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If one goes backward in time, the number of ancestors of an individual doubles at each
generation. This exponential growth very quickly exceeds the population size, when this size is
"nite. As a consequence, the ancestors of a given individual cannot be all di!erent and most
remote ancestors are repeated many times in any genealogical tree. The statistical properties of
these repetitions in genealogical trees of individuals for a panmictic closed population of
constant size N can be calculated. We show that the distribution of the repetitions of ancestors
reaches a stationary shape after a small number G

c
JlogN of generations in the past, that only

about 80% of the ancestral population belongs to the tree (due to coalescence of branches),
and that two trees for individuals in the same population become identical after G

c
generations

have elapsed. Our analysis is easy to extend to the case of exponentially growing population.
( 2000 Academic Press
AWe used the tree of Edward III which can be found at
Shttp://uts.cc.utexas.edu/&churchh/edw3chrt.htmlT.
1. Introduction

In the case of sexual reproduction, the ancestry of
an individual is formed by two parents, four
grandparents two generations ago, and in general
2G individuals G generations back into the past.
The explosive growth of the number of ancestors
belonging to the genealogical tree of, say, a present
human should stop at some point due, at least,
to the "nite size of previous populations. For
instance, only GK33 generations ago (spanning
a period of less than 1000 years), the number of
potential ancestors in the tree of any of us is
about 8.5]109, more than the present popula-
tion of the Earth, and of course much larger than
the population living about the year 1000. The
answer to this apparent paradox is simple: the
branches of a typical genealogical tree often co-
alesce, indicating that many of the ancestors were
in fact relatives and appear repeatedly in the tree
0022}5193/00/070303#13 $35.00/0
(Ohno, 1996; Derrida et al., 1999; Gouyon, 1999).
It might be di$cult to test the statistical proper-
ties of such repetitions for an actual large,
randomly mating population. Nevertheless, some
exceptions can be found in royal genealogy. Since
nobles usually married within their own castes,
the presence of repeated ancestors in royal genea-
logical trees is far from rare. The example of the
English king Edward III, where some ancestors
appear up to six times, has been analysed in our
previous work (Derrida et al., 1999).A

Much attention has been paid in the past
to a related problem, namely the statistical
properties of branching processes (Harris, 1963)
and its applications to the characteristics of
the successive descendants of a single ancestor
( 2000 Academic Press



E In this paper, we use the term genealogy to refer to the
ancestry of a single gene or of a whole set of sequences. In all
cases, the genealogy is the complete set of ancestors contri-
buting to the present object, this object being an individual
(as in Section 2), a group of individuals (as in Section 3),
a sequence (Section 4), or a single locus (as quoted here). In
this case, correlated genealogies simply means that the di!er-
ent sets of ancestors for the two loci are not independent.
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(Kingman, 1993). Actually, "rst applications of
the branching processes technique go back to the
1920s. Haldane (1927) calculated the probability
that a mutant allele be "xed in a population
through a method developed previously by
Fisher (1922). There, the relevant quantity was
the survival probability of the descendants of the
"rst individual carrying the mutation. All these
studies apply to the vertical transmission of
names, to the inheritance of characters coming
only from one of the parents, like mitochondrial
DNA or the Y chromosome, or to the fate of
a mutant gene, for example, and correspond to an
e!ective monoparental population. The heart of
our problem is to take into consideration the fact
that reproduction is biparental. The distribution
of repetitions of ancestors described below does
however satisfy an equation similar to those
which appear in branching processes (Harris,
1963).

Our problem of repetitions of ancestors in
genealogical trees is much closer to the counting
of the descendants of an individual in a sexual
population. For example, in the case of a popula-
tion of constant size, the average number of o!-
spring is two per couple. Therefore, after G
generations each individual has, on average, 2G
descendants. What prevents the number of de-
scendants from growing exponentially with
G and to exceed the population size is interbreed-
ing: when 2G becomes comparable to the popula-
tion size, interbreeding happens between the
descendants and di!erent lines of descent co-
alesce. The problem of the statistical properties of
these coalescences is very similar to our present
study of genealogical trees. None of them has, to
our knowledge, yet been analysed.

In the present work, we study theoretically the
problem of repetitions in the genealogical trees in
the case of a closed, panmictic population. The
study of the properties of a single tree with co-
alescent branches and the comparison of the
genealogical trees of two contemporary indi-
viduals allows us to show that

1. There is a "nite fraction (about 20%
for a population of constant size N) of
the initial population whose descendants
become extinct after a number of genera-
tions G

c
JlogN. All the rest of the initial
population (about 80%) belongs to all
genealogical trees.

2. The distribution of the repetitions of ances-
tors living more than G generations ago
reaches a stationary shape after about
G

c
generations.

3. The genealogical trees of two individuals in
the same population become identical after
a small number of generations G

c
back into

the past.
4. The similarity between two genealogical

trees changes from 1% (almost all ancestors
in the two trees are di!erent) to 99% (the
repetitions of the ancestors in the two trees
are almost identical) within 14 generations
around G

c
, independent of the population

size N.

Our work can be generalized (see Section 4) to
describe coalescent processes, understood as the
study of the gene tree originated when looking
for the ancestry of a random sample of sequences
(Kingman, 1982; Hudson, 1991; Donnelly &
TavareH , 1995). In the absence of recombination,
each sequence has a single ancestor. The topol-
ogy of thus reconstructed trees is equivalent to
that generated through branching processes.
Next in complexity, one can consider a two-locus
sequence and assume that recombination can
occur only between the two loci and with a small
probability (meaning correlated genealogiesE for
the two loci). The statistical properties of such
a process can be estimated until the most recent
common ancestor (MRCA) is reached (Hudson,
1991). Instead, if one faces the study of a chromo-
some (Wiuf & Hein, 1997; Derrida & Jung-
Muller, 1999) or of the whole genome, the
number of ancestors grows as one proceeds back
in time, since each individual has two parents
and, apart from coalescence, also recombination
(meaning splitting of the branches in the tree) is
frequent.
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If one considers a population or a sample of
individuals within a population, there are rel-
evant di!erences between the genealogy of
a single gene and the genealogy of a chromosome
or of the whole genome (which we study here).
While in the "rst case, in fact, there exists an
MRCA for the sample (where the gene tree ends),
the genealogical tree of a chromosome or of the
genome with two parents proceeds backwards in
time and never reduces to a single ancestor. The
genealogical tree representing the pedigree of
a diploid organism contains a large fraction of
the ancestral population. In this case, one may
then talk about the most recent common set of
ancestors, and study the similarities among di!er-
ent individuals now within the same population.

2. Statistical Properties of an Individual Tree

Here we consider a simple neutral model of
a closed population evolving under sexual repro-
duction and with non-overlapping generations.B
If the population size is N(G) at generation G in
the past, we form couples at random (by random-
ly choosing N(G)/2 pairs of individuals) and
assign each couple a random number k of de-
scendants. The probability p

k
of the number k of

o!spring is given and if the population size is
N at present, its size N(G) at generation G in the
past is given by

N(G)"A
2
mB

G
N, (1)

where the factor m is obtained from

m"+
k

k p
k
. (2)

For m"2, the population size remains con-
stant in time, whereas for mO2 the number of
individuals in the next generation is multiplied by
a factor m/2. After a number of generations the
BThe Wright}Fisher model for allele frequencies works
in the same set of hypotheses (Wright, 1931; Fisher, 1930).
More recently, Serva & Peliti (1991) obtained a number
of statistical results for the genetic distance between
individuals in a sexual population evolving in the absence of
natural selection.
tree of each of the individuals in the youngest
generation is reconstructed. To quantify the con-
tribution of each of the ancestors to the genea-
logical tree of an individual, we de"ne the weight
w(a)c (G) of an ancestor c in the tree of individual
a at generation G in the past as

w(a)c (G#1)"
1
2

+
c{ #)*-$3%/ 0& c

w(a)c{ (G). (3)

We take w(a)c (0)"da,c , as this ensures that at
generation G"0 all the weight is carried by
the individual a itself. The factor 1/2 in eqn (3)
keeps the sum of the weights normalized
+N(G)c/1

w(a)c (G)"1, for any past generation G. The
weight w(a)c (G) can be thought of as the probabil-
ity of reaching ancestor c if one climbs up the
reconstructed genealogical tree of individual a by
choosing at each generation one of the two par-
ents at random. The weights essentially measure
the repetitions (see Fig. 1) in the genealogical tree.
Without repetitions, w(a)c (G) would simply be 2~G

for each ancestor c in the tree.
As an illustration of the previous quantities, we

represent in Fig. 1 the result of random matings
inside a small closed population of constant
size N"14 (thus m"2) during 7 generations.
The lines link progenitors with their o!spring.
The grey scale gives the weight wc (G) of each
of the individuals in the tree. The numbers on the
left, all of them of the form r/2G, give the weight of
the leftmost individual in each generation. The
denominators simply indicate the potential max-
imum number of ancestors at each generation. As
counted by the numerator, each of them would
appear repeated r times in this tree if all the
branches were explicitly shown.

We further assume that the probability p
k

of
having k children per couple follows a Poisson
distribution, p

k
"mke~m/k! (most of what follows

could be easily extended to other choices of p
k
).

We represent in Fig. 2 the probability for an
English couple to have k marrying sons during
the period 1350}1986 (Dewdney, 1986). The solid
line corresponds to a Poisson distribution with
average 1.15 (i.e. the average number of o!spring
per individual in that period, which corresponds
to m"2.3 in our analysis), and implies that the
total population is growing. These data spanning



FIG. 1. Coalescence of branches in a genealogical tree.
We display the reconstructed ancestry of a present indi-
vidual in a small population of constant size N"14. Num-
bers on the left-hand side stand for the weight w of the
leftmost individual at each generation. The grey scale cha-
nges from light grey (small w) to dark grey (large w) propor-
tionally to the logarithm of the weight. The exact values are
calculated according to eqn (3). The weight is a measure
proportional to the number of times that an ancestor ap-
pears in a tree, or, equivalently, to the number of branches
which have coalesced up to that point.

306 B. DERRIDA E¹ A¸.
six centuries and taken over an homogeneous
population support the hypothesis that the num-
ber of o!spring is indeed Poisson distributed.**

If we de"ne S(a) (G), the fraction of the popula-
tion (at a generation G in the past) which does
not belong to the genealogical tree of individual
a (i.e. such that w(a)c (G)"0) one can show (see the
appendix) that

S(a)(G#1)"exp[!m#mS(a)(G)]. (4)

This recursion, together with the initial condition
S(a)(0)"1!1/N, determines this quantity for
any G (Derrida et al., 1999).
**Nonetheless, deviations from this distribution induced
by a social transmission of the reproductive behaviour have
been reported (Austerlitz & Heyer, 1998).
For large G and for any individual a, this
fraction S(a)(G) converges to the "xed point
S(R) of eqn (4). This gives for m"2 (i.e. for
a population of constant size) a fraction
S(R)K0.20318782 which becomes extinct, so
that the remaining fraction 1!S (R)K80% of
the population belongs to the genealogical tree of
any individual a. A similar calculation shows that
this 80% of the population which is not extinct
after a large number of generations appears in the
genealogical trees of all individuals: if S(a,b) (G) is
the fraction of the population which does not
belong to any of the two trees of two distinct
individuals a and b, S(a,b) (G) satis"es the same
recursion (4) as S(a)(G), and converges to the same
"xed value S (R). Thus, within this neutral model,
an individual either becomes extinct (with
a probability of 20%) or becomes an ancestor of
the whole population after a large number of
generations (with a probability of 80%). For an
exponentially growing population with m"2.3
as in Fig. 2, the results are the same except for the
precise value of S (R) (for m"2.3, one "nds that
S(R)K14%).

When G is large enough, as shown in
the appendix, the whole distribution P (w) of the
weights w(a)c (G) reaches a stationary shape, the
properties of which can be calculated (Derrida
et al., 1999). We show in Fig. 3 the distribution
P(w/SwT) for di!erent values of m. As can be seen,
it has a power-law dependence, P(w)Jwm for
FIG. 2. Probability for an English couple to have k mar-
rying sons during the period 1350}1986 (L). The (**)
corresponds to a Poisson distribution of average 1.15 (data
from Dewdney, 1986).



FIG. 3. Stationary shape of the distribution P(w/SwT) for
di!erent values of m. We compare the constant population
case (m"2) with shrinking (m"1.5), and expanding (m"3,
4) populations. Parameters are N"4096, G"20, and aver-
ages over 103 independent realizations have been performed:
m"1.5 (L00L); m"2 (r00r); m"3 (K00K);
m"4 (b00b).

--Similar quantities have been proposed as an indicator
of the amount of evolutionary divergence between popula-
tions (Kimura, 1983). The quantity analogous to our weight
w(a)c in the population genetics approach is the frequency of
the sampled alleles, the number of ancestors c corresponds
to the number of genes (that is, the dimension of the space in
which the vector w(a)c is embedded), and our individuals
a and b correspond to the compared populations (Cavalli-
Sforza & Conterio, 1960).
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small values of the ratio w/SwT, with an exponent
given by

m"!

logS (R)
logm

!2, (5)

and achieves a maximum value for w/SwTK1.

3. Similarity between Two Trees

We would like to know how similar are the
genealogical trees of two contemporary indi-
viduals and how they evolve in time within the
same population. We have seen that a large frac-
tion (1!S(R)K80%) of the ancestral popula-
tion constitutes the pedigree of every present in-
dividual. As a next step, one can compare two
individuals and compute the degree of similarity
between their trees, that is, the set of ancestors
appearing at each generation in both trees simul-
taneously. We will see in particular that the two
trees become identical after a number G

c
of gen-

erations.
We start with the de"nition of the overlap

between the genealogical trees of two di!erent
individuals, a and b. Let w(a)c (G) be the weight of
the ancestor c in the tree of a at generation G in
the past, and similarly let w(b)c (G) be the weight of
the same ancestor c at generation G for b. These
weights evolve according to eqn (3) with
w(a)c (0)"dc,a and w(b)c (0)"dc,b at generation
G"0. In order to quantify the similarity between
the two trees, we introduce the quantities

X(a) (G)"
N(G)
+
c/1

[w(a)c (G)]2

and

>(a,b) (G)"
N(G)
+
c/1

w(a)c (G)w(b)c (G).

>(a,b) (G) measures the correlation between the
two trees at generation G in the past and X(a)(G)
acts as a normalization factor. We then de"ne the
overlap q(a,b)(G) between the two trees at that
generation by

q(a,b) (G)"
>(a,b) (G)

[X(a)(G)X(b) (G)]1@2
.

This overlap is a measure of the (cosine of the)
angle between the two N-dimensional vectors
w(a)c (G) and w(b)c (G).-- When q(a,b) (G)K0, the two
vectors are essentially orthogonal and the ances-
tors of a and b are all di!erent. On the other
hand, when q(a,b) (G)K1, the vectors are almost
identical (as for brothers).

For a large enough population, the #uctu-
ations of X(a)(G) and >(a,b) (G) are small around
the population averaged values SX(G)T and
S>(G)T for almost all choices of a and b. Of
course, if a and b are brothers, >(a,b) (G)"
X(a)(G), a value very di!erent from its average
S>(G)T; it is however very unlikely to get
brothers, sisters or even cousins if one picks
up two individuals at random from a large
population.

The averages SX(G)T and S>(G)T can be cal-
culated from the evolution of the weights (3).
Initially, X(0)"1 and >(0)"0 since the
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individuals a and b in any pair are di!erent.
Using the fact that for large N the #uctuations of
X(a)(G) and>(a,b) (G) are small, the expected value
of the overlap q (G) between two randomly
chosen individuals is given by

q (G)K
S> (G)T
SX(G)T

"

1
1#mGc~G

, (6)

where

G
c
"

log ((m!1)N)
logm

!1. (7)

This expression is derived in the appendix. Of
course, eqn (6) is only valid with probability one
with respect to the random choice of a and b
and with respect to the dynamics. We see that for
large N, the overlap q (G) is essentially zero for
a number of generations of order G

c
KlogN/

logm and then within a number of generations
DG which does not depend on N, it becomes equal
to unity. Figure 4 displays the averaged overlap
q(G) as a function of the number of generations
G for di!erent values of N. We have chosen m"2
so that the population remains constant in size.
We see that changing N does not change the
G dependence except for a translation of the
curve. In particular, the range DG on which the
overlap changes from 1 to 99% does not depend
FIG. 4. The averaged overlap q (G) as a function of the
number of generations G. The results of simulations for
di!erent sizes of the population N"100 (L), 1000 (j),
10000 (e), 100 000 (m) agree with this prediction, up to small
"nite-size corrections only visible for N"100. The inset
shows the results of simulations and the prediction (8).
on N. It is easy to check from eqn (6) that for
m"2, the overlap should satisfy

q(G#1)"
2q(G)

1#q(G)
(8)

(plain line in the inset). The "xed point q(G)"0 is
unstable for this map. All the trajectories "nally
converge to the stable "xed point q(G)"1 for
large G. Also, the quantity DG can be estimated
by counting how many generations are required
for the overlap to change from 1 to 99% and this
gives from eqn (6)

DGKlog(104)/ logm,

that is, DGK14 for m"2 and DGK11 for
m"2.3 as in Fig. 2. Typical values of G

c
are

G
c
K20 for a population of constant size

N"106. For a population increasing with
m"2.3 as in Fig. 2, one gets G

c
"21 if the size in

the last generation is N"N(0)"75 millions.
The previous analysis can be easily extended

to the hypothetical case of having an arbitrary
number n of parents instead of 2. As is shown in
the appendix, the statistical properties of genea-
logical trees in a population of constant size but
arbitrary n are the same as for a population with
only two parents and an expanding or shrinking
size according to eqn (1). The described statistical
properties are thus equivalent in (i) a system with
sexual reproduction and a growth rate m"n and
(ii) a system with constant population size but
a number m of genders.

The existence of a generation G
c
around which

the genealogical similarity among individuals
changes from 0 to 1 and which grows logarithmi-
cally with the size of the population is one of
our main results. This has to be compared
with the number of generations required for the
population to become genetically homogeneous
(Donnelly & TavareH , 1991; Harpending et al.,
1998), which grows proportionally to N. The
di!erence is that when G

c
;G;N, all the over-

laps are 1, i.e. all the genealogical trees in the
population have the same ancestors with the
same weights, but the genomes are still very dif-
ferent: This is just an extension of the situation of
brothers who have exactly the same genealogical
tree but di!erent genomes.



FIG. 5. Representation of the "rst 5 generations of the
tree in Fig. 1 with a random distribution of the weight of an
individual between its two parents. The fraction f of the
weight contributed by each ancestor is randomly chosen
from a distribution with average value S f T"1/2.
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4. Simple Model for the Contribution of
the Ancestors to the Genome

The evolution of a set of sequences subject to
coalescence and recombination was "rst de-
scribed by Hudson (1983). In this case, evolution
proceeds until the most recent common ancestor
for each set of homologous sites has been found.
The set of MRCA sites does not necessarily be-
long to the genome of a single ancestor: on
the contrary, it is, in general, spread on a
"nite fraction of the original population (Wiuf
& Hein, 1997, 1999). In this section, we focus
our attention on the statistical properties of
the ancestry of a single extant genome. In
particular, we calculate the equilibrium distribu-
tion for the fraction of material contributed by
each ancestor.

Consider the whole set of genes that a present
diploid organism has inherited from its parents.
Although both parents contributed 50% each, it
is no longer true that grandparents contributed
25% each, since independent assortment of chro-
mosomes plus crossing over mixed in each of the
parental gametes the material inherited from the
previous generation. As a rough approximation
to the output of genetic recombination, one
might consider that each sequence is obtained
as the addition of a fraction f of the genetic
material of one parent and a fraction 1!f of
the genetic material of the other parent with
f3(0, 1). This would be true if the length ¸

of the sequence was long enough (or in"nitely
long), so that there would be no restriction on the
number of times it could be divided, and if one
could forget the linear structure of the sequence.
The process of coalescence and recombination
(for small N) is schematically represented in
Fig. 5.

We can now repeat the analysis done previous-
ly to the present extension. We will discard the
correlations between the values of f coming from
a couple. This is equivalent to our assumption
that "xing the pairs for k o!spring or choosing
the parents of each individual at random only
has e!ects of order O (N~1) (see the appendix),
and we can therefore work in the simplest realiz-
ation of the process. Hence, we assume that the
fraction f takes independent values for each
parent. The recursive equations (3) for the
weights become

w(a)c (G#1)" +
c{ #)*-$3%/ 0& c

fc{w(a)c{ (G), (9)

where the weight w(a)c (G) means now the fraction
of the genetic material of individual a inherited
from ancestor c at generation G. The random
fraction f is chosen anew for each o!spring
from a distribution o ( f ) (with average value
S f T"1/2). This implies that now even brothers
would have di!erent weights for their ancestors,
and hence brings us slightly closer to the real
genetic process.

Following the procedure described in the ap-
pendix, one can calculate the fraction S of ances-
tors without lines of descent in the present (as we
also show in Section 2) and the exponent m for the
distribution P (w). In general, given the distribu-
tion o ( f ) for the contributions of the parents,
we get

S (R)"emS(=)~m, (10)

1"S (R)m2`mS f T1`m P f~m~1o( f ) d f (11)



FIG. 6. Stationary distribution of weights P (w/SwT) ver-
sus w/SwT for several choices of d. The "xed population size
is N"4096, and we have averaged over 103 independent
runs. Values of d are as shown in the legend: d"0.5
(d00d); d"0.35 (K00K); d"0.2 (r00r); d"0.05
(£00£).

FIG. 7. Comparison between the predicted values of the
exponent m (**) given by eqn (12) and the results of the
simulations for di!erent values of d (L). Parameters are as in
Fig. 6. For a value of dK0.35, the exponent m changes sign.
This point is important since the typical contribution of
a randomly chosen ancestor changes suddenly in a "nite
amount.
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as one can easily show from eqn (9) that the
generating function h

G
(j) de"ned by h

G
(j)"

Sexp[jw(G)/Sw (G)T]T has a limit h
=

(j) for large
G which satis"es

h
=

(j)"expC!m#m P o( f ) d f h
= A

j f
mS f TBD .

Figure 6 summarizes the changes in the distri-
bution P(w) for di!erent distributions o ( f ) of the
random variable f. We have considered a simple
case of a population of constant size (i.e. m"2)
and with o ( f )"1/(2d) uniform in the interval
(1/2!d, 1/2#d). In this particular case, an im-
plicit relation between d and the exponent m can
be obtained,

dm"S[(1
2
!d)~m!(1

2
#d)~m]. (12)

As d varies, P(w) remains a power law at small
w (i.e. P(w)Jwm ), and the exponent m monot-
onously decreases with d. In particular, for
dK0.35, m changes sign: the maximum of P(w)
moves discontinuously from w/SwTK1 to
w/SwTK0. The exponents obtained through
simulations of the process are represented in
Fig. 7 together with the numerical solution of
eqn (12), showing a good agreement.
5. Discussion

We have analysed the statistical properties of
genealogical trees generated inside a closed
sexual population. We focused our interest on the
distribution of the repetitions of ancestors in the
trees and on the amount of genetic material con-
tributing to an extant genome. The precise values
of m, S(R), G

c
and DG depend only weakly on the

details of the model and do not change qualitat-
ively if for instance a non-Poissonian distribution
of o!spring is used. Moreover, we have shown
how our results can be extended to the hypotheti-
cal case of having an arbitrary number n of
parents: indeed, this case proves to be equivalent
to a biparental population with a growth rate
m/2"n/2.

The problem analysed here presents a number
of connections to other "elds. Equations similar
to eqn (3) appear also in the distribution of con-
straints in granular media where the variables
w represent the force acting on each grain and the
recursion (3) expresses the way in which con-
straints are transmitted from one layer to the
next (Coppersmith et al., 1996). In this case, nO2
and even #uctuating n would be perfectly realis-
tic. The fact that the overlap changes from 0 to
1 within a small number of generations DG inde-
pendent of the size of the population and after
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G
c
KlogN generations is also very reminiscent of

the sharp cuto! phenomenon characteristic of
some natural mixing processes modelled by
Markov chains. One example of such systems is
the shu%ing of cards, where the stationary state
in which the system has lost almost all informa-
tion about the initial ordering of the Q cards is
reached through a sharp cuto! after about log Q
ri%e shu%es (Diaconis, 1996).

It is clear that the study of the interplay bet-
ween the weights calculated in our generalized
model and the structure of the genome would
require more sophisticated approaches (Derrida
& Jung-Muller, 1999; Wiuf & Hein, 1997, 1999).
We have discarded the correlations between the
history of neighbouring sites in a sequence and
assumed the independence of the factors f. Ac-
tually, the closer in the sequence two positions
are, the more correlated are their genealogical
histories (Kaplan & Hudson, 1985). This fact
constrains the possible breaking points for our
simulated sequences, implying that the random
factors f in eqn (9) are a crude approximation to
reality.

Since we have faced the problem from a statist-
ical perspective, our results represent the average,
typical behaviour, and are only valid with prob-
ability one when the population size is large. We
did not study #uctuations due to the "nite size of
the population. Nonetheless, we hope that our
results contribute to a better understanding of
the role of genealogy in the degree of diversity of
"nite-size interbreeding populations.

The authors acknowledge discussions with Jordi
Bascompte, Ugo Bastolla and Julio Rozas. SCM
thanks the Alexander von Humboldt Foundation for
support.
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APPENDIX A

In this appendix we have regrouped the
technical aspects of the derivations of the main
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eqns (4)}(6), (10) and (11) presented in the body of
the paper.

One may consider several variants of the
model which all give a Poisson distribution for
the number of o!spring when the size of the
population is large. For instance, the population
size could be strictly multiplied by a factor m/2 at
each generation or it could #uctuate (if we take
the number of o!spring from the Poisson distri-
bution). One might decide that each individual
has two parents chosen at random in the pre-
vious generation or form "xed couples and assign
each couple some children. All these variants do
not change the results when the population size is
large, but might a!ect some "nite-size corrections
that we compute in this appendix.

We will choose the following version of the
model, which makes the calculation of the "nite-
size corrections not too di$cult. Our population
has a given size N(G) at each generation G in the
past, and we will assume that all the N (G) are
very large, at least in the range of generations
G that we will consider. Now, to construct the
ancestors of all the N (G) individuals at genera-
tion G in the past, we choose for each of them
a pair of parents at random among the N(G#1)
individuals at the previous generation (to facilit-
ate the calculation, we do not even exclude that
the two parents might be equal). Within this
model, the number k of children of an individual
at generation G#1 is random and can be
written as

k"
2N(G)
+
i/1

z
i

where z
i
"1 with probability 1/N(G#1) and

z
i
"0 otherwise. It follows that the whole distri-

bution of k can be calculated. The probability
p
k

that an individual at generation (G#1) has
exactly k children is given by the binomial dis-
tribution

p
k
"

(2N(G))!
k!(2N (G)!k)! A

1
N(G#1)B

k

]A1!
1

N(G#1)B
2N(G)~k

(A.1)
In particular,

SkT"
2N(G)

N (G#1)
,

Sk(k!1)T"
2N (G)[2N(G)!1]

N(G#1)2
,

Sk(k!1)(k!2)T"

2N (G)[2N (G)!1][2N(G)!2]
N(G#1)3

. (A.2)

If the population size is multiplied by a
factor m/2 at each generation, i.e. if N (G)"
N(G#1)m/2 (as G counts the number of genera-
tions in the past), one recovers from eqn (A.1) the
Poisson distribution p

k
"mke~m/k! for large

N(G).

Calculation of the Density of Individuals without
Long-term Descendants and Derivation of eqn (4)

To establish eqn (4), one simply needs to notice
that for an individual to have no descendants
after G#1 generations, all his children should
have no descendants after G generations. Let
M(G) be the number of individuals with no de-
scendants at generation G in the past. Given
M(G), one can write M(G#1) as

M (G#1)"
N(G`1)

+
c/1

yc ,

where yc"1 if all the children of c are among the
M(G) and yc"0 otherwise. It can be shown that

SycT"A1!
1

N (G#1)B
2N(G)~2M(G)

,

and

Sycyc{T"A1!
2

N (G#1)B
2N(G)~2M(G)

for cOc@. This gives

SM(G#1)T"N(G#1)A1!
1

N(G#1)B
2N(G)~2M(G)

,

(A.3)
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SM2(G#1)T"SM(G#1)T

#N(G#1)[N(G#1)!1]

]A1!
2

N(G#1)B
2N(G)~2M(G)

.

(A.4)

When all the M's and N1s are large, we see
from eqns (A.3) and (A.4) that the #uctuations
of M (G#1) are small (as SM2 (G#1)T
!SM(G#1)T2;SM(G#1)T2 ), and one "nds
from eqn (A.3) that the ratio M(G)/N (G),
S(a)(G) satis"es

S(a)(G#1)"expC
2N(G)

N (G#1)
(S(a) (G)!1)D ,

which is identical to eqn (4) for N (G)"
N(G#1)m/2.

Time Evolution of the Distribution of
the Weights

From the recursion (3) and from the known
distribution (A.1) of k one can write recursions for
the moments of the weights

Sw(a)c (G#1)T"
SkT
2

Sw(a)c (G)T, (A.5)

S[w(a)c (G#1)]2T"
SkT
4

S[w(a)c (G)]2T

#

Sk(k!1)T
4

Sw(a)c (G)w(a)c{ (G)T, (A.6)

where cOc@. The normalization +cw(a)c "1
allows one to rewrite

Sw(a)c (G)w(a)c{ (G)T"
1

N(G)!1

][Sw(a)c (G)T!S[w(a)c (G)]2T]
and together with the known moments (A.1) gives
that

Sw(a)c (G#1)T"
N(G)

N(G#1)
Sw(a)c (G)T

"

1
N(G#1)

, (A.7)

S[w(a)c (G#1)]2T"

C
N(G)

2N (G#1)
!

N(G)[2N(G)!1]
2N(G#1)2[N (G)!1]D

]S[w(a)c (G)]2T#
2N(G)!1

2N(G#1)2[N(G)!1]
,

(A.8)

where cOc@.
For large N (G), if the ratio N (G#1)/N(G)"

2/m, as in the case of a population increasing by
a factor m/2 at each new generation, expression
(A.8) becomes simpler and one gets

S[w(a)c (G#1)]2T"
m
4

S[w(a)c (G)]2T

#

m2

4 A
1

N(G)B
2
. (A.9)

In this limit, we have from eqn (A.2) that SkT"m
and Sk(k!1)T"m2, and we see that eqn (A.9)
means that in eqn (A.4) the weights w(a)c and
w(a)c{ are, for large N (G), uncorrelated. The calcu-
lation of higher moments of the weights can be
done in the same manner and for large N (G) the
weights of di!erent ancestors become again un-
correlated.

If the population size changes in time, the
distribution of the weights cannot be stationary.
This is already visible in expression (A.4) which
shows that even the "rst moment of the weights
changes with G. One can, however, check from
eqns (A.4) and (A.9) that the ratio S[w(a)c (G)]2T/
Sw(a)c (G)T2 which satis"es

S[w(a)c (G#1)]2T
Sw(a)c (G#1)T2

"

1
m

S[w(a)c (G)]2T
Sw(a)c (G)T2

#1 (A.10)
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has a limit m/(m!1) as G increases. Moreover,
as the initial value of this ratio is N (0), the num-
ber of generations G

c
to converge to this limit

is G
c
&logN(0)/logm. Higher moments of the

weights behave in a similar way and one can
write recursions for ratios which generalize eqn
(A.10) and which show that all the ratios have
limits.

This indicates that the distribution of the ratio
w/SwT becomes stationary. In the limit of large
N(G) [considering that the weights of the di!er-
ent children c@ in eqn (3) can be taken as in-
dependent and that the distribution of k becomes
Poissonian], one "nds that the generating func-
tion h

G
(j) de"ned by

h
G
(j)"Texp Cj

w(a)c (G)
Sw(G)TDU (A.11)

satis"es

h
G`1

(j)"+
k

p
k ChG A

jSw(G)T
2Sw (G#1)TBD

k

"exp[!m#mh
G
(j/m)]. (A.12)

Recursion (A.12) generalizes to the case mO2
(i.e. the case of an exponentially increasing popu-
lation) the result of our previous work obtained
for a population of constant size (m"2). Similar
recursions have been studied in the theory of
branching processes (Harris, 1963). The use of
generating functions in population genetics is
well illustrated in the book by Gale (1990), where
this method is for example applied to the calcu-
lation of the probability of "xation of a mutant
allele.

It is remarkable, that if one considers an imagi-
nary world where each individual would have
n parents (instead of 2), the generating function
(A.11), in the case of a population of constant size,
would satisfy the recursion (A.12) with m"n.
This means that as long as the distribution of
weights is concerned, the problem of a large
population of constant size with m parents per
individual is identical to the problem of a popula-
tion of size increasing at each generation by a fac-
tor m/2 with two parents per individual.
Stationary Distribution

For large G, if we "x the ratio N(G)/N(G#1)
"m/2, the generating function h

G
(j) converges to

h
=

(j) solution of

h
=

(j)"exp[!m#mh
=

(j/m)]. (A.13)

If one expands the solution around j"0, one
"nds that

h
=

(j)"1#j#
1
2

m
m!1

j2

#

1
6

m2(m#2)
(m2!1)(m!1)

j3#2

and the comparison with eqn (A.11) gives for
large G

Sw2T
SwT2

P

m
m!1

;
Sw3T
SwT3

P

m2(m#2)
(m2!1)(m!1)

,

which means that, in principle, the whole shape of
P(w) can be extracted from eqn (A.13). In particu-
lar, one can predict the power law of P(w) at
small w. Trying to solve eqn (A.13) for large
negative j, if one writes

h
=

(j)!S(R)K
1

Dj Dm`1
(A.14)

one "nds, as expected, that S (R) is the "xed point
of eqn (4). Equation (A.14) is equivalent to the
assumption that P(w)&wm at small w, where the
exponent m should satisfy

1"S(R)mm`2.

This completes the derivation of eqn (5) which
has already been discussed in our previous work
(Derrida et al., 1999).

Overlap between Two Trees

Let us now show how eqn (6) can be derived.
Starting from recursion (3), one obtains by aver-
aging over all the links relating generation G to
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generation G#1

Sw(a)c (G#1)w(b)c (G#1)T

"

SkT
4

Sw(a)c (G)w(b)c (G)T

#

Sk(k!1)T
4

Sw(a)c (G)w(b)c{ (G)T, (A.15)

where cOc@ and the averages over k are carried
out with respect to eqn (A.1). This gives

Sw(a)c (G#1)w(b)c (G#1)T

"

m
4

Sw(a)c (G)w(b)c (G)T

#

1
4 Am2!

m
N(G#1)B Sw(a)c (G)w(a)c{ (G)T.

(A.16)

Using the fact that the sum +c{w(b)c{ (G)"1, so
that Sw(a)c (G)T"1/N(G) at all generations, one
gets that

Sw(a)c (G#1)w(b)c (G#1)T

"

m
4

Sw(a)c (G)w(b)c (G)T#
1
4 Am2!

m
N(G#1)B

]
1

N(G)
!Sw(a)c (G)w(b)c (G)T

N(G)!1
. (A.17)

Keeping only the dominant contributions for
large N1s we arrive at
Sw(a)c (G#1)w(b)c (G#1)T

"

m
4

Sw(a)c (G)w(b)c (G)T#
m2

4
1

N(G)2
.

Comparing this expression with eqn (A.15), one
sees that for large N, one could have simply
neglected the correlations between the weights
of di!erent individuals [i.e. directly replaced
Sw(a)c (G)w(b)c{ (G)T by Sw(a)c (G)T Sw(b)c{ (G)T and used
the Poisson distribution instead of eqn (A.1)].
The previous recursion can be integrated

Sw(a)c (G)w(b)c (G)T"CSw(a)c (0)w(b)c (0)T

#

1
N2

m
m!1

(mG!1)D A
m
4B

G
, (A.18)

and using the fact that Sw(a)c (G)w(b)c (G)T is equal
to > (G)/N(G) when aOb and to X(G)/N(G)
when a"b, one "nds (with X(0)"1 and
>(0)"0) that

S>(G)T
SX(G)T

"

(mG!1)m~Gc

1#(mG!1)m~Gc
,

where G
c
is given by eqn (7). For large N, that

is, for large G
c

this reduces to eqn (6) in the
whole range where the expression departs from
0 or 1, that is, for G of order G

c
. Finally, one

can check that with the value of G
c
given by eqn

(7), N (G) is always large, as long as N is large, so
that our assumption that all the N1s are large is
legitimate.
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