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Most widely used Reynolds-Averaged Navier-Stokes (RANS) models employ the Boussi-

nesq approximation, which assumes a linear relationship between the turbulent Reynolds

stresses and the mean-velocity gradient tensor. This assumption, which can be very strin-

gent, is more suited for simple shear-flows and is regarded as an important shortcoming for

the improvement of the representation of turbulence in complex geometries. Correction of

the local turbulence length scales, as achieved for example by the introduction of a correction

term in the eddy-viscosity equation of a Spalart-Allmaras model, then indeed only allows rel-

atively small corrections to the base-line model and may not be sufficiently flexible to adapt

to common situations where the Reynolds stresses are not aligned with the velocity gradient

tensor. For the variational data-assimilation step, we consider a vectorial source correc-

tion term in the momentum equations (output quantity) together with the Spalart-Allmaras

model, which allows full flexibility to adapt to any mean-flow topology. We show how the

machine-learning framework should be adapted, in particular with respect to the vectorial

nature of the correction term and given invariance properties. As for the input quantities,

we discuss the impact of considering either local quantities for the non-dimensionalization or

global ones that characterize the configuration. We showcase the procedure on the periodic

hill configuration, for which a rich DNS database is available in the literature: in particular,

availability of the full mean-flow solution for a range of Reynolds numbers and geometries,

ensures identification of ”physical” correction terms and allows learning of turbulence models

that accurately extrapolate to new Reynolds numbers and geometries.
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I. INTRODUCTION

With the accelerating developments and the availability of modern machine-learning tools, the

number of Computational Fluid Dynamics (CFD) applications involving data-driven methods sky-

rocketed in recent years. Machine-learning techniques have been used in multiple occasions [1–9],

especially to provide turbulence modeling for Reynolds-Averaged Navier-Stokes (RANS) computa-

tions (see [10] and further discussion). RANS simulations remain an invaluable tool in engineering

design, analysis, and optimization for high-Reynolds number turbulent flows thanks to their low

computational cost. In this approach, the mean statistical operator (also called the Reynolds op-

erator) is applied to the governing equations of fluid dynamics, which results in the mean-flow

equations. A mathematical model is then essential to close these equations and to describe the

effect of unresolved scales (the Reynolds stresses) on the mean-flow solution. Such models generally

involve a constitutive relation that connects the Reynolds stresses to the mean-flow field and one

or two equations that govern the turbulent scales. The most common constitutive relation called

the Boussinesq approximation assumes a linear relationship between the Reynolds stress tensor

and the symmetric part of the mean-velocity gradient tensor. The Boussinesq approximation is

most successful in simple shear-flows [11]. However, in more general configurations, where flows are

dominated by streamline curvature, one should resort to a more complex modeling of the Reynolds

stresses, for example, the Explicit Algebraic Reynolds Stress Model [12], or the more complex

Reynolds-Stress model [13].

Data-augmented turbulence models may be obtained by compensating model form errors by

training correction terms with high-fidelity data [14]. Ling and Templeton [15] introduced classi-

fiers to detect regions of low turbulence model accuracy or model assumption violations using DNS

and LES solutions. Wu et al. [16] used a random forest model to estimate apriori the prediction

confidence of RANS solutions, while Wang et al. [17] corrected the Reynolds stress tensor directly

from mean flow features using machine learning (ML), which increased the accuracy of the com-

putation even on other test cases. In a similar way, Ling et al. [18] introduced a method to correct

the Reynolds stress by a neural network (NN) structure with embedded invariance properties of

the tensor. The same concept was later extended to a more general, although expensive framework

by Wu et al. [19]. However, the above methods directly learn a correction from high fidelity data.

The constructed functions can therefore be inconsistent with RANS model structures. To ensure

this consistency, data-assimilation techniques (DA) based on inverse methods [20] were used for

the inference of model parameters, such as the Field Inversion approach developed by Parish and
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Duraisamy [21]. The method uses Bayesian inference and ML to improve RANS model predictions

and was successfully applied to airfoils with separation [22]. It was more recently improved with

respect to the numerical implementation from a two-stage, so called off-line, approach in which the

DA is conducted in a first step, the ML in a second step, to an on-line method in several versions,

where these stages are coupled [23].

The present article deals with an in-depth discussion on the choice of inputs and outputs that

are machine learned. The inputs are normalized quantities related to the state variable in the

RANS model and the outputs are correction fields that are applied to the baseline model.

The choice of the input features is crucial. Ling and Templeton [15] and Wang et al. [17]

have introduced various quantities and normalization schemes to avoid feature domination and to

improve the training behaviour of the neural network. Normalization schemes allow all features

to exhibit a maximum value of approximately 1 and a minimum value of around 0 if the feature

is positive (or -1 if the feature is both positive and negative). In contrast to previous works,

we introduce global parameters (a characteristic length and velocity scale of the configuration for

example) to achieve this normalization instead of local features (local velocities and theirs gradients,

...). This will of course limit the generality of the data-driven model to similar configurations,

characterized by the same global parameters. Yet, we believe that designing a model for such

classes of flows is still useful, especially if the model performs significantly better when compared

to the results with a normalization scheme based on local features. We aim in this article to

compare a global and a local normalization scheme.

For the outputs, we start by noting that industrial applications have favoured up to now the

use of a simple linear modeling of the Reynolds stresses, the Boussinesq approximation, due to

its low induced-cost and increased robustness. Yet, Franceschini et al. [24] recently showed, in

the context of mean-flow data-assimilation, that the Boussinesq approximation could induce rigid

models, that were able to only approximately reconstruct, through DA, simple mean-flows, such

as the one obtained in backward-facing steps which exhibit separation and pressure gradients. In

simple shear-dominated flows, the approximation is in fact known to be ”effective” (turbulence

essentially enhances mixing in an isotropic way, which is compatible with a linear constitutive

relation), but actually not even strictly valid (Monier et al. [25] showed that the Reynolds stresses

were only roughly aligned with the local velocity gradient in turbulent boundary-layers). In view of

drastically improving the fidelity of RANS computations, it therefore seems reasonable to lift this

constraint in the modeling of the Reynolds stresses. Yet, to maintain the cost and robustness of

the data-augmented model at a reasonable level, a first step could be to consider a simple base-line
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linear constitutive relation and to machine-learn the part which is not linear with high-fidelity

data.

We will consider, as in the data-assimilation studies of Foures et al. [20], Symon et al. [26], a

vectorial source correction term in the momentum equations of the Navier-Stokes equations. In

such situation, Franceschini et al. [24] showed that the data-assimilation procedure allowed an al-

most exact recovery of the mean-flow over a backward-facing step. Contrary to a scalar correction

source term in the equations governing the turbulent scales, the vectorial momentum correction

term allows for a much more flexible model to accommodate for prescribed mean-flow features. In

the present work, we aim at demonstrating an off-line data assimilation (DA) and machine learn-

ing (ML) procedure that is based on this vectorial momentum correction term. In this context,

variational data assimilation is used to infer the vectorial source correction from high-fidelity nu-

merical data. The machine learning method is then applied to reconstruct this quantity from the

local mean-flow features. It is worth noting that the quality of the DA reconstruction provides an

upper bound for the quality of the resulting data-augmented models: if the quality of the assimi-

lated solution is poor, so is the resulting augmented model prediction. We therefore hope that by

considering a more flexible correction term, we may improve the quality of the resulting models.

Also, we will solely use complete velocity field information for the data-assimilation procedure: in

Foures et al. [20], Franceschini et al. [24], Symon et al. [26], it was indeed found that, only in such

situations, the correction term had physical meaning because it could favourably be compared to

actual features of the Reynolds-Stress tensor. In the case of sparse measurements (such as velocity

measurements along lines or global measurements such as lift or drag forces), the data-assimilation

process is strongly underdetermined and many correction terms are possible. Regularization terms

which are similar to considering state-covariance information then need to be introduced.

As for the configurations, we consider the periodic-hill test case for which plenty of data from

direct numerical simulations (DNS) and/or large eddy simulations (LES) are available [27, 28].

These configurations, which are characterized by Reynolds numbers (based on the height of the

hills and the mean streamwise velocity atop the hills) between 2800 and 19000, present a turbulent

flow with free separation and reattachement points along with a significant recirculation region -

a flow topology for which linear eddy viscosity models suffer from inaccuracies. Also, note that

the usual turbulence models are calibrated at much higher Reynolds numbers, which by itself is a

reason for inaccuracy. The data-bases offer well-defined flow conditions which makes it especially

suited as a benchmark case for learning and testing data-augmented turbulence models.

The outline of the paper is the following. First (§II), we present the periodic hill configuration
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FIG. 1. Computational domain for the flow over the baseline geometry of periodic hills.

and the available simulation results. Then (§III), we present the base-line turbulence model,

here the Spalart-Allmaras model, and a comparison between predicted mean-flows and reference

solutions obtained in the literature. In §IV, we introduce the vectorial source correction term in the

RANS equations and present the variational data-assimilation framework that allows tuning this

term to minimize the gap between the predicted field and reference fields given in the literature.

We will in particular check the physical relevance of the tuned correction term by comparison with

reference data from the high-fidelity solutions. In §V, we introduce the neural networks, whose

coefficients will be machine learned to recover the data-assimilated vectorial source correction terms

from local input features of the mean-flow. We will in particular describe these features and discuss

how to prescribe invariance of the predicted vectorial correction term when an arbitrary rotation

of the base unit vectors is considered. Varying the Reynolds numbers and the shape of the hills,

we analyse in detail the learning / validation / interpolation / extrapolation steps of the data-

augmented turbulence models. In §VI, we compare two sets of input features, the first based on

global quantities and the second based on local ones. In §VII, we offer a summary of the results

and an outlook.

II. CONFIGURATION AND REFERENCE FLOWFIELD

The flow over periodically arranged hills in a channel has become a very useful benchmark test

case to evaluate numerical methods, meshing strategies, wall modeling assumptions, and turbulence

closures for RANS and LES [29–34]. High-fidelity simulations [35, 36] brought out the complex

flow features typical of this configuration. The flow exhibits separation from a curved surface

and reattachment at the flat surface between the hills, unsteady shear layer surrounding the main

recirculation bubble and strong acceleration due to the geometry obstruction. Moreover, the extent

of the recirculating bubble, dominated by large-scale energetic eddies with strong deformation
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TABLE I. Summary of configurations studied in this work.

Case Reb a Simulations performed High fidelity data

PH-2800 2800 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]

PH-5600 5600 1 RANS, DA, NN-based RANS Xiao et al. [28]

PH-5600-0.8 5600 0.8 RANS, NN-based RANS Xiao et al. [28]

PH-5600-1.2 5600 1.2 RANS, NN-based RANS Xiao et al. [28]

PH-10595 10595 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]

PH-19000 19000 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]

and dynamics, is extremely difficult to describe within the RANS-modeling framework [37]. This

configuration was also chosen thanks to the freely-available database provided in the literature

[27, 28]. Recently, Gloerfelt and Cinnella [27] performed direct and large-eddy simulations for

flows at Reynolds numbers varying from 2800 up to 37000. Xiao et al. [28] extended the database

by changing the geometry and keeping the Reynolds number at 5600.

The base periodic-hill geometry shown in Fig. 1 is represented as piecewise third-order poly-

nomial functions [28]. It consists of a plane channel with curved constrictions of height h. The

channel height is Ly = 3.035h. In order to take into account the new geometries simulated by Xiao

et al. [28], the horizontal length is parametrized by a as Lx = (3.858a+ 5.142)h, a varying from 0.8

to 1.2, with a = 1 representing the original geometry. Periodicity of the flow (velocity and pressure

components) is assumed in the streamwise direction, in which the flow is driven by a constant body

force. This body force is implemented as a uniform forcing term of strength f1 in the x-momentum

equation to ensure the specified bulk Reynolds number Reb:

Reb =
ubh

ν
with ub =

1

2.035h
∫

3.035h

h
u1(y)dy. (1)

Each Reynolds number is characterized by a unique value of f1, which is directly related to the

mean streamwise force that is exerted on the upper and lower walls, F1 ∶= ∫∂Ωu,l
(−pn1 + τ1jnj)dS,

through:

f1Ω = F1, (2)

with Ω being the volume of the periodic region. Four different values of Reynolds numbers have

been considered: Reb = 2800, 5600, 10595, and 19000, as well as three geometries: a = 1, 0.8, and

1.2. Table I summarizes all cases investigated in this study.
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III. REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS AND ASSESSMENT OF

BOUSSINESQ HYPOTHESIS

The incompressible steady-state RANS equations for the mean velocity ui and the mean pressure

p are:

∂ui
∂xi

= 0, (3)

∂uiuj

∂xj
= −

∂p

∂xi
+
∂(2νSij)

∂xj
+
∂τij

∂xj
+ fi (4)

where Sij = (ui,j + uj,i)/2 is the mean strain rate tensor, ν the molecular viscosity and fi = f
DNS
i

the constant streamwise body force. The term τij = −u′iu
′
j is the Reynolds stress tensor.

To obtain a predictive RANS model, we introduce a linear constitutive relation linking the

Reynolds stress tensor to the symmetric mean-velocity gradient tensor:

τij = 2νtSij −
2

3
kδij with k =

1

2
u′iu

′
i. (5)

The turbulence kinetic energy k is usually incorporated in the pressure p. The kinetic eddy

viscosity νt is determined by solving the one equation Spalart-Allmaras (SA) turbulence model [38]

for quantity ν̃ as:

νt = ν̃fv1 , fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
(6)

where ν̃ obeys the following transport equation

uj
∂ν̃

∂xj
= cb1S̃ν̃ +

1

σ

∂

∂xk
[(ν + ν̃)

∂ν̃

∂xk
] +

cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
− cw1fw [

ν̃

d
]

2

(7)

with

cb1 = 0.1355 , cb2 = 0.622 , cv1 = 7.1 , σ = 2/3

cw1 =
cb1
κ2
+

(1 + cb2)

σ
, cw2 = 0.3 , cw3 = 2 , κ = 0.41

fv2 = 1 −
χ

1 + χfv1
, fw = g [

1 + c6
w3

g6 + c6
w3

]

1/6

; g = r + cw2(r
6
− r)

r =
ν̃

S̃κ2d2
, S̃ = S +

ν̃

κ2d2
fv2 , S =

√
2ΩijΩij .
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(a)

(b)

FIG. 2. Mean streamwise velocity field for case with Reb = 2800. (a) DNS from Gloerfelt and Cinnella [27]

and (b) RANS simulation using the original SA model.

The tensor Ωij = (ui,j − uj,i)/2 is the rotation tensor and d is the distance from the closest

wall. Thus, the solution of the direct problem gives us the field q = (u, p, ν̃)T . To achieve a given

Reynolds number Reb, it is mandatory to tune again the constant body force f1 = fSA1 in the

RANS model: since the (uncorrected) model does not recover the exact reference mean-flow fields,

the predicted mean drag coefficient on the upper and lower walls is obviously (slightly) different

from the reference values of the high fidelity simulations and the constant body force needs to be

adjusted. The open-source finite-element software FreeFEM [39] is employed to solve the direct

problem (see appendix for more details).

The streamwise velocity field from the original SA-RANS simulation is shown in Fig. 2 together

with the reference solution. As expected, the discrepancies are striking, especially in terms of the

extent of the mean recirculation bubble. As already mentioned, the fact that the separation process

is highly time- and space-dependent, occurring over a large portion of the surface on the leeward

hill side, makes it extremely difficult (if not impossible) to describe the flow within any existing

RANS eddy-viscosity framework [37]. As a matter of fact, if we introduce an indicator defined

through the inner product between the traceless stress tensor (also called anisotropic stress tensor)

R = u′iu
′
j −

2
3kδij and the mean strain rate tensor S as done in [11]

ρRS =
∣R ∶ S∣

∥R∥ ∥S∥
, (8)

it is possible to test the validity of Boussinesq’s hypothesis. This indicator measures the propor-

tionality between these two tensors and is analogous to the cosine of the angle between vectors.
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FIG. 3. A map of ρRS for the DNS of case PH-2800.

Quantity ρRS varies between 0 and 1, and if ρRS = 1, then Boussinesq’s approximation is fully re-

spected. Schmitt [11] established (through geometrical reasoning) that if ρRS > 0.86, then it would

make sense to use a linear eddy-viscosity approximation. In Fig. 3, we note that the indicator ρRS

for case PH-2800 is lower than 0.8 in most of the domain, especially close to the walls, proving

that RANS models based on such approximation need to be corrected (at least for this type of

flow). The objective of this work is to improve or even fix this issue by relying on data assimilation

coupled with machine learning techniques.

IV. MINIMAL MOMENTUM FORCE CORRECTION (OUTPUT) OF RANS MODEL

BY VARIATIONAL DATA ASSIMILATION

In the present section, we consider an additional vectorial source term f ci in the momentum

equations of the RANS model (4):

∂uiuj

∂xj
= −

∂p

∂xi
+
∂(2νSij)

∂xj
+ fνti + fi + f

c
i , (9)

where fνti =
∂(2νtSij)

∂xj
are the Reynolds stresses due to the eddy-viscosity.

We are now interested in finding correction terms f ci that make the predicted mean-flow u(f c)

match the reference mean-flow uref . Similarly to [24], the forcing term f ci only accounts for a

small part of the full Reynolds-stresses, since the eddy-viscosity force fνti already models most of

it. We are in particular interested in finding, among the many possible solutions, the specific f ci

that exhibits smallest amplitude. Doing so, the amplitude of f ci is minimal, which should facilitate

the machine-learning step of the next section (by focusing the learning process on relevant and

important data). It is actually the flexibility of the vectorial source correction term f ci that allows

to find a solution for which the predicted mean-flow field closely matches the reference solution

[24], u(f c) ≈ uref.

This correction procedure can be seen as an optimization problem where the source term,
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modeling the Reynolds-stress tensor, f c is tuned to minimize the objective function J :

J =
1

2
∥u(f c) − uref∥

2
L2
+
l2

2
∥fc

∥
2
L2
, (10)

where ∥⋅∥L2
is the functional L2 norm. The first term represents the discrepancy between the

predicted velocity field u(f c) and the reference state uref (from DNS simulations), while the

second term promotes small-amplitude correction terms. The parameter l2 is chosen sufficiently

small to allow accurate reconstruction of the reference flow and sufficiently large to ensure a small

amplitude of f ci .

The governing equations may be written in a compact form as:

R(q) = Pf c, (11)

where q = (u, p, ν̃)T is the state vector and P the prolongation operator such that Pf = (f ,0,0)T .

Due to the size of the control space, gradient-based techniques are necessary to minimize the

objective functional. We will use the low-memory BFGS algorithm [40], which reconstructs the

Hessian matrix from finite-difference approximations and captures the second-derivative behaviour

of the cost functional J . Following Franceschini et al. [24], the gradient of the objective functional

reads:

dJ

df c
= −u†

+ l2f c, (12)

where the adjoint state q† = (u†, p†, ν̃†)T is solution of:

(
∂R

∂q
)

†
q†

= −P(u − uref). (13)

The notation (∂R∂q )
†

corresponds to the operator adjoint to ∂R
∂q with respect to the L2 functional

scalar-product. We remark that this method is based on the solution of adjoint problems to compute

the gradient, which may not be available in any CFD code (even though automatic difference tools

become more and more standard nowadays, see for example Economon et al. [41]). For this reason,

we point out that regularized ensemble-based data assimilation methods may also be used for

solving inverse problems [42, 43].

From a numerical point of view, the optimization process was conducted starting from a RANS

solution. Note that the driving force fi may be different when performing DNS or RANS compu-

tations. Therefore, in the DA procedure the assimilated force f c1 also contains a constant spatial
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FIG. 4. Objective function convergence during data assimilation with L-BFGS. Case PH-2800 (solid line),

PH-5600 (dotted line), and PH-10595 (dashed line).

correction for the f1-term. Thus, to separate the turbulent stress tensor contribution from the

driving force, we can simply remove its streamwise integral ∫Ω f
c
i dΩ from the converged f ci .

At the end, the full predicted Reynolds stress term of the corrected RANS model reads:

f rs,predi = fνti + f
c
i . (14)

This quantity should be comparable to the reference Reynolds stresses of the DNS:

f rs,DNSi =
∂τDNSij

∂xj
, (15)

where τDNSij = −u′iu
′
j .

The performance of the data assimilation methodology is evaluated in the following. Figure

4 shows the convergence of the optimization problem for cases PH-2800, PH-5600, PH-10595.

The L-BFGS method was able to decrease the cost function by three orders of magnitude. The

corresponding velocity field for configuration PH-2800 is plotted in Fig. 5 together with the DNS

solution. An excellent match is observed between the DA solution and the averaged DNS field,

proving the efficiency of the present methodology. Note that this good match cannot be obtained

by tuning the eddy-viscosity or a forcing term in the eddy-viscosity equation.

Next, we investigate the predicted full forcing term (f rs,pred1 ) defined in (14) and compare it to

the reference field from the DNS provided in (15). Fig. 6 visualizes this comparison. From the

DNS data (Fig. 6a), we can see that f rs,DNS1 exhibits a strong negative force acting on the high

velocity side of the shear layer, a positive one on the recirculation side with large values around the

separation point. The positive force declines across the separation bubble and increases again in

the plateau region. A positive volume force is also observed close to the second hill wall indicating a
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(a)

(b)

FIG. 5. Mean velocity field for case with Reb = 2800. (a) Streamwise velocity field and (b) Vertical velocity

field. Contour plots: DA solution. Lines: DNS solution.

flow acceleration in that region due to the channel geometry. The total predicted force f rs,pred1 (Fig.

6b) shows a similar pattern, also in magnitude, with small differences in the diverging/converging

regions. The SA-contribution, fνt1 shown in Fig. 6c is not the same one as in the original SA-RANS

simulation, since the new term takes into account the modified flow field. The remaining error in

fνt1 is compensated by the correction term, i.e. f c1 , shown in Fig. 6d. It is striking to note that the

predicted Reynolds force is very close to the DNS results, which shows that the data-assimilation

process generates physical vectorial source correction terms f ci .

In the next step, a mapping function f(x) → f(η) is constructed, where η(x) are local flow

features that are readily available from any RANS state.

V. MACHINE LEARNING WITH INPUT PARAMETERS NORMALIZED ON

GLOBAL QUANTITIES

In this section, the parameter fields obtained by the data assimilation step are used to train

and test feed-forward neural networks for the reconstruction of a flow field. Input parameters

based on global features of the flow are presented in §V A. The network architecture and treat-

ment of rotational invariance are described in §V B and V C. We train our neural network in two

different scenarios (Table II). While in the first scenario, training flows at Reynolds numbers:

Reb = 2800,10595 and 19000 were chosen, in the second scenario, we have Reb = 2800,5600 and

10595. The same base geometry (a = 1) was used in both scenarios. In this way, the NN-based
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(a)Total force computed from the DNS: frs,DNS1 (b)Total force computed from RANS: frs,pred1

(c)Component given by the SA model: fνt1 (d)Correction term given by the DA: fc1

FIG. 6. Dominant component of force by turbulent fluctuations for case with Reb = 2800. Red indicates -0.1

and blue +0.1.

TABLE II. Database of training flows to predict flow past periodic hills.

Training flow scenario Selected cases
Fit on training

data only

Fit on entire data

without rotation

Scenario I PH-2800, PH-10595, PH-19000 96.5 % 95.6 %

Scenario II PH-2800, PH-5600, PH-10595 96.2 % 93.5 %

model obtained from Scenario I can be used in Case PH-5600 to test how well it interpolates

(§V D) to flows at intermediary Reynolds number and the one from Scenario II can be used in

Case PH-19000 to test how well it extrapolates (§V E) to flows at higher Reynolds number. In

§V F, both scenarios were also employed to perform tests in cases presenting different geometries

(PH-5600-0.8 and PH-5600-1.2).

A. Network inputs

We base the choice of input features η on the reported work of Ling and Templeton [15] and

Wang et al. [17] as summarized in Table III. Here, ui are the components of the velocity vector,

S is the strain rate, and Ω the rotation rate tensor. We consider here a normalization based on

global variables. We use for example the strain rate (q1) and rotation rate (q2) as separate inputs
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TABLE III. Input features to neural network.

Feature Description Formula Normalization factor

q1 Strain rate tanh (
∥S∥
ε1

)
ub
h

q2 Rotation rate tanh(
∥Ω∥
ε2

)
ub
h

q3 Normal stress

√

∂p
∂xk

∂p
∂xk

√

∂p
∂xk

∂p
∂xk

+ε3

0.1u2
b

h

q4 Normal shear stress
1
2

∂u2
k

∂xk

∣
1
2

∂u2
k

∂xk
∣+ε4

0.1u2
b

h

q5 Gorlé et al. [44] marker
∥
uiuj
ukuk

∂ui
∂xj
∥

∥
uiuj
ukuk

∂ui
∂xj
∥+ε5

0.1ub
h

q6 Streamline pressure gradient
uk

∂p
∂xk

∣uk
∂p
∂xk
∣+ε6

√
∂p
∂xk

∂p
∂xk

uiui

q7 Viscosity ratio νt
νt+ε7

100ν

q8 SA wall influence 1
1+r

−

q9 SA convection
ui

∂ν̃
∂xi

∣ui
∂ν̃
∂xi
∣+ε9

0.001u2
b

q10 SA production cb1S̃ν̃

∣cb1S̃ν̃∣+ε10
0.001u2

b

q11 SA destruction
cw1fw(

ν̃
d
)
2

∣cw1fw(
ν̃
d
)
2
∣+ε11

0.001u2
b

q12 Turbulence intensity
kqcr

kqcr+ε12
1
2
u2
i

q13 Streamline curvature ∥DΓ/Ds∥
∥DΓ/Ds∥+ε13

1
h

q14 Cosine of rotation angle cos(φ) -

q15 Sine of rotation angle sin(φ) -

(and not the ratio between these two schemes) and consider ub/h as a reference value. Doing so, we

increase the number of input parameters, which introduces more liberty for the network to adapt

to the features. Of course overlearning should be avoided, which will be tested in the following.

Along this same line of thought, we consider pressure normal stresses (q3) and shear stresses (q4)

as different inputs. Feature q5 defines the deviation from orthogonality between the velocity and

its gradient and indicates the deviation from parallel shear flows [44]. Features q6 is the pressure

gradient along streamline. We also included in the list, quantities related to the SA model (q7−q11).

Differently from Singh et al. [22] who considered as input the ratio of production and destruction

terms (P /D) in the turbulence transport equations, in this study, we opted to include other key

quantities and use a different normalization. In order to reconstruct a turbulent kinetic energy

term (q12) in default of a corresponding transport equation, the 2013 version of the Quadratic

Constitutive Relation (QCR) [45] is used, with kqcr =
3
2ccr2νt

√
2SijSij . The streamline curvature

(q13) makes use of the direction vector Γ = u/ ∥u∥ and the streamline path Ds = ∥u∥Dt. Thus,
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except for features q1 and q2, each component in the input vector is normalized in the classical way:

qi = q̂i/(∣q̂i∣+ ε). The normalization used in this work may be less general than the ones previously

used, but as shown later the improvement in the model prediction justifies its use. It is worthy

mentioning that in practice, our code solves the non-dimensional RANS equations and therefore

quantities and normalization factors are both dimensionless in our case.

B. Network architecture and training

The network structure is a common feed-forward neural network, using rectified linear unit

(ReLU) activation functions and a mean-squared-error as the network prediction error, i.e. loss

function. It uses a back-propagation algorithm to calculate the derivatives of the loss function with

respect to the network weights and biases, which is efficiently done by automatic differentiation.

The training procedure effectively represents a second minimization problem, separate from the

data assimilation. In this optimization, the network loss is minimized by changing the parameters

of the network using, again, a L-BFGS optimizer. For the data at hand, this algorithm is found

to be more robust and efficient compared to batch- and stochastic-gradient-decent methods. The

open-source library PyTorch is employed in order to re-use well-implemented methods for these

procedures. Appropriate hyper-parameters for the network training are found by a grid search

implementation. The learn rate is consequently kept at 0.1 and the final network comprises 4

hidden layers with 80 neurons per layer, for training on multiple test-cases. The input layer

represents a vector that contains the input features from Table III. These features are constructed

on every mesh vertex, forming the complete dataset for a given flow field. The dataset is then

shuffled and divided in a training and a validation set, the first comprising 75% of the data and the

second the other 25%. The validation set is used to monitor indications of over-fitting and abort

the training in case of marginal improvement. We test on the entire data-set after training has

finished and quantify the predictive capability by a fit-function relative to the standard deviation

of the data set:

fit = 1 −
∑(fpred − f)

2

∑(f − f)2
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C. Accounting for Rotational invariance

An additional note should be given on the rotational invariance of the correction parameter

produced by the neural network, which is required for the model to be independent of the reference

frame. In previous work, as by Wu et al. [19], the goal was to obtain rotational invariance for a

tensorial function that models the anisotropy stress tensor. For this, one must formulate the tensor

in terms of an invariance basis. The theory of Pope [46] shows that such a basis can be found for the

Reynolds tensor and derives the basis and the corresponding tensor invariants for the incompressible

case. The coefficients that expand the basis to any specific tensor are now (unknown) scalar-valued

functions of these basis invariants and therefore also invariant themselves. The first order tensor

of this basis is the strain rate and its coefficient can be interpreted as the linear eddy viscosity.

In our work, however, we construct a data model for a vector, not a tensor quantity. In fact, our

volume force represents the non-linear part of the divergence of the stress tensor, as per Eq. (14).

The operation therefore reduces the rank of the output similar to the divergence operator, and a

unique invariance basis cannot generally be found for functions with vector-valued outputs from

tensorial inputs [47]. The divergence operator is a good example for this statement, since one can

act with it on a general expansion of the tensor basis for the Reynolds stresses. The result will be

a relation that depends on the spatial derivatives of the expansion coefficients, which is not per se

a rotationally invariant formulation. In lack of a rigorous mathematical frame, it is a particular

challenge to embed the rotational invariance into the neural network for this vectorial output.

Consequently, we decide to use data augmentation to experiment with rotational invariance [48]:

rotated versions of the flow are constructed in 10○-steps and additionally supplied as input data

to the network, on which training and testing can be performed. The orientation of the flow is in

this case included in the input feature list, defined as a unit vector of the main flow direction, i.e.

identical to the normalised free-stream velocity, (q14) and (q15), where φ is the angle between the

unit vector and the x-axis. Every rotation operation produces a new dataset with rotated versions

of the volume force. Rotation of the remaining local flow quantities, e.g. the strain rate, can be

used to verify the invariance of the input features (q1)-(q13), however, this computation is otherwise

obsolete: the results must be identical for all frames. Translational invariance is guaranteed because

we use a local formulation in which neither inputs nor outputs structurally depend on location. It

should be noted that equal behaviour in a uniformly moving reference frame is not yet investigated,

although this is also required for a strictly Galilean-invariant model, and left for future work.

One may be surprised why the desired function requires the direction vector input as information
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about the reference frame, if we want to compose a function that does not depend on the frame.

To clarify this: we desire the function output to be invariant. In other words, the aim is to obtain

a 10○-rotated volume force for a 10○-rotated coordinate frame. If the anisotropic stress tensor

was modeled [19], the reference frame was implicitly passed in form of the local, frame-dependent

basis tensor components, while a neural network produced frame-invariant coefficients. Using a

volume force vector and data augmentation, a different way is needed to pass information about

the reference frame in some other form. This can be understood intuitively if we imagine that

we simply do not pass (q14) and (q15). In this case, the network would receive identical data for

all rotations of the coordinate system. At the same time, we would require it to return rotated

versions of the force. Such a network would not be able to learn, since there would be no injectivity

in the training data: this data could not be represented by any function. The choice to pass the

direction vector is a straight forward and only one possible solution. In fact, it would be interesting

to investigate different architectures for this purpose in future work.

It is worth noting that if the neural network is not trained on rotationally augmented data,

one may observe a deteriorated flow field compared to the baseline RANS solution and/or even

encounter converge issues to the specified problem. Poor predictions due to lack of rotational

invariance have also been observed in [49]. Therefore, we strongly encourage the rotation of the

dataset before training to increase robustness. Since neural network training is a statistical proce-

dure, we repeat all training runs three times and retain the best result. Training usually terminates

after 700 to 800 epochs with fit coefficients of approximately 96% on all rotated datasets (data

augmentation, see Table II).

D. Interpolation in Reynolds number

We first analyze how the NN-based model from Scenario I (trained at Reb = 2800,10595 and

19000) performs in a flow at an intermediate Reynolds number (Case PH-5600). Figure 7 shows

mean velocity profiles at stations x/h ∈ {0.05; 1; 2; 3; 4; 5; 6; 7; 8} for the reference solution (DNS),

the data assimilation, the baseline SA-RANS and the NN-RANS. The results between DA and

DNS are practically indistinguishable, proving the robustness and accuracy of the field-inversion

methodology. The velocity profiles predicted by the baseline RANS model are significantly different

from the DNS solution, particularly in terms of recirculation zone. This is also verified by analyzing

Fig. 8, which depicts the distribution of the averaged skin friction coefficient along the lower wall.

In fact, the separation bubble is drastically increased, ranging through the entire lower-wall plateau
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FIG. 7. Mean velocity profiles for case PH-5600. Streamwise velocity (top) and vertical velocity (bottom).

DNS (solid lines), DA (dashed lines), SA-RANS (dotted lines) and NN-RANS based on Scenario I (dash-

dotted lines).
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FIG. 8. Skin friction distribution for case PH-5600: SA-RANS (dotted line), NN-RANS (dash-dotted line)

and separation and reattachment locations (experiment from Breuer et al. [36], dashed lines).

when the classic SA-model is employed (Fig. 9). On the other hand, the solution of the NN-RANS

simulation, which is trained on the rotationally augmented data set, agrees incredibly well to the

reference profiles.

Figure 9 shows contour plots of the streamwise velocity field for the DNS, the baseline RANS

and the NN-RANS. Despite its qualitative character, it gives us a good description of the general

flow field. The baseline RANS simulation predicts a much larger separation region compared to
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(a)

(b)

(c)

FIG. 9. Mean velocity fields for case PH-5600. (a) DNS, (b) SA-RANS and (c) NN-RANS based on Scenario

I.

the reference database. It is well-known that the turbulence level in the separated shear layer

plays an important role the size of the recirculation zone. For example, a higher level of shear

stress implies an enhancement of the fluid entrainment into the shear layer and consequently a

shorter recirculation bubble. Contrary to that, a lower turbulence level is consistent with a longer

separation zone [37]. Therefore, if the Reynolds stresses (or their divergence, i.e. the forces in

the momentum equations) are correctly predicted, the extent of the recirculation bubble can be

correctly estimated as in Fig. 9c. These forces resulting from the data assimilation step are very

close to the ones obtained by the DNS as already discussed in the previous section. We note in

Fig. 10 that the forces predicted by the NN-model are also very close to the DA/DNS forces (note

the scaling factor in Fig. 10), which explain the improvement when using the NN-RANS model.

In Fig. 11, the ratio between turbulent and laminar viscosities is plotted for the baseline RANS

simulation, the data assimilation and the improved NN-RANS simulation. The classical SA-model

predicts a much larger ratio of viscosities and a completely different distribution. The NN-RANS

simulation compares well with the assimilated results.
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FIG. 10. Mean force in the streamwise direction for case PH-5600. DNS (solid lines), DA (dashed lines)

and NN-RANS based on Scenario I (dash-dotted lines).

(a)

(b)

(c)

FIG. 11. Ratio between turbulent and laminar viscosities for case PH-5600. (a) SA-RANS, (b) DA and (c)

NN-RANS based on Scenario I.

E. Extrapolation in Reynolds number

Feed-forward neural networks may not perform well when extrapolating from the data set. Since

we train the network on a very particular configuration, only a specific set of input and output

feature combinations occurs in the training set. We are interested now in testing the performance

of the NN-model from scenario II (trained at Reb = 2800,5600 and 10595) in a flow at a higher
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FIG. 12. Mean velocity profiles for case PH-19000. Streamwise velocity (top) and vertical velocity (bottom).

DNS (solid lines), DA (dashed lines), SA-RANS (dotted lines) and NN-RANS based on Scenario II (dash-

dotted lines).

Reynolds number (Case PH-19000). Figure 12 shows profiles for the mean velocity components

for the reference solution (LES), the data assimilation, the baseline SA-RANS and the NN-RANS.

Here again, when the NN-model is employed, significant improvements are observed in the flow

field as compared to the RANS with SA-model. In the latter case, results indicate that the reverse

flow ends approximately around x/h ≈ 7.8, overestimating significantly the size of the recirculating

bubble. In the NN-RANS simulation, some discrepancies can be found in the upper channel

region, where the extrapolation overestimated the volume forces. Nevertheless, in terms of the

mean separation region the agreement is remarkable (Fig. 12a). The machine learning prediction

also provides more accurate results in terms of mean vertical velocity profiles (Fig. 12b).

The profiles of the mean skin friction coefficient at the bottom wall for simulations using the

standard SA- and the improved NN-RANS models are depicted in Fig. 13 together with the LES

result from Gloerfelt and Cinnella [27]. The NN-based RANS simulation successfully captures not

only the positions of flow separation and reattachment but also the main trend of the LES data

with much better accuracy than the SA-model without correction. Nonetheless, the magnitude of

the friction coefficient is underestimated between 8 < x/h < 9.
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FIG. 13. Skin friction distribution for case PH-5600: SA-RANS (dotted line), NN-RANS (dash-dotted line)

and LES from Gloerfelt and Cinnella [27] (solid lines).
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FIG. 14. New geometries by systematically varying the steepness of the hill. Solid line: original geometry

(a = 1), dashed line: a = 0.8 and dash-dotted line: a = 1.2.

F. Testing on different geometries

In order to demonstrate the capability of the proposed framework to predict flows with different

geometries, we also investigated flows over periodic hills with different shape of hill profiles. This

is an imperative step to underline the strength of the methodology, since geometry variations are a

common scenario in engineering analysis using RANS simulations. More specifically, high-fidelity

experimental and/or numerical data might be available only for a few flow conditions with specific

Reynolds numbers and geometries, but predictions are needed for similar flows but at somewhat

different conditions. Moreover, a more generally adequate methodology for turbulent flow calcula-

tions is certainly needed. Although this requires a transfer to entirely new configurations, the first

step is a careful analysis of similar geometries.

In this section, both scenarios (I and II) are tested and their influence is discussed. The

geometries of the new cases PH-5600-0.8 and PH-5600-1.2 are characterised respectively by a

steeper and a smoother hill profile than the original case, as shown in Fig. 14. While the flows
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FIG. 15. Mean velocity profiles for case PH-5600-0.8. Streamwise velocity (top) and vertical velocity

(bottom). DNS (solid lines), SA-RANS (dotted lines), NN-RANS based on Scenario I (dash-dotted lines)

and NN-RANS based on Scenario II (dashed lines).

in Scenario II were trained using different geometries, in Scenario I, they also present distinct

Reynolds numbers.

Figures 15 and 16 show profiles at different streamwise stations for the mean velocity com-

ponents for case PH-5600-0.8 and PH-5600-1.2 respectively. The comparison shows that both

scenarios can be used to predict the mean velocity field of the periodic hill flow even on a modi-

fied geometry. Interestingly, Scenario I (trained using different geometries and Reynolds numbers)

performs slightly better in case PH-5600-0.8, but slightly underperforms Scenario II in case PH-

5600-1.2. Yet, regardless of the chosen scenario, the proposed framework gives excellent results

when compared to the baseline RANS simulation.

VI. MACHINE LEARNING WITH INPUT PARAMETERS NORMALIZED ON LOCAL

QUANTITIES

In this section, we evaluate the above results with the more classical local normalization scheme.

The new set of input features is designated as set 2 in the following. Features from the new set are

summarized in Table IV. We combined some features with same dimensions from set 1 to make the
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FIG. 16. Mean velocity profiles for case PH-5600-1.2. Streamwise velocity (top) and vertical velocity

(bottom). DNS (solid lines), SA-RANS (dotted lines), NN-RANS based on Scenario I (dash-dotted lines)

and NN-RANS based on Scenario II (dashed lines).

model portable to other configurations. For example, we combine quantities q1 and q2 in Table III

as q1−2 =
∥Ω∥2−∥S∥2

∥Ω∥2+∥S∥2
and quantities q3 and q4 as q3−4 =

√
∂p
∂xk

∂p
∂xk√

∂p
∂xk

∂p
∂xk

+∣ 1
2

∂u2
k

∂xk
∣
. Similarly, for quantity q5′

in set 2, we use the following normalization q5′ =
∥uiuj

∂ui
∂xj
∥

∥uiuj
∂ui
∂xj
∥+
√
ulului

∂ui
∂xj

uk
∂uk
∂xj

. Similar adjustments

can be done for the turbulence variables or the streamline curvature. In Fig. 17 we plot the

streamwise velocity profiles using the NN models based on these two sets and we evaluate how well

they extrapolate to flows at higher Reynolds number. This configuration was found to be the most

critical case. We note in Fig. 17(a) that the NN generated using set 2 improves the solution in the

middle of the channel and also reduces the separation bubble but globally it underperforms the

previously stablished model. The skin friction coefficient obtained with the simulation using set 2

is also shown in Fig. 17(b). It is important to note that both models improve the RANS solutions

substantially, but results obtained with the first set are the closest to the reference data. Note,

however, that the second set of input features has the advantage of being more general than the

first one. Even if global quantities can easily be quantified for the present family of configurations,

when dealing with multiple and more complex scenarios, defining such quantities can be tricky.
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FIG. 17. Mean profiles for case PH-19000. DNS (solid lines), SA-RANS (dotted lines), Original NN model

using set 1 (dashed lines) and NN-RANS (dash-dotted lines). (a) Streamwise velocity and (b) skin friction

coefficient.

Moreover, in the first set, note that several input features were normalized using the bulk velocity,

thus violating the Galilean invariance of the NN turbulence model. This lack of translational

invariance is not detrimental to wall-bounded flow configurations, as the periodic hills, since the

wall velocity can be considered as the zero-velocity reference. However, the NN turbulence model

obtained using the first set might not be applicable to flow configurations involving multiple moving

bodies (e.g. turbines) or free-shear mixing layers for which a zero-velocity reference is not easily

identified. The choice of input features to improve NN-based RANS models is still a subject that

needs further investigation. The lesson here is that machine learning-augmented turbulence models

can be used to improve CFD capabilities.

VII. CONCLUSION

Data-driven turbulence modelling has been a central topic of research in recent years. In fact,

machine learning has been used to correct the source terms in turbulence transport equations

[21, 22], or to directly predict the Reynolds stresses or their discrepancies compared to the truth

[17–19]. In this work, we demonstrated an off-line method for parameter inference and machine
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TABLE IV. New input vector for neural network (set 2).

Feature Description Formula Normalization factor

q1−2 Q-criterion ∥Ω∥2−∥S∥2

∥Ω∥2+∥S∥2
−

q3−4 Ratio of pressure normal stresses to shear stresses

√

∂p
∂xk

∂p
∂xk

√

∂p
∂xk

∂p
∂xk

+ε3−4

1
2

∂u2
k

∂xk

q5′ Gorlé et al. [44] marker
∥uiuj

∂ui
∂xj
∥

∥uiuj
∂ui
∂xj
∥+ε5′

√
ulului

∂ui
∂xj

uk
∂uk
∂xj

q6 Streamline pressure gradient
uk

∂p
∂xk

∣uk
∂p
∂xk
∣+ε6

√
∂p
∂xk

∂p
∂xk

uiui

q7 Viscosity ratio νt
νt+ε7

100ν

q8 SA wall influence 1
1+r

-

q10′ SA ratio of production to diffusion cb1S̃ν̃

∣cb1S̃ν̃∣+ε10′

cb2
σ

∂ν̃
∂xk

∂ν̃
∂xk

q11′ SA ratio of destruction to diffusion
cw1fw(

ν̃
d
)
2

∣cw1fw(
ν̃
d
)
2
∣+ε11′

cb2
σ

∂ν̃
∂xk

∂ν̃
∂xk

q12 Turbulence intensity
kqcr

kqcr+ε12
1
2
u2
i

q13′ Streamline curvature ∥DΓ/Ds∥
∥DΓ/Ds∥+ε13′

√

kqcr
νt

q14 Cosine of rotation angle cos(φ) -

q15 Sine of rotation angle sin(φ) -

learning for turbulence modelling. The off-line regression strategy to construct the correction func-

tion consists of three consecutive steps: (i) variational data assimilation is used to infer a modelling

correction from high-fidelity data, (ii) machine learning is used by means of neural network training

to reconstruct the volume force correction to the Spalart-Allmaras turbulence model as a function

of available flow quantities, and (iii) RANS computations are performed using the augmented neu-

ral network turbulence model. The novelty of the present work consists of introducing a correction

to the Boussinesq-hypothesis by adding a volume forcing term in the momentum equations. The

correction term is obtained by field inversion based on multiple high-fidelity data and then gener-

alised using neural networks for the same class of flows. The present fomulation is more general

than the one described in [21, 22], since it is not restricted to traditional linear or quadratic eddy

viscosity models. The methodology was validated on the periodic-hill configuration at different

geometries and Reynolds numbers. This case presents strong flow separation and well-defined flow

conditions, making it especially suited as a benchmark case for testing machine-learning-assisted

turbulence modelling approaches. Two flow scenarios were used to train the neural-network RANS

model. Each scenario was used to test how well the model is able to interpolate/extrapolate to

flows at different Reynolds numbers. The neural-network based model correctly predicts the mean
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velocity fields and the size of the separation region, in contrast with the baseline RANS model. The

proposed framework is also capable of predicting flows over periodic hills with different shape of

hill profiles by employing data from training flows with similar characteristics than the target flow.

This is extremely important from an engineering point of view, since high-fidelity experimental

and/or numerical data might be available only for a few flow conditions with specific Reynolds

numbers and geometries, but predictions are needed for similar flows but at somewhat different

conditions. Future efforts will enlarge the space of represented configurations and therefore transfer

the correction term to largely different flow scenarios. Moreover, a careful analysis investigating the

influence of each input feature in the prediction of the output quantities needs to be carried out for

both local and global sets. This is important since neural networks with a lower dimensional feature

space would perform better from a computational point of view. The final objective being a widely

applicable methodology for turbulent flows, we can conclude that machine-learning combined with

RANS equations is a powerful tool that improves available mature turbulence models.
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Appendix A: SUPG Implementation

The numerical implementation of the RANS-SA equations are based on the Finite Element

Method (FEM), available in the FreeFem++ code (see Hecht [39]). Since FEM is naturally numer-

ically unstable at high Reynolds numbers, some stabilization schemes needs to be employed. Here,

we choose the Streamline-Upwind Petrov-Galerkin (SUPG) formulation, as proposed by Brooks

and Hughes [50]. In this formulation, the test function is advected with the local velocity field,

giving an upwind effect, stabilizing the scheme. Several different formulations have been proposed

in the literature (see Franca et al. [51], Franca and Frey [52]) for various different equations. Here,

we employ a simplified version of it, common for unsteady problems (Bao et al. [53]), where only

the advection terms are treated. In a simplified notation, we write the nonlinear residual of the
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RANS-SA equations in the weak form:

R([u, p, ν̃], [v, q, ν̌]) = ∫
Ω
(uk∂xkui + fi)vi + ∫

Ω
(−pI + (ν + νt)(∂xiuj + ∂xjui)) (∂xjvi)

−∫
Ω
(∂xiui) q + ∫

Ω
(uk∂xk ν̃ − s) ν̌ + ∫

Ω
η∂xk ν̃∂xk ν̌

+∑
Ωk

∫
Ωk
τSUPG (ui∂xivk) (uj∂xjuk) +∑

Ωk

∫
Ωk
τSUPG (ui∂xi ν̌) (uj∂xk ν̃)

(A1)

where the last two terms correspond to the SUPG formalism and the remaining terms are due

to the classical (unstable) Finite-Element formulation. The functions s and η correspond to the

source term in Spalart-Allmaras model and its diffusivity, given by:

η = σ−1
(ν + ν̃), s = cb1S̃ν̃ +

cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
− cw1fw [

ν̃

d
]

2

(A2)

The function τSUPG regulates the amount of numerical diffusivity and depends on the local

Reynolds (Reh) number as:

τSUPG =
ξ(Reh)hT

2∣u∣
, ξ(Reh) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Reh/3 Reh ≤ 3

1 Reh > 3
, Reh =

∣u∣hT
2ν

(A3)

where the function ξ(Reh) is constant for high Reynolds number, saturating this way the amount

of numerical dissipation introduced. The parameter hT indicates the local element size and is taken

here as hT =
√

2A/hmaxT (where A is the area of the element), minimizing the numerical dissipation

for highly elongated mesh elements (see Mittal [54]). All those integrals are computed with a

quadrature that exactly integrates a polynomial of three times the order of the degree considered.
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