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I. INTRODUCTION

With the accelerating developments and the availability of modern machine-learning tools, the number of Computational Fluid Dynamics (CFD) applications involving data-driven methods skyrocketed in recent years. Machine-learning techniques have been used in multiple occasions [START_REF] Sarghini | Neural networks based subgrid scale modeling in large eddy simulations[END_REF][START_REF] Vollant | Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures[END_REF][START_REF] Corentin J Lapeyre | Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates[END_REF][START_REF] Ma | Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system[END_REF][START_REF] Ma | Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels[END_REF][START_REF] Fukami | Synthetic turbulent inflow generator using machine learning[END_REF][START_REF] Rabault | Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[END_REF][START_REF] Bieker | Deep model predictive flow control with limited sensor data and online learning[END_REF][START_REF] Alexandre N Marques | Data-driven integral boundary-layer modeling for airfoil performance prediction in laminar regime[END_REF], especially to provide turbulence modeling for Reynolds-Averaged Navier-Stokes (RANS) computations (see [START_REF] Duraisamy | Turbulence modeling in the age of data[END_REF] and further discussion). RANS simulations remain an invaluable tool in engineering design, analysis, and optimization for high-Reynolds number turbulent flows thanks to their low computational cost. In this approach, the mean statistical operator (also called the Reynolds operator) is applied to the governing equations of fluid dynamics, which results in the mean-flow equations. A mathematical model is then essential to close these equations and to describe the effect of unresolved scales (the Reynolds stresses) on the mean-flow solution. Such models generally involve a constitutive relation that connects the Reynolds stresses to the mean-flow field and one or two equations that govern the turbulent scales. The most common constitutive relation called the Boussinesq approximation assumes a linear relationship between the Reynolds stress tensor and the symmetric part of the mean-velocity gradient tensor. The Boussinesq approximation is most successful in simple shear-flows [START_REF] François | About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity[END_REF]. However, in more general configurations, where flows are dominated by streamline curvature, one should resort to a more complex modeling of the Reynolds stresses, for example, the Explicit Algebraic Reynolds Stress Model [START_REF] Wallin | An explicit algebraic reynolds stress model for incompressible and compressible turbulent flows[END_REF], or the more complex Reynolds-Stress model [START_REF] Eisfeld | Verification and validation of a second-momentclosure model[END_REF].

Data-augmented turbulence models may be obtained by compensating model form errors by training correction terms with high-fidelity data [START_REF] Xiao | Quantification of model uncertainty in RANS simulations: A review[END_REF]. Ling and Templeton [START_REF] Ling | Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged Navier Stokes uncertainty[END_REF] introduced classifiers to detect regions of low turbulence model accuracy or model assumption violations using DNS and LES solutions. Wu et al. [START_REF] Wu | A priori assessment of prediction confidence for data-driven turbulence modeling[END_REF] used a random forest model to estimate apriori the prediction confidence of RANS solutions, while Wang et al. [START_REF] Wang | Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on DNS data[END_REF] corrected the Reynolds stress tensor directly from mean flow features using machine learning (ML), which increased the accuracy of the computation even on other test cases. In a similar way, Ling et al. [START_REF] Ling | Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[END_REF] introduced a method to correct the Reynolds stress by a neural network (NN) structure with embedded invariance properties of the tensor. The same concept was later extended to a more general, although expensive framework by Wu et al. [START_REF] Wu | Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework[END_REF]. However, the above methods directly learn a correction from high fidelity data.

The constructed functions can therefore be inconsistent with RANS model structures. To ensure this consistency, data-assimilation techniques (DA) based on inverse methods [START_REF] Dimitry Pg Foures | A data-assimilation method for reynolds-averaged navier-stokes-driven mean flow reconstruction[END_REF] were used for the inference of model parameters, such as the Field Inversion approach developed by Parish and Duraisamy [START_REF] Eric | A paradigm for data-driven predictive modeling using field inversion and machine learning[END_REF]. The method uses Bayesian inference and ML to improve RANS model predictions and was successfully applied to airfoils with separation [START_REF] Singh | Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[END_REF]. It was more recently improved with respect to the numerical implementation from a two-stage, so called off-line, approach in which the DA is conducted in a first step, the ML in a second step, to an on-line method in several versions, where these stages are coupled [START_REF] Holland | Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling[END_REF].

The present article deals with an in-depth discussion on the choice of inputs and outputs that are machine learned. The inputs are normalized quantities related to the state variable in the RANS model and the outputs are correction fields that are applied to the baseline model.

The choice of the input features is crucial. Ling and Templeton [START_REF] Ling | Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged Navier Stokes uncertainty[END_REF] and Wang et al. [START_REF] Wang | Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on DNS data[END_REF] have introduced various quantities and normalization schemes to avoid feature domination and to improve the training behaviour of the neural network. Normalization schemes allow all features to exhibit a maximum value of approximately 1 and a minimum value of around 0 if the feature is positive (or -1 if the feature is both positive and negative). In contrast to previous works, we introduce global parameters (a characteristic length and velocity scale of the configuration for example) to achieve this normalization instead of local features (local velocities and theirs gradients, ...). This will of course limit the generality of the data-driven model to similar configurations, characterized by the same global parameters. Yet, we believe that designing a model for such classes of flows is still useful, especially if the model performs significantly better when compared to the results with a normalization scheme based on local features. We aim in this article to compare a global and a local normalization scheme.

For the outputs, we start by noting that industrial applications have favoured up to now the use of a simple linear modeling of the Reynolds stresses, the Boussinesq approximation, due to its low induced-cost and increased robustness. Yet, Franceschini et al. [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF] recently showed, in the context of mean-flow data-assimilation, that the Boussinesq approximation could induce rigid models, that were able to only approximately reconstruct, through DA, simple mean-flows, such as the one obtained in backward-facing steps which exhibit separation and pressure gradients. In simple shear-dominated flows, the approximation is in fact known to be "effective" (turbulence essentially enhances mixing in an isotropic way, which is compatible with a linear constitutive relation), but actually not even strictly valid (Monier et al. [START_REF] Monier | Les investigation of boussinesq constitutive relation validity in a corner separation flow[END_REF] showed that the Reynolds stresses were only roughly aligned with the local velocity gradient in turbulent boundary-layers). In view of drastically improving the fidelity of RANS computations, it therefore seems reasonable to lift this constraint in the modeling of the Reynolds stresses. Yet, to maintain the cost and robustness of the data-augmented model at a reasonable level, a first step could be to consider a simple base-line linear constitutive relation and to machine-learn the part which is not linear with high-fidelity data.

We will consider, as in the data-assimilation studies of Foures et al. [START_REF] Dimitry Pg Foures | A data-assimilation method for reynolds-averaged navier-stokes-driven mean flow reconstruction[END_REF], Symon et al. [START_REF] Symon | Data assimilation of mean velocity from 2d piv measurements of flow over an idealized airfoil[END_REF], a vectorial source correction term in the momentum equations of the Navier-Stokes equations. In such situation, Franceschini et al. [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF] showed that the data-assimilation procedure allowed an almost exact recovery of the mean-flow over a backward-facing step. Contrary to a scalar correction source term in the equations governing the turbulent scales, the vectorial momentum correction term allows for a much more flexible model to accommodate for prescribed mean-flow features. In the present work, we aim at demonstrating an off-line data assimilation (DA) and machine learning (ML) procedure that is based on this vectorial momentum correction term. In this context, variational data assimilation is used to infer the vectorial source correction from high-fidelity numerical data. The machine learning method is then applied to reconstruct this quantity from the local mean-flow features. It is worth noting that the quality of the DA reconstruction provides an upper bound for the quality of the resulting data-augmented models: if the quality of the assimilated solution is poor, so is the resulting augmented model prediction. We therefore hope that by considering a more flexible correction term, we may improve the quality of the resulting models. Also, we will solely use complete velocity field information for the data-assimilation procedure: in Foures et al. [START_REF] Dimitry Pg Foures | A data-assimilation method for reynolds-averaged navier-stokes-driven mean flow reconstruction[END_REF], Franceschini et al. [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF], Symon et al. [START_REF] Symon | Data assimilation of mean velocity from 2d piv measurements of flow over an idealized airfoil[END_REF], it was indeed found that, only in such situations, the correction term had physical meaning because it could favourably be compared to actual features of the Reynolds-Stress tensor. In the case of sparse measurements (such as velocity measurements along lines or global measurements such as lift or drag forces), the data-assimilation process is strongly underdetermined and many correction terms are possible. Regularization terms which are similar to considering state-covariance information then need to be introduced.

As for the configurations, we consider the periodic-hill test case for which plenty of data from direct numerical simulations (DNS) and/or large eddy simulations (LES) are available [START_REF] Gloerfelt | Large eddy simulation requirements for the flow over periodic hills[END_REF][START_REF] Xiao | Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations[END_REF].

These configurations, which are characterized by Reynolds numbers (based on the height of the hills and the mean streamwise velocity atop the hills) between 2800 and 19000, present a turbulent flow with free separation and reattachement points along with a significant recirculation regiona flow topology for which linear eddy viscosity models suffer from inaccuracies. Also, note that the usual turbulence models are calibrated at much higher Reynolds numbers, which by itself is a reason for inaccuracy. The data-bases offer well-defined flow conditions which makes it especially suited as a benchmark case for learning and testing data-augmented turbulence models.

The outline of the paper is the following. First ( §II), we present the periodic hill configuration and the available simulation results. Then ( §III), we present the base-line turbulence model, here the Spalart-Allmaras model, and a comparison between predicted mean-flows and reference solutions obtained in the literature. In §IV, we introduce the vectorial source correction term in the RANS equations and present the variational data-assimilation framework that allows tuning this term to minimize the gap between the predicted field and reference fields given in the literature.

We will in particular check the physical relevance of the tuned correction term by comparison with reference data from the high-fidelity solutions. In §V, we introduce the neural networks, whose coefficients will be machine learned to recover the data-assimilated vectorial source correction terms from local input features of the mean-flow. We will in particular describe these features and discuss how to prescribe invariance of the predicted vectorial correction term when an arbitrary rotation of the base unit vectors is considered. Varying the Reynolds numbers and the shape of the hills, we analyse in detail the learning / validation / interpolation / extrapolation steps of the dataaugmented turbulence models. In §VI, we compare two sets of input features, the first based on global quantities and the second based on local ones. In §VII, we offer a summary of the results and an outlook.

II. CONFIGURATION AND REFERENCE FLOWFIELD

The flow over periodically arranged hills in a channel has become a very useful benchmark test case to evaluate numerical methods, meshing strategies, wall modeling assumptions, and turbulence closures for RANS and LES [START_REF] Davidson | Hybrid LES-RANS modelling: a one-equation SGS model combined with a k-ω model for predicting recirculating flows[END_REF][START_REF] Temmerman | Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions[END_REF][START_REF] Temmerman | A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers[END_REF][START_REF] Tessicini | Approximate near-wall treatments based on zonal and hybrid RANS-LES methods for LES at high Reynolds numbers[END_REF][START_REF] Duprat | A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient[END_REF][START_REF] De La Llave | On the use of a high-order discontinuous galerkin method for DNS and LES of wall-bounded turbulence[END_REF]. High-fidelity simulations [START_REF] Fröhlich | Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions[END_REF][START_REF] Breuer | Flow over periodic hills-numerical and experimental study in a wide range of reynolds numbers[END_REF] brought out the complex flow features typical of this configuration. The flow exhibits separation from a curved surface and reattachment at the flat surface between the hills, unsteady shear layer surrounding the main recirculation bubble and strong acceleration due to the geometry obstruction. Moreover, the extent of the recirculating bubble, dominated by large-scale energetic eddies with strong deformation and dynamics, is extremely difficult to describe within the RANS-modeling framework [START_REF] Jakirlic | Extended excerpt related to the test case: Flow over a periodical arrangement of 2D hills[END_REF]. This configuration was also chosen thanks to the freely-available database provided in the literature [START_REF] Gloerfelt | Large eddy simulation requirements for the flow over periodic hills[END_REF][START_REF] Xiao | Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations[END_REF]. Recently, Gloerfelt and Cinnella [START_REF] Gloerfelt | Large eddy simulation requirements for the flow over periodic hills[END_REF] performed direct and large-eddy simulations for flows at Reynolds numbers varying from 2800 up to 37000. Xiao et al. [START_REF] Xiao | Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations[END_REF] extended the database by changing the geometry and keeping the Reynolds number at 5600.

The base periodic-hill geometry shown in Fig. 1 is represented as piecewise third-order polynomial functions [START_REF] Xiao | Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations[END_REF]. It consists of a plane channel with curved constrictions of height h. The channel height is L y = 3.035h. In order to take into account the new geometries simulated by Xiao et al. [START_REF] Xiao | Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations[END_REF], the horizontal length is parametrized by a as L x = (3.858a + 5.142)h, a varying from 0.8 to 1.2, with a = 1 representing the original geometry. Periodicity of the flow (velocity and pressure components) is assumed in the streamwise direction, in which the flow is driven by a constant body force. This body force is implemented as a uniform forcing term of strength f 1 in the x-momentum equation to ensure the specified bulk Reynolds number Re b :

Re b = u b h ν with u b = 1 2.035h 3.035h h u 1 (y)dy. (1) 
Each Reynolds number is characterized by a unique value of f 1 , which is directly related to the mean streamwise force that is exerted on the upper and lower walls, F 1 ∶= ∫ ∂Ω u,l (-pn 1 + τ 1j n j )dS, through:

f 1 Ω = F 1 , (2) 
with Ω being the volume of the periodic region. Four different values of Reynolds numbers have been considered: Re b = 2800, 5600, 10595, and 19000, as well as three geometries: a = 1, 0.8, and 1.2. Table I summarizes all cases investigated in this study.

III. REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS AND ASSESSMENT OF BOUSSINESQ HYPOTHESIS

The incompressible steady-state RANS equations for the mean velocity u i and the mean pressure p are:

∂u i ∂x i = 0, ( 3 
)
∂u i u j ∂x j = - ∂p ∂x i + ∂(2νS ij ) ∂x j + ∂τ ij ∂x j + f i (4) 
where S ij = (u i,j + u j,i ) 2 is the mean strain rate tensor, ν the molecular viscosity and f i = f DN S i the constant streamwise body force. The term τ ij = -u ′ i u ′ j is the Reynolds stress tensor. To obtain a predictive RANS model, we introduce a linear constitutive relation linking the Reynolds stress tensor to the symmetric mean-velocity gradient tensor:

τ ij = 2ν t S ij - 2 3 kδ ij with k = 1 2 u ′ i u ′ i . (5) 
The turbulence kinetic energy k is usually incorporated in the pressure p. The kinetic eddy viscosity ν t is determined by solving the one equation Spalart-Allmaras (SA) turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] for quantity ν as:

ν t = νf v1 , f v1 = χ 3 χ 3 + c 3 v1 , χ = ν ν (6) 
where ν obeys the following transport equation

u j ∂ν ∂x j = c b1 Sν + 1 σ ∂ ∂x k (ν + ν) ∂ν ∂x k + c b2 σ ∂ν ∂x k ∂ν ∂x k -c w1 f w ν d 2 (7) 
with

c b1 = 0.1355 , c b2 = 0.622 , c v1 = 7.1 , σ = 2 3 c w1 = c b1 κ 2 + (1 + c b2 ) σ , c w2 = 0.3 , c w3 = 2 , κ = 0.41 f v2 = 1 - χ 1 + χf v1 , f w = g 1 + c 6 w3 g 6 + c 6 w3 1 6 
; The tensor Ω ij = (u i,j -u j,i ) 2 is the rotation tensor and d is the distance from the closest wall. Thus, the solution of the direct problem gives us the field q = (u, p, ν) T . To achieve a given Reynolds number Re b , it is mandatory to tune again the constant body force The streamwise velocity field from the original SA-RANS simulation is shown in Fig. 2 together with the reference solution. As expected, the discrepancies are striking, especially in terms of the extent of the mean recirculation bubble. As already mentioned, the fact that the separation process is highly time-and space-dependent, occurring over a large portion of the surface on the leeward hill side, makes it extremely difficult (if not impossible) to describe the flow within any existing RANS eddy-viscosity framework [START_REF] Jakirlic | Extended excerpt related to the test case: Flow over a periodical arrangement of 2D hills[END_REF]. As a matter of fact, if we introduce an indicator defined through the inner product between the traceless stress tensor (also called anisotropic stress tensor)

g = r + c w2 (r 6 -r) r = ν Sκ 2 d 2 , S = S + ν κ 2 d 2 f v2 , S = 2Ω ij Ω ij .
f 1 = f SA
R = u ′ i u ′ j -2
3 kδ ij and the mean strain rate tensor S as done in [START_REF] François | About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity[END_REF] 

ρ RS = R ∶ S R S , (8) 
it is possible to test the validity of Boussinesq's hypothesis. This indicator measures the proportionality between these two tensors and is analogous to the cosine of the angle between vectors. Quantity ρ RS varies between 0 and 1, and if ρ RS = 1, then Boussinesq's approximation is fully respected. Schmitt [START_REF] François | About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity[END_REF] established (through geometrical reasoning) that if ρ RS > 0.86, then it would make sense to use a linear eddy-viscosity approximation. In Fig. 3, we note that the indicator ρ RS for case PH-2800 is lower than 0.8 in most of the domain, especially close to the walls, proving that RANS models based on such approximation need to be corrected (at least for this type of flow). The objective of this work is to improve or even fix this issue by relying on data assimilation coupled with machine learning techniques.

IV. MINIMAL MOMENTUM FORCE CORRECTION (OUTPUT) OF RANS MODEL BY VARIATIONAL DATA ASSIMILATION

In the present section, we consider an additional vectorial source term f c i in the momentum equations of the RANS model (4):

∂u i u j ∂x j = - ∂p ∂x i + ∂(2νS ij ) ∂x j + f νt i + f i + f c i , (9) 
where

f νt i = ∂(2νtS ij ) ∂x j
are the Reynolds stresses due to the eddy-viscosity.

We are now interested in finding correction terms f c i that make the predicted mean-flow u(f c ) match the reference mean-flow u ref .

Similarly to [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF], the forcing term f c i only accounts for a small part of the full Reynolds-stresses, since the eddy-viscosity force f νt i already models most of it. We are in particular interested in finding, among the many possible solutions, the specific f c i that exhibits smallest amplitude. Doing so, the amplitude of f c i is minimal, which should facilitate the machine-learning step of the next section (by focusing the learning process on relevant and important data). It is actually the flexibility of the vectorial source correction term f c i that allows to find a solution for which the predicted mean-flow field closely matches the reference solution [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF], u(f c ) ≈ u ref .

This correction procedure can be seen as an optimization problem where the source term, modeling the Reynolds-stress tensor, f c is tuned to minimize the objective function J :

J = 1 2 u(f c ) -u ref 2 L 2 + l 2 2 f c 2 L 2 , (10) 
where ⋅ L 2 is the functional L 2 norm. The first term represents the discrepancy between the predicted velocity field u(f c ) and the reference state u ref (from DNS simulations), while the second term promotes small-amplitude correction terms. The parameter l 2 is chosen sufficiently small to allow accurate reconstruction of the reference flow and sufficiently large to ensure a small amplitude of f c i . The governing equations may be written in a compact form as:

R(q) = Pf c , (11) 
where q = (u, p, ν) T is the state vector and P the prolongation operator such that Pf = (f , 0, 0) T .

Due to the size of the control space, gradient-based techniques are necessary to minimize the objective functional. We will use the low-memory BFGS algorithm [START_REF] Nocedal | Numerical optimization[END_REF], which reconstructs the Hessian matrix from finite-difference approximations and captures the second-derivative behaviour of the cost functional J . Following Franceschini et al. [START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF], the gradient of the objective functional reads:

dJ df c = -u † + l 2 f c , (12) 
where the adjoint state q † = (u † , p † , ν † ) T is solution of:

∂R ∂q † q † = -P(u -u ref ). (13) 
The notation ∂R ∂q † corresponds to the operator adjoint to ∂R ∂q with respect to the L 2 functional scalar-product. We remark that this method is based on the solution of adjoint problems to compute the gradient, which may not be available in any CFD code (even though automatic difference tools become more and more standard nowadays, see for example Economon et al. [START_REF] Thomas D Economon | Su2: An open-source suite for multiphysics simulation and design[END_REF]). For this reason, we point out that regularized ensemble-based data assimilation methods may also be used for solving inverse problems [START_REF] Marco A Iglesias | Ensemble kalman methods for inverse problems[END_REF][START_REF] Zhang | Regularized ensemble kalman methods for inverse problems[END_REF].

From a numerical point of view, the optimization process was conducted starting from a RANS solution. Note that the driving force f i may be different when performing DNS or RANS computations. Therefore, in the DA procedure the assimilated force f c 1 also contains a constant spatial correction for the f 1 -term. Thus, to separate the turbulent stress tensor contribution from the driving force, we can simply remove its streamwise integral ∫ Ω f c i dΩ from the converged f c i . At the end, the full predicted Reynolds stress term of the corrected RANS model reads:

f rs,pred i = f νt i + f c i . (14) 
This quantity should be comparable to the reference Reynolds stresses of the DNS:

f rs,DN S i = ∂τ DN S ij ∂x j , (15) 
where

τ DN S ij = -u ′ i u ′ j .
The performance of the data assimilation methodology is evaluated in the following. Figure 4 shows the convergence of the optimization problem for cases PH-2800, PH-5600, PH-10595.

The L-BFGS method was able to decrease the cost function by three orders of magnitude. The corresponding velocity field for configuration PH-2800 is plotted in Fig. 5 together with the DNS solution. An excellent match is observed between the DA solution and the averaged DNS field, proving the efficiency of the present methodology. Note that this good match cannot be obtained by tuning the eddy-viscosity or a forcing term in the eddy-viscosity equation.

Next, we investigate the predicted full forcing term (f rs,pred 1 ) defined in [START_REF] Xiao | Quantification of model uncertainty in RANS simulations: A review[END_REF] and compare it to the reference field from the DNS provided in [START_REF] Ling | Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged Navier Stokes uncertainty[END_REF] flow acceleration in that region due to the channel geometry. The total predicted force f rs,pred 1 (Fig. 6b) shows a similar pattern, also in magnitude, with small differences in the diverging/converging regions. The SA-contribution, f νt 1 shown in Fig. 6c is not the same one as in the original SA-RANS simulation, since the new term takes into account the modified flow field. The remaining error in

f νt
1 is compensated by the correction term, i.e. f c 1 , shown in Fig. 6d. It is striking to note that the predicted Reynolds force is very close to the DNS results, which shows that the data-assimilation process generates physical vectorial source correction terms f c i . In the next step, a mapping function f (x) → f (η) is constructed, where η(x) are local flow features that are readily available from any RANS state. 

A. Network inputs

We base the choice of input features η on the reported work of Ling and Templeton [START_REF] Ling | Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged Navier Stokes uncertainty[END_REF] and Wang et al. [START_REF] Wang | Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on DNS data[END_REF] as summarized in Table III. Here, u i are the components of the velocity vector, S is the strain rate, and Ω the rotation rate tensor. We consider here a normalization based on global variables. We use for example the strain rate (q 1 ) and rotation rate (q 2 ) as separate inputs 
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(and not the ratio between these two schemes) and consider u b h as a reference value. Doing so, we increase the number of input parameters, which introduces more liberty for the network to adapt to the features. Of course overlearning should be avoided, which will be tested in the following.

Along this same line of thought, we consider pressure normal stresses (q 3 ) and shear stresses (q 4 ) as different inputs. Feature q 5 defines the deviation from orthogonality between the velocity and its gradient and indicates the deviation from parallel shear flows [START_REF] Gorlé | The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy[END_REF]. Features q 6 is the pressure gradient along streamline. We also included in the list, quantities related to the SA model (q 7 -q 11 ).

Differently from Singh et al. [START_REF] Singh | Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[END_REF] who considered as input the ratio of production and destruction terms (P D) in the turbulence transport equations, in this study, we opted to include other key quantities and use a different normalization. In order to reconstruct a turbulent kinetic energy term (q 12 ) in default of a corresponding transport equation, the 2013 version of the Quadratic Constitutive Relation (QCR) [START_REF] Mani | Predictions of a supersonic turbulent flow in a square duct[END_REF] is used, with k qcr = 3 2 c cr2 ν t 2S ij S ij . The streamline curvature (q 13 ) makes use of the direction vector Γ = u u and the streamline path Ds = u Dt. Thus, except for features q 1 and q 2 , each component in the input vector is normalized in the classical way: q i = qi ( qi + ). The normalization used in this work may be less general than the ones previously used, but as shown later the improvement in the model prediction justifies its use. It is worthy mentioning that in practice, our code solves the non-dimensional RANS equations and therefore quantities and normalization factors are both dimensionless in our case.

B. Network architecture and training

The network structure is a common feed-forward neural network, using rectified linear unit (ReLU) activation functions and a mean-squared-error as the network prediction error, i.e. loss function. It uses a back-propagation algorithm to calculate the derivatives of the loss function with respect to the network weights and biases, which is efficiently done by automatic differentiation.

The training procedure effectively represents a second minimization problem, separate from the data assimilation. In this optimization, the network loss is minimized by changing the parameters of the network using, again, a L-BFGS optimizer. For the data at hand, this algorithm is found to be more robust and efficient compared to batch-and stochastic-gradient-decent methods. The open-source library PyTorch is employed in order to re-use well-implemented methods for these procedures. Appropriate hyper-parameters for the network training are found by a grid search implementation. The learn rate is consequently kept at 0.1 and the final network comprises 4 hidden layers with 80 neurons per layer, for training on multiple test-cases. The input layer represents a vector that contains the input features from Table III. These features are constructed on every mesh vertex, forming the complete dataset for a given flow field. The dataset is then shuffled and divided in a training and a validation set, the first comprising 75% of the data and the second the other 25%. The validation set is used to monitor indications of over-fitting and abort the training in case of marginal improvement. We test on the entire data-set after training has finished and quantify the predictive capability by a fit-function relative to the standard deviation of the data set:

f it = 1 - ∑(fpred -f ) 2 ∑(f -f ) 2

C. Accounting for Rotational invariance

An additional note should be given on the rotational invariance of the correction parameter produced by the neural network, which is required for the model to be independent of the reference frame. In previous work, as by Wu et al. [START_REF] Wu | Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework[END_REF], the goal was to obtain rotational invariance for a tensorial function that models the anisotropy stress tensor. For this, one must formulate the tensor in terms of an invariance basis. The theory of Pope [START_REF] Sb Pope | A more general effective-viscosity hypothesis[END_REF] shows that such a basis can be found for the Reynolds tensor and derives the basis and the corresponding tensor invariants for the incompressible case. The coefficients that expand the basis to any specific tensor are now (unknown) scalar-valued functions of these basis invariants and therefore also invariant themselves. The first order tensor of this basis is the strain rate and its coefficient can be interpreted as the linear eddy viscosity.

In our work, however, we construct a data model for a vector, not a tensor quantity. In fact, our volume force represents the non-linear part of the divergence of the stress tensor, as per Eq. ( 14).

The operation therefore reduces the rank of the output similar to the divergence operator, and a unique invariance basis cannot generally be found for functions with vector-valued outputs from tensorial inputs [START_REF] Frewer | Covariance and objectivity in mechanics and turbulence[END_REF]. The divergence operator is a good example for this statement, since one can act with it on a general expansion of the tensor basis for the Reynolds stresses. The result will be a relation that depends on the spatial derivatives of the expansion coefficients, which is not per se a rotationally invariant formulation. In lack of a rigorous mathematical frame, it is a particular challenge to embed the rotational invariance into the neural network for this vectorial output.

Consequently, we decide to use data augmentation to experiment with rotational invariance [START_REF] Ling | Machine learning strategies for systems with invariance properties[END_REF]: rotated versions of the flow are constructed in 10 ○ -steps and additionally supplied as input data to the network, on which training and testing can be performed. The orientation of the flow is in this case included in the input feature list, defined as a unit vector of the main flow direction, i.e.

identical to the normalised free-stream velocity, (q 14 ) and (q 15 ), where φ is the angle between the unit vector and the x-axis. Every rotation operation produces a new dataset with rotated versions of the volume force. Rotation of the remaining local flow quantities, e.g. the strain rate, can be used to verify the invariance of the input features (q 1 )-(q 13 ), however, this computation is otherwise obsolete: the results must be identical for all frames. Translational invariance is guaranteed because we use a local formulation in which neither inputs nor outputs structurally depend on location. It should be noted that equal behaviour in a uniformly moving reference frame is not yet investigated, although this is also required for a strictly Galilean-invariant model, and left for future work.

One may be surprised why the desired function requires the direction vector input as information about the reference frame, if we want to compose a function that does not depend on the frame.

To clarify this: we desire the function output to be invariant. In other words, the aim is to obtain a 10 ○ -rotated volume force for a 10 ○ -rotated coordinate frame. If the anisotropic stress tensor was modeled [START_REF] Wu | Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework[END_REF], the reference frame was implicitly passed in form of the local, frame-dependent basis tensor components, while a neural network produced frame-invariant coefficients. Using a volume force vector and data augmentation, a different way is needed to pass information about the reference frame in some other form. This can be understood intuitively if we imagine that we simply do not pass (q 14) and (q 15 ). In this case, the network would receive identical data for all rotations of the coordinate system. At the same time, we would require it to return rotated versions of the force. Such a network would not be able to learn, since there would be no injectivity in the training data: this data could not be represented by any function. The choice to pass the direction vector is a straight forward and only one possible solution. In fact, it would be interesting to investigate different architectures for this purpose in future work.

It is worth noting that if the neural network is not trained on rotationally augmented data, one may observe a deteriorated flow field compared to the baseline RANS solution and/or even encounter converge issues to the specified problem. Poor predictions due to lack of rotational invariance have also been observed in [START_REF] Wu | Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling[END_REF]. Therefore, we strongly encourage the rotation of the dataset before training to increase robustness. Since neural network training is a statistical procedure, we repeat all training runs three times and retain the best result. Training usually terminates after 700 to 800 epochs with fit coefficients of approximately 96% on all rotated datasets (data augmentation, see Table II).

D. Interpolation in Reynolds number

We first analyze how the NN-based model from Scenario I (trained at Re b = 2800, 10595 and 19000) performs in a flow at an intermediate Reynolds number (Case PH-5600). Figure 7 shows mean velocity profiles at stations x h ∈ {0.05; 1; 2; 3; 4; 5; 6; 7; 8} for the reference solution (DNS), the data assimilation, the baseline SA-RANS and the NN-RANS. The results between DA and DNS are practically indistinguishable, proving the robustness and accuracy of the field-inversion methodology. The velocity profiles predicted by the baseline RANS model are significantly different from the DNS solution, particularly in terms of recirculation zone. This is also verified by analyzing Fig. 8, which depicts the distribution of the averaged skin friction coefficient along the lower wall.

In fact, the separation bubble is drastically increased, ranging through the entire lower-wall plateau when the classic SA-model is employed (Fig. 9). On the other hand, the solution of the NN-RANS simulation, which is trained on the rotationally augmented data set, agrees incredibly well to the reference profiles. the reference database. It is well-known that the turbulence level in the separated shear layer plays an important role the size of the recirculation zone. For example, a higher level of shear stress implies an enhancement of the fluid entrainment into the shear layer and consequently a shorter recirculation bubble. Contrary to that, a lower turbulence level is consistent with a longer separation zone [START_REF] Jakirlic | Extended excerpt related to the test case: Flow over a periodical arrangement of 2D hills[END_REF]. Therefore, if the Reynolds stresses (or their divergence, i.e. the forces in the momentum equations) are correctly predicted, the extent of the recirculation bubble can be correctly estimated as in Fig. 9c. These forces resulting from the data assimilation step are very close to the ones obtained by the DNS as already discussed in the previous section. We note in Fig. 10 that the forces predicted by the NN-model are also very close to the DA/DNS forces (note the scaling factor in Fig. 10), which explain the improvement when using the NN-RANS model.

In Fig. 11, the ratio between turbulent and laminar viscosities is plotted for the baseline RANS simulation, the data assimilation and the improved NN-RANS simulation. The classical SA-model predicts a much larger ratio of viscosities and a completely different distribution. The NN-RANS simulation compares well with the assimilated results. 

E. Extrapolation in Reynolds number

Feed-forward neural networks may not perform well when extrapolating from the data set. Since we train the network on a very particular configuration, only a specific set of input and output feature combinations occurs in the training set. We are interested now in testing the performance of the NN-model from scenario II (trained at Re b = 2800, 5600 and 10595) in a flow at a higher Reynolds number (Case PH-19000). Figure 12 shows profiles for the mean velocity components for the reference solution (LES), the data assimilation, the baseline SA-RANS and the NN-RANS.

Here again, when the NN-model is employed, significant improvements are observed in the flow field as compared to the RANS with SA-model. In the latter case, results indicate that the reverse flow ends approximately around x h ≈ 7.8, overestimating significantly the size of the recirculating bubble. In the NN-RANS simulation, some discrepancies can be found in the upper channel region, where the extrapolation overestimated the volume forces. Nevertheless, in terms of the mean separation region the agreement is remarkable (Fig. 12a). The machine learning prediction also provides more accurate results in terms of mean vertical velocity profiles (Fig. 12b).

The profiles of the mean skin friction coefficient at the bottom wall for simulations using the standard SA-and the improved NN-RANS models are depicted in Fig. 13 together with the LES result from Gloerfelt and Cinnella [START_REF] Gloerfelt | Large eddy simulation requirements for the flow over periodic hills[END_REF]. The NN-based RANS simulation successfully captures not only the positions of flow separation and reattachment but also the main trend of the LES data with much better accuracy than the SA-model without correction. Nonetheless, the magnitude of the friction coefficient is underestimated between 8 < x h < 9. and LES from Gloerfelt and Cinnella [START_REF] Gloerfelt | Large eddy simulation requirements for the flow over periodic hills[END_REF] (solid lines). 

F. Testing on different geometries

In order to demonstrate the capability of the proposed framework to predict flows with different geometries, we also investigated flows over periodic hills with different shape of hill profiles. This is an imperative step to underline the strength of the methodology, since geometry variations are a common scenario in engineering analysis using RANS simulations. More specifically, high-fidelity experimental and/or numerical data might be available only for a few flow conditions with specific Reynolds numbers and geometries, but predictions are needed for similar flows but at somewhat different conditions. Moreover, a more generally adequate methodology for turbulent flow calculations is certainly needed. Although this requires a transfer to entirely new configurations, the first step is a careful analysis of similar geometries.

In this section, both scenarios (I and II) are tested and their influence is discussed. The geometries of the new cases PH-5600-0.8 and PH-5600-1. in Scenario II were trained using different geometries, in Scenario I, they also present distinct Reynolds numbers.

Figures 15 and16 show profiles at different streamwise stations for the mean velocity components for case PH-5600-0.8 and PH-5600-1.2 respectively. The comparison shows that both scenarios can be used to predict the mean velocity field of the periodic hill flow even on a modified geometry. Interestingly, Scenario I (trained using different geometries and Reynolds numbers) performs slightly better in case PH-5600-0.8, but slightly underperforms Scenario II in case PH-5600-1.2. Yet, regardless of the chosen scenario, the proposed framework gives excellent results when compared to the baseline RANS simulation.

VI. MACHINE LEARNING WITH INPUT PARAMETERS NORMALIZED ON LOCAL

QUANTITIES

In this section, we evaluate the above results with the more classical local normalization scheme.

The new set of input features is designated as set 2 in the following. Features from the new set are summarized in Table IV. We combined some features with same dimensions from set 1 to make the model portable to other configurations. For example, we combine quantities 1 and q 2 in Table III as

q 1-2 = Ω 2 -S 2
Ω 2 + S 2 and quantities q 3 and q 4 as q

3-4 = ∂p ∂x k ∂p ∂x k ∂p ∂x k ∂p ∂x k + 1 2 ∂u 2 k ∂x k
. Similarly, for quantity q 5 ′ in set 2, we use the following normalization q

5 ′ = u i u j ∂u i ∂x j u i u j ∂u i ∂x j + u l u l u i ∂u i ∂x j u k ∂u k ∂x j
. Similar adjustments can be done for the turbulence variables or the streamline curvature. In Fig. 17 we plot the streamwise velocity profiles using the NN models based on these two sets and we evaluate how well they extrapolate to flows at higher Reynolds number. This configuration was found to be the most critical case. We note in Fig. 17(a) that the NN generated using set 2 improves the solution in the middle of the channel and also reduces the separation bubble but globally it underperforms the previously stablished model. The skin friction coefficient obtained with the simulation using set 2 is also shown in Fig. 17(b). It is important to note that both models improve the RANS solutions substantially, but results obtained with the first set are the closest to the reference data. Note, however, that the second set of input features has the advantage of being more general than the first one. Even if global quantities can easily be quantified for the present family of configurations, when dealing with multiple and more complex scenarios, defining such quantities can be tricky. Moreover, in the first set, note that several input features were normalized using the bulk velocity, thus violating the Galilean invariance of the NN turbulence model. This lack of translational invariance is not detrimental to wall-bounded flow configurations, as the periodic hills, since the velocity can be considered as the zero-velocity reference. However, the NN turbulence model obtained using the first set might not be applicable to flow configurations involving multiple moving bodies (e.g. turbines) or free-shear mixing layers for which a zero-velocity reference is not easily identified. The choice of input features to improve NN-based RANS models is still a subject that needs further investigation. The lesson here is that machine learning-augmented turbulence models can be used to improve CFD capabilities.

VII. CONCLUSION

Data-driven turbulence modelling has been a central topic of research in recent years. In fact, machine learning has been used to correct the source terms in turbulence transport equations [START_REF] Eric | A paradigm for data-driven predictive modeling using field inversion and machine learning[END_REF][START_REF] Singh | Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[END_REF], or to directly predict the Reynolds stresses or their discrepancies compared to the truth [START_REF] Wang | Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on DNS data[END_REF][START_REF] Ling | Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[END_REF][START_REF] Wu | Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework[END_REF]. In this work, we demonstrated an off-line method for parameter inference and machine Cosine of rotation angle cos(φ) - This is extremely important from an engineering point of view, since high-fidelity experimental and/or numerical data might be available only for a few flow conditions with specific Reynolds numbers and geometries, but predictions are needed for similar flows but at somewhat different conditions. Future efforts will enlarge the space of represented configurations and therefore transfer the correction term to largely different flow scenarios. Moreover, a careful analysis investigating the influence of each input feature in the prediction of the output quantities needs to be carried out for both local and global sets. This is important since neural networks with a lower dimensional feature space would perform better from a computational point of view. The final objective being a widely applicable methodology for turbulent flows, we can conclude that machine-learning combined with RANS equations is a powerful tool that improves available mature turbulence models.
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 1 FIG. 1. Computational domain for the flow over the baseline geometry of periodic hills.

FIG. 2 .

 2 FIG. 2. Mean streamwise velocity field for case with Re b = 2800. (a) DNS from Gloerfelt and Cinnella [27] and (b) RANS simulation using the original SA model.

  model: since the (uncorrected) model does not recover the exact reference mean-flow fields, the predicted mean drag coefficient on the upper and lower walls is obviously (slightly) different from the reference values of the high fidelity simulations and the constant body force needs to be adjusted. The open-source finite-element software F reeF EM[START_REF] Hecht | New development in freefem++[END_REF] is employed to solve the direct problem (see appendix for more details).
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 3 FIG. 3. A map of ρ RS for the DNS of case PH-2800.

FIG. 4 .

 4 FIG. 4. Objective function convergence during data assimilation with L-BFGS. Case PH-2800 (solid line), PH-5600 (dotted line), and PH-10595 (dashed line).

Fig. 6

 6 FIG. 5. Mean velocity field for case with Re b = 2800. (a) Streamwise velocity field and (b) Vertical velocity field. Contour plots: DA solution. Lines: DNS solution.

V

  . MACHINE LEARNING WITH INPUT PARAMETERS NORMALIZED ON GLOBAL QUANTITIES In this section, the parameter fields obtained by the data assimilation step are used to train and test feed-forward neural networks for the reconstruction of a flow field. Input parameters based on global features of the flow are presented in §V A. The network architecture and treatment of rotational invariance are described in §V B and V C. We train our neural network in two different scenarios (Table II). While in the first scenario, training flows at Reynolds numbers: Re b = 2800, 10595 and 19000 were chosen, in the second scenario, we have Re b = 2800, 5600 and 10595. The same base geometry (a = 1) was used in both scenarios. In this way, the NN-based
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 16 FIG. 6. Dominant component of force by turbulent fluctuations for case with Re b = 2800. Red indicates -0.1 and blue +0.1.
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 78 FIG. 7. Mean velocity profiles for case PH-5600. Streamwise velocity (top) and vertical velocity (bottom). DNS (solid lines), DA (dashed lines), SA-RANS (dotted lines) and NN-RANS based on Scenario I (dashdotted lines).
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 99 Figure 9 shows contour plots of the streamwise velocity field for the DNS, the baseline RANS and the NN-RANS. Despite its qualitative character, it gives us a good description of the general flow field. The baseline RANS simulation predicts a much larger separation region compared to
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 1011 FIG. 10. Mean force in the streamwise direction for case PH-5600. DNS (solid lines), DA (dashed lines) and NN-RANS based on Scenario I (dash-dotted lines).
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 12 FIG. 12. Mean velocity profiles for case PH-19000. Streamwise velocity (top) and vertical velocity (bottom). DNS (solid lines), DA (dashed lines), SA-RANS (dotted lines) and NN-RANS based on Scenario II (dashdotted lines).

FIG. 13 .

 13 FIG.[START_REF] Eisfeld | Verification and validation of a second-momentclosure model[END_REF]. Skin friction distribution for case PH-5600: SA-RANS (dotted line), NN-RANS (dash-dotted line)

FIG. 14 .

 14 FIG. 14. New geometries by systematically varying the steepness of the hill. Solid line: original geometry (a = 1), dashed line: a = 0.8 and dash-dotted line: a = 1.2.

FIG. 15 .

 15 FIG. 15. Mean velocity profiles for case PH-5600-0.8. Streamwise velocity (top) and vertical velocity (bottom). DNS (solid lines), SA-RANS (dotted lines), NN-RANS based on Scenario I (dash-dotted lines) and NN-RANS based on Scenario II (dashed lines).

FIG. 16 .

 16 FIG. 16. Mean velocity profiles for case PH-5600-1.2. Streamwise velocity (top) and vertical velocity (bottom). DNS (solid lines), SA-RANS (dotted lines), NN-RANS based on Scenario I (dash-dotted lines) and NN-RANS based on Scenario II (dashed lines).

FIG. 17 .

 17 FIG. 17. Mean profiles for case PH-19000. DNS (solid lines), SA-RANS (dotted lines), Original NN model using set 1 (dashed lines) and NN-RANS (dash-dotted lines). (a) Streamwise velocity and (b) skin friction coefficient.

  modelling. The off-line regression strategy to construct the correction function consists of three consecutive steps: (i) variational data assimilation is used to infer a modelling correction from high-fidelity data, (ii) machine learning is used by means of neural network training to reconstruct the volume force correction to the Spalart-Allmaras turbulence model as a function of available flow quantities, and (iii) RANS computations are performed using the augmented neural network turbulence model. The novelty of the present work consists of introducing a correction to the Boussinesq-hypothesis by adding a volume forcing term in the momentum equations. The correction term is obtained by field inversion based on multiple high-fidelity data and then generalised using neural networks for the same class of flows. The present fomulation is more general than the one described in[START_REF] Eric | A paradigm for data-driven predictive modeling using field inversion and machine learning[END_REF][START_REF] Singh | Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[END_REF], since it is not restricted to traditional linear or quadratic eddy viscosity models. The methodology was validated on the periodic-hill configuration at different geometries and Reynolds numbers. This case presents strong flow separation and well-defined flow conditions, making it especially suited as a benchmark case for testing machine-learning-assisted turbulence modelling approaches. Two flow scenarios were used to train the neural-network RANS model. Each scenario was used to test how well the model is able to interpolate/extrapolate to flows at different Reynolds numbers. The neural-network based model correctly predicts the mean velocity fields and the size of the separation region, in contrast with the baseline RANS model. The proposed framework is also capable of predicting flows over periodic hills with different shape of hill profiles by employing data from training flows with similar characteristics than the target flow.

TABLE I .

 I Summary of configurations studied in this work.

	Case	Re b a	Simulations performed	High fidelity data
	PH-2800	2800 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]
	PH-5600	5600 1 RANS, DA, NN-based RANS	Xiao et al. [28]
	PH-5600-0.8 5600 0.8 RANS, NN-based RANS	Xiao et al. [28]
	PH-5600-1.2 5600 1.2 RANS, NN-based RANS	Xiao et al. [28]
	PH-10595	10595 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]
	PH-19000	19000 1 RANS, DA, NN-based RANS Gloerfelt and Cinnella [27]

TABLE III .

 III Input features to neural network.

	Feature	Description	Formula	Normalization factor
	q 1	Strain rate	tanh S 1	u b h
	q 2	Rotation rate	tanh Ω 2	u b h
			∂p	∂p
	q 3	Normal stress	∂x k ∂p ∂p ∂x k
			∂x k	∂x k

TABLE IV .

 IV New input vector for neural network (set 2).

	Feature	Description	Formula	Normalization factor
	q 1-2	Q-criterion	Ω 2 Ω 2 + S 2 -S 2				-
	q 3-4	Ratio of pressure normal stresses to shear stresses	∂p ∂x k ∂p ∂x k ∂p ∂x k ∂p ∂x k + 3-4		1 2	∂u 2 k ∂x k
	q 5 ′	Gorlé et al. [44] marker	∂u i ∂x j ∂u i uiuj uiuj ∂x j + 5 ′	u l u l u i	∂ui ∂xj u k	∂u k ∂xj
	q 6	Streamline pressure gradient	∂p ∂x k ∂p u k u k ∂x k + 6	∂p ∂x k		∂p ∂x k u i u i
	q 7	Viscosity ratio	νt νt+ 7		100ν
	q 8	SA wall influence	1 1+r				-
	q 10 ′ q 11 ′	SA ratio of production to diffusion SA ratio of destruction to diffusion	c b1 Sν c b1 Sν + 10 ′ cw1fw ν d 2 cw1fw ν d 2 + 11 ′	c b2 σ c b2 σ	∂ν ∂x k ∂ν ∂x k	∂ν ∂x k ∂ν ∂x k
	q 12	Turbulence intensity	kqcr kqcr+ 12		1 2 u 2 i
	q 13 ′	Streamline curvature	DΓ Ds DΓ Ds + 13 ′			kqcr νt
	q 14					
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Appendix A: SUPG Implementation

The numerical implementation of the RANS-SA equations are based on the Finite Element Method (FEM), available in the FreeFem++ code (see Hecht [START_REF] Hecht | New development in freefem++[END_REF]). Since FEM is naturally numerically unstable at high Reynolds numbers, some stabilization schemes needs to be employed. Here, we choose the Streamline-Upwind Petrov-Galerkin (SUPG) formulation, as proposed by Brooks and Hughes [START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations[END_REF]. In this formulation, the test function is advected with the local velocity field, giving an upwind effect, stabilizing the scheme. Several different formulations have been proposed in the literature (see Franca et al. [START_REF] Leopoldo P Franca | Stabilized finite element methods: I. application to the advective-diffusive model[END_REF], Franca and Frey [START_REF] Leopoldo | Stabilized finite element methods: Ii. the incompressible navierstokes equations[END_REF]) for various different equations. Here, we employ a simplified version of it, common for unsteady problems (Bao et al. [START_REF] Bao | Numerical prediction of aerodynamic characteristics of prismatic cylinder by finite element method with spalart-allmaras turbulence model[END_REF]), where only the advection terms are treated. In a simplified notation, we write the nonlinear residual of the RANS-SA equations in the weak form:

where the last two terms correspond to the SUPG formalism and the remaining terms are due to the classical (unstable) Finite-Element formulation. The functions s and η correspond to the source term in Spalart-Allmaras model and its diffusivity, given by:

The function τ SU P G regulates the amount of numerical diffusivity and depends on the local Reynolds (Re h ) number as:

where the function ξ(Re h ) is constant for high Reynolds number, saturating this way the amount of numerical dissipation introduced. The parameter h T indicates the local element size and is taken here as h T = √ 2A h max T (where A is the area of the element), minimizing the numerical dissipation for highly elongated mesh elements (see Mittal [START_REF]On the performance of high aspect ratio elements for incompressible flows[END_REF]). All those integrals are computed with a quadrature that exactly integrates a polynomial of three times the order of the degree considered. * pedro.stefanin volpiani@onera.fr