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We analyze the statistical properties of genealogical trees in a neutral model of a closed population
with sexual reproduction and nonoverlapping generations. By reconstructing the genealogy of an
individual from the population evolution, we measure the distribution of ancestors appearing more than
once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling,
a stationary distribution which we calculate both numerically and analytically. This distribution
exhibits a universal shape with a nontrivial power law which can be understood by an exact, though
simple, renormalization calculation. Some real data on human genealogy illustrate the problem,
which is relevant to the study of the real degree of diversity in closed interbreeding communities.
[S0031-9007(99)08610-X]

PACS numbers: 87.10.+e, 05.20.-y, 05.40.—a, 64.60.Ak

Modern man appeared on Earth son® years ago eration in the past that we are looking at. The question
[1,2]. At that time, a few social groups totaling sev- that we are addressing can be put in the more general con-
eral thousands of individuals were occupying small setiext of genetic diversity [6,7]. In fact, an important factor
tlements, most probably in Africa [3]. Nowadays, we arein the variability of natural populations is the diversity
faced with abouf X 10° human beings on Earth, whose displayed, in the genealogical history of every individual,
lineages could be, in principle, traced back to that timeby his ancestors themselves and by their weights in the
Each human being has two parents, four grandparentpresent genome. Here we calculate these weights in a
and, in general": ancestors in the,th upper generation. simple neutral model, with no selection, no change in the
Going backwards in time until the first group of anatomi- population size, and no geographical isolation. Possible
cally modern Homo sapiens-some 4000 generations effects of these on genealogies and genetic diversities are
ago—we should fin@*%% ~ 10129 ancestors in each ge- discussed in [4,8,9].
nealogical tree. However, the total human population at We have started by performing numerical simulations of
those early times was probably only a few thousands. Tha simple neutral model of a closed population evolving un-
answer to this apparent paradox is simple: A given indi-der sexual reproduction with nonoverlapping generations.
vidual appears more than once in a genealogical tree [4],
even in very distant branches, indicating that many of the

ancestors were in fact close relatives. A repeated individ- 1

ual generates a whole repeated branch in the tree, and the —— N=4096, G=10
further we move into the past, the more frequent the repe- I N=2048, G=10
titions will be. This is the result of mating inside a finite 10" ¢ * Edward il

population, the size of which sets an upper bound to the

maximal number of ancestors for a given individual.
These repetitions are particularly apparent when we are

faced with a small closed interbreeding population. Royal

genealogy provides us with a nice example, since nobles

usually married within their own castes. As an illustration 10*

to the problem, we have analyzed the repetitions in the

genealogical tree of the English king Edward IIl (1312—

1377) [5]. It contains almost0?® individuals, some of 10° 5 \

which appear more than once (and up to six times) in his 10 Number of repetiti 10

tree. We show in Fig. 1 the functiof(r), defined as umber o repetitions

the quotient between the numbi(r) of ancestors which FIG. 1. Probability of ancestor repetitions in the genealogical

appear times in the tree and the total number of differentre€ of the king Edward Il [S]. The continuous and dashed
lines represent the results of simulations f&ffr) in a closed

ancestorsV,: F(r) = M(r)/N;. " _ _population with2!! and 2'2 individuals for our model. Av-
We study here the statistics of repetitions in genealogierages have been performed over the ten first generations of
cal trees as a function of the population size and the geni® independent trees.

Probability
[
(@)
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In our model the population size is fixed to befor all 1
generations. The population is equally divided into two
groups, representing males and females. At every genera-

tion, we form heterosexual pairs at random and assign them ;2
a certain number of descendants according to a Poisson dis-
tribution. This is done by choosing for each male or each
female a pair of parents at random in the previous genera-
tion [10]. After a numberG of generations, the tree ¥
of each of the individuals in the youngest generation is
reconstructed. "

10°

We have first calculated the distributidf(r) of repe- 10
titions in this model for a population oV = 2'! and
N = 2'?individuals. This might be a rough estimate of o ‘ ‘ ‘
the number of noble people at the time of Edward III. 105 10 10° 10’ 10’
After G = 10 generations, we compute the probability of r

repetitiqns in the whole tree (notice that in the real WOI’!d IG. 2. Distributiont(r, n,) of r repetitions aftem, genera-
generations often overlap and thus the same person migfiéns [(0, n,) is not shown]. The distribution changes after
be found in different generations; this possibility is absentoughly logN generations from a decreasing function ©of
in our model). The result of our simulations is comparedto a distribution with a maximum. The generations shown
with the real data displayed in Fig. 1. We observe arf'®”¢ =9 13, 15, 17, 19, 21, and 23 for a population with
acceptable agreement, although we should say that té — 2 - We have averaged over 100 independent runs.
distribution F(r) depends rather strongly o& and N
and that the agreement is often worse for other reasonabigrsus the weight
choices of these two parameters.

We have also measured the probability of repetitions w = rN/2"%, )

H(r,n,) at every past generation, = 1,...,G, thatis, g the distributions of Fig. 2 (after a transient period)
the probability that any individual at generation in  cojlapse on a single stationary function. Figure 3 rep-
the past appears times in the tree of an individual at yesents the functio®(w) for several values ofi, after
generation O/}, = 1 corresponds to the parenis, =2 the transient period obtained for a population Mf=

to the grandparents, and so on; note i, ) is sSimply 520 jngividuals. We observe that the left tail &(w) is

the probability that an individual is not present in a treey power law,P(w) ~ wh, and a least squares fit to our
aftern, generations]. In the first few generations (parents,,merical results in the domain € (1074,107") returns
grandparents, etc.), if the population siXeis large, the g ~ (.302. In addition to the exponerg, one can accu-
probability of finding an individual more than once in atreerately measure the moments @i") = [ w"P(w)dw of

is very small. Asa consequengir, n,) decreaseswith — p(y) as well as the fractios(n,) of the total population
whenn, is small. Going further in the past, at some point

two “brothers” will appear in the tree of an individual, and

from then on these two branches will coincide. From then 1@
on, more and more repetitions will occur. Lot

The distributionH (r, n,) is shown in Fig. 2. It changes gets °
its shape during a transient period of the order of Mg S, xxy3% ¢
generations. [Note that an important difference between 00 | ° 6 .
F(r) shown in Fig. 1 andH(r,n,) is that for F we 028 .
counted only those individuals present in one particular = £ 31
genealogical tree whereas fé&f we count the whole x o 34
population at generatiom, in the past.] Clearly, we have u * 37
d.=0H(r,ng) =1 and >, rH(r,ng) = 2". In Fig. 2 101 > 40
we see forN = 215 the functionH(r,n,) for different
generations before and after reaching the stationary shape. 5
For n, small, H(r,n,) decreases with-, meaning that . | | |
repetitions are very unprobable. As, increases, the 107 o° 10° 102 10 10
number of repetitions increases amtir,n,) exhibits a W

maximum and a shape which becomes stationary. FIG. 3. Data collapse for the rescaled distribution of repe-

If we rescale the diStribUtiOH(r’”g) by plotting as in titions P(w) after the transient period. Averages have been

Fig. 3 the distribution performed over10® independent trees for a population size
P(w) = 2"H(r,ng)/N, 1) N =2%
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: : itself randomly chosen according to (4). Thergif (1)
; I is the generating function of the weights at generatign
in the past,

1.0

0.8
g, (1) = (M)

Moments

0.6 it follows from (3) [and the fact that for larg&v the
0 wj(ng) are uncorrelated] that it satisfies
04} o 2ke™? _
g 1(A) = > T [, (A/D) = e 222 (5)
’ = K )
0.2 This recursion has the form of a renormalization group
transformation. Together with the initial condition
00, 10 20 30 40 50 go(A) =1+ ("N — 1)/N, (6)

Generation it determines all the generating functiops (A). When

FIG. 4. Dependence of(n;) on the generatiom, for a  n, — %, the generating function converges to a ligit)

population withN = 25, The numerical asymptotic value is solution of

S(ng — ) = 0.2031. The bold dotted line is the predicted

theoretical valueS = g(—«) = 0.20318787.... In the inset, g(A) = eXW/D72, @)

we represent the first ten momens”) for the distribution . . .

P(w). The continuous line corresponds to numerical results, All the information on the shape of the stationary

while solid circles stand for the theoretical predictions. solution P(w) is contained in the solution of (7). For
example, one can expand tlg€¢)A) solution of (7) in a
power series and find that

in the oldest generation which is absent from a given ge- 8

; . . . ; 46 2672
nealogical tree. Figure 4 contains our numerical estimates g(A) =1 + A + A2 + —A* + e A+ Py A
for S(ng). Figure 4 also shows the first moments of the 9 7
distributionP(w). As can be seen, even when the number 183712

. . . A+
of potential ancestors in the tree is much larger than the 439 425

number of individuals in the population, not all of those
give contributions to the present. In fact, the proportion
of individuals without descendants reaches a fixed valu
S(ng — ) = 0.2031.

The distributionP (w) can be understood analytically by
the following argument: If we consider the genealogical
tree of an individual, say individual = 1 at the Oth
generation, the weights of his ancestors can be traced
back according to the following algorithm. From (1) and S = 572,

(2) we havew;(0) = N for i =1 and w;(0) = 0 for L
i # 1. Then the weights of the ancestors at generatioﬁmd this givess = 0.20318787......
The power lawP(w) ~ w? at smallw can also be

+1i it <n, =G — ' _
n, + linthe past, withh = n, = G — 1, are given by easily understood from (7). B(w) = Aw for smallw,
wilng + 1) = Z % (3) onecan write that ag — —o
g) =S =AT(B + DIAlP,
and Eqg. (7) gives [by the standard renormalization argu-

ment used to calculate exponents by linearization around
a fixed point and which consists of writing the compen-

This leads to(w) = 1, (w?) = 2, (w3) = 16/3, (w*) =
68/21, and so on. [Note thdiv) = 1 is not determined
y (7), but this is an immediate consequence of the initial
condition (6).] One can also determine the fract®of
individuals with no descendants (that is the probability
thatw = 0) by § = g(—»). Clearly,S = g(—») is the
solution of

Jj children of i

WhenN is large, the probability, that an individual at
generatiom, + 1 in the past hag children at generation
n, becomes a Poisson distribution

pi = 2"e 2 /kL. (4)  sation of the singularities proportional ] #~! on both
Now if for large N we consider that the weights of the sides of (7)] that
children of any given individual are uncorrelated (this can log S
be viewed as an approximation, but in fact, by calculating B = —@ —2=02991138...,

pair correlations between the weights in our model, one
can show that for large enougN this approximation in excellent agreement with the results of the simulation.
becomes exact), we obtain from (3) and (4) that anyOther properties of the stationary distributiifw) could
weight at generation, + 1 is the sum ofk independent in principle be extracted from (7), but this would require
identically distributed weights at generationp with k¥ more complicated mathematical developments.
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In this work, we have shown that a simple neutrallocally look like trees but where large loops—responsible
model of sexual reproduction with nonoverlapping gen-for cooperative effects—are present have attracted a lot of
erations leads to a universal distribution of the weights ointerest in the theory of disordered systems (spin glasses,
ancestors in genealogical trees. This universal distributocalization) [14—19].
tion (more precisely its generating function) is the fixed Last, the model studied here gives through (5) and (7)
point (7) of a simple renormalization Eq. (5). The expo-a very simple and pedagogical example of a problem
nent 8 of the power law observed for small weights canwith a nontrivial exponent, which can be solved exactly
be calculated exactly. by a discrete renormalization transformation. One could

Our main result is that if we go very far in the try to see whether the oscillations [20] which usually
past, about 80% of the (adult) population appears in thaccompany such discrete renormalization transformations
genealogical tree of every individual. If the weights are present here too.
of these ancestors represent how often they appear in Interesting discussions with Ugo Bastolla are gratefully
this tree, these weights have a stationary probabilittacknowledged. S.C.M. acknowledges support from the
distribution which is universal (i.e., independent of theAlexander von Humboldt Foundation (Germany) and
generation and of the population size). from Fundacién Antorchas (Argentina).

There are a number of extensions of the present work
which, in our opinion, are worth pursuing. First, a more
complete description oP(w), in particular the largev
behavior, could be extracted from (7). If we wish to [1] G. Brauer, Y. Yokoyama, C. Falguéres, and E. Mbua,
perform a better approximation to real genealogy, the  Nature (London386, 337 (1997).
possibility of overlaps between generations or of changes[2] L.L. Cavalli-Sforza, Proc. Natl. Acad. Sci. U.S./4,
in the population size should be included. One can try 7719 (1997).
to measure the distribution of lengths of segments in [3] B'SE'ARgeécgligd(Eéng') Goldstein, Proc. Natl. Acad. Sci.
simple models [7,11] for the evolution of chromosomes O IS5 : .
to see whether a power law in the length distribution is [4] S- Ohno, Proc. Natl. Acad. Sci. U.S.A3, 15276 (1996).

: . [5] Source: http://uts.cc.utexas.edinfucchh/edw3chrt.html
present there too. Ong could also .|nv§st|gate how our[6] H.C. Harpending, M. A. Batzer, M. Gurven, L.B. Jorde,
results 'Woulq be .mo.dlfu'ad by choos!ng mstead. of (4)a" " AR Rogers, and S.T. Sherry, Proc. Natl. Acad. Sci.
non-Poissonian distribution of offspring. Last, it would U.S.A. 95 1961 (1998).
be interesting to consider the genealogical trees of severaj7] c. wiuf and J. Hein, Genetic$47, 1459 (1997).
individuals to see how the repetitions on different trees [8] C. Boehm, Am. Nat.150 S100 (1997); D.S. Wilson,

are correlated [12]. Science276, 1816 (1997).

With a little more imagination, one can construct other [9] S.A. Tishkoff, E. Dietzsch, W. Speed, A.J. Pakstis, J.R.
universality classes, by allowing the numbenof parents Kidd, K. Cheung, B. Bonné-Tamir, A.S. Santachiara-
of each individual to be arbitrary, instead pf= 2 in Benerecetti, P. Moral, M. Krings, S. Paabo, E. Watson,

N. Risch, T. Jenkins, and K. K. Kidd, Sciené&1, 1380

our earthly world. For general, the fixed point Eq. (7) (1996)

would %e‘tzomeg (’t‘r)] T exg—p ;tlt’rf’()‘/ {’)]'t There Idsth 10] M. Serva and L. Peliti, J. Phys. 24, L705 (1991).
no need 1o say that one might then 1ry 1o expan 11] B. Derrida and B. Jung-Muller, J. Stat. Phy&4, 277
distribution P(w), the fixed pointS, or the exponent (1999).
B in powers ofe for p =1 + e. In fact, one can [12] B. Derrida, S.C. Manrubia, and D.H. Zanette (to be
show [12] that the case of an exponentially increasing (or ~ published).
decreasing) population size wifh = 2 parents for each [13] S.N. Coppersmith, C.-h. Liu, S.N. Majumdar,
individual is equivalent, as long agA) is concerned, to O. Narayan, and T.A. Witten, Phys. Rev. B3,
the case of a population of constant size with a number of 4673 (1996). _
parentsp which depends on the exponential growth rate[14] H. Orland, J. Phys. (Paris), Le#6, L763 (1985).

Apart from the potential application of our results to [16] Cl'ggg Dominicis and P. Mottishaw, Europhys. Let.87
population genetics and evolutionary biology, the modet ( ):

of evolution studied here is connected to a number o 17] I(.lgé';\?n)ter and H. Sompolinsky, Phys. Rev. Leig, 164

problems of current interest in physics. First, the rando 18] M. Mézard and G. Parisi, Europhys. Le®. 1067 (1987).

assignment of the parents of individuals at each genergig) G.J. Rodgers and A.J. Bray, Phys. Rev.38, 3557
tion is very reminiscent of a problem of repartition of (1988).

constraints introduced recently [13] to describe granulaj20] D. Sornette, Phys. Ref297, 239 (1998), and references
materials, with a recursion similar to (3). Graphs which therein.
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