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We analyze the statistical properties of genealogical trees in a neutral model of a closed population
with sexual reproduction and nonoverlapping generations. By reconstructing the genealogy of an
individual from the population evolution, we measure the distribution of ancestors appearing more than
once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling,
a stationary distribution which we calculate both numerically and analytically. This distribution
exhibits a universal shape with a nontrivial power law which can be understood by an exact, though
simple, renormalization calculation. Some real data on human genealogy illustrate the problem,
which is relevant to the study of the real degree of diversity in closed interbreeding communities.
[S0031-9007(99)08610-X]
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Modern man appeared on Earth some105 years ago
[1,2]. At that time, a few social groups totaling sev
eral thousands of individuals were occupying small se
tlements, most probably in Africa [3]. Nowadays, we ar
faced with about5 3 109 human beings on Earth, whose
lineages could be, in principle, traced back to that tim
Each human being has two parents, four grandparen
and, in general,2ng ancestors in thength upper generation.
Going backwards in time until the first group of anatom
cally modern Homo sapiens—some 4000 generations
ago—we should find24000 , 101200 ancestors in each ge-
nealogical tree. However, the total human population
those early times was probably only a few thousands. T
answer to this apparent paradox is simple: A given ind
vidual appears more than once in a genealogical tree
even in very distant branches, indicating that many of t
ancestors were in fact close relatives. A repeated indiv
ual generates a whole repeated branch in the tree, and
further we move into the past, the more frequent the rep
titions will be. This is the result of mating inside a finite
population, the size of which sets an upper bound to t
maximal number of ancestors for a given individual.

These repetitions are particularly apparent when we a
faced with a small closed interbreeding population. Roy
genealogy provides us with a nice example, since nob
usually married within their own castes. As an illustratio
to the problem, we have analyzed the repetitions in t
genealogical tree of the English king Edward III (1312
1377) [5]. It contains almost103 individuals, some of
which appear more than once (and up to six times) in h
tree. We show in Fig. 1 the functionFsrd, defined as
the quotient between the numberMsrd of ancestors which
appearr times in the tree and the total number of differen
ancestorsNt: Fsrd ­ MsrdyNt.

We study here the statistics of repetitions in genealo
cal trees as a function of the population size and the ge
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eration in the past that we are looking at. The questio
that we are addressing can be put in the more general c
text of genetic diversity [6,7]. In fact, an important facto
in the variability of natural populations is the diversity
displayed, in the genealogical history of every individua
by his ancestors themselves and by their weights in t
present genome. Here we calculate these weights in
simple neutral model, with no selection, no change in th
population size, and no geographical isolation. Possib
effects of these on genealogies and genetic diversities
discussed in [4,8,9].

We have started by performing numerical simulations o
a simple neutral model of a closed population evolving un
der sexual reproduction with nonoverlapping generation
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FIG. 1. Probability of ancestor repetitions in the genealogic
tree of the king Edward III [5]. The continuous and dashe
lines represent the results of simulations ofFsrd in a closed
population with 211 and 212 individuals for our model. Av-
erages have been performed over the ten first generations
103 independent trees.
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In our model the population size is fixed to beN for all
generations. The population is equally divided into tw
groups, representing males and females. At every gen
tion, we form heterosexual pairs at random and assign th
a certain number of descendants according to a Poisson
tribution. This is done by choosing for each male or ea
female a pair of parents at random in the previous gene
tion [10]. After a numberG of generations, the tree
of each of the individuals in the youngest generation
reconstructed.

We have first calculated the distributionFsrd of repe-
titions in this model for a population ofN ­ 211 and
N ­ 212 individuals. This might be a rough estimate
the number of noble people at the time of Edward I
After G ­ 10 generations, we compute the probability
repetitions in the whole tree (notice that in the real wo
generations often overlap and thus the same person m
be found in different generations; this possibility is abse
in our model). The result of our simulations is compar
with the real data displayed in Fig. 1. We observe
acceptable agreement, although we should say that
distribution Fsrd depends rather strongly onG and N
and that the agreement is often worse for other reason
choices of these two parameters.

We have also measured the probability of repetitio
Hsr , ngd at every past generationng ­ 1, . . . , G, that is,
the probability that any individual at generationng in
the past appearsr times in the tree of an individual a
generation 0 [ng ­ 1 corresponds to the parents,ng ­ 2
to the grandparents, and so on; note thatHs0, ngd is simply
the probability that an individual is not present in a tr
afterng generations]. In the first few generations (paren
grandparents, etc.), if the population sizeN is large, the
probability of finding an individual more than once in a tre
is very small. As a consequenceHsr , ngd decreases withr
whenng is small. Going further in the past, at some poi
two “brothers” will appear in the tree of an individual, an
from then on these two branches will coincide. From th
on, more and more repetitions will occur.

The distributionHsr, ngd is shown in Fig. 2. It changes
its shape during a transient period of the order of logN
generations. [Note that an important difference betwe
Fsrd shown in Fig. 1 andHsr , ngd is that for F we
counted only those individuals present in one particu
genealogical tree whereas forH we count the whole
population at generationng in the past.] Clearly, we haveP

r$0 Hsr , ngd ­ 1 and
P

r rHsr , ngd ­ 2ng . In Fig. 2
we see forN ­ 215 the functionHsr , ngd for different
generations before and after reaching the stationary sh
For ng small, Hsr , ngd decreases withr, meaning that
repetitions are very unprobable. Asng increases, the
number of repetitions increases andHsr , ngd exhibits a
maximum and a shape which becomes stationary.

If we rescale the distributionHsr , ngd by plotting as in
Fig. 3 the distribution

Pswd ; 2ng Hsr , ngdyN , (1)
1988
o
era-
em
dis-
ch
ra-

is

of
II.
of
rld
ight
nt

ed
an
the

able

ns

t

ee
ts,

e

nt
d
en

en

lar

ape.

10
0

10
1

10
2

10
3

10
4

r

10
-8

10
-6

10
-4

10
-2

10
0

H
(r

,n
g
)

FIG. 2. DistributionHsr , ngd of r repetitions afterng genera-
tions [Hs0, ngd is not shown]. The distribution changes afte
roughly logN generations from a decreasing function ofr
to a distribution with a maximum. The generations show
are ng ­ 9, 13, 15, 17, 19, 21, and 23 for a population wit
N ­ 215. We have averaged over 100 independent runs.

versus the weight

w ; rNy2ng , (2)

all the distributions of Fig. 2 (after a transient period
collapse on a single stationary function. Figure 3 re
resents the functionPswd for several values ofng after
the transient period obtained for a population ofN ­
220 individuals. We observe that the left tail ofPswd is
a power law,Pswd , wb , and a least squares fit to ou
numerical results in the domainw [ s1024, 1021d returns
b . 0.302. In addition to the exponentb, one can accu-
rately measure the moments ofkwnl ­

R
wnPswd dw of

Pswd as well as the fractionSsngd of the total population
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FIG. 3. Data collapse for the rescaled distribution of rep
titions Pswd after the transient period. Averages have be
performed over103 independent trees for a population siz
N ­ 220.
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FIG. 4. Dependence ofSsngd on the generationng for a
population withN ­ 215. The numerical asymptotic value is
Ssng ! `d . 0.2031. The bold dotted line is the predicted
theoretical valueS ­ gs2`d ­ 0.203 187 87 . . . . In the inset,
we represent the first ten momentskwnl for the distribution
Pswd. The continuous line corresponds to numerical resul
while solid circles stand for the theoretical predictions.

in the oldest generation which is absent from a given g
nealogical tree. Figure 4 contains our numerical estima
for Ssngd. Figure 4 also shows the first moments of th
distributionPswd. As can be seen, even when the numb
of potential ancestors in the tree is much larger than t
number of individuals in the population, not all of thos
give contributions to the present. In fact, the proportio
of individuals without descendants reaches a fixed valu
Ssng ! `d . 0.2031.

The distributionPswd can be understood analytically by
the following argument: If we consider the genealogica
tree of an individual, say individuali ­ 1 at the 0th
generation, the weightsw of his ancestors can be traced
back according to the following algorithm. From (1) an
(2) we havewis0d ­ N for i ­ 1 and wis0d ­ 0 for
i fi 1. Then the weights of the ancestors at generati
ng 1 1 in the past, with0 # ng # G 2 1, are given by

wisng 1 1d ­
X

j children of i

wjsngd
2

. (3)

WhenN is large, the probabilitypk that an individual at
generationng 1 1 in the past hask children at generation
ng becomes a Poisson distribution

pk ­ 2ke22yk! . (4)

Now if for large N we consider that the weights of the
children of any given individual are uncorrelated (this ca
be viewed as an approximation, but in fact, by calculatin
pair correlations between the weights in our model, on
can show that for large enoughN this approximation
becomes exact), we obtain from (3) and (4) that an
weight at generationng 1 1 is the sum ofk independent
identically distributed weights at generationng with k
ts,
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itself randomly chosen according to (4). Then ifgng sld
is the generating function of the weights at generationng

in the past,

gng sld ­ kelwi sngdl ,

it follows from (3) [and the fact that for largeN the
wjsngd are uncorrelated] that it satisfies

gng11sld ­
X̀
k­0

2ke22

k!
fgng sly2dgk ­ e2212gng sly2d. (5)

This recursion has the form of a renormalization gro
transformation. Together with the initial condition

g0sld ­ 1 1 selN 2 1dyN , (6)

it determines all the generating functionsgng sld. When
ng ! `, the generating function converges to a limitgsld
solution of

gsld ­ e2gsly2d22. (7)

All the information on the shape of the stationa
solution Pswd is contained in the solution of (7). Fo
example, one can expand thegsld solution of (7) in a
power series and find that

gsld ­ 1 1 l 1 l2 1
8
9

l3 1
46
63

l4 1
2672
4725

l5

1
183 712
439 425

l6 1 . . . .

This leads tokwl ­ 1, kw2l ­ 2, kw3l ­ 16y3, kw4l ­
368y21, and so on. [Note thatkwl ­ 1 is not determined
by (7), but this is an immediate consequence of the init
condition (6).] One can also determine the fractionS of
individuals with no descendants (that is the probabil
that w ­ 0) by S ­ gs2`d. Clearly,S ­ gs2`d is the
solution of

S ­ e2S22,

and this givesS ­ 0.203 187 87 . . . .
The power lawPswd , wb at small w can also be

easily understood from (7). IfPswd . Awb for smallw,
one can write that asl ! 2`

gsld 2 S . AGsb 1 1d jlj2b21,

and Eq. (7) gives [by the standard renormalization arg
ment used to calculate exponents by linearization arou
a fixed point and which consists of writing the compe
sation of the singularities proportional tojlj2b21 on both
sides of (7)] that

b ­ 2
log S
log 2

2 2 . 0.299 113 8 . . . ,

in excellent agreement with the results of the simulatio
Other properties of the stationary distributionPswd could
in principle be extracted from (7), but this would requir
more complicated mathematical developments.
1989
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In this work, we have shown that a simple neutr
model of sexual reproduction with nonoverlapping ge
erations leads to a universal distribution of the weights
ancestors in genealogical trees. This universal distrib
tion (more precisely its generating function) is the fixe
point (7) of a simple renormalization Eq. (5). The expo
nentb of the power law observed for small weights ca
be calculated exactly.

Our main result is that if we go very far in the
past, about 80% of the (adult) population appears in t
genealogical tree of every individual. If the weight
of these ancestors represent how often they appear
this tree, these weights have a stationary probabil
distribution which is universal (i.e., independent of th
generation and of the population size).

There are a number of extensions of the present wo
which, in our opinion, are worth pursuing. First, a mor
complete description ofPswd, in particular the largew
behavior, could be extracted from (7). If we wish t
perform a better approximation to real genealogy, t
possibility of overlaps between generations or of chang
in the population size should be included. One can t
to measure the distribution of lengths of segments
simple models [7,11] for the evolution of chromosome
to see whether a power law in the length distribution
present there too. One could also investigate how o
results would be modified by choosing instead of (4)
non-Poissonian distribution of offspring. Last, it would
be interesting to consider the genealogical trees of seve
individuals to see how the repetitions on different tree
are correlated [12].

With a little more imagination, one can construct othe
universality classes, by allowing the numberp of parents
of each individual to be arbitrary, instead ofp ­ 2 in
our earthly world. For generalp, the fixed point Eq. (7)
would becomegsld ­ expf2p 1 pgslypdg. There is
no need to say that one might then try to expand t
distribution Pswd, the fixed point S, or the exponent
b in powers of e for p ­ 1 1 e. In fact, one can
show [12] that the case of an exponentially increasing (
decreasing) population size withp ­ 2 parents for each
individual is equivalent, as long asgsld is concerned, to
the case of a population of constant size with a number
parentsp which depends on the exponential growth ra
of the population.

Apart from the potential application of our results t
population genetics and evolutionary biology, the mod
of evolution studied here is connected to a number
problems of current interest in physics. First, the rando
assignment of the parents of individuals at each gene
tion is very reminiscent of a problem of repartition o
constraints introduced recently [13] to describe granu
materials, with a recursion similar to (3). Graphs whic
1990
al
n-
of
u-
d
-
n

he
s

in
ity
e

rk
e

o
he
es
ry
in
s
is
ur
a

ral
s

r

he

or

of
te

o
el
of
m
ra-
f
lar
h

locally look like trees but where large loops—responsib
for cooperative effects—are present have attracted a lo
interest in the theory of disordered systems (spin glass
localization) [14–19].

Last, the model studied here gives through (5) and
a very simple and pedagogical example of a proble
with a nontrivial exponent, which can be solved exact
by a discrete renormalization transformation. One cou
try to see whether the oscillations [20] which usual
accompany such discrete renormalization transformatio
are present here too.
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