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Abstract

Genetic diversity at population scale, depends on species life-history traits, population
dynamics and local and global environmental factors. We first investigate the effect of life-
history traits on the neutral genetic diversity of a single population using a deterministic
mathematical model. When the population is stable, we show that semelparous species with
precocious maturation and iteroparous species with delayed maturation exhibit higher diversity
because their life history traits tend to balance the lifetimes of non reproductive individuals
(juveniles) and adults which reproduce. Then, we extend our model to a metapopulation to
investigate the additional effect of dispersal on diversity. We show that dispersal may truly
modify the local effect of life history on diversity. As a result, the diversity at the global scale
of the metapopulation differ from the local diversity which is only described through local life
history traits of the populations. In particular, dispersal usually promotes diversity at the
global metapopulation scale.
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1 Introduction
Environmental changes induced by climate changes or human activities, disrupt population and
metapopulation dynamics, resulting in species extinctions, profound changes in ecosystem dynamics
or population genetic loss (Ceballos and Ehrlich, 2002; Haddad et al., 2015). Through its relation
with demographic processes (Mittell et al., 2015; Vilas et al., 2015), neutral genetic diversity is often
used to inform about the evolutionary and demographic history of populations (Paz-Vinas et al.,
2018). At population scale, the genetic diversity depends on species life-history traits, population
dynamics and local and global environmental factors (Eckert et al., 2008; Attard et al., 2015).
Even though many theoretical and empirical studies have shown the importance of local population
dynamics in shaping species’ range or communities (e.g. Husband and Barrett, 1996; Freckleton
and Watkinson, 1990; Levin et al., 2003), few is known about the relative importance of local
and range wide processes in driving genetic diversity. Moreover, understanding the relationship
between neutral genetic diversity, species life history traits and environmental factors might be a
key to establish general conservation guidelines valid across taxa and space (Willoughby et al., 2015;
Blanchet et al., 2017).
Plants and animals life histories exhibit a huge diversity. Individuals may live for hours or for
centuries; they may reproduce once in their lifetime (semelparity) or several time once they become
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reproductive adult (iteroparity). Individuals may experiment several totally different niches during
their lifetime. Specialized stages may exist for dispersal or dormancy. Moreover, the life history
traits of individuals, such as survival rates, development, fecundity or dispersal, almost always
depend on their age, their body size or their developmental stage. The resulting variety of life history
strategies has profound consequences on genetic diversity (Nelson et al., 2005; Bonnefon et al., 2013).
However, the studies only focus on the effect of one particular life history trait or consider them
independently whereas genetic diversity patterns more likely result from the interaction between
life-history traits and potentially environmental factors. For instance, empirical studies have found
that populations of small animals with high fecundity and short longevity, large geographic ranges
and long-distance dispersal harbour relatively high genetic diversity (Eo et al., 2011; Romiguier
et al., 2014; Doyle et al., 2015; Dalongeville et al., 2016), whereas other studies could not validate
this life-history related genetic diversity pattern (Mitton and Lewis, 1989; Vachon et al., 2018).
Despite the lack of studies investigating the combined effect of life-history traits and environmental
factors on genetic diversity at the local scale of the population, various quantitative reviews focused
on both life-history traits and spatial factors to understand genetic diversity across populations
that is at the global scale of species or metapopulation (Schoville et al., 2012; Romiguier et al.,
2014; Miraldo et al., 2016; Manel et al., 2020). In particular, these studies demonstrated that
the genetic diversity is lower for long-lived or low-fecundity species than for short-lived or high-
fecundity species. However, these studies focusing on genetic diversity at species scale do not
capture the local-scale processes ruled for instance by environmental constraints or anthropogenic
factors. Conversely to genetic diversity at species or metapopulation scale, the genetic diversity at
population scale is driven by the population dynamics reflecting the local ability of the population to
cope with environmental conditions. In addition, although species genetic diversity provides crucial
insights into species’ demographic trajectories, it is poorly informative in terms of contemporary
population dynamics or on the risk of genetic erosion of populations. Thus, it is important to
provide a framework to access the impact of life-history traits and environmental conditions on the
genetic diversity at the population and metapopulation scale.
Here, we provide a mathematical framework that incorporates the two genetic diversity scales
and makes the link between population dynamics and neutral genetic diversity. First, we use the
stage-classified demography framework to incorporate the diversity of life histories into population
models . And we combine this approach with classical metapopulation models to describe the variety
of environmental conditions or life-history strategies among species range. Our resulting matrix
model allows us to describe the stage-structure inside each local population (Leslie, 1945; Lefkovitch,
1965) as well as the dispersal between those populations. On top of that, we use the mathematical
tool introduced by Garnier et al. (2012) and Roques et al. (2012) to study the spatio–temporal
dynamics of the neutral genetic diversity in a range–expanding population. Their framework,
inspired from a simulation study of Hallatschek and Nelson (2008), had already been applied to a
wide class of reaction–dispersion model (Bonnefon et al., 2014). More recently, they extend their
work to metapopulation models described through a system of ordinary differential equations in a
fully heterogeneous environment (Garnier and Lafontaine, 2021). In the present paper, we extend
the inside dynamics approach which links the demography dynamics of the metapopulation and the
neutral genetic diversity, to our matrix projection model.
More precisely, we consider a metapopulation of genes or haploid individuals composed of local
populations structured by stage and living in different habitat patches linked by dispersal. Our
structured metapopulation model describes the population density N(t) =

(
N1(t)), . . . ,Nωh(t)

)
including the vector of population densities Nk(t) in each habitat k at time t, over ωh habitats.
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Each vector of population densitiesNk(t) =
(
N1,k(t), . . . , Nωc,k(t)

)
includes the population densities

Ni,k(t) of individuals of stage i living in habitat k. We assume that the number of stages ωc is the
same for any habitat. Our structured metapopulation model takes the form

N(t+ 1) = DF[N(t)]N(t) (1)

indicating that the projection interval is divided into two main phases of possible different duration:
reproduction phase (F) followed by a dispersal phase (D). The reproduction matrix F is a block
diagonal matrix F = diag(Fk) where each square matrix Fk corresponds to the reproduction matrix
in habitat k. The reproduction matrices Fk describe the life cycle dynamics of the local stage–
structured population living in the different habitats (Neubert and Caswell, 2000). It thus depends
on the life-history traits of the population and the environmental conditions. The dispersal matrix
D = (Dkl) depends on both the arrival habitat k and the departure habitat l. Moreover, the
dispersal matrices Dkl = diag(djkl)j∈{1,...,ωc} may also depend on the stage j of the individuals
which are moving.
In this paper, we first describe the dynamics of neutral genetic fractions in the general stage–
structured metapopulation (1). Then, we focus on a simple two-stage model including the most
basic life cycle division: that between reproducing adults and non-reproducing juveniles. It permits
to explore the impact of four life history traits (survival of juveniles and adults, development rate
between juvenile and adult, and fecundity) on the genetic diversity in a population at steady state
(equilibrium or periodic steady state). Finally, we explore the intertwined effect of these life-history
traits, the dispersal and environmental heterogeneity on genetic diversity of a two-stage structured
metapopulation located over two distinct habitats. In particular, we will be able to understand the
effect of the juvenile stage on the neutral genetic diversity of a metapopulation. As already observed
in literature, the presence of juvenile stage helps to promote genetic diversity in range expanding
population (Bonnefon et al., 2013; Marculis et al., 2019) as well as predator-prey systems (Nelson
et al., 2005). Moreover, we aim to assess the impact of life history of species through reproduction
strategy (semelparous or iteroparous strategies) and development strategy (delayed or precocious
development) on the neutral genetic diversity.

2 Materials and methods

2.1 Inside dynamics, neutral fractions and diversity indices
Let us assume that the stage–structured metapopulation of genes (or individuals)
N = (N1, . . . ,Nωh) is made of I neutral fractions of densities ni = (ni1, . . . ,n

i
ωh

) for i ∈ {1, . . . , I}
where the densities nik = (ni1k, . . . , n

i
ωck

) in each habitat k comprise the population densities nijk
of each stage j. This means that in each habitat k, the population Nk = (N1k, . . . , Nωck) of the
metapopulation N satisfying (1), is equal to the sum of the fractions which are present in habitat
k. More precisely, for each stage j in habitat k we have:

Njk(t) =

I∑
i=1

nijk(t) with nijk(t) ≥ 0, for any k ∈ {1, . . . , ω} and j ∈ {1, . . . , ωc},

where I is the total number of neutral fractions inside the metapopulation.
In addition, we assume that the fractions are neutral so the genes (or the individuals) belonging
to each fraction only differ by their initial location and stage and their alleles (or their labels). In
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particular, they share the same dispersal ability as any genes in the metapopulation. Moreover,
in each habitat the genes (or individuals) dynamics only depends on their stage. Thus they have
the same reproduction characteristics as the population in this habitat. More precisely, in each
habitat k the fraction nik(t) evolves according to the reproduction matrix Fk(Nk(t)) in this habitat.
In addition, the migration ability of each fraction ni is described by the dispersal matrix D of
the metapopulation. Each fraction density ni(t) therefore satisfies the following linear dynamical
system: {

ni(t+ 1) = DF[N(t)]ni(t), t > 0

0 ≤ nijk(0) ≤ Njk(0), for all (k, j) ∈ {1, . . . , ωh} × {1, . . . , ωc}
(2)

where N(t) =
∑I
i=1 n

i(t). Throughout the remaining sections, we use the superscript i to denote
the neutral fraction and the subscript j for the stage and the subscript k for the habitat. Note that
the number of neutral fractions I does not need to be equal to ωh × ωc the product of the number
of stages ωc and the number of habitats ωh.
This decomposition method provides a mathematical framework to describe and analyze the neutral
genetic diversity dynamics of our stage–structured metapopulation. More precisely, for each fraction
i ∈ {1, . . . , I} , we can define its frequency at the metapopulation scale pi, its frequency pik in each
habitat k , its frequency pijk in each habitat k and each stage j for any time t ≥ 0. Thus, we can
define the neutral genetic diversity at different scales: the metapopulation scale (γ–diversity), the
habitat scale or the stage scale (α–diversity). The neutral γ–diversity, corresponding to the total
neutral genetic diversity in the metapopulation is quantified through the following index γ-Div(t):

γ-Div(t) =

(
I∑
i=1

(
pi(t)

)2)−1 for any time t > 0. (3)

This diversity index corresponds to the inverse of the Simpson index (Simpson, 1949) which describes
the probability that two individuals sampled randomly in habitat k among stages at time t belong
to the same fraction i. It is also the inverse of the total homozygosity in the metapopulation. A high
index of diversity indicates high diversity or a true evenness in the population: γ-Div is maximal
when all the fractions frequencies are equal, i.e., when p1 = · · · = pI = 1/I.
At the scale of habitat, we describe the neutral αh–diversity corresponding to the harmonic mean
neutral genetic diversity within habitats by the harmonic mean of local diversity indices γ-Divk(t)
in habitat k weighted by the proportion Pk of the metapopulation living in habitat k:

(α-Div)h(t) =

(
ω∑
k=1

Pk(t)
(
(γ-Div)k(t)

)−1)−1 (4)

This index is also the inverse of the mean homozygosity across habitats.
Similarly, at the stage scale, we can also define the neutral αc−diversity corresponding to the
harmonic mean neutral genetic diversity among habitat within a stage by the harmonic mean of
local stage diversity indices γ-Divjk(t) in habitat k and stage j weighted by the proportion Pjk of
the metapopulation of stage j living in habitat k:

(α-Div)c(t) =

 ωc∑
j=1

ωh∑
k=1

Pjk(t)
(
(γ-Div)jk(t)

)−1−1 (5)

This index is also the inverse of the mean homozygosity across stages.
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2.2 Dispersal and demographic model
Dispersal D matrix

The dispersal matrix D is a block matrix where each square matrix Dkl is diagonal Dkl = diag(djkl)

and the dispersal rate 0 ≤ djkl ≤ 1 may depend on the stage j ∈ {1, . . . , ωc} of the individuals
moving from habitat k to habitat l. Moreover, we have the following relationship between the
dispersal matrices Dkk = Iωh −

∑ωh
l=1 Dlk to ensure that the matrix D is a dispersal matrix.

For instance, if we consider a metapopulation over two habitats and structured with two stages
(juveniles and adults), we write:

D =

(
I2 −D12 D21

D12 I2 −D21

)
with Dkl =

(
dJkl 0
0 dAkl

)
k, l ∈ {1, 2}, (6)

where dJkl and d
A
kl are the dispersal rate from habitat l to habitat k of respectively the juveniles and

the adults.

Reproduction matrix F

The reproduction matrix or projection matrix F = diag(Fk)k∈{1,...,ωh} describes in each habitat k,
the reproduction, survival and the interactions between stages in this habitat. So for each habitat
k, the reproduction matrix Fk only depends on the population Nk inside this habitat k and its
entries should be non negative:

the matrices Fk[Nk] have non negative uniformly bounded coefficients on (0,∞)ωc . (H1)

Moreover, we assume that density-dependence occurs during life-cycle. Thus, the reproduction
matrix Fk in each habitat k depends on the population density in this habitat Nk. Moreover, the
spectral radius of those matrices ρ

(
Fk[Nk]

)
satisfies

ρ
(
Fk[Nk]

)
< 1 for large Nk ∈ (0,∞)ωc . (H2)

For instance, if we assume that our metapopulation is structured with only two stages (ωc = 2), the
juveniles J and the adults A (Nk = (Jk, Ak) for any k ∈ {1, . . . , ωh}), then the following projection
matrix for each habitat k satisfies the hypotheses above:

Fk[Nk] =

(
(1−mk) sJk fk(Nk)
mk sJk sAk

)
(7)

where sJk and sAk are the survival rate of respectively the juveniles and the adults, mk is the
maturation rate and fk is the fecundity rate which depends on the population Nk = (Jk, Ak) in
habitat k, fk(Nk) = f0k exp

(
− (Jk + Ak)/βk

)
where f0k is the intrinsic fecundity rate and βk

quantifies the density dependence of the fecundity with respect to the population density.

Survival and steady states

Moreover, we assume that the metapopulation never goes extinct over the different habitats even if
some habitats are not favourable. More precisely, we assume that the spectral radius of the matrix
DF[0] satisfies

ρ
(
DF[0]

)
> 1. (H3)
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This hypothesis (H3) ensures that the steady state 0 is unstable. Moreover, we know from fixed
point theorem that non-negative steady states N∗ exist for our model and it satisfies:

DF[N∗]N∗ = N∗.

In order to ensure the existence of positive steady state, we assume the following hypothesis,

DF[N] is primitive for all N ∈ (0,∞)ωc×ωh . (H4)

This hypothesis implies in particular that the dispersal matrices Dkl cannot be identically equal to
0 for all l ∈ {1, . . . , ωh}, otherwise, the matrix DF[N] is reducible. Under the hypothesis (H4), the
steady states N∗ of (1) are positive thanks to the Perron-Frobenius theorem. In particular, for the
example above with only 1 habitat, we can compute the unique positive steady state N∗ = (J∗, A∗)
as follows:

J∗ =
β(1− sA)

1− sA +msJ
ln(R0), A∗ =

βmsJ
1− sA +msJ

ln(R0) and R0 =
f0msJ

[1− (1−m) sJ ] (1− sA)
.

(8)
This equilibrium is stable until some parameters, such that fecundity f0 or dispersal djkl, reach
critical values where stability is lost. In this case, bifurcations occur which may generate different
dynamics: cycles, quasi-cycles or even chaos (Neubert and Caswell, 2000). The cycles are character-
ized by positive periodic steady states N∗(t) (see bifurcation diagram Fig. 1(a) and the Appendix A
for more details). This phenomenon may also occur when the metapopulation is composed of several
habitats (see bifurcation diagram Fig. 1(b) for the case of 2 habitats).

3 Inside dynamics of the stage–structured metapopulation
First, we aim to describe the dynamics of the neutral fractions of genes inside the stage–structured
metapopulation. Then, we investigate the effect of the life-history traits (adult survival, maturation
rate, dispersal) on the neutral genetic diversity. In the following section we always assume that
hypotheses (H1)-(H4) are satisfied to ensure the existence of positive steady states N∗.

3.1 Dynamics of neutral fractions inside metapopulation at steady state
Henceforth, we assume that the metapopulation is at steady state, that is N(t) = N∗(t) where N∗

is either a stationary state of (1) or a T−periodic steady state of (1). We investigate the dynamics
of a particular neutral fraction n inside this metapopulation which is described by the following
equation:

n(t+ 1) = DF[N∗(t)]n(t) (9)

starting from n(0) such that 0 ≤ ni(0) ≤ N∗i (0) for all i ∈ {1, . . . , ωc × ωh}. We have the following
result.

Theorem 1. Let n(t) be the solution of (9) starting from n(0) such that 0 ≤ ni(0) ≤ N∗i (0) for
all i ∈ {1, . . . , ωc × ωh}, then:

‖n(t)− p∗N∗(t)‖ −−−−→
t→+∞

0 where p∗ =
v′n (0)

v′N∗(0)
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bifurcation_f_1hab-eps-converted-to.pdf

(a) Single habitat

bifurcation_f_2hab-eps-converted-to.pdf

(b) General metapopulation

Figure 1: Bifurcation diagram of model (1) with respect to the intrinsic fecundity f0 for a single
population (a) and a metapopulation composed of two habitats (b). The fecundity ranges in
(0, 400). The characteristics of habitats are β1 = β2 = 150, sJ1 = sJ2 = 0.5, sA1

= 0.2, m1 = 0.2
and sA2

= 0.9, m2 = 0.9. And the dispersal rate is dAkl = dJkl = 0.01.
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and v′ is the transposed eigenvector of either the transpose of the matrix DF[N∗] associated to the
main eigenvalue 1 if N∗ is a stationary state or the transpose of the matrix C =

∏T−1
t=0

(
DF[N∗(t)]

)
if N∗ is a T−periodic steady state.

Our result, proved in section 7.1, describes the dynamics of the fractions inside the metapopulation
at any stage level (see Fig. 2(a)) and for various steady states of the metapopulation (see Fig. 3).
It provides analytical expression of the asymptotic proportion of any neutral fraction inside the
metapopulation. We see that this asymptotic proportion depends neither on the location nor on
the stage of the individuals.
Moreover, thanks to the primitive property of the projection matrix DF[N∗], we know that v
is also positive and thus p∗ is positive. So in this situation, any fraction initially present in the
metapopulation at any stage will persist where it is initially present. Moreover, it will eventually
spread over the entire habitats and it will generate individuals of any stages. This result shows that
the richness of genetic fractions is preserved globally (any fraction initially present persists for ever
in the metapopulation). Moreover, the local richness either in each habitat or in each stage among
the metapopulation may be enhanced thanks to the demography dynamics.
However, if the projection matrix DF[N∗] is reducible (no more primitive nor irreducible), some
fractions may go extinct which reduces the global genetic richness of the metapopulation. Indeed,
let us consider a metapopulation composed of two habitats in which individuals can only move from
habitat 2 to habitat 1, that is D12 = 0 in the definition of D stated in (6). Then, any fractions that
are initially only in habitat 1 will go extinct, that is p∗ = 0 from theorem 1 (see Appendix B.1 for
mathematical details). Thus dispersal should have important impact on neutral genetic diversity.
Moreover, our deterministic model provides a good approximation of classical individual-based
model under neutral selection assumptions in various situations: metapopulation that either stabi-
lizes around an equilibrium or a periodic steady state (see Fig. 3 and Appendix C for details on the
stochastic model). This approximation is valid for both the asymptotic behaviour and the transient
dynamics of each neutral fraction inside the stage-structured metapopulation.

Analytical insights for the two-stage isolated populations at stationary state. In the
general situation, it is not easy to express the eigenvector v with respect to the equilibrium N∗. So
for further insights, let us look at a simple case where all the populations are isolated and they are
not connected with each other, that is D is the identity matrix. In addition, we assume that the
populations are structured with two stages (juveniles and adults) and the reproduction matrix Fk
in each habitat k is given by equation (7). Since all the populations are isolated we can just look
at one population. In this population, we can compute explicitly the asymptotic proportion p∗ of
any neutral fraction n initially located in this population with density n(0):

p∗ =
(1− sA)pJ(0) + (1− (1−m)sJ)pA(0)

(1− sA) + (1− (1−m)sJ)
with pJ(0) =

n1(0)

N∗1
and pA(0) =

n2(0)

N∗2

where pJ(0) and pA(0) represent respectively the initial proportion of juveniles, respectively adults,
in the population which belong to the neutral fraction n (see equation (14) for details). First, we
notice that the asymptotic proportion p∗ of both stages truly differ from their initial proportions
pJ(0) and pA(0). So, the demographic dynamics truly shapes the neutral gene proportion inside
the population. For instance, if initially the proportions in each stage of the fraction are identical,
that is pJ(0) = pA(0), then the asymptotic proportion remains the initial proportion of the fraction.
However, if initially the proportions of the fraction in each stage are different, then their asymptotic
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proportions at the population scale will be different than their initial proportions (see Fig. 2). The
stage–structure of the population has a profound impact on the genetic structure of the population.
Secondly, when the metapopulation is at stationary state, the asymptotic proportion p∗ does not
depend on the fecundity parameters f0 and β. However, the fraction proportion crucially depends
on the maturation rate m as well as the survival rates sJ and sA. In particular, increasing the
maturation time which corresponds to reducing m, tends to increase the asymptotic proportion of
the neutral fraction which has an initial majority of juveniles (pJ(0) > pA(0)) while it decreases its
proportion if initially the fraction is mainly composed of adults (pJ(0) < pA(0)).

Fraction dynamics in a metapopulation at periodic steady states. Our result also applies
when the metapopulation has reached a periodic steady state. This situation may occur when the
intrinsic fecundity rate f0k is large (see Fig. 1). In this situation, the fractions’ proportion of each
stage in each habitat inside the metapopulation will stabilize around the constant value p∗ which
does not depend on time. However, this quantity crucially depends on the initial configuration of
the metapopulation N∗(0). Since N∗(t) is T-periodic, the initial value N∗(0) can take T different
values. Thus in a time varying metapopulation, the long time behaviour of a fraction n crucially
depends on when this fraction appears in the metapopulation (see Appendix B.2 and Fig. 9 for
more details).
Moreover, under this dynamics of the metapopulation, our numerical simulations (see Fig.9) show
that the asymptotic proportion p∗ does depend on the fecundity of the species. As a result, we can
conclude that the fecundity only plays a role when the metapopulation densities vary in time.

3.2 Fractions dynamics inside a non equilibrium metapopulation: linear
case

We assume here that the metapopulation is no longer at steady state initially in order to capture
the effect of transient dynamics of the metapopulation on the fraction dynamics. However, in this
section, we do not assume any density–dependence in the metapopulation dynamics, that is the
reproduction matrices Fk are constant and do not depend on the metapopulation size Nk in the
habitat k. In particular, the hypothesis (H2) may not be satisfied. In this situation, the model (1)
becomes linear and we know from classical metapopulation theory, that the proportion of each stage
in each habitat of the metapopulation will converge to an asymptotic proportion. Moreover, from
the linearity of the model, the metapopulation N and any fraction n inside this metapopulation
satisfy the following linear model:

n(t+ 1) = DFn(t) t ≥ 0, (10)

where D and F satisfy hypothesis (H1), (H3) and (H4) and initially we have 0 ≤ ni(0) ≤ Ni(0) for
all i ∈ {1, . . . , ωs × ωh}.
Using the properties of the dispersal and the reproduction matrix, we have the following result:

Theorem 2. Let N and n be solutions of (10) starting from a non-negative initial condition N(0)
and n(0) such that 0 ≤ ni(0) ≤ Ni(0) for all i ∈ {1, . . . , ωh × ωc}. Then

ni(t)

Ni(t)
−−−−→
t→+∞

p∗ for all i ∈ {1, . . . , ωh × ωc} where p∗ =
v′n (0)

v′N(0)

and N∗ and v are respectively the eigenvectors of the matrix DF and of its transpose associated to
the principal eigenvalue λ > 1.
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fig_prop_1hab_sto-eps-converted-to.pdf

(a) total fraction proportions

frac_density_1Hab_stage_strusture-eps-converted-to.pdf

(b) fraction densities of each stage

Figure 2: Temporal dynamics of 3 fractions in a single habitat for the deterministic model (plain
and dashed lines) and the IBM model for N = 50 individuals (circle and star marked curves
correspond to the medians and the shaded regions correspond to the 99% confidence intervals
over 103 replicates). Each colour corresponds to one fraction: in panel (a) the total proportion
(juveniles and adults) of each fraction and in panel (b), the fraction densities of each stage (plain
curve corresponds to juveniles and dashed curves to adults). Habitat characteristics: f01 = 1.5,
sA1

= 0.7, sJ1 = 0.8, m1 = 0.2, β1 = 150.
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stochastic_densities_fraction1_in_time_2nd_article-eps-converted-to.pdf

(a) Metapopulation at stable equilibrium

stochastic_densities_fraction1_in_time_2nd_article_periodic-eps-converted-to.pdf

(b) Metapopulation at stable periodic steady state

Figure 3: Temporal dynamics of one neutral fraction in a stage-structure metapopulation composed
of 2 connected habitats and 2 stages (juvenile and adult): (a) at equilibrium (small fecundity rate
f01 = f02 = 1.5) and (b) at periodic steady state (large fecundity rate f01 = f02 = 450) for the
deterministic model (plain and dashed lines) and the IBM model for N = 50 individuals (circle
and star marked curves correspond to the medians and the shaded regions correspond to the 99%
confidence intervals over 103 replicates). Blue curves correspond to densities in habitat 1 and red
curves in habitat 2 (plain curve corresponds to juveniles and dashed curves to adults). In habitat
1: sA1

= 0.8, sJ1 = 0.7, m1 = 0.8, β1 = 150, ε12 = 0.1 and in habitat 2: sA2
= 0.9, sJ2 = 0.6,

m2 = 0.5, β2 = 150 and ε21 = 0.2
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Our result, proved in section 7.2, shows that any fraction converges to an asymptotic positive
proportion of the metapopulation thanks to the primitive property of the projection matrixDF even
if the metapopulation is not initially at equilibrium. Moreover, the convergence occurs geometrically
fast with rate given by the ratio between the principal eigenvalue and the maximum of absolute
value of the remaining eigenvalues of DF. We can also observe that the proportion p∗ crucially
depends on the initial repartition of the metapopulation N(0) as in the periodic case.

4 Effect of life–history traits on neutral genetic diversity
Our previous results have provided some insights on the genetic richness of a general metapopulation
which may either be at equilibrium or may vary periodically in time. Now, we aim to understand the
effect of the life-history traits (juvenile and adult survival rates, maturation rate and fecundity) on
the diversity both at local habitat scale through the α–diversities among habitat and among stage
and at global scale through the γ–diversity. Our previous results show that asymptotically in time,
these diversity indices at both local and global scales are identical. Thus, if the initial metapopu-
lation is composed of I fractions with density ni, the diversity indices γ-Div(t), (α-Div)h(t) and
(α-Div)c(t) defined respectively by (3), (4) and (5), will converge towards the following asymptotic
diversity index Div:

Div = lim
t→∞

γ-Div(t) = lim
t→∞

(α-Div)h(t) = lim
t→∞

(α-Div)c(t) =

(
I∑
i=1

(p∗i )
2

)−1
(11)

where p∗i is the asymptotic proportion given by Theorem 1 associated to the fraction i with initial
density ni(0).
Thus, in this section, we focus on the effect of life-history traits on the genetic diversity of a single
population. The general case of a metapopulation will be investigated in the following section.
Here, we look at most basic life cycle division between juveniles and adults. The reproduction
matrix is thus described by (7) and characterized by 4 traits: the fecundity f , the maturation rate
m and the juvenile and adult survival rates sJ and sA.
This simple model permits us to examine four classes of life-histories, depending on the reproduction
strategy and the development rate. The reproduction strategy ranges from semelparous (reproduc-
ing once in lifetime) to iteroparous (reproducing repeatedly). Semelparity is obtained when sA → 0
and iteroparity when sA > 0. We can also distinguished different types of development from preco-
cious (rapid development to maturity, m → 1) to delayed (m < 1). The combination of these two
dichotomies provide four classes of life-histories:

• Precocious semelparity: e. g., many annual plants and insects with rapid development and
only one reproductive event.

• Precocious iteroparity: e. g., small mammals and birds, which begin reproducing when a year
or less old, but may survive and reproduce for several years.

• Delayed semelparity: e. g., periodical cicadas or periodically-flowering bamboos that live for
many years before maturity, and then reproduce only once.

• Delayed iteroparity: e. g., humans, whales, other large mammals, and some birds (albatrosses)
that have long pre-reproductive periods and then survive and reproduce for many years.
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Using our previous results, we aim to understand how the neutral genetic diversity is shaped by the
following life-history traits: (1) the development duration which depends on the maturation rate m,
(2) the survival rates sA and sJ and (3) the fecundity f . To quantify the diversity of a population
we assume that it is composed of two fractions. Initially, the first fraction is only composed of
juveniles while the second fraction is only composed of adults. This is the best configuration to
generate diversity because all offspring are of new type compared to the adults.

4.1 Does long juvenile stage promote neutral genetic diversity?
We first investigate the effect of the juvenile stage on the diversity. More precisely, we focus on the
maturation rate m which influences the duration of the juvenile stage. Indeed, we know from our
model that the mean duration of the juvenile stage is TJ = 1/(1−(1−m)sJ)). When the maturation
rate is small (delayed development m < 1), the juvenile stage lasts for several generations, while if
m is large (precocious development m→ 1), the juvenile lifetime reduces.
In this section, we only focus on population at equilibrium, that is N∗ is constant over time. We
know from our previous results that the asymptotic diversity Div is given by the following analytical
expression

Div =

(
1 +

1− sA
1− (1−m)sJ

)2

1 +

(
1− sA

1− (1−m)sJ

)2 (12)

Then we get the following properties on the diversity.

Proposition 1. Let N∗ be the equilibrium solution of (1) composed of two fractions n1(0) = (J∗, 0)
and n2(0) = (0, A∗). Then the asymptotic diversity Div defined by (11) satisfies the following
properties:

• if sJ < sA then Div is decreasing with respect to the maturation rate m;

• if sJ ≥ sA then Div attains a maximum at m̄ = 1− sA/sJ and Div is increasing with respect
of maturation m if m ≤ m̄ and Div is decreasing with respect of maturation m if m ≥ m̄.

This result shows that the effect of maturation time on diversity truly depends on the reproduc-
tion strategy of the species (semelparous or iteroparous) through the adult survival rate. Among
iteroparous species, diversity is enhanced when the juvenile lifetime is long (m < 1). Thus, we
should find higher diversity among delayed iteroparous species than among precocious iteroparous
species (see blue curve in Fig. 4(a)). This beneficial effect of the juvenile stage on genetic diversity
has already been observed in plants (Austerlitz et al., 2000).
Conversely, among semelparous species, a shorter juvenile lifetime (m→ 1) will promote diversity
(see red curve in Fig. 4(a)). More precisely, we can observe that the diversity depends on the ratio
between the juvenile lifetime TJ and the adult lifetime TA = 1/(1−sA). In particular, the diversity
is maximal when the two lifetimes are similar. Conversely, when the lifetimes are very different,
the diversity erodes. Thus we show that the diversity does not really depend on the short or long
lifespan of a species rather than the lifetime of its different stages along its life.
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4.2 Does adult survival promote neutral genetic diversity?
Using the previous formula and Proposition 1, we now investigate the impact of adult survival on
the neutral genetic diversity. In a population at equilibrium, we show that diversity is negatively
dependent on the adult survival. In particular, immortal species should have a small diversity
(Div → 1 when sA → 1 see Figure 4(c)). And the diversity reaches a maximum when adult
survival satisfies sA = s∗A := (1 −m)sJ . We observe as before that the maximum of diversity is
reached when the lifetime of juvenile and adult are identical. In addition, we see that an increase of
adult survival among species with precocious development has a detrimental effect on its diversity
while species with delayed development need a large adult survival. Thus, precocious semelparous
species have higher diversity than precocious iteroparous species (see red curve Figure 4(c)). While
delayed semelparous species have lower diversity than delayed iteroparous species (see blue curve
Figure 4(c)).

4.3 Fecundity only affects diversity in time varying populations
We now investigate the effect of fecundity on the neutral genetic diversity of a population either at
equilibrium or periodically varying in time. First, we can see from formula (12) that the diversity of
a population at equilibrium does not depend on the fecundity. This unexpected result was already
observed experimentally among animals (De Kort et al., 2021).
However, when the population size varies periodically in time, which may result from a high fecun-
dity, the diversity does depend on the fecundity (see Fig. 5). Moreover, the diversity might have
different values depending on the initial configuration of the population (see dots in Fig. 5). As a
result, we show that on average, the increase of fecundity drastically reduces the diversity among
semelparous species while it has no significant effects on iteroparous species (see dashed curves in
Fig. 5).

5 Intertwined effect of dispersion and life-history on diversity
An other important process which structures the genetic diversity in a metapopulation is the disper-
sion. In this section, we focus on a metapopulation composed of two habitats with possibly different
characteristics corresponding to different life-histories, connected trough dispersion. We show that
dispersion can mitigate effect of the life-histories at the metapopulation scale. In addition, we show
that difference in migration among stages can significantly modify the diversity.

5.1 Dispersal can modify the effects of life-histories
In a single population, we have shown that the longer juvenile stage promotes diversity if adult
survival is large while it reduces diversity when adults survival is low. Similarly, we have shown that
a large adult survival promotes diversity among species with delayed development (small maturation
rate), while it reduces drastically the diversity with precocious development (large maturation rate).
The same patterns occur when the habitats are identical (see red and blue curves in Fig. 4(b) and
orange and purple curves in Fig. 4(d)).
However, when habitat characteristics are different, the migration between habitats balances the
antagonist effects of the juvenile stage and the adult survival. Moreover, we can see that the
dispersal may even enhance the diversity when the habitats are heterogeneous. The synergy occurs
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fig_div_1Hab_maturation-eps-converted-to.pdf

(a) 1 habitat

fig_div_2Hab_maturation-eps-converted-to.pdf

(b) 2 habitats

fig_div_1Hab_sA-eps-converted-to.pdf

(c) 1 habitat

fig_div_2Hab_sA-eps-converted-to.pdf

(d) 2 habitats

Figure 4: Effect of maturation rate m and adult survival sA on asymptotic diversity Div: (a)-
(c) in a single population and (b)-(d) in metapopulation living in two habitats (migration rates
are ε12 = ε21 = 0.1) for the deterministic model (plain curves) and the IBM model for N = 50
individuals (circle marked curves correspond to the medians and the shaded regions correspond
to the 99% confidence intervals over 103 replicates). Each colour corresponds to different sets of
parameters: blue curves sA = 0.2, red curves sA = 0.9 and green curve sA1 = 0.2 and sA2 = 0.9;
orange curves m = 0.2, purple curves m = 0.9 and cyan curve m1 = 0.2 and m2 = 0.9. Habitat
characteristics: sJ1 = sJ2 = 0.8, f01 = f02 = 10 and β1 = β2 = 150.
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fig_div_fecundity_1Hab_m09_sA02-eps-converted-to.pdf

(a) Precocious semelparity (m = 0.9, sA = 0.2)

fig_div_fecundity_1Hab_m09_sA09-eps-converted-to.pdf

(b) Precocious iteroparity (m = 0.9, sA = 0.9)

fig_div_fecundity_1Hab_m02_sA02-eps-converted-to.pdf

(c) Delayed semelparity (m = 0.2, sA = 0.2)

fig_div_fecundity_1Hab_m02_sA09-eps-converted-to.pdf

(d) Delayed iteroparity (m = 0.2, sA = 0.9)

Figure 5: Effect of fecundity f0 on asymptotic diversityDiv in a single population for the determinis-
tic model. Each colour corresponds to the four different classes of life-histories: (a) precocious semel-
parity (orange m = 0.9, sA = 0.2), (b) precocious iteroparity (purple (m = 0.9, sA = 0.9)), (c) de-
layed semelparity (blue (m = 0.2, sA = 0.2)) and (d) delayed iteroparity (red (m = 0.2, sA = 0.9)).
Straight lines correspond to the equilibrium regime, dots correspond to the different diversity values
in the periodical and chaotic regimes and dashed curves correspond to the mean values of diversity
under those regimes. Habitat characteristics: sJ1 = 0.5 and β = 150.
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when juvenile stage is long or when adult survival is intermediate (see green and dark red curves
above the others in Fig. 4(b)-4(d)).

5.2 Does migration always promote diversity?
We now investigate the effect of dispersal in a metapopulation living in two habitats with different
characteristics. More precisely, they differ either in maturation rate m or in adult survival sA.
When the migration between the habitats is symmetric (ε12 = ε21), then it generally promotes
diversity (see Fig. 6(a)). In particular, when populations have different maturation rates between
habitats, the dispersal have no effect on iteroparous species (see blue curve in Fig. 6(a)) while it
reduces diversity if migration is too high among semelparous species (see red curve in Fig. 6(a)).
However, when the adult survival is different depending on the habitat, the dispersal always en-
hances diversity (see orange and purple curves in Fig. 6(a)).
Now, we focus on asymmetric migration between heterogeneous habitats. When adult survivals are
different, a high migration rate from the habitat with larger adult survival will promote diversity
for any duration of juvenile stage (see Fig. 6(b)).
When the maturation rates are different, the effect of the migration depends on the species repro-
duction trait. If the species is iteroparous, migration has small effect on diversity (see red curve
in Fig. 6(d)). However, the diversity is higher when individuals are more likely to move to habitat
with low maturation rate. Thus for iteroparous species, individuals should remain in habitat with
longer juvenile stage.
Conversely, among semelparous metapopulation, individuals should move to habitat with a high
maturation rate (see blue curves in Fig. 6(d). In addition, when the migration rates are low, the
equilibrium dynamics of the metapopulation changes from stationary equilibrium to periodically
varying steady state. Under the time varying scenario, diversity decreases drastically and multiple
values can be achieved (see blue curves in Fig.6(c)).

5.3 Effect of individuals migration on diversity
We now look at the effect of the migration of each stage inside the metapopulation, that is εJkl and
εAkl in the definition of the dispersal matrix. We assume that the migration is symmetric between
habitats in the sense that εJkl = εJlk and εAkl = εAlk for all habitats k, l in {1, 2}. We investigate
how the diversity responds to a change on the ratio of migration εA/εJ . For each value of the
migration ratio, we pick different values for the migration rates. Thus the mean migration rate
between habitat is not constant for a given value of the migration ratio. However, we show that an
heterogeneous migration rate between the stages of the metapopulation has critical impact on the
diversity. In particular, we show that the iteroparous species need a higher migration rate from the
adults than the juvenile to keep a higher diversity (see blue curve in Fig.7(a)). Conversely, among
semelparous species, the migration rate of the juvenile needs to be higher than the migration rate
of the adult to keep a high diversity (see red curve in Fig.7(a)). When the duration of the juvenile
stage is long which corresponds to a delayed development, the diversity is higher when the adults
disperse more than the juveniles (see orange curve Fig. 7(b)). When the juvenile stage duration
is reduced, the diversity is high when only the adults disperse or when only the juveniles disperse
(see purple curve Fig. 7(b)). In this case, two antagonist strategies emerge to keep a high diversity.
In addition, we can observe that the diversity is more variable when the adults disperse more than
juvenile.
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fig_Div_migration_identical-eps-converted-to.pdf

(a) Symmetric migration between habitats

fig_Div_migration_del_pre-eps-converted-to.pdf

(b) Asymmetric migration: delayed vs precocious
metapopulation

fig_Div_migration_sem_bifurcation-eps-converted-to.pdf

(c) Semelparous metapopulation and bifurcation

fig_Div_migration_sem_ite-eps-converted-to.pdf

(d) Asymmetric migration: semelparous vs
iteroparous metapopulation

Figure 6: Effect of migration rates εkl on asymptotic diversity Div for the deterministic model
(plain curves) and the IBM model for N = 50 individuals (circle marked curves correspond to the
medians and the shaded regions correspond to the 99% confidence intervals over 103 replicates).
Each colour corresponds to different set of life-history parameters: blue curves semelparous species
(sA1 = sA2 = 0.9, m1 = 0.2 and m2 = 0.9), red curves iteroparous species (sA1 = sA2 = 0.2,
m1 = 0.2 and m2 = 0.9), orange curves delayed development (m1 = m2 = 0.2, sA1 = 0.2 and
sA2 = 0.9) and purple curves precocious development (m1 = m2 = 0.9, sA1 = 0.2 and sA2 = 0.9).
When migration is asymmetric (b)-(d): plain curves corresponds to low migration (ε12 = 0.05) and
dashed dotted curves to high migration (ε12 = 0.2). In area where the steady state is time periodic
with period T = 2 (c), each colour corresponds to the diversity associated to one of the two values
of the steady state. Habitat characteristics: sJ1 = sJ2 = 0.8, f01 = f02 = 1.5 and β1 = β2 = 150.18



fig_Div_migration_ratio_sem_ite-eps-converted-to.pdf

(a) Semelparous vs iteroparous metapopulation

fig_Div_migration_ratio_del_pre-eps-converted-to.pdf

(b) Delayed vs precocious development

Figure 7: Effect of the migration ratio between stages εAkl/ε
J
kl on the asymptotic diversity Div for

four life-history parameter sets defined in Fig. 6. Plain curves corresponds to the median of the
asymptotic diversity Div over 100 couples of migration rate (εAkl, ε

J
kl) whose constant ratio ranges

from 10−2 to 102.

6 Conclusion and discussion
In the present work, we investigate the effect of dispersal and life-history traits of different popula-
tions composing a metapopulation on its neutral genetic diversity at different spacial scales using
a deterministic mathematical model. Our model is a classical metapopulation model (Holt, 1985)
combined with a matrix projection model in discrete time which takes into account the life-history
traits and the stage–structure of the populations (Neubert and Caswell, 2000). Extending the inside
dynamics approach developed by Hallatschek and Nelson (2008), Garnier et al. (2012) and Roques
et al. (2012), we describe the dynamics of each neutral fraction composing the metapopulation.
We both consider a metapopulation that has already reached an equilibrium or a metapopulation
that evolves in time. In particular, for the linear model, we deal with a metapopulation that is
not initially at equilibrium and we describes the transient as well as the long time behaviour of
the metapopulation and its neutral genetic diversity. In addition, for the nonlinear model, we are
able to describe the entire dynamics of neutral genetic fractions in a metapopulation at stationary
equilibrium as well as in a metapopulation that fluctuates periodically in time. Our analytic charac-
terization of the proportion of each neutral fraction for large time provides us quantitative insights
on the effect of life-history traits and dispersal on the neutral genetic diversity of the metapopula-
tion at local and global scale. Moreover, our deterministic approach agreed with the dynamics of
classical individual–based models.
First we have shown that the stage-structure of the populations influences the asymptotic propor-
tion of each fraction even in a single habitat. In particular, if several fractions are equally distributed
in the population but with different proportions in each stage then asymptotically, their propor-
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tions will be different. Our results agree with the experimental results obtained on the freshwater
herbivore Daphnia pulex (Nelson et al., 2005).
We also show that some life history traits truly influence the diversity. However, their effect de-
pends on both the reproductive strategy (semelparous or iteroparous) and the development strategy
(precocious or delayed). In particular, the presence of juvenile stage in expanding population is
known to have profound impact on genetic diversity (Austerlitz et al., 2000; Bonnefon et al., 2013;
Marculis et al., 2019). With our mathematical approach, we are able to quantify the impact of
each demographic parameter on the diversity of a single population. We show that a long juve-
nile stage promotes diversity among iteroparous species. This beneficial effect of a long juvenile
stage was already observed among plants (Austerlitz et al., 2000), birds (Eo et al., 2011) or mam-
malians (Doyle et al., 2015). Among those long-lived species, the long juvenile stage slows down the
reproduction so that all individulas can contribute to the diversity of the population. Conversely,
among semelparous species, precocious development will promote diversity. This beneficial effect
of maturation was observed among fishes (Williams, 1985; Valiente et al., 2005; Dalongeville et al.,
2016). Semelparous precocious species reproduce earlier and have larger number of descendant lead-
ing to rapid genetic mix. From our mathematical analysis, we show that this antagonist effect of
the maturation results from the trade off between the lifetime of juveniles and adults. We show that
diversity is optimal when the lifetime of juveniles and adults are similar. Thus, if adults last only
for few generations (semelparous species), juveniles should maturate quickly (precocious develop-
ment). Conversely, if adults are long lived (iteroparous species), the lifetime of juveniles should be
long. Thus although species longevity significantly influences animals and plants diversity (De Kort
et al., 2021), it cannot explain the diversity by itself.
We also show that the survival rate of adult have significant effect on diversity. In particular, among
species with a delayed development or maturation, a degradation of the environment, characterized
by a decrease of survival rates, will erode diversity. Actually, among mammalians, diversity is
known to be lower in threatened and endangered species than in least concern species (Doyle
et al., 2015). Conversely, species with precocious development will maintain higher diversity under
harmful conditions. It has already been observed experimentally on wild salmon (Valiente et al.,
2005). They show that diversity does not depend on latitude. However, maturation increases with
latitude and environment becomes less favourable with small latitude. It agrees with our result
showing that maturation rate can counterbalance diversity loss when adult survival rate decreases.
As result, we show that reproductive strategy may well explain genetic diversity.
Fecundity is an other important life history trait which may significantly impact the genetic di-
versity. In particular, among time fluctuating semelparous populations, we show that an increase
of fecundity dramatically erodes diversity. However, among time fluctuating iteroparous popula-
tions, its effect is less significant and populations with high fecundity may harbour higher genetic
diversity. Furthermore, among stable population at equilibrium, we show that fecundity has no
significant influence on genetic diversity. Recently, De Kort et al. (2021) also show that fecundity
have a significant effect on animals genetic diversity only in endemic species while it has no sig-
nificant effect in general. Thus the effect of fecundity depends on the biogeography as well as the
population dynamics.
We also recover that the dispersal behaviour has profound impact on neutral genetic structure of
a metapopulation (Wright, 1949; Lynch, 1988). We first show that dispersal between populations
with different life-history traits may balance the antagonist effect of those traits and thus promotes
genetic diversity. In particular, dispersal enhances diversity between populations with delayed
maturation or between short-lived iteroparous populations. This beneficial effect of dispersal has
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also been observed among plants’ species range. Dispersal can moderate the decline in population
genetic diversity from the core to edge habitats predicted from the biogeography theory (De Kort
et al., 2021).
However, we show that increasing or decreasing the dispersal over one habitat might have detri-
mental consequences on diversity. This unbalanced dispersal might occur when individuals try to
escape from bad quality habitat in the context of environmental change (Jenouvrier et al., 2017).
In particular, if the dispersal from a good habitat to a less favourable habitat is small while the
dispersal in the opposite direction is really large then the diversity is low. This situation shows that
escaping from bad habitat to survive might endanger genetic diversity.
In addition, we show that the dispersal ability of the different stages also have an impact on the
genetic diversity. This effect depends on the demographic characteristics of the different habitats.
In particular, we show that adult dispersal promotes diversity when juvenile mortality is larger than
adults mortality, while it has no effect when juvenile mortality is smaller than adult mortality. When
the habitat becomes heterogeneous the effect of dispersal might change, but this effect remains small
compare to the effect of global dispersal or demographic characteristics.

7 Proofs of the results

7.1 Proof of Theorem 1
The equilibrium case. Let F and D satisfy hypotheses (H1)-(H4) and N∗ be a stationary state
of equation (1), that is N∗ = DF[N∗]N∗. Let n(t) be solution of (9) starting from n(0) such that
0 ≤ ni(0) ≤ N∗i for all i ∈ {1, . . . ,m} with m = ωc × ωh. Then

n(t+ 1) = DF[N∗]n(t) := An(t)

where the matrix A is primitive from hypothesis (H4).
Using the Perron-Frobenius theorem, we know that 1 is the principal eigenvalue of A with the pos-
itive eigenvector N∗. Let us denote (p2, . . . ,pm) the following eigenvectors associated to the eigen-
values (λ2, . . . , λm) such that |λi| < 1 for all i ∈ {2, . . . ,m} and the matrix P = (N∗,p2, . . . ,pm).
Then we can represent n(t) as follows:

n(t) = PBtP−1n(0), for all t > 0,

where B is a matrix of the following form with the eigenvalues on its diagonal:

B =



1 0 0 · · · 0
0 λ2 ∗ · · · ∗
...

. . . . . . . . .
...

...
. . . . . . ∗

0 · · · · · · 0 λm


Then we deduce the following asymptotic behaviour of n as t→∞:

n(t)→ P


1 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0

P−1n(0) as t→∞.
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Moreover, we know thatP−1 is the matrix where each row is equal to the eigenvectors (v,v2, · · · ,vm)
of the transpose matrix of A. Finally, we get

n(t)→ v
′
n(0)

v′N∗
N∗ as t→∞

which concludes the first part of the theorem 1.

The periodic case. Let F and D satisfy hypotheses (H1)-(H4) and N∗(t) be a T -periodic steady
state of equation (1), that is N∗(t + T ) = N∗(t) for all t > 0. Let n(t) be solution of (9) starting
from n(0) such that 0 ≤ ni(0) ≤ N∗i (0) for all i ∈ {1, . . . ,m} with m = ωc × ωh. Then

n(t+ 1) = DF[N∗(t)]n(t) := A(t)n(t) (13)

where the matrix A(t) is T -periodic since the steady state N∗ is T -periodic.
From the Floquet Theorem, we can decompose n as follows:

n(t) = P(t)BtP−1(0)n(0), for all t > 0.

where P(t) is the T -periodic matrix constructed from N∗ the T -periodic solution of (1) and
(p2, . . . ,pm) the T - periodic solutions associated to the Floquet exponents (λ2, . . . , λm):

P(t) =

 N∗1 (t) p21(t) · · · pm1(t)
...

...
...

N∗m(t) p2m(t) · · · pmm(t)

 for all t > 0,

and the matrix B is of the following form with the Floquet exponents on its diagonal:

B =



1 0 0 · · · 0
0 λ2 ∗ · · · ∗
...

. . . . . . . . .
...

...
. . . . . . ∗

0 · · · · · · 0 λm


Moreover, we know that λi is a Floquet exponent if and only if pi(t)λti is a solution of (1), where pi
is a T−periodic solution, that is pi(t+ T ) = pi(t) for all t ≥ 0. Thus, we just need to find its first
T component pi(0), . . . ,pi(T − 1). These components satisfy the following eigenvalue problem:

λi

 pi(0)
...

pi(T − 1)

 =



0 · · · · · · 0 A(T − 1)

A(0)
. . .

... 0

0
. . . . . .

...
...

...
. . . . . . 0

...
0 · · · 0 A(T − 2) 0


 pi(0)

...
pi(T − 1)



= A

 pi(0)
...

pi(T − 1)
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where A is a Tm × Tm matrix. Then, the eigenvalues of A are the eigenvalues of B and the
associated eigenvectors are the periodic fundamental solutions P(t). Thus we can characterize the
periodic solutions p using this extended matrix A.
The matrix A is non negative irreducible, then the Perron-Frobenius theorem insures that the
eigenvalue 1 associated to the positive eigenvector N∗ = (N∗(0), . . . ,N∗(T − 1)) is the spectral
radius of the matrix and it is simple. Moreover, its left eigenvector is also positive and simple. We
also know that A has T − 1 eigenvalues of absolute value 1 associated to eigenvectors which are
circular permutations of N∗ and all the other eigenvalues have absolute values strictly less than 1.
We deduce that there is only one Floquet exponent of value 1 and all the other exponents are of
absolute value less than 1, |λi| < 1 for all i ∈ {2, . . . ,m}.
We thus deduce the asymptotic behaviour of n:

n(t)→ P(t)


1 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0

P−1(0)n(0) as t→∞.

Then we can compute the matrix P−1(0) using the left eigenvectors of the matrix C =
∏T−1
i=1 A(i).

We can show that (N∗(0),p2(0), . . . ,pm(0)) are the right eigenvectors associated to eigenvalues
(1, λT2 , . . . , λ

T
m) of the matrix C. From Perron–Frobenius theorem, all those eigenvectors are simple

and there are left eigenvectors (v(0),v2(0), . . . ,vm(0)) such that v(0) have all this components
positive. Moreover, if we assume that (v(0),N∗(0)) = 1 and (vi(0),pi(0)) = 1 for all i ∈ {2, . . . ,m},
then the matrix p(0) = (v(0)′,v2(0)′, . . . ,vm(0)′)), where ′ is the transpose operator, satisfies
p(0) = P−1(0). Then we eventually obtain that:

P(t)


1 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0

P−1(0)n(0) =
v(0)′n(0)

v(0)′N∗(0)
N∗(t)

which concludes the proof of Theorem 1.

7.2 Proof of theorem 2, the linear case
We now consider the case where F does not depend on N. In this case, the metapopulation model
becomes linear. Thus the metapopulation and any neutral fraction n satisfy the following linear
equation

n(t+ 1) = An(t)

where A := DF, D and F satisfy hypothesis (H1)-(H4) and initially we have 0 ≤ ni(0) ≤ Ni(0) for
any i ∈ {1, . . . ,m}.
Since A is a non negative primitive matrix, the Perron-Frobenius theorem provides the existence
of a principal eigenvalue λ associated with a positive eigenvector N∗. Moreover, this eigenvalue is
simple and the other eigenvalues λ2, . . . , λm satisfy |λi| < λ for all i ∈ {2, . . . ,m}. Moreover, we
know that:

N(t) = AtN(0) and n(t) = Atn(0) for all t > 0.
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Then, using the eigenvector v of the transpose of the matrixA associated to the principal eigenvalue
λ, we deduce from the Perron-Frobenius theorem that

N(t)

λt
→ v′N(0)

v′N∗
N∗ and

n(t)

λt
→ v′n(0)

v′n∗
N∗ as t→∞.

Then we conclude that each proportion of the neutral fraction ni(t)/Ni(t) satisfies the following
asymptotic behaviour:

ni (t)

Ni(t)
−−−−→
t→+∞

v
′
n(0)

v′N(0)
for all i ∈ {1, . . . ,m}.

So, we see that the asymptotic proportion of this neutral fraction in the metapopulation is given
by:

p∗ =
v
′
n(0)

v′N(0)
.

which concludes the proof of theorem 2.

7.3 The proof of proposition 1
Let us consider the equilibrium N∗ in the case of only one habitat and two stages (juveniles J and
adults A) with the special reproduction matrix F defined by (7). We have the following explicit
expressions for N∗ = (J∗, A∗):

J∗ =
β(1− sA)

1− sA +msJ
ln(R0) and A∗ =

βmsJ
1− sA +msJ

ln(R0) with R0 =
mf0sJ

[1− (1−m)sJ ](1− sA)
.

Behaviour of p∗ with respect to the maturation rate m. Let us consider a neutral fraction n
starting with only juveniles, that is n(0) = (J∗, 0). Our theorem 1 provides the following analytical
expression for its asymptotic proportion p∗

p∗ =
v
′
n(0)

v′N∗

where v = (v1, v2) is the left eigenvector of F[N∗] associated to the eigenvalue 1. Using the explicit
formula of N∗, we can compute analytically F[N∗] and v:

F[N∗] =

 (1−m) sJ
f0
R0

msJ sA

 and v =

(
R0(1− sA)

f0

)
.

Then we have
p∗ =

(1− sA)

(1− sA) +
(
1− (1−m)sJ

) . (14)

We can observe that the asymptotic proportion p∗ is decreasing with respect to the maturation
rate m.
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Behaviour of the asymptotic diversity Div with respect to the maturation rate m.
Now let us assume that the population is decomposed of two neutral fractions n1 and n2 starting
respectively only with juveniles or adults, that is n1 = (J∗, 0) and n2 = (0, A∗). From the Theorem 1
and the previous computation, we have the analytical expression of the asymptotic proportions of
each fraction, that is p∗1 = p∗, where p∗ is defined by (14) and p∗2 = 1−p∗1 = 1−p∗. Thus we deduce
the following asymptotic diversity Div

Div =
(

(p∗)2 + (1− p∗)2
)−1

=

(
1 +

1− sA
1− (1−m)sJ

)2

1 +

(
1− sA

1− (1−m)sJ

)2

Thus, the derivative of Div with respect to the parameter m satisfies

∂mDiv =
2(1− 2p∗)(

p∗2 + (1− p∗)2
)2 ∂mp∗ =

2(1− 2p∗)(
p∗2 + (1− p∗)2

)2 −sJ(1− sA)(
(1− sA) +

(
1− (1−m)sJ

))2 .
The sign of ∂mDiv only depends of the sign of (2p∗ − 1).
Using the explicit formula of p∗, we show the following alternative:

• If sJ < sA then 2p∗ − 1 < 0 for all m ∈ (0, 1) and Div is decreasing with respect of the
maturation m.

• If sJ > sA then there exists a threshold m̄ > 0 defined by m̄ = 1 − sA/sJ such that Div is
maximal at m̄ and if m < m̄, 2p∗ − 1 > 0 and then Div is increasing with respect to m and
for m > m̄, 2p∗ − 1 < 0 and Div is decreasing with respect to m.
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Appendices

A Properties of the demographic model in a single habitat
In this section, we describe the mathematical properties of the simple demographic model with two
classes, the juveniles J and the adults A, in a single habitat. The dynamics of the population size
Nt = (Jt, At) is given by

N(t+ 1) = F[N(t)]N(t) where F[N] =

(
(1−m)sJ f0e

− J+A
β

msJ sA

)
.

Stationary state N∗. The stationary states of (1) satisfy the following equation:

N∗ = F[N∗]N∗ ⇐⇒
(
J∗

A∗

)
= F

[
J∗

A∗

](
J∗

A∗

)
. (15)

If we denote N∗ = J∗ +A∗, then the system (15) is equivalent to: J∗ = (1−m)sJJ
∗ + f0e

−N∗β A∗

A∗ = msJJ
∗ + sAA

∗

We deduce the expression A∗ with respect to J∗ and N∗

A∗ =
msJ

1− sA
J∗ =

msJ
1− sA +msJ

N∗.

As a result we obtain:
e−

N∗
β =

[1− (1−m)sJ ](1− sA)

mf0sJ
.

From hypothesis (H3), we know that mf0sJ/[1− (1−m)sJ ](1− sA) > 1 and

N∗ = β ln

(
mf0sJ

[1− (1−m)sJ ](1− sA)

)
.

Finally we obtain the following expressions:

A∗ =
βmsJ

1− sA +msJ
ln

(
mf0sJ

[1− (1−m)sJ ](1− sA)

)
,

J∗ =
β(1− sA)

1− sA +msJ
ln

(
mf0sJ

[1− (1−m)sJ ](1− sA)

)
.

(16)

Stability of N∗ and Hopf bifurcation.

Proposition 2. Let N∗ be the stationary state defined by (16). Then N∗ is stable if and only if
f0 < fc where fc is defined by:

fc =
[1− (1−m)sJ ](1− sA)

msJ
exp

[
(1− sA +msJ)

(1 + sA −msJ)

[
(1 + sA)

1− sA)

[1 + (1−m)sJ ]

[1− (1−m)sJ ]
− 1

]]
.
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Proof of Proposition 2. We consider the stationary state N∗ defined by (16). In order to determine
the stability of this stationary state, we calculate the jacobian matrix B of F[N]N at point N∗:

B = F

[
J∗

A∗

]
+

(
∂F

∂J

[
J∗

A∗

](
J∗

A∗

)
∂F

∂A

[
J∗

A∗

](
J∗

A∗

))
The partial derivatives of F are given by:

∂F

∂J

[
J∗

A∗

](
J∗

A∗

)
=

(
0 − f0β e

−N∗β

0 0

)
=

(
− f0β e

−N∗β ×A∗
0

)
=
∂F

∂A

[
J∗

A∗

](
J∗

A∗

)
.

So we get:

B =

(
(1−m)sJ − f0

β e
−N∗β A∗ f0

β e
−N∗β (1−A∗)

msJ sA

)
.

Local stability near the point of equilibrium N∗ is given by the eigenvalues of the matrix B. Let
λ1 and λ2 be the eigenvalues of the matrix B, we have det(B) = λ1 λ2 and tr(B) = λ1 + λ2. More
precisely, using the expressions of N∗, we get:

det(B) =

[
(1−m)sJ −

[1− (1−m)sJ ] (1− sA)

msJβ
−A∗

]
sA

−msJ

[
[1− (1−m)sJ ] (1− sA)

msJ
(1− A∗

β
)

]
,

tr(B) = (1−m)sJ −
[1− (1−m)sJ ] (1− sA)

msJβ
A∗ + sA.

This state is stable if and only if |λ| < 1 for any eigenvalue λ of B.

• λ < 1 ⇔ λ − 1 < 0 and λ − 1 is an eigenvalue of (B − I). The eigenvalues of (B − I) are
negative if and only if tr(B− I) < 0 and det(B− I) > 0. It is equivalent to

tr(B− I) = tr(B)− 2 < 0 and det(B− I) = det(B)− tr(B) + 1 > 0.

• λ > −1 ⇔ λ + 1 > 0 and λ + 1 is an eigenvalue of (B + I). The eigenvalues of (B + I) are
positive if and only if tr(B + I) > 0 and det(B− I) > 0 and so:

tr(B + I) = tr(B) + 2 > 0 and det(B + I) = det(B) + tr(B) + 1 > 0.

Hence the condition |λ| < 1 is equivalent to the following system of inequalities:
tr(B) < 2

det(B)− tr(B) + 1 > 0
tr(B) > −2

det(B) + tr(B) + 1 > 0

.

In the coordinate system (tr,det), our inequalities define the domain described in the figure 8.
Let us look at the inequalities at the edge of this area.
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Figure 8: the stable zone corresponds to the hatched area

• First we study the behaviour on (A,B) (see figure 8).

1 + det(B)− tr(B)) = 1 +

[
(1−m)sJ −

[1− (1−m)sJ ] (1− sA)

msJβ
A∗
]
sA

−msJ
[

[1− (1−m)sJ ] (1− sA)

msJ

(1− A∗

β
)

]
− (1−m)sJ +

[1− (1−m)sJ ] (1− sA)

msJβ
A∗ − sA

= (1− sA)− (1− sA)

[
(1−m)sJ −

[1− (1−m)sJ ] (1− sA)

msJβ
A∗
]

− [1− (1−m)sJ ] (1− sA)(1− A∗

β
).

= (1− sA)

[
1−

[
(1−m)sJ −

[1− (1−m)sJ ] (1− sA)

msJβ
A∗
]

− [1− (1−m)sJ ] (1− A∗

β
)

]
= (1− sA)

[
1− (1−m)sJ +

[1− (1−m)sJ ] (1− sA)

msJβ
A∗−

[1− (1−m)sJ ] (1− A∗

β
)

]
= (1− sA)

A∗

β

[
[1− (1−m)sJ ] (1− sA)

msJ
+ [1− (1−m)sJ ]

]
= (1− sA)

A∗

β

[
[1− (1−m)sJ ] (1− sA +msJ)

msJ

]
.
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So, we always have 1 + det(B) − tr(B)) > 0 and thus, there is no bifurcation on this edge
(A,B) of the stable area.

• Then we look at the condition tr(B) ≥ −2.

tr(B) = (1−m)sJ + sA −A∗C1 where C1 =
[1− (1−m)sJ ] (1− sA)

msJβ

Thus, tr((B) > −2 if and only if A∗C1 < 2 + (1−m)sJ + sA..

• On the other hand, det(B) = A∗C1(1− sA +msJ), from which we deduce:

1 + det(B) + tr(B)) = 1 + det(B)− tr(B)) + 2 tr(B)
= 2(1−m)sJ + 2sA − 2A∗C1 +A∗C1(1− sA +msJ).
= 2(1−m)sJ + 2sA −A∗C1(1−msJ + sA).

If 1 + det(B) + tr(B)) ≥ 0 then A∗C1 ≥ 2. Thus we obtain A∗C1 < 2 + (1−m)sJ + sA and
we deduce tr(B) > −2.

• As a consequence, bifurcation may only occur only on (C,A) where 1 + det(B) + tr(B) = 0.
From the previous computations, this equation is equivalent to A∗C1(1−msJ + sA) = 2[(1−
m)sJ + sA]. And therefore we get:

A∗ =
msJβ

[1− (1−m)sJ ] (1− sA)

2[(1−m)sJ + sA]

(1−msJ + sA)
.

Now A∗ =
msJ

1 +msJ − sA
β ln(R0) by definition, thus we obtain a condition f0 so that the

dynamics of the habitat have bifurcations. In fact, we get:

ln(R0) =
2(1 +msJ − sA)[(1−m)sJ + sA]

(1−msJ + sA)[1− (1−m)sJ ](1− sA)
.

By combining this expression with the definition of R0,

R0 =
f0msJ

[1− (1−m)sJ ](1− sA)
, (17)

we get that:

f0msJ
[1− (1−m)sJ ](1− sA)

= exp

[
(1− sA +msJ)

(1 + sA −msJ)

[
(1 + sA)

1− sA)

[1 + (1−m)sJ ]

[1− (1−m)sJ ]
− 1

]]
.

We deduce the value of intrinsic fertility fc such that the first bifurcation appears:

fc =
[1− (1−m)sJ ](1− sA)

msJ
exp

[
(1− sA +msJ)

(1 + sA −msJ)

[
(1 + sA)

1− sA)

[1 + (1−m)sJ ]

[1− (1−m)sJ ]
− 1

]]
.
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B Mathematical properties of the asymptotic proportion p∗

B.1 Extinction of a neutral fraction
From the Theorem 1, we know that the asymptotic proportion p∗ is positive if the matrix DF[N∗]
is primitive. However, if this property does not hold true, some fractions may eventually go extinct.
For instance, in a metapopulation composed of 2 habitats in which migration only occurs from
habitat 2 to habitat 1, that is D12 = 0, the projection matrix at equilibrium satisfies

DF[N∗] =

(
F1[N∗1] εF2[N∗2]

0 (1− ε)F2[N∗2]

)
where Fk is defined by (7). It is obvious that DF[N∗] is not irreducible. Now assume that the
fraction n is initially only in habitat 1, that is n(0) = (n1(0),0). Then we get that

n(t) = (F1[N∗1]tn1(0),0), t > 0.

Now, let us show that the spectral radius of F1[N∗1] is less than 1. This is equivalent to prove that
the net reproductive rate R1∗

0 is less than 1 (Neubert and Caswell, 2000), where this quantity is
defined by:

R1∗
0 =

f1(N∗1)m1sJ1
[1− (1−m1)sJ1 ](1− sA)

= f1(N∗1)
R1

0

f01
with R1

0 =
f01m1sJ1

[1− (1−m1)sJ1 ](1− sA)

From the equation on N∗ we can deduce the quantity f1(N∗1). First we have{
F1[N∗1]N∗1 + εF2[N∗2]N∗2 = N∗1

(1− ε)F2[N∗2]N∗2 = N∗2

which provides the following relationship:

F1[N∗1]N∗1 +
ε

1− ε
N∗2 = N∗1

Developing this system we obtain:
(1−m1)sJ1

N∗11
N∗12

+ f1(N∗1)
N∗12
N∗12

+
ε

1− ε
N∗21
N∗12

=
N∗11
N∗12

m1sJ1
N∗11
N∗12

+ sA1

N∗12
N∗12

+
ε

1− ε
N∗22
N∗12

=
N∗12
N∗12

So, from the second equation of this system, we have:

N∗11
N∗12

=

1− sA1
− ε

1− ε
N∗22
N∗12

m1sJ1

Therefore, we obtain:

f1(N∗1) = [1− (1−m1)sJ1 ]
N∗11
N∗12
− ε

1− ε
N∗21
N∗12

= [1− (1−m1)sJ1 ]

1− sA −
ε

1− ε
N∗22
N∗12

msJ1
− ε

1− ε
N∗21
N∗12

=
f01
R1

0

− ε

1− ε

[
1− (1−m1)sJ1

m1sJ1

N∗22
N∗12

+
N∗21
N∗12

]
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As consequences, we get

R1∗
0 = f1(N∗1)

R1
0

f01
= 1− R1

0

f01

ε

1− ε

[
1− (1−m1)sJ1

m1sJ1

N∗22
N∗12

+
N∗21
N∗12

]
< 1.

Finally, we conclude that n(t) converges toward 0 as t tends to ∞ which implies that p∗ = 0 and
the fraction n goes extinct in the metapopulation.

B.2 Asymptotic proportion p∗ in time periodic steady state N∗(t)

We investigate the case where the equilibrium N∗(t) is a T−periodic steady state. We look at a
neutral fraction n which satisfies initially the following property:

n(0) = p0 ◦N∗(s), where p0 ∈ [0, 1]ωc×ωh and s ∈ {0, . . . , T − 1}

and ◦ is the Hadamard product. The vector p0 corresponds to the initial proportion of the neutral
fraction inside the metapopulation. The initial configuration of the metapopulation is N∗(s) among
the T possible configuration describes by the periodic steady state N∗. In this situation we have
the following result

Proposition 3. Let N∗(t) be a T−periodic steady state of (1) and n be the solution of the following
problem

n(t+ 1) = DF[N∗(t+ s)]n(t)

starting from n(0) = p0 ◦N∗(s) with p0 ∈ [0, 1]ωc×ωh and s ∈ {0, . . . , T − 1}. Then we have

‖n(t)− p∗(p0, s)N
∗(t+ s)‖ → 0 as t→∞,

where the asymptotic proportion p∗(p0, s) is defined by

p∗(p0, s) =
(v(s) ◦N∗(s))′p0

v′(s)N∗(s)
(18)

where v(s) is the eigenvector associated to eigenvalue 1 of the transpose of the matrix C(s) defined
by

C(s) =
(
DF[N∗(s− 1)] · · ·DF[N∗(0)]

)(
DF[N∗(T − 1)] · · ·DF[N∗(s)]

)
.

Moreover, for any (t, s) ∈ {0, . . . , T − 1} with t 6= s, the asymptotic proportions p∗(p0, s) and
p∗(p0, t) are equal, p∗(p0, s) = p∗(p0, t), if and only if p0 ∈ E(t, s) where the set E(t, s) is defined
by

E(t, s) =
{
p ∈ [0, 1]ωc×ωh such that

(
v(s) ◦N∗(s)− v(t) ◦N∗(t)

)′
p = 0

}
.

The set E(t, s) is an hyperplan of codimension 1 which contains the vector (1, . . . , 1) or the whole
space.

The first part of this proposition is just a reformulation of Theorem 1. The second part shows
that the asymptotic proportion p∗ does depend on the initial configuration of the metapopulation
N∗. In particular, the asymptotic proportions p∗(p0, t) and p∗(p0, s) are not always equal if the
dynamics of the metapopulation is such that v(s) ◦N∗(s) 6= v(t) ◦N∗(t). This difference explains
why, in the time varying scenario, the diversity has multiple values. Still, we recover that if the
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initial proportion p0 has identical components then the asymptotic proportion are equal for any
s, t.

Proof of Proposition 3. The first part of the Proposition is a reformulation of Theorem 1 combined
with the following equality

(v(s) ◦N∗(s))′p0 = v(s)′(p0 ◦N∗(s))

which is a consequence of the Hadamard product properties.
Now let us look at the second part of the proposition. From formula (18), it is straightforward
to prove that p∗(p0, s) = p∗(p0, l) if and only if p0 ∈ E(t, s). We just need to remark that
v′(s)N∗(s) = v′(l)N∗(l) for all s, l because v(s) and v(l) are eigenvectors so we can choose them
such that v′(s)N∗(s) = 1 = v′(l)N∗(l). From the definition of E(l, s) we know that it is an
hyperplan of codimension at most 1. Moreover, it is of codimension 1 if and only if (v(s)◦N∗(s)) 6=
(v(t) ◦N∗(t)).
Unfortunately, we are unable to characterize properly the equality v(s) ◦ N∗(s) = v(t) ◦ N∗(t).
Numerically, we show that this equality does not occur for a large range of parameters of our model
(see Fig. 9).

However, for the 2-periodic stationary state of the model with a single habitat we can prove that
the set E(t, s) = Re ∩ [0, 1]2 where e = (1, 1).

Proof of Proposition 3 in a single habitat. In this proof, we consider the 2−periodic stationary state
N∗(t) = (J(t), A(t)) of the following model

N(t+ 1) = F[N(t)]N(t) where F[N] =

(
(1−m)sJ) f0e

− J+A
β

msJ sA

)
.

Our aim is to prove that v(0)◦N∗(0) 6= v(1)◦N∗(1) where v(1) and v(0) are defined in Proposition 3.
Since E(1, 0) is an hyperplan orthogonal to the vector (v(0) ◦N∗(0)−v(1) ◦N∗(1)) and it contains
the vector (1, 1), this implies that the set E(1, 0) = Re ∩ [0, 1]2.
To do so, let us first define A(s) as follows

A(s) = F[N∗(s)] =

(
(1−m)sJ Fs
msJ sA

)
with Fs = f0e

− J
∗(s)+A∗(s)

β

From the definition of N∗(t), we know that 1 is an eigenvalue of the matrix C(0) = A(1)A(0)
because N∗(0) = N∗(2) = A(1)A(0)N∗(0). This implies that det(I − C(0)) = 0 where I is the
identity matrix. This equality implies that F1 and F0 should satisfy the following equation

0 = det
(
I −C(0)

)
= det(I −

(
(1−m)2s2J +msJF1 (1−m)sJF0 + sAF1

msJ
(
(1−m)sJ + sA

)
msJF0 + s2A

)
)

= (msJ)2F0F1 −msJ(1 + (1−m)sJsA)(F0 + F1)

+(1− s2A)
(
1− (1−m)2s2J

)
In particular, if we make the change of variable Y0 = F0 +F1 and Y1 = F1−F0, we get that Y0 and
Y1 are on the hyperbole of the form(

Y0 − 2
1 + (1−m)sJsA

msJ

)2

− Y 2
1 =

4
(
(1−m)sJ + sA

)2
(msJ)2

(19)
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We can deduce that F0 and F1 are linked through this equation. Unfortunately, we are not able to
compute at this stage Y0 or Y1.
Now let us look at the eigenvector v(0) of (C(0))′ associated to eigenvalue 1 and such that
v(0)′N∗(0) = 1. Thus, we have

v2(0) =
1− c11
c21

v1(0) and v1(0)(N∗1 (0) +
1− c11
c21

N∗2 (0)) = 1

Since N∗(0) is an eigenvector of C(0) associated to the eigenvalue 1, we get that N∗2 (0) = (1 −
c11)/c12N

∗
1 (0). Thus we get that

v1(0) =
1

N∗1 (0)

(
1 +

(1− c11)2

c12c21

) =
1

N∗1 (0)

(
1 +

(1− c11)

(1− c22)

)
because det(I −C(0)) = (1− c11)(1− c22)− c12c21 = 0.
Let us now compute v(0) ◦N∗(0).

v(0) ◦N∗(0) =
1

1 +
(1− c11)

(1− c22)


1

N∗1 (0)

1

N∗1 (0)

(1− c11)

c21

 ◦
(
N∗1 (0)

N∗2 (0)

)

=
1

1 +
(1− c11)

(1− c22)

 1

N∗2 (0)

N∗1 (0)

(1− c11)

c21


=

1

1 +
(1− c11)

(1− c22)

 1

(1− c11)2

c21c12



=
1

1 +
(1− c11)

(1− c22)

 1

(1− c11)

(1− c22)

 =
1

1 +
(1− c11(0))

(1− c22(0))

 1

1− (1−m)2s2J −msJF1

1− s2A −msJF0


Similarly, we can compute v(1) ◦N∗(1) as follows

v(1) ◦N∗(1) =
1

1 +
(1− c11(1))

(1− c22(1))

 1

1− (1−m)2s2J −msJF0

1− s2A −msJF1


Thus we can see that v(0) ◦N∗(0) = v(1) ◦N∗(1) if and only if

1− (1−m)2s2J −msJF1

1− s2A −msJF0
=

1− (1−m)2s2J −msJF0

1− s2A −msJF1

Thus, we have either F1 = F0 or F1 + F0 = (2− (1−m)2s2J − s2A)/(msJ). From the equation (19),
we deduce that F1 + F0 ≥ 2(1 + sA)(1 + (1−m)sJ)/(msJ) > (2− (1−m)2s2J − s2A)/(msJ). Thus,
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we get F0 = F1. However, F0 6= F1 because N∗(t) is a 2-periodic stationary state (N∗(0) 6= N∗(1))
and A(0) 6= A(1), otherwise N∗(1) = N∗(0).
In conclusion, we get that v(0) ◦N∗(0) 6= v(1) ◦N∗(1) and thus the set E(1, 0) is of codimension 1
and since e = (1, 1) is in E(1, 0), we have E(1, 0) = Re ∩ [0, 1]2.
We run some simulations to show that the asymptotic proportion p∗ can take different value when
the steady state becomes periodic (see Fig. 9).

B.3 Speed of convergence in a single habitat
We consider the stationary state N∗ of the model in a single habitat with two stages which is
defined by (16). Then, any fraction n starting from n(0) satisfies the following linear equation

n(t+ 1) = F[N∗]n(t) =

(
(1−m) sJ f0/R0

msJ sA

)
n(t)

with R0 defined by (17). Then the reproduction matrix F[N∗] is defined by :

F[N∗] =

(
(1−m) sJ f0/R0

msJ sA

)
The matrix F[N∗] is diagonalisable with eigenvalues 1 and |λ2| < 1 defined by

λ2 = tr(F[N∗])− 1 = (1−m)sJ + sA − 1

Thus, the fraction n(t) can be decomposed as follows

n(t) = p∗N∗ + ((1−m)sJ + sA − 1)
t v
′

2n(0)

v
′
2u2

u2

where N∗ is the stationary state and p∗ is defined by the Theorem 1, and u2 and v2 are respectively
the right and the left eigenvector of the matrix F[N∗] associated to the eigenvalue λ2. A direct
computation shows that

u2 =

(
f0

−(1− sJ)R0

)
and v2 =

(
msJ
sA − 1

)
Moreover, we know that |λ2| < 1, however, λ2 might be negative. In particular, if 0 < (1−m)sJ +
sA − 1 < 1, the fraction n(t) converge monotonically towards p∗N∗ (see Fig. 10(a)). While if
−1 < (1 −m)sJ + sA − 1 < 0, the fraction n(t) will converge with damped oscillation around the
limit p∗N∗ (see Fig. 10(b)).

C The individual–based model of neutral genetic fractions
We consider a model of metapopulation with a size fixed n and composed with 2 habitats and 2
stages in each habitat. Let Xt = (Jt,1, At,1, Jt,2, At,2) where Jt, i is the number of juveniles in each
habitat i and At,i is the number of adults in each habitat i. For each habitat i, adults give birth
according to a Poisson law of parameter fi(Jt,i/n,At,i/n) and they die at a rate sAi according to
a Bernoulli law. Similarly , for each habitat i, juveniles survive at rate (1 −mi)sJi according to
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fig_pstar_fecundity_1Hab_m09_sA02-eps-converted-to.pdf

(a) Precocious semelparity (m = 0.9, sA = 0.2)

fig_pstar_fecundity_1Hab_m09_sA09-eps-converted-to.pdf

(b) Precocious iteroparity (m = 0.9, sA = 0.9)

fig_pstar_fecundity_1Hab_m02_sA02-eps-converted-to.pdf

(c) Delayed semelparity (m = 0.2, sA = 0.2)

fig_pstar_fecundity_1Hab_m02_sA09-eps-converted-to.pdf

(d) Delayed iteroparity (m = 0.2, sA = 0.9)

Figure 9: Effect of fecundity f0 on asymptotic diversityDiv in a single population for the determinis-
tic model. Each colour corresponds to the four different classes of life-histories: (a) precocious semel-
parity (orange m = 0.9, sA = 0.2), (b) precocious iteroparity (purple (m = 0.9, sA = 0.9)), (c) de-
layed semelparity (blue (m = 0.2, sA = 0.2)) and (d) delayed iteroparity (red (m = 0.2, sA = 0.9)).
Straight lines corresponds to the equilibrium regime, dots corresponds to the different diversity
values in the periodical and choatic regimes and dashed curves corresponds to the mean values of
diversity under those regimes. Habitat characteristics: sJ1 = 0.5 and β = 150.

38



(a) 0 < (1−m)sJ + sA − 1 < 1 (b) −1 < (1−m)sJ + sA − 1 < 0

Figure 10: Dynamics of the fraction n(t) in a single habitat with either: (a) monotonic convergence
toward the stationary state or (b) convergence with damped oscillation around the stationary state.

a Bernoulli law. And each individual migrates from habitat i to habitat j with a rate εJij or εAij
depending on whether he is juvenile or adult.
We suppose that the evolution of this métapopulation is iterative in discrete time and we obtain
the stochastic model as follows:

Jt+1,1 =

Jt,1∑
k=1

Mk
1,1 +

At,1∑
k=1

Mk
1,2(Jt,1, At,1) +

Jt,2∑
k=1

Mk
1,3 +

At,2∑
k=1

Mk
1,4(Jt,2, At,2)

At+1,1 =

Jt,1∑
k=1

Mk
2,1 +

At,1∑
k=1

Mk
2,2 +

Jt,2∑
k=1

Mk
2,3 +

At,2∑
k=1

Mk
2,4

Jt+1,2 =

Jt,1∑
k=1

Mk
3,1 +

At,1∑
k=1

Mk
3,2(Jt,1, At,1) +

Jt,2∑
k=1

Mk
3,3 +

At,2∑
k=1

Mk
3,4(Jt,2, At,2)

At+1,2 =

Jt,1∑
k=1

Mk
4,1 +

At,1∑
k=1

Mk
4,2 +

Jt,2∑
k=1

Mk
4,3 +

At,2∑
k=1

Mk
4,4

• where Mk
1,1 = (1− ξε

J
12

k )(1− ξm1

k )ξsJ1

k and the ξk are Bernoulli i.i.d variables with parameter
respectively εJ12, m1 and sJ1.

• where Mk
1,2(Jt,1, At,1) is a sum of F 1(Jt,1, At,1) Bernoulli variables of parameter (1 − εJ12)

where F 1(Jt,1, At,1) is a Poisson variable with parameter f1(Jt,1/n,At,1/n).

• where Mk
1,3 = ξ

εJ21
k (1− ξm2

k )ξsJ2

k and the ξk are Bernoulli i.i.d variable with parameter respec-
tively εJ21, m2 and sJ2.

• where Mk
1,4(Jt,1, At,1) is a sum of F 2(Jt,2, At,2) Bernoulli variables of parameter εJ12 where

F 2(Jt,2, At,2) is a Poisson variable with parameter f2(Jt,2/n,At,21/n). In fact,Mk
1,4(Jt,2, At,2) =

F 2(Jt,2, At,2)−Mk
3,4.

• where Mk
2,1 = (1 − ξ

εA12
k )ξm1

k ξsJ1

k and the ξk are Bernoulli i.i.d variables with parameters
respectively εA12, m1 and sJ1.
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• whereMk
2,2 = (1−ξε

A
12

k )ξsA1

k and the ξk are Bernoulli i.i.d variables with parameter respectively
εA12 and sJ1.

• whereMk
2,3 = ξ

εA21
k ξsm2

k ξsJ2

k and the ξk are Bernoulli i.i.d variables with parameter respectively
1− εA21, m2 and sJ2.

• where Mk
2,4 = ξ

εA21
k ξsA2

k and the ξk are Bernoulli i.i.d variables with parameter respectively εA21
and sA2.

• where Mk
3,1 = ξ

εJ12
k (1 − ξm1

k )ξsJ1

k and the ξk are Bernoulli i.i.d variables with parameter re-
spectively εJ12, m1 and sJ1

• where Mk
3,2(Jt,1, At,1) is a sum of F 1(Jt,1, At,1) Bernoulli variables of parameter (εJ12) where

F 1(Jt,1, At,1) is a Poisson variable with parameter f1(Jt,1/n,At,1/n). In fact,Mk
3,2(Jt,1, At,1) =

F 1(Jt,1, At,1)−Mk
1,2.

• where Mk
3,3 = (1− ξε

J
21

k )(1− ξm2

k )ξsJ2

k and the ξk are Bernoulli i.i.d variables with parameter
respectively εJ21, m2 and sJ2.

• where Mk
3,4(Jt,1, At,1) is a sum of F 2(Jt,2, At,2) Bernoulli variables of parameter (1 − εJ21)

where F 2(Jt,2, At,2) is a Poisson variable with parameter f2(Jt,2/n,At,21/n).

• whereMk
4,1 = ξ

εA12
k (ξm1

k )ξsJ1

k and the ξk are Bernoulli i.i.d variables with parameter respectively
εA12, m1 and sJ1.

• where Mk
4,2 = ξ

εA12
k ξsA1

k and the ξk are Bernoulli i.i.d variables with parameter respectively εA12
and sA1.

• where Mk
4,3 = (1 − ξε

A
21

k )ξm2

k ξsJ2

k and the ξk are Bernoulli i.i.d variables with parameter re-
spectively εA21, m2 and sJ2.

• whereMk
4,4 = (1−ξε

A
21

k )ξsA2

k and the ξk are Bernoulli i.i.d variables with parameter respectively
εA21 and sA2.

So, we have:

(Jt+1,1, At+1,1, Jt+1,2, At+1,2) =

Jt,1∑
k=1

ζk1 +

At,1∑
k=1

ζk2 (Jt,1, At,1) +

Jt,2∑
k=1

ζk3 +

At,2∑
k=1

ζk4 (Jt,2At,2)

with ζki = (Mk
1,i, . . . ,M

k
4,i). We have:

E(ζki (x)) =
(
E(Mk

1,i(x)),E(Mk
2,i),E(Mk

3,i(x)),E(Mk
4,i)
)

So , we obtain:

E(ζk1 ) = ((1− εJ12)(1−m1)sJ1 , (1− εA12)m1sJ1 , ε
J
12(1−m1)sJ1 , ε

A
12m1sJ1)

E(ζk2 (x)) = ((1− εJ12)f1(x/n), (1− εA12)sA1 , ε
J
12f1(x/n), εA12sA1)

E(ζk3 ) = (εJ21(1−m2)sJ2 , ε
A
21m2sJ2 , (1− εJ21)(1−m2)sJ2 , (1− εA21)m2sJ2)

E(ζk4 (x)) = (εJ21f2(x/n), εA21sA2
, (1− εJ21)f2(x/n), (1− εA21)sA2

)
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So we can see that limn→∞

(
E(ζki (nx))

)
i

= DεF[x]

Likewise, if we consider the covariance matrix Cov(ζki (x)) for i ∈ {1, · · · , 4} , according to the
independence of all the variables we obtain:

Cov(ζki (x)) =


Var(Mk

i,1(x)) 0 0 0
0 Var(Mk

i,2) 0 0
0 0 Var(Mk

i,3(x)) 0
0 0 0 Var(Mk

i,4)


where the only dependence in x is for Var(M1,2(x)) and Var(M3,4(x)) which are equals respectively
to

Var(M1,2(x)) = f1(x1/n, x2/n)(1− εJ12) and Var(M3,4(x)) = f2(x3/n, x4/n)(1− εJ21)

We obtain that limn→∞ Cov(ζki (nx))/n = 0 for any i. Now we can apply the result of (Adam,
2016) and thus the stochastic model converges in probability when the size n tends to +∞ to our
deterministic model that we have considered above, more precisely we have:

xt+1 = DF[xt]xt

where

DF[x] =


(1− εJ12)(1−m1)sJ1 (1− εJ12)f1(x1, x2) εJ21(1−m2)sJ2 εJ21f2(x3, x4)

(1− εA12)m1sJ1 (1− εA12)sA1
εA21m2sJ2 εA21sA2

εJ12(1−m1)sJ1 εJ12f1(x1, x2) (1− εJ21)(1−m2)sJ2 (1− εJ21)f2(x3, x4)
εA12m1sJ1 εA12sA1

(1− εA21)m2sJ2 (1− εA21)sA2


and xt = (J1,t, A1,t, J2,t, A2,t).
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