AH by r i.e. replace each ai by ai+r in AH

9 return (
+

AG AH , Ḡ+ H̄, Ȳ + Z̄)

10 /* where Ḡ+ H̄ and Ȳ + Z̄ are list concatenations */

11 else if checkC2(F,X) returns c,G, Y,H,Z then
12 proceed as in Lines 5 to 8 ;

13 return (
+

c ×
AG AH , Ḡ+ H̄, Ȳ + Z̄)

14 else if checkC3(F,X) returns c,G, Y,H,Z then
15 proceed as in Lines 5 to 8 ;

16 return (

+
c ÷

1 +
AG AH , Ḡ+ H̄, Ȳ + Z̄)

17 else if checkC4(F,X) returns c, d,G, Y,H,Z then
18 proceed as in Lines 5 to 8 ;

19 return (

+
c ÷

d +
1 ×

AG AH , Ḡ+ H̄, Ȳ + Z̄)

20 else return (a1, [F ], [Supp(F )]) ;

Algorithm decouple takes as input a fraction F and a list X, such that F ∈
K(X), and returns a finest decoupling of F . Unless F is a constant, or a univariate
fraction, the four cases of Theorem 1 are sequentially checked by calling the four
so-called functions checkC1 , . . . , checkC4. If one of them succeeds (returning
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some G and H plus other results), Algorithm 1 calls itself on G and H and
builds the final result. Otherwise, if no case succeeds, the fraction is proved to
be nonsplittable (by Theorem 1) and F is returned.

The main difficulty in the process is to prove that the four checkC1 , . . . ,
checkC4 functions are correct, which is done in the four following subsections.

3.1 Algorithm checkC1 (F = G + H)

Following Proposition 6 and Remark 5, Algorithm checkC1 computes (using Al-
gorithm 3) the connected component Y containing the node x1 of the undirected
graph with vertices the xi, and with edges the (xi, xj) such that Fxi,xj

6= 0. If
this component Y is strictly included in the support of F , then one can split
F as a sum of two fractions G + H as in the case C1, using some (random)
evaluation to compute the (non-unique) G and H fractions.

Algorithm 2: checkC1(F,X)

Input: A fraction F ∈ K(X) s.t. x1 ∈ Supp(F ) and a list
X = [x1, . . . , xn]

Output: Succeeds by returning G, Y,H,Z if F can be written as G+H
(as in the case C1), and fails otherwise

1 Y := connectedVariablesSum(F,X) ;
2 Z := Supp(F ) \ Y ;
3 if Z is empty then FAIL ;
4 else
5 G := F (Z = Z0) where Z0 is a random point such that F (Z = Z0)

is well-defined ;
6 H := F −G ;
7 succeed by returning G, Y,H,Z ;

Algorithm 3: connectedVariablesSum(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Return the connected component containing x1 of the

undirected graph with nodes xi, and with edges the (xi, xj)
such that Fxi,xj

6= 0.
1 visited := {} ;
2 todo := {x1} ;
3 while todo is not empty do
4 pick and extract some variable v from todo ;
5 visited := visited ∪ {v} ;
6 V := Supp(Fv) ;
7 todo := todo ∪ (V \ visited) ;

8 return visited
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3.2 Algorithm checkC2 (F = c + GH)

Algorithm checkC2 proceeds similarly to Algorithm checkC1 but it first needs to
compute a constant candidate c such that F − c can be written as a product as
in the case C2.

Proposition 8. Take a fraction F ∈ K(X) of the form C2 (i.e. F = c+GH)
where Supp(G) = Y , Supp(H) = Z and (Y,Z) is a partition of Supp(F ). Then

c = F − FyFz

Fy,z
for any (y, z) ∈ (Y, Z).

Moreover, if for some (u, v) ∈ X2, the expression F − FuFv

Fu,v
is well-defined

and constant, then it is equal to the c defined above.

Proof. The first part of the proposition is a simple computation (note that the
formula for c is well-defined because Fy,z = GyHz, which is nonzero).

For the second part of the proposition, there is nothing to prove if (u, v) ∈
(Y,Z), or (u, v) ∈ (Z, Y ). Assume (by symmetry) that both u and v lies in Y ,
and that F − FuFv

Fu,v
is well-defined and constant.

Simple computations show that F − FuFv

Fu,v
= c + (G − GuGv

Gu,v
)H. Since this

expression is constant, the term G − GuGv

Gu,v
is necessarily zero (otherwise, the

expression would not be constant since the supports of G and H are distinct),
which ends the proof. ut

Remark 6. The case G − GuGv

Gu,v
= 0 in the previous proof occurs for example if

the fraction G can itself be written as a product of two fractions M and N of
disjoint supports, with u ∈ Supp(M) and v ∈ Supp(N).

Proposition 8 ensures that Algorithm 5 can stop as soon as it finds a constant
candidate c. Indeed, if F has form C2, then the constant candidate c is correct by
Proposition 8. If F has not form C2, and if a constant candidate c is computed
(which can happen by Remark 7), then the call to checkProd(F − c) at Line 2
of Algorithm 4 will detect that F has not form C2.

Remark 7. Fix X = {x, y, z}. The following fraction F = 3 + (x + z)/(y + z)

yields F − FxFy

Fx,y
= 3. However, it can be shown (using Algorithm decouple) that

the fraction F cannot be written as C2. This does not contradict Proposition 8,
since Algorithm 2 will detect that F − 3 cannot be decomposed as a non trivial
product. Finally, note that F is splittable (of the form C2) if we take for example
X = {x, y} and K = Q(z).
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Algorithm 4: checkC2(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning G, Y,H,Z if F can be written as c+GH

(as in the case C2), and fails otherwise
1 if findConstantCase2(F,X) returns a constant c then
2 if checkProd(F − c,X) returns G, Y,H,Z then
3 return c,G, Y,H,Z

4 else FAIL ;

5 else FAIL ;

Algorithm 5: findConstantCase2(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some constant candidate c for case C2, or fails.

1 for i from 2 to n do
2 if Fx1,xi

6= 0 then

3 c := F − Fx1Fxi

Fx1,xi

;

4 if c ∈ K then return c ;

5 FAIL

Algorithm 6: checkProd(F,X)

Input: A fraction F ∈ K(X) with x1 ∈ Supp(F ), and a list
X = [x1, . . . , xn]

Output: Succeed by returning G, Y,H,Z if F can be written as GH
(i.e. as in the case C2 with c = 0), and fails otherwise

1 Y := connectedVariablesProd(F,X) ;
2 Z := Supp(F ) \ Y ;
3 if Z is empty then FAIL ;
4 else
5 G := F (Z = Z0) where Z0 is a random point such that F (Z = Z0)

is well-defined and nonzero ;
6 H := F/G ;
7 succeed by returning G, Y,H,Z

Algorithm 7: connectedVariablesProd(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Return the connected component containing x1 of the

undirected graph with nodes xi, and with edges the (xi, xj)

s.t.
(

Fxi

F

)
xj

6= 0.

1 Same algorithm as Algorithm 3 except Fv is replaced by
Fv

F
in Line 6
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3.3 Algorithm checkC3 (F = c + 1/(G + H))

Algorithm checkC3 proceeds similarly to Algorithm checkC2 but with a different
formula for computing c, G, and H. Once a candidate c is found, Algorithm
checkC3 tries to decompose 1/(F−c) into a sum G+H using Algorithm checkC1.

Proposition 9. Take a fraction F ∈ K(X) of the form C3 (i.e. F = c+1/(G+
H)) where Supp(G) = Y , Supp(H) = Z and (Y,Z) is a partition of Supp(F ).

Then c = F − 2
FyFz

Fy,z
for any (y, z) ∈ (Y,Z).

Moreover, if for some (u, v) ∈ X2, the expression F − 2FuFv

Fu,v
is well-defined

and constant, then it is equal to c defined above.

Proof. The first part of the proof is once again a simple computation. For the
second part, there is nothing to prove if (u, v) ∈ (Y,Z) or (u, v) ∈ (Z, Y ). Assume
(by symmetry) that both u and v lies in Y , and that the expression F − 2FuFv

Fu,v

is well-defined and constant.

Computations yields F − 2FuFv

Fu,v
= c+

Gu,v

Gu,v(G+H)− 2GuGv
. This expres-

sion is equal to c when Gu,v = 0. If Gu,v 6= 0, the numerator of the expression
is free of Z, but the support of denominator contains Z, hence a contradiction
since the expression is constant. ut

Algorithm 8: checkC3(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning c,G, Y,H,Z if F can be written as

c+ 1/(G+H) (as in the case C3), and fails otherwise
1 if findConstantCase3(F,X) returns a constant c then
2 U := 1/(F − c) ;
3 if checkC1(U,X) returns G, Y,H,Z then return c,G, Y,H,Z ;
4 else FAIL ;

5 else FAIL ;

Algorithm 9: findConstantCase3(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some constant candidate c for case C3, or fails.

1 Same algorithm as Algorithm 5 except Line 3 is replaced by

c := F − 2
Fx1

Fxi

Fx1,xi

3.4 Algorithm checkC4 (F = c + d/(1 + GH))

Algorithm checkC4 proceeds similarly to Algorithms checkC2 and checkC3. Once
candidates c and d are found, Algorithm checkC4 tries to decompose d/(F−c)−1
into a product GH using Algorithm checkProd.

However the computations for finding the candidates c and d are more dif-
ficult, because c and d are solutions of quadratic equations. As a consequence,
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some fractions of K(X) are nonsplittable in K(X), but are splittable in K̄(X)
where K̄ is some extension of K. Here is a quite easy example demonstrating
this fact.

Example 1. The fraction F = xy+a
x+y ∈ K(x, y), where a ∈ K, can be written as

F = −b+
2b

1−
(

1− 2
x
b +1

)(
1− 2

y
b +1

)
if b satisfies b2 = a. As a consequence, the fraction F is splittable in K(x, y) if a
is a square in K, and nonsplittable in K(x, y) otherwise.

Propositions 10 and 11 below explain the process used by Algorithm 11 for
finding the candidates c and d.

Proposition 10. Take a fraction F ∈ K(X) of the form C4 (i.e. c+d/(1+GH))
where Supp(G) = Y , Supp(H) = Z, c and d constants, with d 6= 0.

Then, for any (y, z) ∈ (Y,Z), we have

1

F − c
+

1

J − c
=

2

d
(2)

where J = F −2
FyFz

Fy,z
. Moreover, the couple (c, d) is unique up to the (involutive)

transformation (c, d) 7→ (c+ d,−d).

Proof. Take (y, z) ∈ (Y,Z). Note that J is well-defined since Fyz =
2dGyHz

(1+GH)3 ,

which is nonzero. Computations show that J = c + d
1−GH , and Equation (2)

follows. Equation (2) can be rewritten as

− (c+ d/2)S + c(c+ d) + P = 0 (3)

where S = F + J and P = FJ . One proves that S is nonconstant. Indeed if S
were constant, then 2c + d( 1

1+GH + 1
1−GH ) would be constant, 1

1+GH + 1
1−GH

would be constant, hence G2H2 would be constant, a contradiction since G and
H are nonconstant with disjoint supports.

Since S is non constant, there exist X0 and X1 such that where S(X0) 6=
S(X1). Substituting those values in (3) yield a invertible linear system, hence
unique values for ā = −(c+ d/2) and b̄ = c(c+ d).

Finally, d is solution of d2 = 4(ā2 − b̄), and c = −ā− d/2. Hence the couple
(c, d) is unique, up to the (involutive) transformation (c, d) 7→ (c+ d,−d). ut

Proposition 11. Take the same hypotheses as in Proposition 10. Take (u, v) ∈
X2 and assume Fu,v 6= 0. Consider J = F−2FuFv

Fu,v
, and S = F+J and P = FJ .

Assume S is not constant. Consider the (unique) solution (ā, b̄) of aS+b+P = 0,
with ā and b̄ constants, if such a solution exists. Then, if 4(ā2 − b̄) is nonzero
and admits a squareroot d̄ in K, then (c̄, d̄), where c̄ = −ā− d̄/2, is either (c, d)
or (c+ d,−d).
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Proof. If (u, v) ∈ (Y,Z) or (u, v) ∈ (Z, Y ), Proposition 10 concludes. Assume
(by symmetry) that both u and v lies in Y . Computations show that J = c +

d
Gu,v

Gu,v+(GGu,v−2GuGv)H
. If Gu,v = 0, then J = c. It implies that S = F + c,

P = cF . As a consequence, S is not constant, and (ā, b̄) = (−c, c2) is the unique
solution of aS+b+P = 0. In that case, 4(ā2− b̄) = 0, which ends the proof. Now

assume that Gu,v 6= 0. The fraction J can then be rewritten as J = c+d
1

1 + ḠH
where Ḡ = G− 2GuGv

Gu,v
.

Let us first consider the case Ḡ = −G (which happens for example if G can
be written as a product, see Remark 6). This implies J = c + d 1

1−GH , and the
proof ends by following the proof of Proposition 10.

Now consider that Ḡ 6= −G. By taking the numerator of the equation aS +
b+ P = 0, tedious computations2 yield:

GḠ(2ac+ c2 + b)H2 + (2ac+ c2 + b+ (a+ c)d)(Ḡ+G)H+

(2ac+ c2 + b+ 2(a+ c)d+ d2) = 0. (4)

Since the supports of G and H are disjoint, and H is nonconstant, the previous
equation can only hold if the three coefficients in H are the zero fractions. This
implies that the three constants u2 = 2ac+ c2 + b, u1 = 2ac+ c2 + b+ (a+ c)d
and u0 = 2ac + c2 + b + 2(a + c)d + d2 are zero. Expanding u2 − 2u1 + u0 = 0
yields d2 = 0, a contradiction, which ends the proof. ut

Algorithm 10: checkC4(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning c, d,G, Y,H,Z if F can be written as

c+ d/(1 +GH) (as in the case C4), and fails otherwise
1 if findConstantsCase4(F,X) returns a couple (c, d) then
2 U := d/(F − c)− 1 ;
3 if checkProd(U,X) returns G, Y,H,Z then
4 return c, d,G, Y,H,Z
5 else FAIL ;

6 else FAIL ;

2 use your favorite computer algebra system!
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Algorithm 11: findConstantsCase4(F,X)

Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some couple candidate (c, d) ∈ K2 for case C4,

or fails.
1 for i from 2 to n do
2 if Fx1,xi

6= 0 then

3 J := F − 2
Fx1

Fxi

Fx1,xi
;

4 S := F + J ;
5 P := F × J ;
6 if S is not constant then
7 find two random points X0 and X1 non canceling the

denominators of F and J , such that S(X0) 6= S(X1) ;
8 find the solution (ā, b̄) of the linear system

aS(X0) + b+ P (X0) = 0, aS(X1) + b+ P (X1) = 0 ;
9 if (the fraction āS + b̄+ P is the zero fraction, and if

4(ā2 − b̄) is nonzero and admits a squareroot d̄ ∈ K, then
10 c̄ := −ā− d̄/2 ;
11 succeed by returning (c̄, d̄)

12 FAIL

4 Examples

Example 2. The polynomial p = ab+ax+bx+cd+cx+dx+2x2 can be decoupled
in K(a, b, c, d) with K = Q(x) into (x+ b) (x+ a) + (x+ c) (x+ d).

Note that p is not splittable in Q(a, b, c, d, x).

Example 3. We present here a worked out example to illustrate how the decouple
algorithm works. To make the walkthrough readable, we do not fully detail all
values returned by the algorithms. Consider the fraction F = x2+x+4+ y+1

z+ 2
1+tu

taken in Q(x, y, z, t, u), whose expanded form is

tux2z + tuxz + tuy + 4tuz + x2z + tu+ 2x2 + xz + 2x+ y + 4z + 9

tuz + z + 2
.

When calling decouple(F, [x, y, z, t, u]), the call to checkC1 succeeds. Indeed, the

graph considered during the call to connectedVariablesSum is x
t z

y u

which admits two connected components. The connected component containing
the vertex x is simply {x}, so F can be written as the sum Q + R, with Q =
F (y = −2, z = 0, t = 1, u = 1) = x2 + x + 3 ∈ K(x) and R = F − Q =
tuy+tuz+tu+y+z+3

tuz+z+2 ∈ K(y, z, t, u). Please note that the previous evaluation is
chosen randomly in checkC1, we just picked a possible one for the example.
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Then the function decouple performs recursive calls on Q and R. The call to
decouple(Q, [x]) simply returns Q itself. When calling decouple(R, [y, z, t, u]), the

call to checkC2 succeeds. Indeed, the constant c = R − RyRz

Ry,z
= 1 is computed

by findConstantCase2. Then checkProd(S, [y, z, t, u]) where S = R − 1 is able
to split S as a product TU , where T = S(z = 0, t = 1, u = 1) = y + 1 ∈
K(y) and U = S/T = tu+1

tuz+z+2 ∈ K(z, t, u). Indeed, the graph considered in

connectedVariablesProd(S, [y, z, t, u]) is y
t z

u
which admits two connected

components.

Then the function decouple performs recursive calls on T and U . The call
to decouple(T, [y]) simply returns T . When calling decouple(U, [z, t, u]), the call
to checkC3 succeeds. Indeed, the constant c = U − UzUt

Uz,t
= 0 is computed by

findConstantCase3. Then checkC1(1/U, [z, t, u]) is able to split 1/U as a sum
V +W where V = 1/U(t = 1, u = 0) = z+2 ∈ K(z) and W = 1/U−V = − 2tu

1+tu .

Then the function decouple performs recursive calls on V and W . The call
to decouple(V, [z]) simply returns V . Finally, when calling decouple(W, [t, u]),
checkC4 succeeds. Algorithm findConstantsCase4 computes c = 0 and d = −2
and checkProd(−d/(W − c) − 1, [t, u]) decomposes −d/(W − c) − 1 = 1

tu as a
product 1

t times 1
u .

Putting everything together, decouple(F, [x, y, z, t, u]) returns a tree encoding
the fraction (x2 + x+ 3) + (1 + y+1

z+2− 2

1+ 1
tu

).

Please note that the output would be different (and slightly more compact)
if Algorithm findConstantsCase4 were returning c = −2 and d = 2, instead of
c = 0 and d = −2 (see Proposition 10).

Example 4. The main point of this example is to show how Equations (5) below
can be rewritten into Equations (6). We however quickly explain how to derive
Equations (5) using [2, 7].

Consider the following reactions, which simulate a gene G regulated by the

protein P it produces: G + P
a−⇀↽−
b
H, G

e−→ G + M , M
f−→ M + P , M

Vm,km−−−−→ ∅,

P
Vp,kp−−−→ ∅. The three first reactions follow the classical mass action law, and the

two last are Michaelis-Menten degradations. Assuming the binding/unbinding
of the protein is fast, the following dynamical system can be obtained:

H ′(t) = −G′(t) =
a((fM(t)− Vp)P (t) + fkpM(t))G(t)

(aG(t) + aP (t) + b)(kp + P (t))
, (5)

M ′(t) =
(eG(t)− Vm)M(t) + ekmG(t)

km +M(t)
,

P ′(t) =
((fM(t)− Vp)P (t) + fkpM(t))(aP (t) + b)

(aG(t) + aP (t) + b)(kp + P (t))
·
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The right hand sides are quite compact, and one clearly sees some denomina-
tors like kp+P (t) and km+M(t) coming for the Michaelis-Menten degradations,
and aG(t) + aP (t) + b coming from the fast binding/unbinding hypothesis.

Using Algorithm decouple on the right hand sides of Equations (5) seen as
fractions of K(Vm, km, Vp, kp, a, b, e, f,G,H,M) with K = Q(P ), one gets

H ′(t) = −G′(t) =

fM(t)− VpP (t)

kp + P (t)

1 +
b
a + P (t)

G(t)

(6)

M ′(t) = − Vm
km
M(t)

+ 1

+ eG(t) P ′(t) =

fM(t)− VpP (t)

kpP (t)

1 +
G(t)

P (t)
(

1 + b
aP (t)

) ·
Equations (6) might be of interest for a modeler. For example, the expression

of M ′(t) in (6) clearly shows that M ′(t) is the contribution of two reactions (the
degradation of M and the production of M by the gene), whereas it is quite
hidden in (5). Expression of M ′(t) in (6) clearly indicates a contribution fM(t)−
VpP (t)
kp+P (t) (the production of P minus the degradation of P ) divided by the special

correction term −
(

1 +
b
a+P (t)

G(t)

)
that comes from the fast binding/unbinding

hypothesis.
Please remark that Equations (6) are not obtained anymore if one considers

P as a variable instead of putting it in the base field. The reason is that P
appears in too many places, which prevents a “nice” decoupling.

Also, note the term Vm
km
M(t)

+1
in the expression of M ′(t) in (6). This term is

probably a bit odd for a modeler, who would rather prefer the more classical

form VmM(t)
km+M(t) ·

As a last comment, using the intpakX package [6], here are the intervals
obtained by using either Equations (5) or (6), on the intervals G = [0.4, 0.7],
M = [10.0, 15.0], P = [50.0, 100.0], Vm = [130.0, 250.0], km = [100.0, 200.0], Vp =
[80.0, 160.0], kp = [100.0, 200.0], a = [10.0, 20.0], b = [5.0, 10.0], e = [3.1, 4.5],
f = [7.8, 11.6]:

Value for H ′(t) G′(t) M ′(t) P ′(t)
Equations (5) [ -0.07, 8.10] [ -8.10, 0.07] [-32.79, -2.97] [-10.53, 1163.61]
Equations (6) [ -0.39, 2.21] [ -2.21, 0.39] [-31.37, -3.04] [-28.55, 160.04]

Except for the interval for P ′(t), the differences between the intervals using
Equations (5) or (6) is here rather minor.

Example 5. The following example is a bit artificial but illustrates how compact
fractions can become big when being developed. Consider the fraction

F =
a0 + a1

b1+
a2

b2+a3

c0 + c1
d1+

c2
d2+c3

+
e0 + e1

f1+
e2

f2+e3

g0 + g1
h1+

g2
h2+g3
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which is in a completely decoupled form since each variable only appears once.
Developing F as a reduced fraction P/Q yields a polynomial P of degree

10 with 450 monomials, and a polynomial Q of degree 10 with 225 monomials.
Our algorithm decouple recovers from P/Q the fraction F with some minor sign
differences

−a0 − a1

− a2
−a3−b2

+b1

−c0 − c1
− c2

−d2−c3
+d1

+
−e0 − e1

f1+
e2

f2+e3

−g0 + g1
g2

−g3−h2
−h1

·

Finally, if each variables is replaced by the interval [1.0, 5.0], the reduced
fraction P/Q yields the interval [0.140×10−5, 0.284×107], whereas the decoupled
form yields [0.237, 16.8].

5 Implementation and complexity

5.1 Complexity

Algorithm decouple performs O(n2) operations over K(X)3, where n is the num-
ber of variables of X. Indeed, Algorithm decouple performs at most two recursive
calls on a partition of X, plus at most O(n) arithmetic operations: each “check”
algorithm performs a linear number of operations over K(X) (including their
subalgorithms), and there is no other operation in K(X) in Algorithm decouple.

Note that we are not considering the complexity over K, which is much
higher. Indeed, differentiations, additions, are intensively used and may produce
very large fractions. Also, reduced forms of fractions are computed intensively,
causing a lot of gcd computations. Some techniques are mentioned in the next
section, in order to limit this problem. Finally, if we consider operations over K,
our algorithm is Las Vegas, as there are some random evaluations in Algorithms
2 and 11.

5.2 Implementation

Algorithm decouple has been coded in the Maple 2020 computer algebra system.
All examples presented in the paper run under ten seconds (on a i7-8650U CPU
1.90GHz running Linux), and the memory footprint in under 180 Mbytes.

Our implementation has also been intensively stress-tested in the following
way. It is easy to compute splittable fractions by building a tree representing a
decoupling. Expanding this tree yields a (usually large) fraction which is given
to Algorithm decouple, which then recovers the initial decoupling.

Some heuristics have been used in our code to limit potential costly compu-
tations. For example, when testing that a fraction is zero, some evaluations are
first performed, and the fraction is only developed if all evaluations return zero.

One difficulty in Algorithm 11 is to decide whether the equation d2 = 4(ā2−b̄)
admits solution for d in the field K. For the moment, we simply chose to use an
expression with a radical for d, thus assuming d exists.

3 We count here only arithmetic operations and differentiations. Note that complexity
is not the main point of this paper, so that we do not go into much details here.
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